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Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy

4 C. V. Raman Global University, Bhubaneswar, Odisha-752054, India

Fractional revivals are recently reported for circular atomtronics, but get disturbed for a nonzero
eccentricity of the waveguide geometry. Here, we provide a mechanism for the elliptical atomtronics
with arbitrary eccentricity to restore fractional revivals. The uniform ground state of the circular
waveguide becomes nonuniform in the elliptical geometry. An appropriate dispersion management
can bring back the uniformity and we use the overlap function numerically to identify the corre-
sponding dispersion coefficients, which match with our proposed analytical formula. The fact that,
the cloud spends mostly along the semimajor edges, is demonstrated by the survival function. The
said dispersion management recovers the desired fractional revivals patterns, where the revival time-
scale becomes independent of the eccentricity. The present method paves the way also to observe
other known phenomena of circular atomtronics in elliptical atomtronics.

I. INTRODUCTION

Guiding matter waves is a pivotal component in con-
structing matter wave circuits, particularly within atom
chip technology [1–3]. The precise fabrication of these
waveguides is critical in the field of atomtronics, en-
abling coherent control and manipulation of matter waves
[4, 5]. Techniques like time-averaged adiabatic potential
(TAAP) [6–10], intensity mask [11], and digital hologra-
phy [12] have been instrumental in creating waveguides
for ultracold atoms, contributing significantly to the ad-
vancement of atomtronics. Among the various types of
waveguides, the circular waveguide stands out as the sim-
plest spatially closed atomtronic circuit [13, 14], widely
applied in atom interferometry [15–19], quantum trans-
port [20, 21], quantum sensing [22–24], atom SQUID
[25, 26], and other quantum technological applications
[2]. The curvature-induced potential (CIP) of a waveg-
uide is proportional to the square of its curvature, im-
plying a constant CIP for a circular waveguide [27–29],
which bears a uniformly distributed ground state along
its circumference [30].

The major utility of a circular waveguide stems from
its constant curvature, which facilitates matter wave in-
terference, an integral component of the above applica-
tions. The matter wave interference in a circular waveg-
uide also gives rise to fractional revivals (FR), which is
the spawning of multiple replicas of the initial matter
wave packet along the perimeter of the circular waveg-
uide [31–33]. The FR instances are succeeded by the
revival of the initial condensate in shape and location.
The FR time instances and revival depends on a charac-
teristic parameter linked to the radius of the waveguide
[32]. Moreover, higher-order FR patterns can provide a
platform for studying multiple source interference, which
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is usually studied using optical lattices [34–37]. In con-
trast, due to the variable width along the circumference
and non-constant CIP, elliptical waveguides result in a
non-uniform ground state along the perimeter [30, 38].
Unlike a circular waveguide, elliptical counterpart lacks
support for Talbot oscillations [39].

Concurrently, dispersion engineering has emerged as
a significant method for controlling and manipulating
the dynamics of Bose-Einstein condensates (BEC) in ex-
ternal traps [40–42]. Dispersion management (DM) in
atomic BECs is achieved by introducing optical lattices
[43, 44] or manipulating spin-orbit coupling [45, 46]. One
can achieve desired BEC dynamics in a matter-wave cir-
cuit of waveguides by tuning the nonlinearity and the dis-
persion through Feshbach resonance and DM, as in the
case of optical solitons [47, 48]. Recently, the nonlinear-
ity of the BEC was used to nullify the effects of curvature
in an elliptical waveguide [38]. Here, we delve into engi-
neering the dispersion of BEC inside an elliptical waveg-
uide to regain the properties of circular atomtronics. No-
tably, the utilization of matter wave dispersion serves as
a means to counteract the effects of non-constant width
in an elliptical waveguide, offering potential strategies for
manipulating and optimizing matter wave behaviour in
atomtronics applications.

The paper is organized as follows: Section II introduces
the theoretical model for BEC in an elliptical waveguide.
This section also discusses the role of waveguide geom-
etry in the dispersion of matter waves. In Sec. III, we
derive the dynamical equation for BEC with tunable dis-
persion in an elliptical waveguide and also outline the
numerical methods applied to obtain both the ground
state solution and FR-dynamics within the waveguide.
The ground state solution of BEC in an elliptical waveg-
uide, characterized by different eccentricities, are demon-
strated. We also determine the suitable dispersion coef-
ficients for matter waves, aiming to neutralize the effects
of variable thickness in an elliptical waveguide. Section
IV delves into exploring the impact of eccentricity on
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the FR-dynamics of matter waves and the subsequent
restoration of FR signatures through dispersion manage-
ment, which elucidates on how manipulating dispersion
can counteract the challenges posed by the non-constant
width in elliptical waveguides. Finally, we conclude in
Sec. V, summarizing the key findings and future out-
look.

II. BOSE-EINSTEIN CONDENSATE INSIDE AN
ELLIPTICAL WAVEGUIDE

We consider a BEC ofN number of 23Na atoms, loaded
in an elliptical waveguide of eccentricity ε. A three-
dimensional Gross Pitaevskii equation (3D-GPE) [49–53]
describes the evolution of the macroscopic wavefunction
Ψ ≡ Ψ(r, t) of a BEC in an external trap:

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 +

4πNas
m

|Ψ|2 + V (r)

]
Ψ, (1)

where V (r) = V (z) + V (x, y) with V (z) = 1
2mω⊥z

2 and

V (x, y) = V0

{
1− exp

[
− 1

γ2

(√
x2 +

y2

1− ε2
− a

)2]}
.

Here, ω⊥ is the frequency of the transverse harmonic
trap, V0 is the depth of the waveguide, γ is the width

of the waveguide, and ε =
√
1− b2

a2 is the eccentricity.

For a circular waveguide with a radius a, we take ε = 0,
and for an elliptical waveguide with a semi-major radius
a, we consider a non-zero eccentricity.

The 3D GPE in Eq.1 is reduced to effective 2D GPE
by considering a strong trap in the transverse direction
by writing the wavefunction as Ψ(r, t) = ψ(x, y, t)Φ(z).
Here, the function ψ(x, y, t) describes the dynamics of
BEC in the elliptical waveguide and Φ(z) denotes the
ground state of the strong axial trap, which is a Gaussian
wavefunction with width a⊥ [54]. The effective 2D GPE
in the dimensionless form is obtained after integrating
out the z component and by scaling position, time and
energy by a⊥,

1
ω⊥

and ℏω⊥, respectively. Here a⊥ =√
ℏ

mω⊥
and ω⊥ are the harmonic oscillator length and

frequency in the transverse direction, respectively.

i
∂ψ

∂t
=

[
− 1

2
∇2

x,y + g|ψ|2 + V (x, y)

]
ψ (2)

Here, g = 2
√
πNas

a⊥
and, V (x, y) is the potential of the

elliptical waveguide scaled by ℏω⊥. This elliptical waveg-
uide has varying thickness for non-zero eccentricity and
manifests nontrivial dynamics.

FIG. 1. Elliptical ring trap with varying width along its cir-
cumference. The semimajor radius is taken as a = 10a⊥, and
the semiminor radius is b = 4.36a⊥. The corresponding ec-
centricity is ε = 0.9. x and y are in the units of a⊥ = 2.32 µm
and, t is in the units of 1/ω⊥ = 1.95 ms.

A. Waveguide Geometry and Matter Wave
Dispersion

A circular waveguide with ε = 0, formed by a ring
Gaussian potential, has constant width [55] unlike an el-
liptical waveguide, as shown in Fig.1. This varying width
of the ring affects the dispersion across different waveg-
uide segments. To elucidate the influence of nonzero
eccentricity on dispersion, we study the dynamics of a
Gaussian wavepacket, placed at two different positions
inside the elliptical waveguide, namely (a, 0) and (0, b).
The wavepacket is expressed as

χ(s, t) = e−i
Ekt

ℏ χ(s, 0). (3)

By decomposing the initial wavefunction into its con-
stituent Fourier modes, we write

χ(s, t) =

(
d√
π

) 1
2 ∫ ∞

−∞

dk√
2π
e−

d2k2

2 e−i
Ekt

ℏ eiks, (4)

where, d is related to the width of the wavepacket, and
k relates the energy: Ek = ℏ2k2/(2m), which allows us
to simplify the wavefunction in Eq.4 as,

χ(s, t) =

(
D√
πd

) 1
2

e−
Ds2

2d2 (5)

with D = 1
(1+i ℏt

md2
)
. Consequently, the width at time t

becomes

w2
t =

∫ ∞

−∞
χ∗(s, t)s2χ(s, t)ds = w2

0 +
ℏ2t2

4m2w2
0

. (6)
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Here, the initial width is given by w0 = d√
2
and the above

expression reduces to a dimensionless form as

w2
t = w2

0 +
t2

4w2
0

. (7)

For analysing the dispersions corresponding to the initial
positions, (a, 0) and (0, b), along the elliptical waveguide,
we write the respective widths of the waveguide as da and
db, having ratio db

da
=

√
1− ε2. An intuitive understand-

ing and numerical trials suggest us to take the transverse
widths of the wavepacket as da and db, respectively, to
prevent inhomogeneous dispersion.

Accordingly, the normalization of the wavepacket at
these places dictates that their longitudinal widths, wa

and wb, should be inversely related to da and db:

wa

wb
=
db
da

=
√
1− ε2, (8)

which facilitates us to write their relation at time t, fol-
lowing Eq.7 as

w2
b,t =

1

1− ε2

[
w2

a +
t2(1− ε2)2

4w2
a

]
. (9)

It becomes apparent that, the widths of the wavepacket
at the semi-major and semi-minor edges deviate from
their initial ratio (Eq.8). The factor (1− ε2)2 introduces
the inhomogeneity of the widths over the time. This de-
mands a modification of Ek by the same factor, such that

Ek = 1
(1−ε2)

ℏ2k2

2m , to compensate the deviation, caused

by the nonzero eccentricity. Hence, the time dependent
widths maintain the initial ratio:

w2
b,t =

1
1−ε2

[
w2

a +
t2

4w2
a

]
, (10)

w2
a,t = (1− ε2)w2

b,t. (11)

To mitigate the effects of nonzero eccentricity, it is neces-
sary to manage dispersion such that the dispersion along
the y-direction is slower than that along the x-direction
by a factor of (1 − ε2). This can be experimentally
achieved by introducing a weak 2D optical lattice (OL)
along with the elliptical waveguide [40, 56] with their lat-

tice vectors satisfying kx

ky
=

√
1− ε2 [57, 58]. Moreover,

the influence of ellipticity can be counteracted by adjust-
ing the depth of the elliptical waveguide. The impact of
varying width along the circumference can be nullified by
modulating the waveguide’s depth.

III. DISPERSION MANAGEMENT OF
GROUND STATES

After incorporating the appropriate dispersion man-
agement, the effective Gross-Pitaevskii equation becomes

[40, 56, 59–64]:

i
∂ψ

∂t
=

[
− α

2

∂2

∂x2
− β

2

∂2

∂y2
+ g|ψ|2 + V (x, y)

]
ψ. (12)

Here, α and β are the dispersion coefficients in x- and y-
directions, respectively, whereas V (x, y) is the potential
of the elliptical waveguide.
Numerical Method : The ground state solution of

Eq.[12] is numerically obtained by implementing the
imaginary time propagation (ITP) method, where the
initial wavefunction is allowed to evolve in imaginary
time, t = iτ . In this case, any initial wavefunction un-
der the action of time evolution operator, exp (−τĤ),
asymptotically converges to the ground state solution as
t → ∞ [65]. The time dynamics of a localized mat-
ter wave packet in the elliptical waveguide are obtained
by the real time propagation (RTP) method. In both
ITP and RTP methods, the linear and non-linear parts
of the dynamical equation are treated separately, where
the linear part is evolved in the momentum space, and
the non-linear part is evolved in the coordinate space
[66]. The x and y coordinates are equally divided into
512 grids with a step size of 0.1. The step size for time
is 0.08, totalling 16384 grids. In our work, we have con-
sidered 23Na BEC of N = 1000 atoms, with parameters
m = 3.816× 10−26 kg, ω⊥ = 512 Hz, a⊥ = 2.318µm, and
as = 2.75× 10−9m [55, 67, 68]. The initial condensate in
the form of binary peaks is placed diametrically opposite
along the x-axis with the coordinates (a, 0) and (−a, 0),
respectively.

A. Ground State of BEC in an Elliptical
Waveguide

For numerically finding the ground states, we consider
a circular waveguide of radius a = 10a⊥ and unity disper-
sion coefficients (α = β = 1), for which the ground state
density is uniform along the ring’s circumference. Figure
2(a) shows the ground state of the circular waveguide.
The solution can be expressed as follows:

ψc(x, y) = (

√
V0
πγ

)
1
4 e−

√
V0(

√
x2+y2−a)2

2γ , (13)

The ground state of the potential is a Gaussian ring since
the cross-section of the potential in the vicinity of the
minima is harmonic in nature. Such Gaussian ring con-
densate inside a circular waveguide has been discussed
in various experimental and theoretical works [30, 69].
More interesting things happen when we increase the
eccentricity of the ring waveguide from null. The sta-
tionary states for waveguides with various eccentricities
are shown in Fig.2(b-e). The density is no longer uni-
formly distributed across the circumference of the waveg-
uide, whereas one could see the density accumulation at
the semi-major edges. The greater the eccentricity, the
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FIG. 2. Ground State solution of BEC in (a) a circular waveguide, ε = 0 and elliptical waveguides of eccentricity (b) ε = 0.25,
(c) ε = 0.5, (d) ε = 0.75 and (e) ε = 0.9. The circular ring radius and the semimajor radius are taken as a = 10a⊥. x and y
are in the units of a⊥ = 2.32 µm and, t is in the units of 1/ω⊥ = 1.95 ms.

FIG. 3. (a) Variation of overlap of the actual and desired wavefunction with the dispersion coefficient for various values of
eccentricities. Solid lines with circles, squares, diamonds and triangles represent the eccentricities ε = 0.9, ε = 0.75, ε = 0.5 and
ε = 0.25, respectively. (b) Numerical (dot) and theoretical (solid line) values of dispersion coefficient for various eccentricities.
The circular ring radius and the semimajor radius are taken as a = 10a⊥.

greater the density accumulation at the edges, thereby
making the waveguide behave like a double-well poten-
tial. If the curvature effects are counterbalanced, one
could obtain a uniform stationary state in an elliptical
waveguide, expressed quite similar to Eq.13:

ψe(x, y) = Ae−

√
V0(

√
x2+

y2

1−ε2
−a)2

2γ . (14)

B. Coefficients of Dispersion to Obtain Uniform
Stationary State

As we increase the eccentricity of the waveguide, it
gradually transforms to an effective double-well poten-
tial, resulting into a non-uniform stationary state along
the circumference. As discussed earlier, to eliminate the
effects of nonzero eccentricities, we employ the method
of dispersion management. The dispersion coefficients,
α and β, are tuned and here, we keep α = 1 and vary
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FIG. 4. 1D Cross-Sectional Densities in x and y directions for various β values (a) 0.7250, (b) 0.7375, (c) 0.75 = βc, (d) 0.7625,
(e) 0.7750, (f) 0.7875. The circular ring radius and the semimajor radius are taken as a = 10a⊥. x and y are in the units of
a⊥ = 2.32 µm and, t is in the units of 1/ω⊥ = 1.95 ms.

β to obtain a uniform stationary state in the elliptical
waveguide. For the purpose of determining β, we find
the overlap of the condensate density with an expected
uniform density given in Eq.14. The overlap between
these two wavefunctions is defined by,

Λ =
[
∫∞
−∞

∫∞
−∞ |ψe(x, y)|2|ψa(x, y)|2dxdy]2∫∞

−∞ |ψe(x, y)|4dxdy
∫∞
−∞ |ψa(x, y)|4dxdy

. (15)

Here, ψe(x, y) is the expected wavefunction given in
Eq.14 and ψa(x, y) is the actual wavefunction obtained
numerically. Hence, unity overlap function (Λ = 1) will
imply uniform distribution of condensate density along
the perimeter of the waveguide, whereas lower values of
Λ indicate deformations. Figure 3(a) shows the variation
of the overlap function with β for different eccentricities.
The maxima in the Λ vs β curves will give us the nec-
essary βc values to get the uniform ground state inside
an elliptical waveguide. It is worth observing that, βc
becomes lower for higher eccentricities.

C. Dispersion Coefficients and Eccentricities

We have noticed that, for higher eccentricity one needs
to take lower βc to maintain the uniformity of the ground
state. However, the exact relationship between βc and
eccentricity is not obtained. To obtain this relation, we
write Eq. 12 with the transformed variable, Y = y

σ ,

where σ =
√
1− ε2:[

i
∂

∂t
+
α

2

∂2

∂x2
+

β

2σ2

∂2

∂Y 2
− g|ψ|2 − V (x, Y )

]
ψ = 0,

where ψ ≡ ψ(x, Y ). The potential of the elliptical waveg-
uide transforms to

V (x, Y ) = V0

[
1− e

− 1
γ2 (

√
x2+Y 2−a)2

]
. (16)

Therefore, it becomes transparent to infer that, the dy-
namical equations for circular and elliptic cases take iden-
tical form provided

βc
αc

= 1− ε2. (17)

This confirms the earlier prediction from the width dy-
namics of a Gaussian wavepacket in the vicinities of semi-
major and semi-minor edges. The obtained βc is plotted
along with it numerically obtained values in Fig.3(b),
where the dots indicate the numerical values and the
solid line indicates the values obtained from Eq.17. It
is clear that βc falls as we increase the eccentricity, such
that βc = 1 for a circular waveguide and βc → 0 for
higher eccentricities. The desired dispersion coefficient
βc, being a maximum in the overlap Λ, indicates that
the ground state density below and above βc must be
non-uniformly distributed and different from each other.
This is visualized in Fig. 4 to find the cross-sectional
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FIG. 5. Survival function for two different initial orientations of the initial clouds (±a, 0) and (0,±a), with interatomic
interaction g = 2 and, for eccentricities (a) e = 0, (b) e = 0.25, (c) e = 0.75 and (d) e = 0.9. The circular ring radius and the
semimajor radius are taken as a = 10a⊥. t is in the units of 1/ω⊥ = 1.95 ms.

densities in the elliptical ring along the semi-major and
semi-minor axes. The 1D cross-sectional (CS) densities
along the semi-major and semi-minor axes are denoted
by |ψ(x, 0)|2 and |ψ(0, y)|2, respectively. Figure 4 is de-
picted for a variety of eccentricities, where it is clear
that at β = βc = 0.75, as shown in Fig.4(c), the 1D
cross-sectional densities along the semi-major and semi-
minor axis are almost equal, |ψ(x, 0)|2 ≈ |ψ(0, y)|2. On
the other hand, for β < βc, |ψ(x, 0)|2 < |ψ(0, y)|2 (see
Fig.4(a-b)) and for β > βc, |ψ(x, 0)|2 > |ψ(0, y)|2 (see
Fig.4(d-f)). Without any dispersion management, the
dispersion coefficient is unity, β = 1, corresponding to the
complete density accumulation at the semi-major edges
and |ψ(0, y)|2 ≈ 0.

IV. FRACTIONAL REVIVALS IN AN
ELLIPTICAL WAVEGUIDE AND DISPERSION

MANAGEMENT

When a localised cloud of BEC is placed in a circular
waveguide, it disperses and interferes with itself, forming
interference fringes. The time at which the interference
brings out the revival of the dispersed cloud in shape
and position is termed the revival time Tr. At fractional
multiples of the revival time, we can have multiple repli-
cas of the initial condensate. This phenomenon is called
fractional revivals. In this work, the initial condensate
in the form of binary peaks is placed at (±a, 0). From
the physics of dispersion, the revival time and FR time
scales of two clouds in a circular waveguide of circumfer-

ence, C = 2πr0, are given by [32]

Tr =
C2

4π
, t =

p

q
Tr, (18)

where p and q are mutually prime integers. However,
things are different when one places the binary peaks of
BEC inside an elliptical waveguide of high eccentricity.

A. Revival Time Scale for an Elliptical Waveguide

The revival dynamics are conventionally studied by the
time-dependent characteristic functions such as the au-
tocorrelation function A(t) or the survival function S(t)
[70–72]. The survival function is the probability of find-
ing the condensate in its initial state. In other words,
it is the absolute square of the Autocorrelation function
A(t), which is defined as follows:

S(t) = |A(t)|2, (19)

A(t) =

∫ ∞

−∞

∫ ∞

−∞
ψ∗(x, y, 0)ψ(x, y, t)dxdy. (20)

It is a time series that quantifies the overlap of the wave-
function at a later time with that of the initial wave-
function, where its value closer to 1 indicates full revival,
and the smaller peaks indicate FR instances. In a circu-
lar waveguide, at half revival Tr/2 and its odd integral
multiples, |A(t)|2 becomes zero since the clouds are at
position (0,±a), which is spatially orthogonal to the ini-
tial location (±a, 0). Figure 5 shows the survival func-
tion |A(t)|2 for BEC in an elliptical waveguide of differ-
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FIG. 6. Condensate density in circular waveguide ε = 0 at time instances 20.14 ms, 26.85 ms, 40.28 ms and 80.57 ms shown in
a1, a2, a3 and a4, respectively. Condensate density in an elliptical waveguide of eccentricity ε = 0.75 at time instances 14.50 ms,
19.30 ms, 28.95 ms and 57.90 ms shown in b1, b2, b3 and b4, respectively. The circular ring radius and the semimajor radius
are taken as a = 10a⊥. x and y are in the units of a⊥ = 2.32 µm and, t is in the units of 1/ω⊥ = 1.95 ms.

ent eccentricities (a) ε = 0, (b) ε = 0.25, (c) ε = 0.75,
and (d) ε = 0.9. Here, one could note that for ε = 0,
there is a clear signature of FR, as pointed out in Fig. 5
(a). However, the signature of FR disappears at higher
eccentricities. At eccentricity as high as ε = 0.9, one
could see many peaks with similar heights and the min-
imum of the survival function no longer touches zero,
indicating that the cloud spends most of its time at the
semi-major edges (±a, 0). This is delineated by showing
the survival function for two different initial orientations
of the clouds, namely (±a, 0) and (0,±a), in Fig.5. At
ε = 0, the survival functions coincide for these two dif-
ferent orientations, whereas at higher eccentricities, the
survival functions are no longer identical. While the sur-
vival function for (0,±a) orientation touches zero more
often, the survival function for (±a, 0) orientation hardly
touches zero. Therefore, irrespective of where the ini-
tial clouds are placed inside the elliptical waveguide, the
cloud tends to spend most of its time in the semi-major
edges. This clearly indicates the disruption of FR in-
stances in an elliptical waveguide. However, one would
still get FR instances at very low eccentricities, and the
corresponding time scales are worth finding out.

B. Restoration of Fractional Revivals through
Dispersion Management

When the eccentricity of the waveguide is non-zero, the
revival time takes the form,

Tr =
a2[
∫ 2π

0

√
1− ε2 sin2 ϕdϕ]2

4π
, (21)

since the circumference of an ellipse is given by,

C = a

∫ 2π

0

√
1− ε2 sin2 ϕdϕ, (22)

where ϕ ∈ [0, 2π] is the azimuthal coordinate, and a, b
are semi-major and semi-minor radii, respectively.

At low eccentricities, the daughter condensates of the
FR are spatially resolved, and the revival time can be
defined by Eq.21. However, at higher eccentricities, the
multiple splits of the FR are no longer spatially resolved,
and the FR patterns are disrupted. This is evident from
Fig. 6, where the condensate densities at times Tr

8 , Tr

6 ,
Tr

4 , and Tr

2 are denoted by numbers 1, 2, 3, 4, respec-
tively. Figures for the two distinct cases (ε = 0 and 0.75)
are consequently leveled by (a) and (b). One can ob-
serve no-FR for ε = 0.75 and the cloud tends to spend
more time at the semi-major edges, irrespective of the
initial placement of the cloud. In the previous section,
we showed that choosing the appropriate dispersion coef-
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FIG. 7. Snapshots of DM condensate density in elliptical waveguide of eccentricity ε = 0.75 at time instances 20.14 ms,
26.85 ms, 40.28 ms and 80.57 ms shown in b1, b2, b3 and b4, respectively. The semimajor radius is a = 10a⊥. x and y are in
the units of a⊥ = 2.32 µm and, t is in the units of 1/ω⊥ = 1.95 ms.

Eccentricity ε = 0 ε = 0.25 ε = 0.75 ε = 0.9
Tr before DM (ms) 161.10 156.07 115.80 95.86
Tr after DM (ms) 161.10 161.10 161.10 161.10

TABLE I. Revival time for different eccentricities before and after dispersion management. The circular ring radius and the
semimajor radius are taken as a = 10a⊥.

ficients could nullify the effects of the non-constant cur-
vature and produce uniformly distributed ground states
inside an elliptical waveguide. We apply this technique
to restore fractional revivals of matter waves in an el-
liptical waveguide. We choose the dispersion coefficients
α = 1 and β = 1 − ε2, as obtained in Eq. 17. The
spatial resolution of the daughter condensates at FR in-
stances, for ε = 0.75, is far lower than that in ε = 0.5.
In such a case, the significance of dispersion manage-
ment is greatly evident. Figure 7 shows the snapshots
of dispersion managed condensate density for eccentric-
ity ε = 0.75 at FR instances Tr

8 ,
Tr
6 ,

Tr
4 and, Tr

2 de-
noted by b1, b2, b3 and, b4, respectively. The snapshots
confirm the restoration of FR patterns of dispersion-
managed BEC in an elliptical waveguide. The daughter
condensates at the FR instances are spatially resolved in
the case of dispersion-managed BEC. Interestingly, for
a dispersion-managed matter wave, the revival time and
FR times no longer depend on the eccentricity, unlike
the non-dispersion-managed case. Table I shows the re-
vival times for different eccentricities without and with
dispersion management (DM). One could note that after
DM, the BEC revives at times independent of the ec-
centricity of the waveguide. The eccentricity-dependent
dispersion coefficient (Eq.17) balances the eccentricity-
dependent time scale (Eq.21) of the matter wave. In
other words, the ellipticity-induced effects are nullified
through dispersion management, and the matter-wave in
the elliptical waveguide of semi-major radius a behaves
like that in a circular waveguide of radius a.

V. CONCLUSION

We investigated the influence of ellipticity on the
ground state of a BEC within an elliptical waveguide and
its impact on the FR instances in a localized matter wave.
The elliptical waveguide exhibits behaviour reminiscent
of a double-well potential. Notably, an increase in eccen-
tricity correlates with a heightened concentration of con-
densate density at these semi-major edges. We effectively
manage dispersion to counteract the effects of variable
thickness within the elliptical waveguide. We achieve a
uniform ground state by identifying optimal dispersion
coefficients from the overlap function. Interestingly, these
coefficients are found to be contingent upon the waveg-
uide’s eccentricity.

In the subsequent phase of our investigation, we ex-
plore the disruption of FR patterns in a localized matter
wave confined within an elliptical waveguide. We employ
the time-dependent characteristic function known as the
survival function to analyze the perturbed dynamics of
the FR instances. Further, using the determined disper-
sion coefficients, we restore the FR instances of the Bose-
Einstein condensate within the elliptical waveguide. This
comprehensive study sheds light on the intricate inter-
play between ellipticity and dispersion of matter waves
and offers exchanging the physical merits between the
atomtronics applications with zero and non-zero eccen-
tricities.
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[28] P. Sandin, M. Ögren, M. Gulliksson, J. Smyrnakis,
M. Magiropoulos, and G. Kavoulakis, ”Dimensional re-
duction in Bose-Einstein condensed clouds of atoms con-
fined in tight potentials of any geometry and any inter-
action strength”, Physical Review E 95, 012142 (2017).

[29] A. Tononi and L. Salasnich, ”Low-dimensional quantum
gases in curved geometries”, Nature Reviews Physics , 1
(2023).

[30] L. Salasnich, ”Bose-Einstein condensate in an elliptical
waveguide”, SciPost Physics Core 5, 015 (2022).

[31] I. S. Averbukh and N. Perelman, ”Fractional revivals:
Universality in the long-term evolution of quantum wave
packets beyond the correspondence principle dynamics”,
Physics Letters A 139, 449 (1989).

[32] J. Bera, S. Ghosh, L. Salasnich, and U. Roy, ”Matter-
wave fractional revivals in a ring waveguide”, Physical
Review A 102, 063323 (2020).

[33] S. Raghav, S. Ghosh, B. Halder, and U. Roy, ”Matter
Wave Isotope Separation in a Ring Trap”, arXiv preprint
arXiv:2309.09846 (2023).

[34] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger,
F. Cataliotti, P. Maddaloni, F. Minardi, and M. Inguscio,
”Expansion of a coherent array of Bose-Einstein conden-
sates”, Physical Review Letters 87, 220401 (2001).

[35] S. Zhang and F. Wang, ”Interference effect of three Bose-
Einstein condensates”, Modern Physics Letters B 16, 519
(2002).

[36] Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and
J. Dalibard, ”Interference of an array of independent
Bose-Einstein condensates”, Physical review letters 93,
180403 (2004).

[37] S. Ashhab, ”Interference between a large number of in-
dependent Bose-Einstein condensates”, Physical Review
A 71, 063602 (2005).

[38] Y. Nikolaieva, L. Salasnich, and A. Yakimenko, ”Engi-
neering phase and density of Bose-Einstein condensates
in curved waveguides with toroidal topology”, New Jour-
nal of Physics 25, 103003 (2023).

[39] A. d. Campo, M. G. Boshier, and A. Saxena, ”Bent
waveguides for matter-waves: supersymmetric potentials
and reflectionless geometries”, Scientific reports 4, 5274
(2014).

[40] B. Eiermann, P. Treutlein, T. Anker, M. Albiez,
M. Taglieber, K.-P. Marzlin, and M. Oberthaler, ”Dis-
persion management for atomic matter waves”, Physical
review letters 91, 060402 (2003).

[41] J. Su, H. Lyu, and Y. Zhang, ”Self-interfering dynam-
ics in Bose-Einstein condensates with engineered disper-
sions”, Physics Letters A 443, 128218 (2022).

[42] P. Das, A. Khan, and P. K. Panigrahi, ”Realization of
negative mass regime and bound state of solitons in in-
homogeneous Bose-Einstein condensates”, The European
Physical Journal D 70, 1 (2016).

[43] P. J. Louis, E. A. Ostrovskaya, and Y. S. Kivshar, ”Dis-
persion control for matter waves and gap solitons in opti-
cal superlattices”, Physical Review A 71, 023612 (2005).

[44] G. Barontini and M. Modugno, ”Dynamical instability
and dispersion management of an attractive condensate
in an optical lattice”, Physical Review A 76, 041601
(2007).

[45] M. Khamehchi, K. Hossain, M. Mossman, Y. Zhang,

T. Busch, M. M. Forbes, and P. Engels, ”Negative-mass
hydrodynamics in a spin-orbit–coupled Bose-Einstein
condensate”, Physical review letters 118, 155301 (2017).

[46] D. Colas, F. P. Laussy, and M. J. Davis, ”Negative-mass
effects in spin-orbit coupled Bose-Einstein condensates”,
Physical Review Letters 121, 055302 (2018).

[47] B. A. Malomed, ”Soliton management in periodic sys-
tems” (Springer Science & Business Media, 2006).

[48] T. Mayteevarunyoo, B. A. Malomed, and D. V. Skryabin,
”Spatiotemporal solitons in dispersion-managed multi-
mode fibers”, Journal of Optics 23, 015501 (2020).

[49] C. J. Pethick and H. Smith, ”Bose-Einstein condensation
in dilute gases” (Cambridge university press, 2008).

[50] L. Pitaevskii and S. Stringari, ”Bose-Einstein conden-
sation and superfluidity”, Vol. 164 (Oxford University
Press, 2016).

[51] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,
”Theory of Bose-Einstein condensation in trapped
gases”, Reviews of modern physics 71, 463 (1999).

[52] S. Adhikari and L. Salasnich, ”Localization of a Bose-
Einstein condensate in a bichromatic optical lattice”,
Physical Review A 80, 023606 (2009).

[53] R. Atre, P. K. Panigrahi, and G. S. Agarwal, ”Class
of solitary wave solutions of the one-dimensional Gross-
Pitaevskii equation”, Physical Review E 73, 056611
(2006).

[54] S. Adhikari, ”Vortex-lattice in a uniform Bose-Einstein
condensate in a box trap”, Journal of Physics: Con-
densed Matter 31, 275401 (2019).

[55] N. Murray, M. Krygier, M. Edwards, K. Wright, G. K.
Campbell, and C. W. Clark, ”Probing the circulation
of ring-shaped Bose-Einstein condensates”, Physical Re-
view A 88, 053615 (2013).

[56] B. Eiermann, T. Anker, M. Albiez, M. Taglieber,
P. Treutlein, K.-P. Marzlin, and M. Oberthaler, ”Bright
Bose-Einstein gap solitons of atoms with repulsive inter-
action”, Physical review letters 92, 230401 (2004).

[57] M. Kraemer, C. Menotti, L. Pitaevskii, and S. Stringari,
”Bose-Einstein condensates in 1D optical lattices: com-
pressibility, Bloch bands and elementary excitations”,
The European Physical Journal D-Atomic, Molecular,
Optical and Plasma Physics 27, 247 (2003).

[58] Z. Liang, X. Dong, Z. Zhang, B. Wu, et al., ”Sound
speed of a Bose-Einstein condensate in an optical lat-
tice”, Physical Review A 78, 023622 (2008).
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