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Abstract

A novel lemma in Z2-equivariant homotopy theory is stated, proven and applied to the
topological classification of frustrated magnets in the presence of canonical time-reversal
symmetry. This lemma generalises a result which had been key to the homotopical derivation
of the renowned Bott-Kitaev periodic table for topological insulators and superconductors.
We distinguish between three symmetry classes AIII, AIII/BDI, and AIII/CII depending on
the existence and type of canonical time-reversal symmetry. For each of these classes, the
relevant objects to classify are Z2-equivariant maps into a Stiefel manifold. The topological
classification is illustrated through examples of frustrated spin models and is compared to
the one of Roychowdhury and Lawler (RL).

Keywords: Classical spin liquids, homotopy theory, topological classification, time-reversal
symmetry, rigidity matrix, Z2-equivariance, loop space, Bott-Kitaev periodic table, topological
insulators and superconductors, topological invariants, Heisenberg antiferromagnets

1 Introduction

The notion of frustration describes the situation where a spin (or several spins) in a spin model
cannot find an orientation to fully minimise all the interaction energies with its neighbouring
spins simultaneously (see Figure 1.1(a)). In general, frustration is caused either by compet-
ing interactions, as in the Villain model [42], or by the lattice structure as in the triangular,
face-centred cubic (fcc) and hexagonal-close-packed (hcp) lattices, with antiferromagnetic near-
est neighbour exchange interactions [6, p. 2]. When the geometry of a lattice precludes the
simultaneous minimisation of all interactions, one speaks of a geometrically frustrated system
[28].

We are interested in studying the topology of zero modes in frustrated systems. A conse-
quence of frustration is an accidental degeneracy of ground states, that is, two different ground
states are not generally related by any symmetry operation. Therefore, Hermitian matrices are
not of direct use to describe zero modes in frustrated magnets as frustration cannot be attributed
to the symmetries of a Hamiltonian. Instead, for each ground state of a frustrated system, one
identifies the key object: a continuous linear transformation from the space of spin wave degrees
of freedom into the space of ground state constraints, the rigidity matrix [31]. Ground state
constraints are the conditions that have to be satisfied to put the system under inspection into
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one of its ground states. Rigidity matrices are rectangular matrices and their kernels are the
spaces of zero modes. They describe the topology of zero modes in frustrated magnets.

For continuous spins, one can estimate the size of ground state degeneracy of frustrated spin
models through the Maxwellian counting argument [28, 31, 20, p. 8]. The key idea is to reorganise
the terms in the spin Hamiltonian into constraints following which the naive degeneracy estimate
𝜈, the Maxwell counting index, is obtained. It is the number of ground state degrees of freedom
per unit cell and is given as the difference between the total number 𝑁 of spin wave degrees
of freedom per unit cell and the number 𝑀 of ground state constraints per unit cell, that is,
𝜈 = 𝑁 −𝑀.

(a)

(b)
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S3S4

S2

θ Φ

(c)

Figure 1.1: On a triangular lattice (a) with antiferromagnetic interactions between nearest
neighbours, a configuration in which each spin can be antialigned with all its neighbours is
impossible. In other words, the system is frustrated. In each ground state of a cluster of
Heisenberg spins, the sum of spins must add up to zero. A cluster of three spins (b) forms a
unique structure, whereas a cluster of four spins (c) forms a family of degenerate ground states,
parameterised by the structure’s two degrees of freedom 𝜃 and 𝜙.

Maxwell introduced such counting to discuss the stability of mechanical systems of joined
rods in 1864 [23]. Chalker and Moessner applied it to frustrated spin systems in 1998 [26], in
particular to the pyrochlore (see Figure 2.3) Heisenberg antiferromagnet (HAF) [27]. It can
be shown that the number of ground state degrees of freedom of the entire pyrochlore HAF is
extensive as it equals the number of tetrahedra [30, 26, 20, p. 9] and one finds 𝜈 = 2 for the
pyrochlore HAF [20, p. 9] (see Figure 1.1(c)), 𝜈 = 0 for the kagome HAF [31] (see Figure 1.1(b))
and 𝜈 = 1 for the HAF on a checkerboard lattice [21, 2]. The corresponding constraints in the
spin Hamiltonians are that the total spin vanishes in each tetrahedron for the pyrochlore HAF,
in each triangle for the kagome HAF, and in each checkerboard for the HAF on the checkerboard
lattice, respectively [31].

There is a gap condition for systems described by a rigidity matrix: the number of nonzero
singular values is the rank of the rigidity matrix and the introduction of a new zero mode, i.e.,
a gap closure, means the reduction of this rank. One makes this gap condition more visible by
flattening the singular values of rigidity matrices [31]. This flattening of singular values is math-
ematically realised through a strong deformation retraction. Singular value flattened rigidity
matrices take values in complex Stiefel manifolds. The corresponding linearized Hamiltonian,
governing the dynamics of spin waves, is given as a bilinear form in terms of the rigidity matrix.
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RL [31] topologically classify frustrated systems in the presence of time-reversal symmetry
and 𝐶2 rotation symmetry leading to a trivial Z2-action on the Brillouin torus 𝑇𝑑 =R𝑑/2𝜋Z𝑑. We
develop a homotopical classification of frustrated systems, resulting in the Tables 3.1(a), 3.1(b)
and 3.2, by considering momentum-inversion on the Brillouin torus 𝑇𝑑 coming from the sole
presence of canonical time-reversal symmetry. Depending on the presence and type of canonical
time-reversal symmetry, we distinguish between the three symmetry classes AIII, AIII/BDI and
AIII/CII (see Table 2.1 for an elaboration on the symmetry labels). We also propose the notion
and distinction between “strong” and “weak” topological invariants. Our consideration is mainly
based on strong topological invariants by substituting 𝑇𝑑 with the 𝑑-sphere 𝑆𝑑 which reveals sets
of homotopy classes beyond those in the Bott-Kitaev periodic table for topological insulators and
superconductors [16, 19, 22, 34, 38]. The homotopical classification is performed as a function of
the number of ground state degrees of freedom per unit cell 𝜈, the underlying lattice dimension
𝑑 and depends on the realisation of canonical time-reversal symmetry. In distinction to RL [31],
the absence of any further crystalline symmetries is considered.

To achieve such a topological classification of frustrated systems in the presence of canonical
time-reversal symmetry, we formulate, prove and apply one of our main results, Lemma 3.1.
Lemma 3.1 constitutes a generalisation of a result in Z2-equivariant homotopy theory and es-
tablishes an isomorphism between homotopy groups of Z2-equivariant iterated loop spaces and
relative homotopy groups of pairs of iterated loop spaces, involving a dimensional shift. More
on Z2-equivariant loop spaces is presented in [43].

A weaker variant of Lemma 3.1 was previously formulated only for the loop space of certain
symmetric spaces in the context of free-fermion ground states of gapped systems with symmetries
[18, Lemma 5.13] and is here generalised through the iteration of the loop space construction
applied to arbitrary Z2-spaces. Another weaker variant, for the study of three-dimensional
insulators with inversion symmetry, was intuitively stated in [41]. Motivated by [31], we apply
Lemma 3.1 to classify the topology of zero modes in frustrated magnets in the presence of
canonical time-reversal symmetry. Technically, this lemma always finds applications as long
as Z2-equivariance conditions are present, the Z2-action on the Brillouin torus 𝑇𝑑 is realised
through momentum-inversion [3, 18, 10, 14, 15] and 𝑇𝑑 can be replaced by 𝑆𝑑 at the expense of
losing weak topological invariants.

In recent studies, classical spin liquids are classified based on their energy spectrum [9, 45].
A more detailed development and comprehensive exposition of the classification theory with
numerous examples can be found in [44].

This paper is organised as follows: in chapter 2 we introduce the physical framework to
describe spin waves of frustrated magnets through a mathematical model and examples. The
examples include a classical HAF on a square lattice with anisotropic next-nearest neighbour
exchange interactions, the classical 𝐽1 − 𝐽2 HAF on a square lattice and the classical pyrochlore
HAF. In these examples, rigidity matrices are computed and symmetries are identified.

In chapter 3 we formulate and prove one of the main results, Lemma 3.1. It is applied to
obtain a topological classification of zero modes characterised by time-reversal symmetric (i.e.
Z2-equivariant) rigidity matrices (see Tables 3.1(a) and 3.1(b)). Furthermore, it is argued that
target spaces of rigidity matrices are, after minimal assumptions and an appropriate deformation
retraction, complex Stiefel manifolds. The homotopical classification is exemplified through the
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examples in chapter 2 and compared to the topological classification of RL [31] and their time-
reversal related symmetry considerations.

2 The Physical Framework

The goal of this chapter is to introduce a physical framework in which we describe spin waves, the
linearised degrees of freedom in the ground states of a frustrated system, and ground state con-
straints. The notion of time-reversal symmetry is introduced and three different Z2-equivariance
conditions are obtained as a consequence.

Physical examples of calculating rigidity matrices and identifying their symmetries are demon-
strated. We consider the classical HAF on a square lattice with anisotropic next-nearest neigh-
bour exchange interactions, the 𝐽1 − 𝐽2 HAF on a square lattice and the classical pyrochlore
HAF.

2.1 A Mathematical Model

We consider a 𝑑-dimensional underlying lattice Z𝑑 (position space) with minimal distance nor-
malised to 1 and associate to each lattice position a unit cell C𝑁 with 𝑁 spin wave degrees of
freedom in a frustrated system. In the case of three-component spins having unit magnitude,
each spin can be associated with a 2-sphere 𝑆2 and is restricted to a subspace of 𝑆2 in the ground
state. Choosing a certain ground state configuration (which amounts to fixing spin axes), each
spin’s linearised degrees of freedom live in the plane orthogonal to the spin axes, see Figure 2.1.

Figure 2.1: A Néel ordered state serves as one of many ground states of the 𝐽1 − 𝐽2 HAF
on a square lattice [31]. The Néel vector can be chosen arbitrarily, tracing out the whole 2-
sphere 𝑆2 (grey), and expanding around any ground state amounts to considering linearised
degrees of freedom coming from the planes (purple) orthogonal to the fixed spin axes (schematic
illustration).

In analogy to phase space, we assume our number of linearised degrees of freedom to be
even. Therefore, the planes perpendicular to the spin axes (being isomorphic to one another)
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are modelled by C𝑁 � R2𝑁 . The complex Hilbert space containing the spin waves is hence
modelled by

H𝑁
𝑑 B ℓ2

(
Z𝑑 ,C𝑁

)
=

{
𝜑 : Z𝑑 → C𝑁

���� 𝑁∑︁
𝑖=1

∑︁
x∈Z𝑑

|𝜑𝑖 (x) |2 <∞
}

(2.1)

with the scalar product

⟨𝜑,𝜓⟩H𝑁
𝑑
B

∑︁
x∈Z𝑑

⟨𝜑(x),𝜓(x)⟩C𝑁 (2.2)

which serves as a conventional tool for upcoming calculations. The square summability
condition on our spin waves is needed to perform a Fourier transformation later.

Although the form of the lattice G describing the positions of the constraints is model-
dependent because it depends, among other things, on the interactions between the spins, we
consider G = Z𝑑 without loss of generality. The reason is that an isomorphism G � Z𝑑 is already
enough to remain in the framework of the upcoming topological classification. The Hilbert space
H𝑀
𝑑

appropriately models the space of ground state constraints.
We immediately see that B𝑁

𝑑
B {𝛿x𝑒𝑖 | x ∈ Z𝑑 and 1 ≤ 𝑖 ≤ 𝑁} constitutes an orthonormal basis

for H𝑁
𝑑

, where

𝛿x (y) B


1 for y = x,

0 otherwise.
(2.3)

For every a ∈ Z𝑑, we define translation operators as the unitary operators 𝑡a : H𝑁
𝑑

→ H𝑁
𝑑

,
𝑡a (𝛿x𝑒𝑖) B 𝛿x+a𝑒𝑖, and linear extension. Following [1], time-reversal operators are either real or
quaternionic structures, i.e. antiunitary operators 𝑇 =𝑈𝐾 : H𝑁

𝑑
→H𝑁

𝑑
squaring either to +IdH𝑁

𝑑

or to −IdH𝑁
𝑑

. Here, 𝑈 is a unitary operator and 𝐾 is the operation of complex conjugation
concerning the basis B𝑁

𝑑
. Linearised degrees of freedom and ground state constraints assume

values in R2𝑁 �C𝑁 and R2𝑀 �C𝑀 . These spaces are essentially classical phase spaces. This is the
reason for realising time-reversal operators on both spaces H𝑁

𝑑
and H𝑀

𝑑
as real or quaternionic

structures (having the effect of reversing the sign of the symplectic structure of phase space).
Densely defined linear operators 𝑅 : D(𝑅) ⊆ H𝑁

𝑑
→H𝑀

𝑑
acting as

𝑅(𝛿y𝑒 𝑗) =
𝑀∑︁
𝑖=1

∑︁
x∈Z𝑑

𝑅𝑖 𝑗 (x,y)𝛿x𝑒𝑖 , (2.4)

are uniquely characterised by their matrix representation 𝑅 : Z𝑑 ×Z𝑑 → C𝑀×𝑁 . We specifically
classify the cases in which 𝑈 (x,y) = 𝛿x (y)𝐽 with 𝐽 being in its standard form1 [8, 40, 31, 7,
Chapter 16]

𝐽 =


𝐼𝑁 for 𝑇2 = +IdH𝑁

𝑑
,

𝐼𝑁/2 ⊗ i𝜎2 for 𝑇2 = −IdH𝑁
𝑑
.

(2.5)

Motivated by the examples in chapter 2.2, we will work with translation invariant time-reversal
1Note that in the case 𝑇2 = −IdH𝑁

𝑑
one can show easily that 𝑁 must be even. The matrix 𝐼𝑁 denotes the

𝑁 ×𝑁 identity matrix. The 𝜎𝑖 denote Pauli matrices.
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symmetric rigidity operators 𝑅 : D(𝑅) ⊆ H𝑁
𝑑

→H𝑀
𝑑

. That is, they satisfy 𝑡a𝑅 = 𝑅𝑡a
2, 𝑡aD(𝑅) =

D(𝑅), 𝑇2𝑅 = 𝑅𝑇1 and 𝑇1D(𝑅) = D(𝑅), or equivalently 𝑅(x+ a,y+ a) = 𝑅(x,y) and 𝐽2𝑅(x,y)𝐽†1 =

𝑅(x,y) for all a,x,y ∈ Z𝑑 implying that 𝑅 is uniquely characterised by 𝑟 : Z𝑑 →
(
C𝑀×𝑁 )Z2 ,

𝑟 (x) B 𝑅(x,0). Here, 𝑇1 and 𝑇2 are both either real or quaternionic structures on H𝑁
𝑑

and
H𝑀
𝑑

respectively and

(
C𝑀×𝑁

)Z2
�


C𝑀×𝑁 no time-reversal symmetry,

R𝑀×𝑁 for 𝑇2
1 = +IdH𝑁

𝑑
and 𝑇2

2 = +IdH𝑀
𝑑
,

H𝑀/2×𝑁/2 for 𝑇2
1 = −IdH𝑁

𝑑
and 𝑇2

2 = −IdH𝑀
𝑑
,

(2.6)

is the Z2-fixed point set concerning the Z2-action 𝑔ΛB 𝐽2Λ𝐽
†
1 , where 𝑔 ∈ Z2 denotes the nontrivial

element.
Through the Fourier transformation 𝐹 : H𝑁

𝑑
→ 𝐿2 (

𝑇𝑑 ,C𝑁
)
C K𝑁

𝑑
, given by 𝐹 (𝛿x𝑒𝑖) B ex𝑒𝑖

and linear extension, we see that rigidity operators 𝑅′ B 𝐹𝑅𝐹† : 𝐹D(𝑅) ⊆ K𝑁
𝑑

→K𝑀
𝑑

act diag-
onally on momentum space because 𝑅′𝜑 = 𝑟𝜑 with

𝑟 (k) B
∑︁

x∈Z𝑑
𝑟 (x)𝑒ikx. (2.7)

Here, ex (k) B 𝑒ikx/(2𝜋)𝑑/2.
That is, 𝑅′ acts through multiplication by the rigidity matrix 𝑟 : 𝑇𝑑→C𝑀×𝑁 . Using the rank-

nullity theorem [11, p. 70], one can reexpress the Maxwell counting index in terms of rigidity
matrices as 𝜈 = nullity𝑟 −nullity𝑟†, being a special case of an analytical index [29, p. 453].

The corresponding linearized Hamiltonian governing the spin wave dynamics is 𝐻 = 𝑅†𝑅

[31, 32], i.e., a bilinear form in terms of 𝑅. It acts diagonally in momentum space through
multiplication by ℎ̃ = 𝑟†𝑟 : 𝑇𝑑 → C𝑁×𝑁 . All zero modes in a frustrated model can be explained
in the framework of rigidity operators whose kernel ker𝐻 = ker𝑅 contains the zero modes. Any
zero mode 𝜑 ∈ 𝐹 ker𝑅 equivalently satisfies 𝜑(k) ∈ ker𝑟 (k) for almost all k ∈ 𝑇𝑑. Therefore,
a classification of rigidity matrices directly addresses the question of how frustration can be
preserved by perturbations [31].

We are specifically concerned with rigidity operators 𝑅 whose rigidity matrices 𝑟 are contin-
uous [31, 32] and Z2-equivariant, distinguishing the following three cases. The symmetry labels
in Table 2.1 are borrowed from [33] in the following sense: compared to this classification, RL
[31, 33] solely consider BDI and CII in the presence of symmetries.

2We use the same notation for translation operators on both H𝑁
𝑑

and H𝑀
𝑑

. Similarly, this is done for the
notation of upcoming Fourier transformations.
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Label Time-reversal symmetry Z2-equivariance of 𝑟 : 𝑇𝑑 → C𝑀×𝑁

AIII no trivial Z2-equivariance
AIII/BDI yes, 𝑇2

1 = +IdH𝑁
𝑑

, 𝑇2
2 = +IdH𝑀

𝑑
𝑟 (−k) = 𝑟 (k)

AIII/CII yes, 𝑇2
1 = −IdH𝑁

𝑑
, 𝑇2

2 = −IdH𝑀
𝑑

𝑟 (−k) =
(
𝐼𝑀/2 ⊗𝜎2

)
𝑟 (k)

(
𝐼𝑁/2 ⊗𝜎2

)
Table 2.1: We present the Z2-equivariance conditions on the rigidity matrix 𝑟 : 𝑇𝑑 → C𝑀×𝑁 as a
consequence of the existence and type of canonical time-reversal symmetry. An elaboration on
the symmetry labels is called for. For any [k] ∈ 𝑇𝑑, we certainly know 𝑟 (k) ∈ C𝑀×𝑁 explaining
the label AIII in all three cases. In the presence of time-reversal symmetry, we further have
𝑟 (k) ∈

(
C𝑀×𝑁 )Z2 (see equation (2.6)) for time-reversal invariant momenta [k] ∈

(
𝑇𝑑

)Z2 , leading
to the label BDI or to CII depending on the realisation of time-reversal symmetry.

The Z2-action of time-reversal on the Brillouin torus 𝑇𝑑 = R𝑑/2𝜋Z𝑑 � (𝐼/𝜕𝐼)𝑑, with 𝐼 B

[−𝜋, 𝜋], is given as 𝑔[k] = [−k]. Time-reversal invariant momenta live in the finitely generated
subgroup (𝑇𝑑)Z2 = ⟨[𝜋𝑒1], . . . , [𝜋𝑒𝑑]⟩ of order

��(𝑇𝑑)Z2
�� = 2𝑑.

2.2 Examples

Altermagnets display a new type of collinear magnetism distinct from ferromagnetism and con-
ventional antiferromagnetism [24, 36, 35]. The altermagnetic Hubbard model [3] inspires us to
consider a Néel state of the classical HAF on the square lattice with anisotropic antiferromag-
netic next-nearest neighbour exchange interactions depicted in Figure 2.2. The corresponding
spin Hamiltonian reads (realising spins as functions 𝑆 : Z2 → 𝑆2, x ↦→ 𝑆x and denoting a1 = (1,0)
and a2 = (0,1) as primitive vectors)

𝐻 = 𝐽1
∑︁
x∈Z2

(
𝑆x𝑆x+a1 + 𝑆x𝑆x+a2

)
+ 𝐽2

∑︁
x∈𝑉

(
𝑆x𝑆x+a1+a2 + 𝑆x+a1𝑆x+a2

)
+ 𝐽3

∑︁
x∈𝑉

(
𝑆x𝑆x+a1−a2 + 𝑆x−a2𝑆x+a1

) (2.8a)

=
𝐽1
4

∑︁
x∈𝑉

(
𝑆x + 𝑆x+a1 + 𝑆x+a2 + 𝑆x+a1+a2

)2 + 𝐽1
4

∑︁
x∈𝑉

(
𝑆x + 𝑆x+a1 + 𝑆x−a2 + 𝑆x+a1−a2

)2

+ 𝐽1
2

���� 𝐽2
𝐽1

− 1
2

����∑︁
x∈𝑉

[ (
𝑆x+a1 ± 𝑆x+a2

)2 +
(
𝑆x ± 𝑆x+a1+a2

)2
]

+ 𝐽1
2

���� 𝐽3
𝐽1

− 1
2

����∑︁
x∈𝑉

[ (
𝑆x+a1 ± 𝑆x−a2

)2 +
(
𝑆x ± 𝑆x+a1−a2

)2
]
+ const.

(2.8b)

with 𝑉 B Z(a1 + a2) ⊕ Z(a1 − a2) denoting the lattice of the magnetic unit cells. In equa-
tion (2.8b), the sign ± is used in the case 𝐽1 ≶ 2𝐽𝑖 for 𝑖 ∈ {2,3}. The magnetic unit cell consists
of two 0-cells, four 1-cells and two 2-cells (being doubled in size in comparison to the nuclear
unit cell which is a square plaquette).
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Figure 2.2: The Néel state of the HAF on a square lattice with anisotropic next-nearest neighbour
exchange interactions represents a ground state. It is symmetric under a global spin flip followed
by a 𝜋/2 rotation around the brown dot of the brown dual square lattice. The nearest neighbour
exchange interaction 𝐽1 and next-nearest neighbour exchange interactions 𝐽2 and 𝐽3 are also
illustrated.

In the case of 𝐽1 = 2𝐽𝑖 for both 𝑖 = 2,3, the spin Hamiltonian becomes

𝐻 =
𝐽1
4

∑︁
x∈Z2

(
𝑆x + 𝑆x+a1 + 𝑆x+a1 + 𝑆x+a1+a2

)2 + const. (2.9)

and the magnetic unit cell coincides with the nuclear unit cell. Ground states are therefore
obtained for 𝑆x + 𝑆x+a1 + 𝑆x+a1 + 𝑆x+a1+a2 = 0 for all x ∈ Z2. Parameterising the spins via (𝑝, 𝑞) ↦→(
cos(𝑞)

√︁
1− 𝑝2, sin(𝑞)

√︁
1− 𝑝2, 𝑝

)
and linearising the ground state constraints along the positive 𝑥-

axis in the Néel ordered state depicted in Figure 2.2, we obtain the rigidity matrix in momentum
space (compare with [31])

𝑟 (k) =
(
1− 𝑒i𝑘𝑥 − 𝑒i𝑘𝑦 + 𝑒i(𝑘𝑥+𝑘𝑦 ) 0

0 1+ 𝑒i𝑘𝑥 + 𝑒i𝑘𝑦 + 𝑒i(𝑘𝑥+𝑘𝑦 )

)
. (2.10)

This rigidity matrix is of symmetry class AIII/BDI (see Table 2.1) and exhibits the Maxwell
counting index 𝜈 = 0, see Table 3.1(a) (derived by employing the algorithm in equation (A.1)).

Now, in the case 𝐽1 > 2𝐽𝑖 for both 𝑖 ∈ {2,3} and 𝐽2 ≠ 𝐽3, we obtain the ground state constraints
𝑆x + 𝑆x+a1 + 𝑆x+a2 + 𝑆x+a1+a2 = 0, 𝑆x + 𝑆x+a1 + 𝑆x−a2 + 𝑆x+a1−a2 = 0, 𝑆x+a1 − 𝑆x+a2 = 0, 𝑆x − 𝑆x+a1+a2 = 0,
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𝑆x+a1 − 𝑆x−a2 = 0 and 𝑆x − 𝑆x+a1−a2 = 0 for all x ∈ 𝑉 and the rigidity matrix reads

𝑟 (k) =

©«

1+ 𝑒i𝑘𝑥 −1− 𝑒−i𝑘𝑦 0 0
1+ 𝑒i𝑘𝑦 −1− 𝑒−i𝑘𝑥 0 0

0 𝑒−i𝑘𝑦 −1 0 0
1− 𝑒i𝑘𝑥 0 0 0

0 1− 𝑒−i𝑘𝑥 0 0
𝑒i𝑘𝑦 −1 0 0 0

0 0 1+ 𝑒i𝑘𝑥 1+ 𝑒−i𝑘𝑦

0 0 1+ 𝑒i𝑘𝑦 1+ 𝑒−i𝑘𝑥

0 0 0 1− 𝑒−i𝑘𝑦

0 0 1− 𝑒i𝑘𝑥 0
0 0 0 𝑒−i𝑘𝑥 −1
0 0 𝑒i𝑘𝑦 −1 0

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

(2.11)

being once again of symmetry class AIII/BDI and displaying two submatrices with individual
Maxwell counting index 𝜈 = 4, see Table 3.1(a). Squaring the 𝜋/2-rotation symmetry, we find
the following additional Z2-equivariance condition 𝑟 (−k) = [((−𝜎1) ⊕ (𝜎1 ⊗𝜎1)) ⊕ (𝜎1 ⊕ (−𝜎1 ⊗
𝜎1))]𝑟 (k) [𝜎1 ⊕𝜎1].

Another example is the classical pyrochlore HAF.

Figure 2.3: The pyrochlore lattice is a network of vertex-sharing tetrahedra.

There are two types of tetrahedra in the pyrochlore lattice, both of which are depicted in
Figure 2.4(a). The unit cell of the pyrochlore lattice consists of four 0-cells (indicated by the four
blue spin axes in Figure 2.4(a)), twelve 1-cells (all the links between the vertices of the corner-
sharing tetrahedra in Figure 2.4(a)), eight 2-cells (all the faces of the corner-sharing tetrahedra
in Figure 2.4(a)) and three 3-cells (the two corner-sharing tetrahedra in Figure 2.4(a) and a
neighbouring volume).

Orienting the entire pyrochlore lattice along the [111] direction as depicted in Figure 2.4(b),
one observes that the pyrochlore lattice consists of alternating kagome and triangular layers
stacked on top of each other [39, 20, p. 179]. The lattice describing the positions of the unit
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cells for the pyrochlore lattice is, therefore, P = Za1 ⊕ Za2 ⊕ Za3 ⊆ R3 with a1 = (1,0,0), a2 =(
1/2,

√
3/2,0

)
and a3 B

(
3/8,

√
3/8,

√
13/4

)
. One of the points belonging to this lattice is the

corner-sharing point in Figure 2.4(a).

(a) A collinear ground state
(b) The pyrochlore lattice along the [111] direc-

tion

Figure 2.4: A collinear ground state configuration for the pyrochlore HAF is depicted in (a).
The spins sitting on the vertices of the blue tetrahedron belong to the same unit cell whereas the
yellow, red and green spins belong to neighbouring unit cells respectively. (b) The pyrochlore
lattice is an alternating stacking of kagome (purple) and triangular (blue) layers along the [111],
body diagonal, direction. The primitive vectors a1, a2 and a3 span the lattice for the unit cells
and the internal vectors b1 B (a3 −a2)/2, b2 B a3/2 and b3 B (a3 −a1)/2 describe the positions
of spins on the kagome layers.

The spin Hamiltonian reads (𝐽 > 0)

𝐻 = 𝐽
∑︁
x∈P

[
𝑆x𝑆x+b1 + 𝑆x𝑆x+b2 + 𝑆x𝑆x+b3 + 𝑆x+b1𝑆x+b2 + 𝑆x+b2𝑆x+b3 + 𝑆x+b3𝑆x+b1

+ 𝑆x𝑆x−b1 + 𝑆x𝑆x−b2 + 𝑆x𝑆x−b3 + 𝑆x−b1𝑆x−b2 + 𝑆x−b2𝑆x−b3 + 𝑆x−b3𝑆x−b1

]
=
𝐽

2
∑︁
x∈P

[
𝐿2

1,x + 𝐿2
2,x

]
+ const.

(2.12)

with 𝐿1,x B 𝑆x + 𝑆x+b1 + 𝑆x+b2 + 𝑆x+b3 and 𝐿2,x B 𝑆x + 𝑆x−b1 + 𝑆x−b2 + 𝑆x−b3 for all x ∈ P. Ground
states of the pyrochlore HAF are obtained for 𝐿2,x = 0 = 𝐿1,x for all x ∈ P. The simplex lattice
(describing the positions of the constraints) is a diamond lattice [33]. Considering the collinear
ground state [26, 20, pp. 5, 8] of the pyrochlore HAF and, without loss of generality, the direction
of the collinear order along the positive 𝑥-axis, we obtain the rigidity matrix

𝑟 (k) =
©«
1 −1 1 −1 0 0 0 0
1 −𝑒i(𝑘2−𝑘3 ) 𝑒−i𝑘3 −𝑒i(𝑘1−𝑘3 ) 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 𝑒i(𝑘2−𝑘3 ) 𝑒−i𝑘3 𝑒i(𝑘1−𝑘3 )

ª®®®®®¬
. (2.13)

It is of symmetry class AIII/BDI (see Table 2.1). Here, the rigidity matrix 𝑟 consists of two
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independent blocks representing 𝜈 = 2 systems, see Table 3.1(a).

3 The Topological Classification

The examples in chapter 2.2 motivate us to define the space of rigidity matrices 𝑅𝑁
𝑑𝑀

as the sub-
space of the space of continuous base point preserving Z2-equivariant maps Map∗

(
𝑇𝑑 ,C𝑀×𝑁 )Z2

with the following additional properties. The elements of 𝑅𝑁
𝑑𝑀

have maximum rank every-
where and are such that if all positive singular values are replaced by 1, another element of
Map∗

(
𝑇𝑑 ,C𝑀×𝑁 )Z2 is generated. These properties are reflected by the examples in chapter 2.2.

Rank-constancy and maximality implement the assumption that the ground state constraints
are linearly independent. A topological classification for the general case of fluctuating ranks
can be reduced to the constant-and-maximum-rank case3. The base point condition on rigid-
ity matrices is merely a matter of choosing bases in C𝑁 and C𝑀 , respectively, at a specific
momentum.

It is clear that Map∗
(
𝑇𝑑 ,𝑉𝑛 (C𝑚)

)Z2 is homeomorphic to a strong deformation retract of 𝑅𝑁
𝑑𝑀

,
where

𝑉𝑛 (C𝑚) =
{
𝐴 ∈ C𝑚×𝑛 | 𝐴†𝐴 = 𝐼𝑛

}
� U(𝑚)/U(𝑚−𝑛) (3.1)

denotes the complex Stiefel manifold, 𝑚Bmax(𝑀,𝑁) and 𝑛Bmin(𝑀,𝑁). A strong deformation
retraction is given by linearly interpolating between the positive singular values of the elements
of 𝑅𝑁

𝑑𝑀
and 1, that is, by flattening the singular values in the language of [31]. The Z2-action

on 𝑉𝑛 (C𝑚) is precisely the one described in Table 2.1. Now, modding out Z2-homotopy, one is
left with the set of homotopy classes

[
𝑇𝑑 ,𝑉𝑛 (C𝑚)

]Z2
∗ of base point preserving and Z2-equivariant

maps 𝑇𝑑 → 𝑉𝑛 (C𝑚) containing strong and weak topological invariants. These sets of homotopy
classes classify zero modes in frustrated systems in the presence or absence of canonical time-
reversal symmetry.

In the following, the cube 𝐼𝑑 = [−𝜋, 𝜋]𝑑 is viewed as a Z2-space through the nontrivial action
𝑔k B −k and the iterated loop space Ω𝑑𝑋 of the based Z2-space (𝑋,𝑥0) denotes the space of
all maps 𝐼𝑑 → 𝑋 which send 𝜕𝐼𝑑 to the base point 𝑥0 ∈ 𝑋Z2 . The action of Z2 on Ω𝑑𝑋 is
considered to be (𝑔, 𝑓 ) ↦→ (k ↦→ 𝑔 𝑓 (−k)). Replacing the domain 𝑇𝑑 (periodic case) with the
𝑑-sphere 𝑆𝑑 � 𝐼𝑑/𝜕𝐼𝑑 (free case), we obtain a topological classification by strong topological
invariants at the expense of losing weak topological invariants [33, 17, 34, 37]. Strong and weak
topological invariants coincide in dimension 𝑑 = 1 because 𝑇1 = 𝑆1. In the following, we are
interested in calculating[

𝑆𝑑 ,𝑉𝑛 (C𝑚)
]Z2
∗ �

[(
𝐼𝑑 , 𝜕𝐼𝑑

)
, (𝑉𝑛 (C𝑚), 𝐸)

]
Z2
� 𝜋0

((
Ω𝑑𝑉𝑛 (C𝑚)

)Z2
)

(3.2)

with 𝐸 B (𝑒1 · · · 𝑒𝑛) denoting the canonical 𝑛-frame.
To unlock a deduction of our sought-after homotopical classification of zero modes in frus-

trated systems, we formulate one of the main results of this paper. Namely, Lemma 3.1 estab-
lishes an isomorphism between the homotopy groups of Z2-equivariant iterated loop spaces and

3Indeed, after performing the flattening technique of singular values for the general case, the target spaces of
rigidity matrices become unions of Stiefel manifolds and upon choosing a base point, one selects a single Stiefel
manifold.
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relative homotopy groups of pairs of iterated loop spaces, involving a dimensional shift. This
Lemma 3.1 is of vital importance because strong topological invariants are contained in sets of
path components (constituting the “zeroth homotopy groups”) of Z2-equivariant iterated loop
spaces of complex Stiefel manifolds. More on Z2-equivariant loop spaces can be found in [43].

The following Lemma 3.1 generalises a result that is crucial for the topological classification
of free-fermion ground states of gapped systems with symmetries [18, Lemma 5.13] from the loop
space of certain symmetric spaces to the iteration of the loop space construction for arbitrary
Z2-spaces. Another special case was previously intuitively stated in [41] for the study of three-
dimensional insulators with inversion symmetry and is now generalised to any dimension of the
underlying lattice. The chosen base points for the left and right-hand side of equation (3.3)
are the constant maps to 𝑥0

4. From a purely mathematical point of view, the following lemma
should be compared to the simple and familiar statement 𝜋𝐷

(
Ω𝑑+1𝑋

)
� 𝜋𝐷+𝑑+1(𝑋) [4, p. 123].

Lemma 3.1. Let 𝑋 be a Z2-space, 𝑥0 ∈ 𝑋 a Z2-fixed point and 𝐷,𝑑 ≥ 0. Then, there is an
isomorphism

𝜋𝐷

((
Ω𝑑+1𝑋

)Z2
)
� 𝜋𝐷+1

(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
)
. (3.3)

Proof. For 𝐷 ≥ 1, we set 𝑇 B 𝐼𝐷 × [0, 𝜋] and 𝐽𝑇 B 𝜕𝐼𝐷 × [0, 𝜋] ∪ 𝐼𝐷 × {𝜋}. We set 𝑇 = [0, 𝜋] and
𝐽𝑇 = {𝜋} in the case 𝐷 = 0. We use the homeomorphism of triples (𝑇, 𝜕𝑇, 𝐽𝑇 ) →

(
𝐼𝐷+1, 𝜕𝐼𝐷+1, 𝐽𝐷

)
,

(k, 𝑝) ↦→ (k,2𝑝− 𝜋) to induce the isomorphism

𝐾𝑑𝐷+1 B

[
(𝑇, 𝜕𝑇, 𝐽𝑇 ) ,

(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
, 𝑐𝑥0

)]
� 𝜋𝐷+1

(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
)
. (3.4)

The base point 𝑐𝑥0 denotes the constant map to 𝑥0. Now let [ 𝑓 ] ∈ 𝜋𝐷
( (
Ω𝑑+1𝑋

)Z2
)
. One easily

defines the map5

𝑓 : (𝑇, 𝜕𝑇, 𝐽𝑇 ) →
(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
, 𝑐𝑥0

)
by 𝑓 (k, 𝑝) B 𝑓 (k) (𝑝,−) (3.5)

which represents the homotopy class
[
𝑓
]
∈ 𝐾𝑑

𝐷+1. This induces the map

𝜂 : 𝜋𝐷
((
Ω𝑑+1𝑋

)Z2
)
→ 𝐾𝑑𝐷+1 defined by 𝜂[ 𝑓 ] B

[
𝑓
]
. (3.6)

The map 𝜂 is well defined because for [ 𝑓 ] = [𝑔] ∈ 𝜋𝐷
( (
Ω𝑑+1𝑋

)Z2
)
, there is a homotopy 𝐻 :

(
𝐼𝐷 ×

[0,1], 𝜕𝐼𝐷 × [0,1]
)
→

( (
Ω𝑑+1𝑋

)Z2
, 𝑐𝑥0

)
from 𝐻0 = 𝑓 to 𝐻1 = 𝑔. The homotopy 𝐻 gives rise to

the homotopy 𝐻 : (𝑇 × [0,1], 𝜕𝑇 × [0,1], 𝐽𝑇 × [0,1]) →
(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
, 𝑐𝑥0

)
defined by 𝐻𝑡 (k, 𝑝) B

𝐻𝑡 (k) (𝑝,−) from 𝐻0 = 𝑓 to 𝐻1 = 𝑔 implying 𝜂[ 𝑓 ] = 𝜂[𝑔].
The inverse map

𝜂−1 : 𝐾𝑑𝐷+1 → 𝜋𝐷

((
Ω𝑑+1𝑋

)Z2
)

reads 𝜂−1 [ℎ] = [ℎ′] (3.7)

4We usually suppress the base point in the notation if the context makes the choice of base point clear.
5Standard verifications show that 𝑓 is indeed such a map of triples.
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in which ℎ′ :
(
𝐼𝐷 , 𝜕𝐼𝐷

)
→

( (
Ω𝑑+1𝑋

)Z2
, 𝑐𝑥0

)
is the map

ℎ′(k) (𝑝,q) B

𝑔ℎ(k,−𝑝) (−q) for 𝑝 ∈ [−𝜋,0],

ℎ(k, 𝑝) (q) for 𝑝 ∈ [0, 𝜋] .
(3.8)

Furthermore, 𝜂−1 is well defined because for [ℎ] = [𝑘] ∈ 𝐾𝑑
𝐷+1 there exists a homotopy 𝐹 : (𝑇 ×

[0,1], 𝜕𝑇×[0,1], 𝐽𝑇×[0,1]) →
(
Ω𝑑𝑋,

(
Ω𝑑𝑋

)Z2
, 𝑐𝑥0

)
from 𝐹0 = ℎ to 𝐹1 = 𝑘. The map 𝐺 :

(
𝐼𝐷 , 𝜕𝐼𝑑

)
→( (

Ω𝑑+1𝑋
)Z2

, 𝑐𝑥0

)
defined by 𝐺𝑡 B (𝐹𝑡 )′ is a homotopy from 𝐺0 = ℎ

′ to 𝐺1 = 𝑘
′ and therefore, in-

deed, 𝜂−1 [ℎ] = 𝜂−1 [𝑘]. Standard verifications show that 𝜂−1𝜂 = Id
𝜋𝐷

(
(Ω𝑑+1𝑋)Z2

) and 𝜂𝜂−1 = Id𝐾𝑑
𝐷+1

.

As for now, we have proven that 𝜂 is a bijection for all 𝐷 ≥ 0. Now consider the case 𝐷 ≥ 1 and
let [ 𝑓 ], [𝑔] ∈ 𝜋𝐷

( (
Ω𝑑+1𝑋

)Z2
)
. It is clear that �𝑓 +𝑔 = 𝑓 +𝑔6 which implies 𝜂 ( [ 𝑓 ] + [𝑔]) = 𝜂[ 𝑓 ] +𝜂[𝑔]

and shows that 𝜂 is a homomorphism. □

Applying Lemma 3.1 to the special case 𝑑 = 0, immediately provides

Corollary 3.2. Let 𝑋 be a Z2-space, 𝑥0 ∈ 𝑋 a Z2-fixed point and 𝐷 ≥ 0. There is an isomorphism

𝜋𝐷

(
(Ω𝑋)Z2

)
� 𝜋𝐷+1

(
𝑋, 𝑋Z2

)
(3.10)

□

Through the algorithm in equation (A.1), one can show inductively[(
𝐼𝑑 , 𝜕𝐼𝑑

)
,
(
𝑉𝑚−|𝜈 | (C𝑚), 𝐸

) ]
Z2

= 07 for all |𝜈 | ≥ ⌈𝑑/2⌉ (3.11)

in the presence of canonical time-reversal symmetry. In particular, for symmetry class AIII/BDI,
we find [(

𝐼𝑑 , 𝜕𝐼𝑑
)
,

(
𝑆1,1

)]
Z2
� Z for all 𝑑 ≥ 1. (3.12)

Furthermore, the following Table 3.1 summarises the sets of homotopy classes
[ (
𝐼𝑑 , 𝜕𝐼𝑑

)
,
(
𝑉𝑚−|𝜈 |

(C𝑚), 𝐸
) ]
Z2

containing strong topological invariants in the presence of canonical time-reversal
symmetry up to the Brillouin torus dimension 𝑑 = 3.

6The operation + on the left-hand side is the standard concatenation of maps

( 𝑓 +𝑔) (k) B
{
𝑓 (2𝑘1 + 𝜋, 𝑘2, . . . , 𝑘𝐷) for 𝑘1 ∈ [−𝜋,0],
𝑔(2𝑘1 − 𝜋, 𝑘2, . . . , 𝑘𝐷) for 𝑘1 ∈ [0, 𝜋],

(3.9)

which descends to the level of homotopy classes delivering a group structure (similarly for the right-hand side).
7𝜈 = 𝑁 −𝑀
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|𝜈 |
𝑑

1 2 3
𝑚 = 1 𝑚 ≥ 2

0 Z Z Z ★

1 0 0 ★

≥ 2 0 0 0

(a) Symmetry class AIII/BDI

|𝜈 |
𝑑

1 2 3

0 Z Z ★

≥ 2 0 0 0

(b) Symmetry class AIII/CII

Table 3.1: We display sets of homotopy classes
[ (
𝐼𝑑 , 𝜕𝐼𝑑

)
,
(
𝑉𝑚−|𝜈 | (C𝑚) , 𝐸

) ]
Z2

in the presence of
canonical time-reversal symmetry realised by (a) real structures or by (b) quaternionic struc-
tures. The elements containing a ★ mean yet-to-be-evaluated sets of homotopy classes and
indicate the emergence of an unstable regime for all |𝜈 | < ⌈𝑑/2⌉.

The topological classification in the presence of time-reversal symmetry for higher dimensions
𝑑 ≥ 4 of the underlying lattice becomes more complicated compared to the lower dimensional
cases. The reason is that for each dimension 𝑑 + 1 we require the results from the previous
dimension 𝑑 to make progress (see the algorithm in equation (A.1)).

In the absence of time-reversal symmetry, one classifies through the higher homotopy groups
of complex Stiefel manifolds 𝜋𝑑

(
𝑉𝑚−|𝜈 | (C𝑚)

)
. These homotopy groups are displayed in Table 3.2

up until dimension 𝑑 = 6 and |𝜈 | = 3 for which the first trivial row appears.

|𝜈 |
Dimension 𝑑

1 2 3 4 5 6
𝑚 ≥ 2 𝑚 = 2 𝑚 ≥ 3 𝑚 = 2 𝑚 ≥ 3 𝑚 = 2 𝑚 = 3 𝑚 ≥ 4

0 Z 0 Z Z2 0 Z2 Z Z12 Z6 0
1 0 0 Z Z2 0 Z2 Z Z12 Z6 0
2 0 0 0 0 Z Z2 Z2

≥ 3 0 0 0 0 0 0

Table 3.2: The topological classification for symmetry class AIII is realised by the homotopy
groups of complex Stiefel manifolds. The case 𝜋𝑑 (U(1)) = 𝜋𝑑

(
𝑆1) = 0 for all 𝑑 ≥ 2 is omitted in

this table from 𝑑 = 3. The entries of the table are taken from [4, p. 148, 12, 25, 13, p. 339].

For the HAF on the square lattice with anisotropic next-nearest neighbour exchange inter-
actions (see Figure 2.2) we investigated the cases 𝐽1 = 2𝐽𝑖 for both 𝑖 = 2,3 and 𝐽1 > 2𝐽𝑖 for both
𝑖 = 2,3. In the former, we obtained a rigidity matrix of symmetry class AIII/BDI exhibiting a
Maxwell counting index of 𝜈 = 0. In the latter, we derived a rigidity matrix composed of two
subsystems of symmetry class AIII/BDI exhibiting the Maxwell counting index 𝜈 = 4. The for-
mer therefore indicates the protection of zero modes by a Z topology and the latter indicates a
trivial topology associated with the Néel state in Figure 2.2 (see Table 3.1(a)). Since the rigidity
matrix for the pyrochlore HAF in equation (2.13) consists of two blocks representing systems of
symmetry class AIII/BDI with 𝜈 = 2, it indicates a trivial topology by Table 3.1(a).

Generally, in the limiting case of 𝐽2 = 𝐽3, equation (2.8) becomes the spin Hamiltonian for the
𝐽1− 𝐽2 HAF on a square lattice. In the Néel state, at the critical point (being a highly frustrated
point and marking the transition point between the Néel ordered state and the frustrated state)

14



and in the frustrated state (whose degree of frustration is less than at the critical point) one
finds |𝜈 | = 2, 𝜈 = 0 and |𝜈 | = 1, respectively [31]. Hence, by Table 3.1(a), the zero modes are
protected by a Z topology at the critical point and the topology is trivial for the Néel state and
the frustrated regime.

This topological classification is quite different from the topological classification of RL [31].
In addition to time-reversal symmetry, RL consider the presence of a 𝐶2 rotation symmetry.
Therefore, they argue that a Z2 invariant would protect the zero modes at the critical point, the
unfrustrated Néel state would not be topology protected and that a Z invariant would protect
the frustrated state.

To be more precise, the announced symmetry considerations of RL [31] are time-reversal
symmetries. However, their examples hint towards the existence of an additional 𝐶2 rotation
symmetry which has a similar effect on momenta in the Brillouin torus 𝑇𝑑 as canonical time-
reversal symmetry does, namely [k] ↦→ [−k]. These compositions of symmetries lead to the
Z2-invariance conditions 𝑟 (−k) = 𝑟 (k) = 𝑟 (k) (in the presence of time-reversal symmetry by real
structures with an additional 𝐶2-symmetry) and 𝑟 (−k) =

(
𝐼𝑀/2 ⊗𝜎2

)
𝑟 (k)

(
𝐼𝑁/2 ⊗𝜎2

)
= 𝑟 (k) (in the

presence of time-reversal symmetry by quaternionic structures with an additional 𝐶2-symmetry).
That is, the fixed point condition 𝑔𝑟 (k) = 𝑟 (k) is satisfied for all momenta [k] ∈ 𝑇𝑑. This is the
reason why RL classify the topology of zero modes in frustrated systems with

𝜋0
(
Ω𝑑𝑉𝑛 (C𝑚)Z2

)
�


𝜋𝑑 (𝑉𝑛 (C𝑚)) no symmetries,

𝜋𝑑 (𝑉𝑛 (R𝑚)) for 𝑇2
𝑖
= +Id and 𝐶2-symmetry,

𝜋𝑑 (𝑉𝑛/2(H𝑚/2)) for 𝑇2
𝑖
= −Id and 𝐶2-symmetry,

(3.13)

i.e., the homotopy groups of complex, real and quaternionic Stiefel manifolds. We classify the
topology with sets of path components of Z2-equivariant iterated loop spaces of complex Stiefel
manifolds

𝜋0

((
Ω𝑑𝑉𝑛 (C𝑚)

)Z2
)
� 𝜋1

(
Ω𝑑−1𝑉𝑛 (C𝑚) ,

(
Ω𝑑−1𝑉𝑛 (C𝑚)

)Z2
)
. (3.14)

Considering the Z2-equivariance conditions portrayed in Table 2.1, the fixed point condition is
in particular satisfied for all 2𝑑 time-reversal invariant momenta in

(
𝑇𝑑

)Z2 . Moreover, as the
rigidity matrices computed by RL satisfy 𝑟 (−k) = 𝑔𝑟 (k) = 𝑟 (k) for all [k] ∈ 𝑇𝑑, an additional
avenue would be to classify zero modes in frustrated systems by

𝜋0

((
Ω𝑑𝑉𝑛 (C𝑚)Z2

)Z2
)
� 𝜋1

(
Ω𝑑−1𝑉𝑛 (C𝑚)Z2 ,

(
Ω𝑑−1𝑉𝑛 (C𝑚)Z2

)Z2
)

(3.15)

with the algorithm outlined in equation (A.1). This additionally shows that the homotopy
classes in the examples of RL [31] include into our homotopy classes due to the inclusion of the
real into the complex Stiefel manifold.

4 Conclusion

In this paper, we proved a generalisation of a result in Z2-equivariant homotopy theory and
applied it to frustrated spin systems. The presented applications lead to a homotopical classi-
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fication of frustrated systems in the presence or absence of canonical time-reversal symmetry.
This homotopical classification of rigidity matrices explains the robust nature of frustration in
the form of an accidental degeneracy of ground states in many frustrated magnets by relating it
to topological invariants [31]. The zero modes in frustrated magnets are described in the frame-
work of rigidity operators 𝑅 whose kernels contain the zero modes. The linearized Hamiltonian
is given as a bilinear form in terms of 𝑅. Moreover, this homotopical classification can also be
applied to frustrated 𝑛-vector models.

We further demonstrated the emergence of an unstable regime concerning the computation of
sets of homotopy classes starting from lattice dimension 𝑑 = 3 for |𝜈 | < ⌈𝑑/2⌉, differentiated from
the trivial regime |𝜈 | ≥ ⌈𝑑/2⌉. To complete the topological classification in dimension 𝑑 = 3 and
go beyond, one should understand more deeply the topological structure of each path component
of

(
Ω𝑑𝑉𝑛 (C𝑚)

)Z2 .
The topological classification is exemplified through the pyrochlore HAF, the HAF on a

square lattice with anisotropic next-nearest neighbour interactions and the 𝐽1 − 𝐽2 HAF on a
square lattice. The results are compared to the ones of RL [31] and it is observed that the
homotopy classes in their examples include into our homotopy classes due to the inclusion of
the real into the complex Stiefel manifold.

As a next task, one could ask oneself how to calculate[(
𝑇𝑑 , [0]

)
,
(
𝑉𝑚−|𝜈 | (C𝑚) , 𝐸

) ]
Z2

(4.1)

for all 𝑑 ≥ 1 to gain access to strong and weak topological invariants. Leaving out the base point
preservation condition, one would generalise to the sets of free Z2-homotopy classes[5, p. 96, 17,
13, p. 421] [

𝑇𝑑 ,𝑉𝑚−|𝜈 | (C𝑚)
]
Z2
�

[(
𝑇𝑑 , [0]

)
,
(
𝑉𝑚−|𝜈 | (C𝑚) , 𝐸

) ]
Z2
/𝜋1

(
𝑉𝑚−|𝜈 | (C𝑚)Z2

)
(4.2)

and [
𝑆𝑑 ,𝑉𝑚−|𝜈 | (C𝑚)

]
Z2
�

[ (
𝐼𝑑 , 𝜕𝐼𝑑

)
,
(
𝑉𝑚−|𝜈 | (C𝑚) , 𝐸

) ]
Z2
/𝜋1

(
𝑉𝑚−|𝜈 | (C𝑚)Z2

)
(4.3)

for a homotopical classification of time-reversal symmetric frustrated magnets. One could
ask further whether there exists a product decomposition of the set

[
𝑇𝑑 ,𝑉𝑚−|𝜈 | (C𝑚)

]
Z2

into
factors of the already investigated sets of homotopy classes

[ (
𝐼𝑑 , 𝜕𝐼𝑑

)
,
(
𝑉𝑚−|𝜈 | (C𝑚)

) ]
Z2

. Or,
examine whether there is at least an embedding of the form

[
𝐼𝑑/𝜕𝐼𝑑 ,𝑉𝑚−|𝜈 | (C𝑚)

]
Z2
↩→

[
𝑇𝑑 ,

𝑉𝑚−|𝜈 | (C𝑚)
]
Z2

. Both of these avenues are true in the context of topological insulators and
superconductors (when replacing complex Stiefels manifold with the symmetric spaces in the
Bott-Kitaev periodic table) [17].

As a technical generalisation, one shall consider a disjoint union of the form 0⊔⊔𝑞

𝑝=1𝑉𝑛−𝑞+𝑝 (C𝑚)
as target spaces for rigidity matrices. This incorporates rigidity matrices into the classifi-
cation whose singular values exhibit zeros at certain momenta in the Brillouin torus. Here,
𝑞 − 1 ∈ {0, . . . , 𝑛− 1} denotes the number of singular values that each have a zero at a certain
momentum.

Moreover, one shall investigate more symmetries, e.g. various crystalline symmetries, possi-
bly retrieving Z2-equivariance conditions to realise a homotopical classification through Lemma 3.1.
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In three dimensions, there are already 230 crystallographic space group types. In chapter 2.2
we were inspired by the altermagnetic Hubbard model [3] and demonstrated the correspond-
ing rigidity matrix in equation (2.11). One could incorporate the Z2-equivariance condition
𝑟 (−k) = [((−𝜎1) ⊕ (𝜎1 ⊗𝜎1)) ⊕ (𝜎1 ⊕ (−𝜎1 ⊗𝜎1))]𝑟 (k) [𝜎1 ⊕𝜎1] into the homotopical classification
by calculating

𝜋0

((
Ω2𝑉2

(
C6)Z2

)Z2
)
, (4.4)

where the Z2-action on 𝑉2
(
C6) is a combined Z2-action and either realised by 𝑔𝐴 B [(−𝜎1) ⊕

(𝜎1 ⊗ 𝜎1)]𝐴𝜎1 or by 𝑔𝐴 B [𝜎1 ⊕ (−𝜎1 ⊗ 𝜎1)]𝐴𝜎1. The Z2-action on Ω2𝑉2
(
C6)Z2 is realised by

(𝑔 𝑓 ) (k) = 𝑓 (−k).
Finally, as the mean-field Hamiltonian of the altermagnetic Hubbard model [3] is momentum-

inversion symmetric, one can employ Lemma 3.1 to obtain a homotopical classification of such
Hamiltonians through the algorithm in equation (A.1).

A Main idea to derive Tables 3.1(a) and 3.1(b)

The main idea in computing the sets of Z2-homotopy classes portrayed in Tables 3.1(a) and 3.1(b)
is algorithmically portrayed in equation (A.1). The morphisms 𝑖∗ and 𝑗∗ are the induced in-
clusions 𝑖 : (Ω𝑋)Z2 ↩→ Ω𝑋 and 𝑗 :

(
Ω𝑋, 𝑐𝑥0

)
↩→

(
Ω𝑋, (Ω𝑋)Z2

)
, respectively, and the boundary

operator 𝜕 is defined by evaluating representatives of homotopy classes at −𝜋.[ (
𝐼𝑑 , 𝜕𝐼𝑑

)
, (𝑋,𝑥0)

]
Z2

𝜋1
( (
Ω𝑑−1𝑋

)Z2
)

𝜋1
(
Ω𝑑−1𝑋

)
𝜋1

(
Ω𝑑−1𝑋,

(
Ω𝑑−1𝑋

)Z2
)

𝜋0
( (
Ω𝑑−1𝑋

)Z2
)

𝜋0
(
Ω𝑑−1𝑋

)
𝜋𝑑 (𝑋)

... 𝜋𝑑−1(𝑋)

𝜋1
( (
Ω2𝑋

)Z2
)

𝜋1
(
Ω2𝑋

)
𝜋1

(
Ω2𝑋,

(
Ω2𝑋

)Z2
)

𝜋0
( (
Ω2𝑋

)Z2
)

𝜋0
(
Ω2𝑋

)
𝜋2

(
Ω𝑋, (Ω𝑋)Z2

)
𝜋3(𝑋) 𝜋2(𝑋)

𝜋1
(
(Ω𝑋)Z2

)
𝜋1 (Ω𝑋) 𝜋1

(
Ω𝑋, (Ω𝑋)Z2

)
𝜋0

(
(Ω𝑋)Z2

)
𝜋0 (Ω𝑋)

𝜋2
(
𝑋, 𝑋Z2

)
𝜋2(𝑋) 𝜋1(𝑋)

𝜋1
(
𝑋Z2

)
𝜋1(𝑋) 𝜋1

(
𝑋, 𝑋Z2

)
𝜋0

(
𝑋Z2

)
𝜋0(𝑋)

== :

𝑖∗ 𝑗∗ 𝜕 𝑖∗

== :

...

...

== :

𝑖∗ 𝑗∗ 𝜕 𝑖∗

== : == : == :

𝑖∗ 𝑗∗

==:

𝜕 𝑖∗

== : == : == :

𝑖∗ 𝑗∗

==:

𝜕 𝑖∗

(A.1)

We stack the ends of the well-known homotopy sequences of based pairs [13, p. 344] of the
form

(
Ω𝑑−1𝑋,

(
Ω𝑑−1𝑋

)Z2
, 𝑐𝑥0

)
for each 𝑑 ≥ 1 and connect them via the isomorphisms constructed

in Lemma 3.1. We want to calculate the first relative homotopy set in the middle of each exact
sequence in equation (A.1). However, the fourth set of homotopy classes in every sequence is
another set of path components of a Z2-equivariant iterated loop space in one lattice dimension
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less that we are interested in calculating. By Lemma 3.1, this gives rise to a similar exact
sequence in one lattice dimension less and the argument iterates. We proceed the iteration until
we reach the bottom, i.e., an exact sequence in which the number of loop coordinates has been
reduced to 0. In this very sequence we determine every set or group of homotopy classes, in
particular the set 𝜋0

(
(Ω𝑋)Z2

)
� 𝜋1

(
𝑋, 𝑋Z2

)
, and move upwards from there by considering the

next higher lattice dimension, 𝑑 = 2, and move on.
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