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Abstract. Performance modeling is a key issue in queuing theory and operation

research. It is well-known that the length of a queue that awaits service or the time

spent by a job in a queue depends not only on the service rate, but also crucially

on the fluctuations in service time. The larger the fluctuations, the longer the delay

becomes and hence, this is a major hindrance for the queue to operate efficiently.

Various strategies have been adapted to prevent this drawback. In this perspective,

we investigate the effects of one such novel strategy namely resetting or restart,

an emerging concept in statistical physics and stochastic complex process, that was

recently introduced to mitigate fluctuations-induced delays in queues. In particular,

we show that a service resetting mechanism accompanied with an overhead time can

remarkably shorten the average queue lengths and waiting times. We examine various

resetting strategies and further shed light on the intricate role of the overhead times to

the queuing performance. Our analysis opens up future avenues in operation research

where resetting-based strategies can be universally promising.

1. Introduction

Queuing theory is usually considered to be a branch of operations research that

mathematically studies the formation, function and other aspects of waiting lines that

stretch in front of a service station [1–4]. Queues are ubiquitous in nature and they

appear in a wide range of applications ranging from supermarkets, banks, call-centers

[5, 6], telecommunications [7, 8], airplane boarding [9–11], computer systems [12, 13],

emergency services, transport phenomena [14–16] to gene expression [17–21] enzymatic

and metabolic pathways [22–26]. Each set-up of a queue has its unique working principle.

For example, a teller in the bank or a supermarket may work more or less at a constant

rate but this can not be said for the computer servers or living entities like genes or

enzymes which may often display more fluctuations in service time [27–30]. In fact, it is

now a well-established fact that the efficiency of a queue depends not only on the rate

of the server but it is also extremely sensitive to the stochastic fluctuations in service

times. As a result, these fluctuations have profound consequences and quite often they

render acute backlogs and delays in queues stalling the work-conditions [13].
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There has been a persistent strive to tailor generic strategies that can control and

mitigate the adverse effect caused by stochastic service time fluctuations in queues

especially the ones that encounter heavy tailed workloads [31]. Various scheduling

policies have been developed eg, small jobs are being served first by the server instead

of first-come-first-serve. Although this policy can be proven optimal under certain

conditions, it is also criticized due to its lack of fairness [13]. Notably, these policies

are applicable to queues where the source of service time fluctuations is rather extrinsic

i.e, it depends on the variability in the job sizes or the numbers of items as in the

supermarkets. However, these policies are not well-equipped to deal with situations

where fluctuations in service times are intrinsic to the server itself. This is indeed

the case for stochastic optimization algorithms, genes or the enzymes where stochastic

fluctuations are intrinsic to the server [32–34]. Naturally, these policies turn out to be

inadequate to be implemented for such scenarios and thus, novel approaches are very

much in need.

In a recent work [35], we proposed a novel approach, based on resetting or restart,

to mitigate the problems caused by service time fluctuations in queuing systems. It

was shown that the length of a queue can be significantly shortened by a simple

service resetting policy. To understand the resetting mechanism, consider an arbitrary

stochastic dynamical process which completes a task in some random time. However, the

process can be restarted (i.e, started from scratch) intermittently before the completion

of the task and thus it has to begin completely anew and repeat the same task [36–48].

This procedure repeats itself until the process reaches completion. The completion time

will thus depend on the details of the underlying process and the resetting protocol. In

a similar vein, consider a single server queue where the server has a task of completing

one job at a time. This completion takes a random time – moreover, the source of

stochastic fluctuations is considered to be intrinsic. To implement resetting, imagine

this server being stopped intermittently and then restarted – thus, jobs whose service

has been reset are now assigned fresh service times.

At a first glance one might wonder why restarting from scratch can expedite the

completion of a complex random process. Indeed, this has been a quest in statistical

physics and stochastic process for the last decade where resetting has been shown to

systematically eliminate errand trajectories and find alternative pathways that can be

avoid potential obstacles [36,37,40,42,44,45,49–54]. Unveiling new such trajectories can

often fasten the completion in particular when the resetting-free underlying processes

possess search time with large fluctuations. This particular observation is quite

intriguing as it states that resetting can overturn the high uncertainty due to large

fluctuations in the underlying search time, thus converting a drawback into a favorable

advantage. No wonder, why such resetting based strategies have been proven to

be extremely useful in a wide range of search processes spanning from stochastic

optimization [55–57], first passage processes [58–62], home-based foraging [63], chemical

reactions [64,65], income dynamics [66,67] to transport over the last few years.

The goal of this perspective is to first introduce the topics “queues” and “resetting”,
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review the formulation of a single-server queue with instantaneous service resetting and

to bring new insights when the service resetting is not instantaneous but involves an

overhead or buffer time. We will discuss the ramifications of this overhead time and

its interplay with the service time on the length of the queue or the waiting time. A

pedagogic approach has been taken keeping the non-expert readers in mind.

The rest of the paper is structured in the following way. In Sec. 2 “Preliminaries”,

we provide a brief overview of the M/G/1 queuing system with general service and

Markovian job arrival – this will serve as the prototype model of a queue in this paper.

We discuss the Pollaczek-Khinchin formula which gives an estimation of the mean

number of jobs in the steady state of the M/G/1 queue, emphasizing the dependency of

the latter to the service time variability. In Sec. 3 “Service with resetting”, we formulate

the M/G/1 queuing model with service resetting where we associate a refractory time

to the overall process. In effect, this ‘modified’ queue is similar to the standard queue

with a compounded service time that depends on the resetting and overhead time. With

this mapping, we can immediately use the Pollaczek-Khinchin formula in the M/G/1

queue with a modified service time to compute the mean number of jobs. In Sec. 4

“M/G/1 Queues with Poissonian service resetting”, we discuss the effects of Poissonian

service resetting (i.e., resetting with a constant rate) on the mean number of jobs in the

queue where the calculations simplify in multi-fold. In Sec. 5 “Service at an optimal

resetting rate”, we study the mean number of jobs when the service is restarted at an

optimal resetting rate under Poissonian resetting. We move on to demonstrate how

resetting can reduce the number of jobs depending on the variability of the overhead

time. In Sec. 6 “Application”, we illustrate how the general formalism developed so

far can be used for the log-normal service time distribution and overhead times with

different variability. We conclude in Sec. 7 “Discussion and Summary” with a summary

and future perspective. Appendices provide detailed derivations and other technical

results to keep the paper self-contained.

In what follows, we use the notations fX(t), ⟨X⟩, σ2(X), X̃(s) ≡ ⟨e−sX⟩ and CVX

to denote, respectively, the probability density function, expectation, variance, Laplace

transform and coefficient of variation of a non-negative random variable X.

2. Preliminaries

Let us consider a single line queuing system where a server serves one job at a time and

jobs await to be served in a first come first serve basis. Such a queue is often represented

as M/G/1 queue in Kendall’s notation where the notation M stands for the Markovian or

memory-less arrival of jobs. Here, we assume that the jobs arrive according to a Poisson

process with rate λ and G stands for the service time of jobs, which can be drawn from

a general distribution. We indicate this service time random variable as S which is

distributed according to fS(t). The last notation 1 simply indicates that one job should

be served at a time. Notably, we assume that the server needs to wait some overhead

time following a reset or a service. This is quite common in a computer software or
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algorithm where a buffer time is required to initialize and reload the program. Similar

situations also appear in natural systems such as the chemical reaction or facilitated

diffusion. We denote the overhead time by the random variable Son. Therefore, the

total service time of the underlying process (Su) is defined by the sum of S and Son

with the corresponding density fSu(t). The service rate η of this process can be defined

as η = 1/⟨Su⟩. Furthermore, one can define the utilization parameter ρ = λ/η that

signifies the fraction of time the server works in steady state. To attain the steady state

of the system the arrival rate of jobs λ must be less than the effective service rate ⟨Su⟩−1

so that ρ < 1. Otherwise, for ρ > 1, the number of jobs in the queue will blow up and

the length of the queue will increase indefinitely.

The state space of the M/G/1 queue is denoted by the set N = 0, 1, 2, 3, ..., where

the value of N corresponds to the number of jobs in the queue, including the one being

served. This number fluctuates in time as the arrival and service are random processes.

One key observable in the queuing theory is the mean number of jobs ⟨N⟩ in the system

(queue+server) which is given by the famous Pollaczek-Khinchin formula in the steady

state [13].

⟨N⟩ = ρ

1− ρ
+

ρ2

2(1− ρ)

(
CV 2

u − 1
)
, (1)

where ρ is the utilization and

CV 2
u =

σ2(Su)

⟨Su⟩2
, (2)

is the squared coefficient of variation or the variability in total service time of the

underlying process. Several comments can be made here. First, note that the mean

number of jobs increases monotonically as a function of the utilization ρ and it diverges

as ρ → 1 leading to “piling up” of jobs. Secondly, ⟨N⟩ is found to be highly sensitive to

the variability in the service time. Namely, if CVu < 1, the second term on the RHS in

Eq. (1) becomes negative leading to shorter queues. On the other hand, if the service

time has large fluctuations namely CVu > 1, the second term adds positive contribution

to ⟨N⟩ leading to longer queues. It is thus evident that service time fluctuations are

central to the behavior of the M/G/1 queue, and their effect in other queuing systems

can also be anticipated in a similar way.

The mean waiting time ⟨T ⟩ of a job in the queue, i.e., the time elapsed from arrival

to the end of service, is proportional to ⟨N⟩ via Little’s law ⟨T ⟩ = λ−1 ⟨N⟩ [13]. This

results in

⟨T ⟩ = 1/η

1− ρ
+

ρ/η

2(1− ρ)

(
CV 2

u − 1
)
, (3)

which again crucially depends on fluctuations in service time similar to the mean number

of jobs. The fluctuations in service time can both be intrinsic and extrinsic to the

server. If a server serves jobs of different sizes with constant rate, then the service time

is extrinsic to the server and it will be dictated by the job size. As in supermarkets,
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Queue

Server

Resetting

Figure 1. Schematic of a queuing system under resetting. Jobs arrive at the queue

with a rate λ and they are being served at the service station according to a first-come,

first-served policy. The server has two components: a service time S followed by an

overhead time Son. It can complete a task in time Su = S + Son prior to resetting

(upper branch). Otherwise, resetting can occur in time R (lower branch), following

which the service is renewed. The process repeats by itself until the task is completed

which is possible only via the upper branch.

the service time for the customers at the billing counter is determined by the number of

items each customer buys. On the other hand, the fluctuation in the service time can

also be intrinsic to the server itself. The catalytic reaction can be an example of this

where to catalyze chemical reaction an enzyme takes different time between turnover

cycle though the substrate and product molecule are chemically identical. We refer

to [35] for a detailed discussion on the origin of service time fluctuations in queues.

3. Service with resetting

When service time fluctuations are intrinsic to the server in a queue, a service resetting

can be implemented in the following way. Again we recall the M/G/1 queue where the

jobs are being served one at a time. Consider the server that starts at time zero and, if

allowed to take place without interruptions, completes after a random time Son+S. The

service, however, is restarted at some random time R following which service renews.

Denoting the random service time of the compound process by SR it can be seen that

SR = Son +


S if S < R ,

R + S ′
R if R ≤ S ,

(4)

where Son is a random time drawn from a general distribution which accounts for the

time delay that may occur prior to either service completion or resetting and S ′
R is

an independent and identically distributed copy of SR. To understand this equation,

observe that when service occurs before restart, SR = Son+S = Su. However, if service

is restarted at a time R ≤ S, then a new service time S is drawn, and service restarts

following the overhead time Son. In that case, we simply have SR = Son + R + S ′
R.

Thus, it can be seen that Eq. (4) forms a renewal structure. As shown in [35], here the

service mechanism can be understood as a first passage process which is intermittently
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subjected to the resetting strategy. A comprehensive framework for first passage under

resetting was developed in [40, 68]. We review this method partially in the (Appendix

A) and only present the key results here. To this end, note that Eq. (4) can be recast

in the following way

SR = Son +min(S,R) + I(R ≤ S)S ′
R, (5)

where min(S,R) is the minimum of S and R and I(R ≤ S) is an indicator random

variable which takes the value one when R ≤ S and zero otherwise. Eq. (5) can be used

to compute the moment generating function of SR which we keep to the Appendix. The

first and second moments however can be computed directly by taking expectations on

both sides of Eq. (5). Performing the averages, one finds

⟨SR⟩ =
⟨min(S,R)⟩+ ⟨Son⟩

Pr(S < R)
, (6)

⟨S2
R⟩ =

⟨(min(S,R) + Son)
2⟩

Pr(S < R)
+

2Pr(R ≤ S)(⟨Rmin⟩+ ⟨Son⟩) (⟨min(S,R)⟩+ ⟨Son⟩)
Pr(S < R)2

(7)

where Pr(S < R) is the probability of service being completed prior to restart, and

Rmin = {R|R < S} stands for the conditional restart time given that restart occurred

prior to service. Finally, recall that the variance in the service time is given by

σ2(SR) = ⟨S2
R⟩ − ⟨SR⟩2. Given the distribution of the resetting times and service times,

it is straightforward task to compute both the moments in Eq. (6) and Eq. (7), as we

will show explicitly in the next section.

4. M/G/1 Queues with Poissonian service resetting

There are numerous possible ways in which service and resetting mechanisms can mix

and match. One such resetting mechanism namely the Poissonian resetting has been

extensively studied in the recent past [36–38, 40, 41, 46, 58, 59, 61, 68, 69]. As the name

suggests, here the number of resetting events in a given time interval is distributed

according to the Poisson distribution. More on the technical ground, if the resetting

occurs at a rate r, the mean number of resetting events in time t is given by rt and

the resetting time R is drawn from an exponential distribution i.e., fR(t) = re−rt. The

mean and second moment of the service time can then be derived using Eq.s (6) and

(7) (see (Appendix B) for the derivation)

⟨Sr⟩ =
1− S̃(r) + r⟨Son⟩

rS̃(r)
, (8)

⟨S2
r ⟩ =

2r dS̃(r)
dr

(1 + r⟨Son⟩) + 2(1− S̃(r))(1 + r⟨Son⟩)2 + r2S̃(r)⟨S2
on⟩

r2S̃(r)2
, (9)



Queues with resetting: a perspective 7

where S̃(r) =
´∞
0

dt e−rt fS(t) is the Laplace transform of the service time S, evaluated

at the restart rate r. The utilization of this queue is then given by ρr = λ⟨Sr⟩, and the

squared coefficient of variation of the service time is CV 2
r = σ2(Sr)/⟨Sr⟩2.

Under resetting mechanism, one notices that the queue service time is now modified

to Sr. Henceforth, one can replace ρ with ρr, and CV 2
u with CV 2

r , in Eq. (1) to compute

the mean queue length under resetting. This yields

⟨Nr⟩ =
ρr

1− ρr
+

ρ2r
2(1− ρr)

(
CV 2

r − 1
)
. (10)

Similarly, the mean waiting time ⟨Tr⟩ in the system can be derived from Little’s

law [13, 70], yielding an analogous result to Eq. (3). To demonstrate the effect of

resetting in a M/G/1 queue in the presence of a overhead time, we consider Fig. 2(a) as

an illustrative example (details will be discussed in Sec. 6). Commencing from a service

time distribution, service resetting has been introduced and the mean service time ⟨Sr⟩
is plotted against the resetting rate r for various overhead time distribution. We note

that ⟨Sr⟩ initially decreases, obtaining a minima at an optimal resetting rate r∗ before

increasing further, as evident from the figure. The emergence of the optimal resetting

rate r∗ is quite noteworthy as resetting does not only lower the mean service time but

also renders a global minimum time. The next section is dedicated to a detailed analysis

of r∗ and how it is connected to the generic service and overhead time.

5. Service at an optimal resetting rate

The optimal resetting rate that minimizes the mean service time can be obtained by

setting

d⟨Sr⟩
dr

∣∣∣∣
r=r∗

= 0. (11)

Substituting the expression for ⟨Sr⟩ from equation (8) into Eq. (11), we find

S̃(r∗)(S̃(r∗)− 1)− (r∗)S̃ ′(r∗)(1 + r∗⟨Son⟩) = 0, (12)

where S̃ ′(r) refers to the derivative of S̃(r) as a function of r. Using S̃ ′(r) from the

above expression in Eq. (9) for the second moment ⟨S2
r∗⟩, and simplifying further one

arrives at the following relation for the variability of an optimally restarted process [68]

CVr∗ =
σ(Sr∗)

⟨Sr∗⟩
=

√
1 +

⟨Son⟩2

S̃(r∗)⟨S∗
r ⟩2

(CV 2
on − 1), (13)

where CVon = σ(Son)
⟨Son⟩ is the variability of the overhead time and furthermore we have

rewritten CVu in terms of the Son-metrics in the following way

CVu =

√
σ2(S) + σ2(Son)

⟨S + Son⟩2
. (14)
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The relation in Eq. (13) is completely universal since it does not depend on the specific

choice of the underlying service time and the overhead time. Our next goal is to

understand how the mean queue length in Pollaczek-Khinchin formula would change

with optimal resetting.

The mean length of the queue for the optimally restarted process is then given by

the Pollaczek-Khinchin formula in Eq. (10) with the substitution r → r∗. This results

in

⟨Nr∗⟩ =
ρr∗

1− ρr∗
+

ρ2r∗

2(1− ρr∗)

(
CV 2

r∗ − 1
)
. (15)

Now we can use the universal relation (13) for the optimally restarted process in above

to find

⟨Nr∗⟩ =
ρr∗

1− ρr∗
+

λ2

2(1− ρr∗)

⟨Son⟩2

S̃(r∗)

(
CV 2

on − 1
)
, (16)

where we have also used the fact that ρr∗ = λ⟨Sr∗⟩. Eq. (16) suggests that the mean

queue length depends crucially on the variability of the overhead time. In the following

section, we identify a few such different cases based on CVon.

So far in the analysis, we have assumed that there exists a finite optimal resetting

rate. But it is worthwhile to ask under what conditions this is guaranteed. Skipping

details of the proof from Appendix C, we note that the general criteria that ensures the

existence of an optimal r∗ reads

CV 2
u > 1 +

⟨Son⟩2

⟨Su⟩2
(CV 2

on − 1), (17)

which again crucially depends on CVon.

5.1. Resetting with no overhead

We first recap the scenario when there is no overhead time in the system. Thus, the

service restarts immediately. This was well studied in [35]. In this case, Su = S and

thus Eq. (8) and 9 simply reduce to [35]

⟨Sr⟩ =
1− S̃(r)

rS̃(r)
, (18)

⟨S2
r ⟩ =

2r dS̃(r)
dr

− S̃(r) + 1

r2S̃(r)2
, (19)

Moreover, the universal relation (13) simply becomes CV ∗
r = 1. As a result, the mean

queue length turns out to be

⟨Nr∗⟩ =
ρr∗

1− ρr∗
, (20)

which satisfies the following inequality ⟨Nr∗⟩ < ⟨N⟩. Thus, the mean number of jobs

in the queue can be reduced by resetting service at an optimal rate. Moreover, the

criterion for a finite r∗ reduces to CVu > 1. We refer to [35] for more details.
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5.2. Overhead time with CVon < 1

We now consider a scenario when the overhead times are sampled from a distribution

which is narrowly dispersed i.e., CVon < 1. Denoting the queue length by ⟨N I
r∗⟩, one

finds

⟨N I
r∗⟩ =

ρr∗

1− ρr∗
+

λ2

2(1− ρr∗)

⟨Son⟩2

S̃(r∗)

(
CV 2

on − 1
)

(21)

where the second term in the above equation gives a negative contribution so that

⟨N I
r∗⟩ <

ρr∗
1−ρr∗

. The general condition in Eq. (17) suggests that for the case CVon < 1,

one should have CVu > 1. This is a sufficient (but not necessary) condition that

guarantees that a finite r∗ should exist.

Now, if a non-zero finite r∗ exists, we should have ⟨Sr∗⟩ < ⟨Su⟩ which essentially

implies ρr∗ < ρ where recall ρ = λ⟨Su⟩ and ρr = λ⟨Sr⟩. Finally, noting that ρ
1−ρ

is a

monotonically increasing function of ρ, it becomes explicit that ρr∗
1−ρr∗

< ρ
1−ρ

. Collecting

all the pieces together we arrive at the following hierarchical inequality

⟨N I
r∗⟩ <

ρr∗

1− ρr∗
<

ρ

1− ρ
≤ ρ

1− ρ
+

ρ2

2(1− ρ)

(
CV 2

u − 1
)
= ⟨N⟩, (22)

which will always holds as long as CVu > 1 and thus service resetting will certainly

help to alleviate the queue. Since the criterion CVu > 1 is not a necessary one, a finite

optimal resetting rate r∗ may exist (resulting in a reduction in the queue length) even

before CVu = 1 (see Appendix C.1 for additional discussion). This analysis effectively

shows that service resetting can reduce the mean queue length even in the presence of

finite overhead times.

5.3. Overhead time with CVon = 1

Next, we turn our attention to the marginal case when CVon = 1. In this case, the second

term in Eq. (16) vanishes and the mean queue length, denoted by ⟨N II
r∗ ⟩, becomes

⟨N II
r∗ ⟩ =

ρr∗

1− ρr∗
. (23)

A simple manipulation then shows

⟨N II
r∗ ⟩ =

ρr∗

1− ρr∗
≤ ρ

1− ρ
≤ ρ

1− ρ
+

ρ2

2(1− ρ)

(
CV 2

u − 1
)
= ⟨N⟩, (24)

where we have used the similar line of rationale as in the previous case and further

argued that CVu > 1 for the existence of a finite r∗ (see Appendix C.2 for additional

discussion).
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5.4. Overhead time with CVon > 1

Finally, we consider a scenario where the overhead times are drawn from a distribution

which is broadly dispersed so that CVon > 1. In this case, we have

⟨N III
r∗ ⟩ = ρr∗

1− ρr∗
+

λ2

2(1− ρr∗)

⟨Son⟩2

S̃(r∗)

(
CV 2

on − 1
)
, (25)

where the second term is strictly positive. However, in this case, CVu > 1 condition

does not guarantee ⟨N III
r∗ ⟩ < ⟨N⟩ as was done in the previous subsections. However,

one can do a more careful analysis to show that there exists a sufficient (not necessary)

condition that can reassure the inequality ⟨N III
r∗ ⟩ < ⟨N⟩. This modified criterion reads

(see Appendix C.3 for details)

CV 2
u > 1 +

(
⟨Son⟩
⟨Su⟩

)2
1

S̃(r∗)
(CV 2

on − 1). (26)

Since CVu is a control parameter in this problem, we can impose the above condition

to see a reduction in the mean queue length under service resetting.

6. Application

To demonstrate the power of our approach, we consider a M/G/1 queue whose service

times are distributed according to a log-normal distribution – a well-known service time

distribution in the queuing literature [71, 72]. We will study the effect of resetting on

this server for different overhead time distributions. We start with the following form

of the log-normal distribution

fS(t) =
1√
2παt

e−
(ln t−µ)2

2α2 , (27)

for t > 0, where µ ∈ (−∞,∞) and α > 0. The mean and variance of the service time

⟨S⟩ in this case are given by

⟨S⟩ = eµ+
α2

2 , (28)

σ(S) =
(
eα

2 − 1
)
e2µ+α2

, (29)

such that

CV 2 = eα
2 − 1 , (30)

which is independent of µ. In the previous sections, we have discussed the general results

when the overhead time is drawn from some arbitrary distributions and furthermore

illustrated the role of its variability CVon. In what follows, we will focus on three

representative cases with different CVon but keeping ⟨Son⟩ fixed. Finally, we discuss the
scenario when the latter condition is also relaxed.
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(a) (b)

Figure 2. Panel (a) The mean service time ⟨Sr⟩ from Eq. (8) as a function of the

resetting rate for different ⟨Son⟩. The service time S is sampled from the log-normal

distribution whose density is given by Eq. (27). Here, we have set ⟨S⟩ = 1, and

α = 1.5. The circles show the optimal resetting rate r∗ for different ⟨Son⟩, where

⟨Sr⟩ attains consecutive minima. Panel (b) shows the mean queue length at optimal

resetting i.e., ⟨Nr∗⟩ as a function of the squared CVu. Note that ⟨S⟩ is fixed at unity

and α is varied to control the stochastic fluctuation in CVu via Eq. (31), Eq. (32) and

Eq. (35) respectively. The overhead time is taken from three different distributions:

deterministic (CVon = 0), exponential (CVon = 1) and Weibull (CVon > 1) while we

have set ⟨Son⟩ = 0.5 fixed for all the plots. The Pollaczek–Khinchin formula (shown by

the dashed line) gives the familiar linear dependence of Eq. (1) when r∗ = 0. However,

as we vary CVu further, the optimal resetting rate r∗ becomes finite and thus the

plots for ⟨Nr∗⟩ deviate from the same with r∗ = 0. The transition points (where the

deviation occurs) can be corroborated with the theory as explained in the main text.

Indeed, resetting at an optimal rate can significantly shorten the mean queue length

for any Son with CVon{< 1,= 1, > 1}. In all the plots, we have set λ = 0.4.

6.1. Case I: CVon < 1

We start with the case when CVon = 0 < 1 i.e., the overhead time distribution is sharply

peaked around its mean ⟨Son⟩ so that fSon(t) = δ(t− ⟨Son⟩). In this case, variability of

the underlying process can be expressed as

CV 2
u =

eα
2 − 1

(1 + ⟨Son⟩)2
. (31)

In Fig. 2(a), we plot the mean service time ⟨Sr⟩ as a function of resetting rate r for

different values of ⟨Son⟩ fixing ⟨S⟩ = 1 and α = 1.5. A minimum of ⟨Sr⟩ is obtained
at an optimal resetting rate r∗ which varies with ⟨Son⟩. Our next goal is to understand

the behavior of mean queue length as a function of CVu. To vary CVu, we keep ⟨S⟩ = 1

and ⟨Son⟩ = 0.5 fixed but modulate α in Eq. (31). For each α, we first optimize

⟨Sr⟩ as a function of r, compute the optimal resetting rate r∗, and then plugin the

mean service time and the variability at this optimality into Eq. (21). Note that the

existence of an optimal resetting rate r∗ is not guaranteed for any CVu as was discussed

in Sec. (Appendix C.1). Clearly, for r∗ = 0, one finds ⟨N I
r∗⟩ = ⟨N⟩ and thus the plots

for the underlying and reset process overlap with each other. However, as r∗ becomes
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finite, we can clearly see a deviation from the underlying PK formula and one observes

⟨N I
r∗⟩ < ⟨N⟩ as pointed out in Sec. Appendix C.1. The bottom curve in Fig. 2(b) shows

how the mean queue length dramatically goes down as one gradually increases CVu.

6.2. Case II: CVon = 1

Next, we turn our attention to the case where Son is drawn from an exponential

distribution, such that fSon(t) = γ exp(−γt) where γ > 0 is the rate parameter of

the distribution. This implies ⟨Son⟩ = 1
γ
and σ2(Son) =

1
γ2 so that CVon = 1. Therefore,

the CV 2
u of the underlying process can be expressed as

CV 2
u =

eα
2 − 1 + 1

γ2

(1 + 1
γ
)2

. (32)

As before, we keep ⟨Son⟩ fixed at 0.5 and choose α to be the control parameter to vary

CVu. Similar optimization procedure is followed to obtain r∗ for different α and then

is finally substituted into Eq. (23). For CVu < 1, we find ⟨N II
r∗ ⟩ = ⟨N⟩. However,

as we increase CVu, a clear deviation i.e., ⟨N II
r∗ ⟩ < ⟨N⟩ is observed. Here, CVu = 1

behaves as a sharp boundary where the transition occurs. The middle curve in Fig.

2(b) summarizes this behavior.

6.3. Case III: CVon > 1

Finally, to demonstrate the effect of resetting for CVon > 1, we consider the Weibull

distribution fSon(t) =
k
ν
( t
ν
)k−1 exp

(
− t

ν

)k
, t ≥ 0 where k > 0 is the shape parameter and

λ > 0 is the scale parameter of the distribution. In this case, the mean and variance of

the overhead time are given by

⟨Son⟩ = νΓ(1 +
1

k
), (33)

σ2(Son) = ν2

[
Γ

(
1 +

2

k

)
−
(
Γ

(
1 +

1

k

))2
]
, (34)

where Γ(z) is the Gamma function of order z. If k is set to 0.7, ⟨Son⟩ becomes 1.2658ν

and thus CVon = 1.4624 > 1 becomes independent of ν. The variability of the the

underlying process can then be expressed as

CV 2
u =

eα
2 − 1 + 3.4268ν2

(1 + 1.2658ν)2
. (35)

We choose ν = 0.395 so that ⟨Son⟩ is fixed at 0.5. Performing the same optimization

procedure, keeping ⟨S⟩ and ⟨Son⟩ fixed, as done in the previous subsections, we can

show ⟨N III
r∗ ⟩ < ⟨N⟩ when the condition (26) is satisfied. As also evident from Fig. 2(b),

the deviation from the PK formula occurs only at a higher CVu > 1 in this case.

Thus, resetting has more pronounced effect on the queue that experiences larger

fluctuations in the overhead time albeit having a smaller ⟨Son⟩.
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PK formula

Figure 3. Mean queue length at the optimal Poisson resetting as a function of

squared CVu for different ⟨Son⟩ (as mentioned in the plot) and variability drawn from

deterministic (CVon = 0), exponential (CVon = 1) and Weibull (CVon = 1.4624)

distributions respectively. The underlying service time is drawn from log-normal

distribution, whose density is given by Eq. (27). Here, we set ⟨S⟩ = 1 and vary α

to control CVu via Eq. (31), Eq. (32) and Eq. (35) respectively. The dashed slanted

lines indicate the Pollaczek-Khinchin formula in the absence of resetting. The left

vertical dashed line with CVu < 1 indicates the order ⟨N I
r∗=0⟩ > ⟨N II

r∗=0⟩ > ⟨N III
r∗=0⟩

since ⟨SI
on⟩ > ⟨SII

on⟩ > ⟨SIII
on ⟩ and thus resetting is seen to have no impact on the

queue length. However, as soon as the optimal resetting rate becomes finite, we see a

deviation from the PK formula and the order of the curves is reversed as can be seen

from the right vertical dashed line with CVu > 1. In this case, we observe the order

⟨N I
r∗⟩ < ⟨N II

r∗ ⟩ < ⟨N III
r∗ ⟩ for a given CVu. Thus, optimally conducted resetting is seen

to have more pronounced effect on the queues with smaller fluctuations in the overhead

time albeit having a larger ⟨Son⟩ compared to the queues with larger fluctuations and

smaller mean.

6.4. Mean queue length for different ⟨Son⟩

So far we have assumed different CVon while keeping ⟨Son⟩ fixed to estimate the mean

queue length. Here, we relax this condition and study a combined effect when both of

them are varied. Recall from the PK-formula that mean queue length increases linearly

with CV 2
u when optimal resetting rate is fixed at zero so that ⟨Nr∗⟩ = ⟨N⟩. Similarly,

for a fixed CVu, one would expect that the length of the queue should be proportional

to ⟨Son⟩ i.e., for a large overhead time, the queue will also be longer. For instance, take

a fixed CVu =
√
0.75 in Fig. 3 and vary ⟨Son⟩. It is evident from the left vertical dashed

line that the mean queue length increases with an increasing ⟨Son⟩. The coloured circles

represent the respective values of the queue length for the cases with different Son as

shown in Fig. 3. Thus, here, one has

⟨N I
r∗=0⟩ > ⟨N II

r∗=0⟩ > ⟨N III
r∗=0⟩. (36)

How can we compare between the queue lengths for different ⟨Son⟩ under optimal Poisson

resetting? It turns out that the mean length of a queue with a higher ⟨Son⟩ can be
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reduced more dramatically with the introduction of resetting compared to an another

queue with a lower ⟨Son⟩ if the former has a lower CVon. This can be seen again from

Fig. 3 as we set CVu =
√
1.75 for which r∗ is non-zero and thus we are in the resetting-

dominated regime. We can immediately note that the change in the order of the curves

for ⟨Nr∗⟩ namely

⟨N I
r∗>0⟩ < ⟨N II

r∗>0⟩ < ⟨N III
r∗>0⟩, (37)

where the following order for the variability CV I
on < CV II

on < CV III
on and the mean

⟨SI
on⟩ > ⟨SII

on⟩ > ⟨SIII
on ⟩ is maintained. In Fig. 3, we provide technical details that lead

to this observation. While here we make this observation for the log-normal service

time distribution, we believe that similar conclusions should hold for other service time

distributions.

7. Discussion and Summary

Designing strategies that can optimize the number of jobs in a queue is an integral

part of queuing theory. In particular, the key issue is to harness the large stochastic

fluctuations in service times that can have deleterious effects in the performance of a

queue. This has been alluded on various occasions in queuing theory in the context

of computing workloads where the service time distributions have high variability.

One such example arises in the UNIX process lifetime measurements [13, 73]. In this

perspective article, we review an interesting recent development which aims to address

performance improvement of systems with high-variability workloads (see [35, 74] and

also [75]). We show that service resetting can be a useful strategy to mitigate these

problems. In particular, we consider a M/G/1 queue system where the jobs arrive at

a constant rate and the server has two components: its own service time accompanied

by an overhead/buffer time. The service is intermittently subjected to resetting and we

have studied the ramifications of resetting protocols on the performance of the queue.

We develop a renewal theory for the service time under resetting with overhead time and

show how the modified service can be incorporated into the famous Pollaczek-Khinchin

formula that provides an estimation of the mean length of the mean number of jobs in

the queue.

Our analysis unveils three possible scenarios for the overhead time distribution:

narrowly dispersed, marginally dispersed and broadly dispersed. In all these cases, we

show that an optimally engineered resetting mechanism can either match or outperform

the efficiency of the queue than the one without resetting. Specifically, we have shown

that resetting can dramatically reduce queue lengths when applied to servers that have

high variability in the underlying service time. As such, resetting can alleviate the

detrimental affect of large fluctuations by not only shortening the mean service time

but also reducing the relative stochastic fluctuations around this mean, hence providing

a two-fold advantage.
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In the main text, we have only discussed the effects of Poissonian resetting.

However, the general formalism developed therein can also be used to investigate other

resetting strategy namely sharp or deterministic resetting [40, 76, 77]. Here, resetting

is being conducted stroboscopically after a fixed time. This is strongly motivated from

the earlier studies in the resetting community where sharp resetting has been proven to

be a dominant strategy within the vast space of stochastic restart strategies irrespective

of the underlying process that is being restarted. To see the effect of this resetting

strategy, we first assume that the resetting occurs after every τ units of time so that

fR(t) = δ(t− τ). (38)

Using Eqs. (6) and (7), one can immediately obtain the the mean and the second
moment of the service time under sharp resetting Eq. (Appendix D)

⟨Sτ ⟩ =

´ τ
0 qS(t)dt + ⟨Son⟩

1 − qS(τ)
(39)

⟨S2
τ ⟩ =

2
´ τ
0 tqS(t)dt + 2⟨Son⟩

´ τ
0 qS(t)dt + ⟨S2

on⟩
1 − qS(τ)

+
2qS(τ)(τ + ⟨Son⟩)

(´ τ
0 qS(t)dt + ⟨Son⟩

)
(1 − qS(τ))2

,

(40)

where qS(t) =
´∞
t

dt′fS(t
′) is the survival probability associated with the service. In

simple words, it estimates the probability that the service has not occurred till time t

i.e., qS(t) = Pr(S > t). For the log-normal service time as defined in Sec. 6, the survival

probability qS(t) can be computed

qS(t) =
1

2

[
1 + erf

(
µ− log(t)√

2α

)]
. (41)

The mean queue length under sharp resetting can be obtained by substituting the

metrics of the modified service time into Eq. (10)

⟨Nτ ⟩ =
ρτ

1− ρτ
+

ρ2τ
2(1− ρτ )

(
CV 2

τ − 1
)
, (42)

where ρτ = λ⟨Sτ ⟩ and CVτ is the variability of the service time under resetting.

As before, we can find the optimal resetting time τ ∗ by setting d⟨Sτ ⟩/dτ |τ=τ∗ = 0.

Combining with this optimal relation, we plot the mean queue length ⟨Nτ∗⟩ as a function
of the underlying service time variability CVu for different overhead time distributions

in Fig. 4(b). It is seen that resetting can reduce the number of jobs in a queue regardless

of the specific choice for CVon.

It is moreover interesting to compare the mean queue length under optimal Poisson

and sharp resetting. To this end, we first recall from the theory of first passage under

resetting that the mean completion time under optimal sharp resetting is always smaller

or equal than that obtained under optimal Poissonian resetting. Here too, we find that

the mean service time with overheads also respects the same relation (see Fig. 4(a)).

Finally, we plot the difference between two optimally restarted queue lengths namely
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b(a)

Figure 4. Panel (a): The mean service time from Eq. (39) as a function of τ

for different overhead time Son. The service time S is taken from the log-normal

distribution whose density is given by Eq. (27). In each case, the optimal resetting

rate τ∗ can be identified by the solid circle, where ⟨Sτ ⟩ attains the global minimum.

Here, we set ⟨S⟩ = 1, α = 1.5 and λ = 0.4. Panel (b) shows ⟨Nτ∗⟩ as a function of the

underlying CV 2
u (which varies as we change the control parameter α). The Pollaczek-

Khinchin formula gives the usual linear variation (Eq. (42)) as long as τ∗ = 0. However,

as soon as τ∗ > 0, mean queue length gradually shortens and we see a deviation from

that of the underlying process indicating the advantage gained by sharp resetting.

Here, the overhead time Son is drawn from three distinct distributions with different

CVon as mentioned in the plot.

⟨Nr∗⟩ − ⟨Nτ∗⟩ as a function of the underlying service time variability CVu for overhead

times with CVon{< 1,= 1, > 1} in Fig. 5. Quite remarkably, we find that this difference

strictly stays positive which essentially implies that the mean number of jobs in the

queue can be reduced further by resetting service at an optimal time rather than at

an optimal rate. This observation is of practical importance since it reveals additional

benefits in the performance modeling that can be gained by applying sharp resetting.

The formalism developed herein for the service time with overheads and resetting is

not restricted to the M/G/1 queue, but in principle, can also be applied to other queues

such as the G/G/1 queue where the arrivals are not necessarily Markovian [13]. Similar

renewal methods can also be employed to analyze queues when the service time of

the job has two components; one intrinsic component is the server slowdown and job’s

inherent size being the other extrinsic component [74]. Similar to [35] and as shown

here, resetting was shown to be a useful protocol to reduce the mean queue length. It

will be interesting to study different trade-offs due to the overhead times in the above-

mentioned queuing set-ups. There are many open frontiers with respect to the resetting

based task assignment policies. Take for example a M/G/n queue that consists of a

single queue but n servers. When a server completes a job, it takes up the next job

that is available at the head of the queue [13]. It is possible to apply resetting protocols

independently to the individual servers as long as the ‘modified service’ is applied to

the same job. However, in a more naturalistic scenario, it is possible that a fraction of

servers needs to be reset simultaneously. This renders a correlated queuing system and
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Figure 5. The difference between the mean queue length under Poisson optimal

resetting and sharp optimal resetting as a function of squared CVu. The service S

is taken from the log-normal distribution (density is given in Eq. (27)) where we fix

⟨S⟩ = 1, and ⟨Son⟩ = 0.5 while α is kept as the control parameter for CVu. The

overhead times Son are taken from different distributions: deterministic with CVon = 0,

exponential with CVon = 1 and Weibull with CVon > 1. In each case, the difference

⟨Nr∗⟩− ⟨Nτ∗⟩ is found to be positive conferring that optimal sharp resetting performs

better than the optimal Poisson resetting. In this plot, we have set λ = 0.4.

one can not readily apply the formalism developed here. These possible extensions to

multiserver queues, farms and networks are open for future research.

Concluding, we believe that this perspective has shed light on the feasibility of

applying resetting based strategies to the queuing systems. Hopefully, this will bridge

a gap between the queuing and the resetting community and also will encourage the

researchers to attempt and design more resetting based solutions in queuing systems

with potential applications to computer science, randomized numerical algorithms, and

active living systems.
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Appendix A. Moment generating function of SR

In this section, we try to find the general expression for the mean and second moment

as written in Eq. (6) and Eq. (7). For that we first find the general Laplace transform
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or the moment generating function of SR. Using that one can find all the moments in

systematic fashion as we show below. We start by recalling Eq. (4) from the main text

SR = Son +


S if S < R ,

R + S ′
R if R ≤ S .

(A.1)

The above equation can also be written in a more compact way as

SR = Son + I(S < R)S + I(R ≤ S))R + I(R ≤ S)S ′
R, (A.2)

where I(R ≤ S) is the indicator function which takes the value 1 when R ≤ S and zero

otherwise. Thus,

⟨I(R ≤ S)⟩ = Pr(R ≤ S). (A.3)

Let us now define Z̃(p) = ⟨e−pZ⟩ =
´
fZ(z)e

−pzdz as the moment generating function of

the random variable Z, from which all its moments can be easily found. The Laplace

transform of Eq. (A.2) can be given as

S̃R(p) = ⟨e−pSR⟩
= ⟨e−p[Son+I(S<R)S+I(R≤S))R+I(R≤S)S′

R]⟩

= ⟨e−pSon⟩
[
⟨I(R ≤ S)e−pSmin⟩+ ⟨I(S < R)e−pRmin−pS′

R⟩
]
, (A.4)

where Smin ≡ {S|S < R} = and Rmin ≡ {R|R < R}. We have also used the fact that

S ′
R is an independent and identically distributed copy of SR and thus independent of

R & S. Performing the expectations over the indicator functions, we find

S̃R(p) = ⟨e−pSon⟩
[
Pr(S < R)⟨e−pSmin⟩+ Pr(R ≤ S)⟨e−pRmin⟩⟨e−pS′

R⟩
]

= S̃on(p)
[
Pr(S < R)S̃min(p) + Pr(R ≤ S)R̃min(p)⟨e−pSR⟩

]
= S̃on(p)

[
Pr(S < R)S̃min(p) + Pr(R ≤ S)R̃min(p)S̃R(p)

]
, (A.5)

from where one finds

S̃R(p) =
Pr(S < R)S̃min(p)S̃on(p)

1− Pr(R ≤ S)R̃min(p)S̃on(p)
. (A.6)

This is an exact expression for the distribution of SR in Laplace space. This is also the

moment generating function from which nth moment of SR can be computed directly

via

⟨Sn
R⟩ = (−1)n

dnS̃R(p)

dpn

∣∣∣∣∣
p=0

. (A.7)
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For instance, the first moment reads

⟨SR⟩ = − dS̃R(p)

dp

∣∣∣∣∣
p=0

=
Pr(S < R) [(1 − Pr(R ≤ S))(⟨Son⟩ + ⟨Smin⟩) + Pr(R ≤ S)⟨Son⟩ + Pr(R ≤ S)⟨Rmin⟩]

(1 − Pr(R ≤ S))2

=
Pr(S < R) [Pr(S < R)⟨Smin⟩ + Pr(R ≤ S)⟨Rmin⟩ + ⟨Son⟩]

(Pr(S < R))2

=
⟨min(S,R)⟩ + ⟨Son⟩

Pr(S < R)
, (A.8)

which is Eq. (6) with the identification ⟨min(S,R)⟩ = Pr(S < R)⟨Smin⟩ + Pr(R ≤
S)⟨Rmin⟩. A similar exercise for the second moment gives

⟨S2
R⟩ =

d2S̃R(p)

dp2

∣∣∣∣∣
p=0

=
⟨(min(S,R) + Son)

2⟩
Pr(S < R)

+
2Pr(R ≤ S)(⟨Rmin⟩+ ⟨Son⟩) (⟨min(S,R)⟩+ ⟨Son⟩)

Pr(S < R)2
.

(A.9)

which is identified as the Eq. (7) in the main text. Eq. (A.7) thus encodes all the

information about the higher moments.

Appendix B. Moments of the service time for Poissonian resetting

In this section we take the representative case when the resetting times are drawn from

an exponential distribution given by

fR(t) = re−rt. (B.1)

where r is the resetting rate. The cumulative function is given by

Pr(R ≤ t) = 1− e−rt. (B.2)

The distribution of the random variable min(S,R) can be computed by noting

Pr(min(S,R) ≤ t) = 1− Pr(min(S,R) > t)

= 1− Pr(S > t)Pr(R > t)

= 1− Pr(S > t)e−rt, (B.3)

from which one can gets

fmin(S,R)(t) = e−rtfS(t) + re−rtPr(S > t), (B.4)

which can be used to compute all the moments for the random variable min(S,R).
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Mean service time with overheads: To compute the mean, we note that the first

term on the numerator in Eq. (6)) can be written as

⟨min(S,R)⟩ = 1− S̃(r)

r
, (B.5)

where S̃(r) =
´∞
0

dt e−st fS(t). The denominator can be written as

Pr(S < R) =

ˆ ∞

0

dt fS(t)Pr(R > t). (B.6)

For exponential resetting times Pr(R > t) = e−rt and we have

Pr(S < R) =

ˆ ∞

0

dt fS(t)e
−rt = S̃(r). (B.7)

Combining together, we find

⟨Sr⟩ =
1− S̃(r) + r⟨Son⟩

rS̃(r)
, (B.8)

which is Eq. (8) in main text.

Second moment of the service time with overheads: To find the second moment

for Poisson resetting, we now use Eq. (7). The expectation ⟨min(S,R)2⟩ in the numerator

can be computed directly using Eq. (B.4)

⟨min(S,R)2⟩ =
ˆ ∞

0

dt t2 (fS(t)Pr(R > t) + fR(t)Pr(S > t))

=

ˆ ∞

0

dt t2
(
fS(t) e

−rt + r Pr(S > t) e−rt
)

=

ˆ ∞

0

dt t2fS(t) e
−rt + r

ˆ ∞

0

dt t2 Pr(S > t) e−rt

=
d2S̃(r)

dr2
+ r

ˆ ∞

0

dt t2 (1− Pr(S < t)) e−rt

=
d2S̃(r)

dr2
+

2

r2
− r

ˆ ∞

0

dt t2Pr(S < t)e−rt

=
d2S̃(r)

dr2
+

2

r2
− r

d2
(

S̃(r)
r

)
dr2

=
2r dS̃(r)

dr
− 2S̃(r) + 2

r2
. (B.9)

In the above derivation we have used the following property
´∞
0

dt tnf(t)e−rt =

(−1)n dnf̃(r)
drn

. Next, to calculate ⟨Rmin⟩ we need to use the density of the conditional

time Rmin which is given by

fRmin
(t) =

fR(t)
´∞
t

dt′ fS(t
′)

Pr(R ≤ S)
=

fR(t)Pr(S > t)

Pr(R ≤ S)
. (B.10)
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Then, ⟨Rmin⟩ can be expressed as

⟨Rmin⟩ =
ˆ ∞

0

dt tfRmin
(t)

=
1

Pr(R ≤ S)

ˆ ∞

0

dt t re−rtPr(S > t)

=
r

1− Pr(S < R)

ˆ ∞

0

dt t e−rt (1− Pr(S < t))

=
r
(´∞

0
dt t e−rt −

´∞
0

dt t e−rtPr(S < t)
)

1− S̃(r)

=

r

(
1
r2

+
d
(

S̃(r)
r

)
dr

)
1− S̃(r)

=
r dS̃(r)

dr
− S̃(r) + 1

r
(
1− S̃(r)

) . (B.11)

Substituting Eqs. (B.9) and (B.11) into Eq. (7), one obtains

⟨S2
r ⟩ =

2r dS̃(r)
dr

(1 + r⟨Son⟩) + 2(1− S̃(r))(1 + r⟨Son⟩)2 + r2S̃(r)⟨S2
on⟩

r2S̃(r)2
, (B.12)

which was announced in Eq. (9) in the main text.

Appendix C. General discussion on the “resetting induced efficiency

criterion” for the mean queue length with different variability CVon

In this section, we elaborate more on the general conditions that were obtained in Sec.

(5) to underpin the effect of resetting. We start by deriving the most general criterion

that ensures the existence of an optimal r∗. To see this, we introduce an infinitesimal

resetting rate δr and ask under what condition the following inequality ⟨Sδr→0⟩ < ⟨Su⟩
holds. Expanding Eq. (8) in the power of δr and imposing the above condition, we

derive a universal relation

CV 2 > 1 + 2
⟨Son⟩
⟨S⟩

, (C.1)

that guarantees the existence for an optimal resetting rate [45]. In terms of CVu with

the help of Eq. (14) this criterion takes the form

CV 2
u > 1 +

⟨Son⟩2

⟨Su⟩2
(CV 2

on − 1). (C.2)

The above equation will be central to our remaining discussion where we study various

cases for CVon.
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Appendix C.1. Case I: CVon < 1

In Eq. (22) in the main text we argued that for CVu > 1 the mean queue length can be

reduced by introducing resetting when CVon < 1. However, we emphasize that this is

not a necessary (albeit sufficient) condition. From Eq. (C.2) we notice that the RHS is

less than one for CVon < 1. This in turn implies a finite optimal value of r∗ also can be

found under the same condition. This implies that ρr∗ becomes less than ρ for CVu < 1.

As a result, for a sufficiently small ρr∗ , one can still have ⟨N I
r∗⟩ < ⟨N⟩ from Eq. (21). In

Fig. 3 we indeed find that the deviation occurs at value of CVu which is less than unity.

Appendix C.2. Case II: CVon = 1

In this case the RHS of Eq. (C.2) becomes exactly unity and hence, a finite optimal r∗

shows up only when CVu > 1. It is thus evident from Eq. (24) that CVu > 1 is both a

necessary and sufficient condition for the reduction in the mean queue length. As shown

in Fig. 3, the transition point (where ⟨N II
r∗ ⟩ < ⟨N⟩) is exactly found at CVu = 1.

Appendix C.3. Case III: CVon > 1

In this case the RHS of Eq. (C.2) is strictly greater than one. One can thus expect

to find an optimal r∗ for values of CVu > 1. Thus the condition ⟨N II
r∗ ⟩ < ⟨N⟩ will be

satisfied only when CVu > 1. This is also evident from Fig. 3 where we see that the

transition point occurs at CVu > 1.

To derive the criterion (Eq. (26)) as mentioned in the main text we recall the PK

formula from Eq. (25) for the optimally restarted process and the same without resetting

from Eq. (1)

⟨N III
r∗ ⟩ = ρr∗

1− ρr∗
+

λ2

2(1− ρr∗)

⟨Son⟩2

S̃(r∗)

(
CV 2

on − 1
)

(C.3)

⟨N⟩ = ρ

1− ρ
+

ρ2

2(1− ρ)

(
CV 2

u − 1
)
, (C.4)

and impose the condition ⟨N III
r∗ ⟩ < ⟨N⟩. For a finite r∗, this would yield

λ2 ⟨Son⟩2

S̃(r∗)

(
CV 2

on − 1
)
< ρ2

(
CV 2

u − 1
)

CV 2
u > 1 +

(
⟨Son⟩
⟨Su⟩

)2
1

S̃(r∗)
(CV 2

on − 1), (C.5)

which gives the criterion obtained in Eq. (26) where we have substituted ρ = λ⟨Su⟩.
Finally, we remark that this is a sufficient condition (but not necessary). In other

words, one can still find a CVu where this condition is not satisfied but the inequality

⟨N III
r∗ ⟩ < ⟨N⟩ holds.
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Appendix D. Moments for sharp resetting times

This section is dedicated to compute the first two moments of the service time under

sharp resetting. Here, resetting occurs always after a fixed time interval τ such that

fR(t) = δ(t− τ), (D.1)

from which one can see

Pr(R > t) = θ(τ − t), (D.2)

where θ(z) is the Heaviside theta function which takes value unity only when z > 0 and

zero otherwise.

Mean service time with overheads: The numerator in Eq. (6) can be computed

in the following way

⟨min(S,R)⟩ =
ˆ ∞

0

Pr(S > t)Pr(R > t)dt

=

ˆ ∞

0

Pr(S > t)θ(τ − t)dt

=

ˆ τ

0

dt qS(t), (D.3)

where qS(t) = Pr(S > t) is the survival probability of the process S up to time t, which

indicates the probability that the service has not yet been completed up to time t. The

denominator in Eq. (6) is found to be

Pr(S < R) =

ˆ ∞

0

dt fR(t)Pr(S < t)

=

ˆ ∞

0

dt δ(t− τ)Pr(S < t)

=

ˆ ∞

0

dt δ(t− τ)(1− qS(t))

= 1− qS(τ). (D.4)

Substituting Eq. (D.3) and Eq. (D.4) in Eq. (6) we obtain the first moment for sharp

resetting as

⟨Sτ ⟩ =
´ τ
0
qS(t)dt+ ⟨Son⟩
1− qS(τ)

, (D.5)

which was announced in Eq. (39).

Second moment of service time with overheads: Following the same procedure
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as the previous section, we find

⟨min(S,R)2⟩ =
ˆ ∞

0

dt t2 (fS(t)Pr(R > t) + fR(t)Pr(S > t))

=

ˆ ∞

0

dt t2
[
−∂qS(t)

∂t
θ(τ − t) + qS(t)δ(τ − t)

]
= τ 2qS(τ)−

ˆ τ

0

dt t2
∂qS(t)

∂t

= τ 2qS(τ)− τ 2qS(τ) + 2

ˆ τ

0

dt t qS(t)

= 2

ˆ τ

0

dt t qS(t). (D.6)

The quantity ⟨Rmin⟩ can also be obtained from Eq. (B.10) directly

⟨Rmin⟩ =
ˆ ∞

0

dt tfRmin
(t)

=
1

Pr(τ ≤ S)

ˆ ∞

0

dt tδ(t− τ)Pr(S > t)

=
τqS(τ)

qS(τ)

= τ. (D.7)

Using Eqs. (D.6) and (D.7) in Eq. (7), we arrive at the following expression for the
second moment of service time with overheads

⟨S2
τ ⟩ =

2
´ τ
0 tqS(t)dt + 2⟨Son⟩

´ τ
0 qS(t)dt + ⟨S2

on⟩
1 − qS(τ)

+
2qS(τ)(τ + ⟨Son⟩)

(´ τ
0 qS(t)dt + ⟨Son⟩

)
(1 − qS(τ))2

,

(D.8)

which is Eq. (40) in the main text.
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