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Quantum gravity has been baffling the theoretical physicist for decades now: both for its math-
ematical obscurity and phenomenological testing. Nevertheless, the new era of precision cosmology
presents a promising avenue to test the effects of quantum gravity.

In this study, we consider a bottom-up approach. Without resorting to any candidate quantum
gravity, we invoke a generalized uncertainty principle (GUP) directly into the cosmological Hamil-
tonian for a universe sourced by a phantom scalar field with potential to study the early epoch of
the evolution. This is followed by a systematic analysis of the dynamics, both qualitatively and
quantitatively. Our qualitative analysis shows that the introduction of GUP significantly alters the
existence of fixed points for the potential considered in this contribution. In addition, we confirm
the existence of an inflationary epoch and analyze the behavior of relevant cosmological parameters
with respect to the strength of GUP distortion.
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I. INTRODUCTION

The advent of Einstein’s general theory of relativity,
with its field equation, gave birth to many fields of re-
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search. Since gravity is the only dominant force at large
distances, general relativity provides a viable mathemat-
ical framework to construct models of cosmology. Over
a period of 100 years, General Relativity (GR) has seen
profound successes. A few examples include the explana-
tion of the perihelion precession of Mercury[1], the deflec-
tion of light rays when passing close by massive bodies
[2], and the gravitational redshift of light [3].
In particular, to talk about cosmology, in the year

1929 the discovery of the Hubble’s expansion law laid the
foundation of modern cosmology. This observational evi-
dence of uniform and isotropic expansion of the universe
as incorporated by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric globally gives rise to the stan-
dard model of cosmology (SM) when applied in GR.
The FLRW metric is a maximally symmetric geometry of
spacetime that supports the Copernican principle. One
of the remarkable successes of the standard model of cos-
mology is the prediction of cosmic microwave background
radiation (CMB).
Although successful, the SM was confronted with some

serious drawbacks. To give an instance: the causal expla-
nation for two otherwise spatially disconnected regions of
space was lacking within the scope of the SM. Technically,
these drawbacks of SM are summarized under the name
of: horizon, flatness and entropy problem[4–8].
The inflationary paradigm proposed by A. Guth (1981)

rescues the situation by providing a mechanism to solve
the puzzles of the SM with the help of a nearly exponen-
tial expansion of the universe early on. The scalar field
serves as a good candidate for an inflationary scenario.
The inflationary epoch not only rescues the standard

model of cosmology but also predicts the formation of the
large-scale structure of the universe. Although the uni-
verse looks almost homogeneous and isotropic at large
scale[9], the tiny fluctuation of the order of 10−5 is ob-
served in CMB radiation. This tininess of the scale allows
us to employ perturbative theory, wherein the zeroth or-
der, background, and spacetime is still FLRW and any in-
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homogeneity is given by the leading order correction. The
physical reason for the perturbation of spacetime is the
quantum fluctuation of matter content, which is inflaton
in this situation. Of course, any perturbation of the mat-
ter field would induce a perturbation in the metric field,
resulting in the clumping of energy and matter density,
leading to the formation of the structure we see today. In
the process, inflation expands the tiny causally connected
quantum fluctuation into the super-Hubble mode, which
re-enters the Hubble radius at a later epoch, giving us
a causal mechanism for the large-scale structure we see
today[10–12].

The background metric is still treated classically while
quantizing the first-order correction in the linearized the-
ory of gravity. However, in a true theory of quantum
gravity, one would expect the quantum nature of the
background metric to play a significant role, at the scale
approaching to Planck region[13, 14].

This incomplete picture of the theory of physical cos-
mology is due to the continued lack of a consistent can-
didate for quantum gravity. In fact, this is one of the
burning issues in modern theoretical physics. This is
obscure because the current understanding of our na-
ture is based on two mathematically incompatible frame-
works; viz, general relativity (GR) and quantum mechan-
ics (QM) discussed in [15–18].

In the literature, there exist different candidates based
on different philosophical approaches to quantize gravity,
each with its own advantages and issues. The two major
streams of quantum gravity are–string theory and loop
quantum gravity. While string theory is based on the uni-
fication of gravity with three other fundamental forces,
loop quantum gravity (LQG) is the quantization of the
Riemannian geometry of general relativity on its own
right[19–22]. The LQG is background independent and
non-perturbative. The technique of LQG, when applied
to cosmological spacetime, gives rise to various models
of quantum corrected cosmology, also called loop quan-
tum cosmology (LQC)[23]. One of the striking features
of LQC is the supplant of initial singularity by quan-
tum bounce owing to the quantization of geometry. In
lieu of its endeavor to empirically grasp the semi-classical
physics near the Planck region, LQC faces serious crit-
icism as it still remains an open problem to recover it
directly from the full theory (LQG), in addition to its
interpretational issue from a realist perspective.

Nevertheless, in view of the continued absence of a
consistent theory of quantum gravity, radically different
paths have been adopted. The generalized uncertainty
principle is one such attempt that can generate quantum
corrected dynamics when applied to cosmology to study
the early universe. In this approach, we consider each
classical point of space-time as a probability density as-
sociated with basis vectors with additional fluctuations
in the geometry, giving rise to the extended generalized
uncertainty principle(EGUP)[24, 25].

The departure point from classical mechanics to stan-
dard quantum mechanics is the Heisenberg’s uncertainty

principle (HUP), which states the incompatibility of po-
sition and momentum operators, reflecting the inherent
imprecision of the measurement of one when the other is
known precisely.

However, at scales approaching the Planck length, the-
ories of quantum gravity suggest that the geometry of
space-time cannot be measured below the Planck scale
or below the minimal length. The observation of mini-
mally measured length scale can be studied in different
theories like string theory (minimal length scale is the
string length itself)[26–31], minimally measured length
in loop quantum gravity[32, 33], and in black holes[34].

This immediately implies that HUP is not applicable
at the Planck scale as it puts no limit to precisely measure
length provided momentum is undetermined. The incon-
sistency in Heisenberg’s uncertainty principle indicates
the need to modify the existing canonical Heisenberg un-
certainty principle(HUP) by incorporating gravitational
correction.

The consideration of quantum fluctuation in the
space-time geometry leads to the Generalized uncer-
tainty principle(GUP) which describes the limitation
of measurement of position and momentum. The
uncertainties of position and momentum depend on the
fluctuation of spacetime. The greater the uncertainty
in the geometry of space, the greater the uncertainty
in the position and momentum of the particles[35, 36].
The notion that gravity might influence the uncertainty
principle was first proposed by Mead [37]. Later,
candidate theories of quantum gravity such as String
Theory [38], Doubly Special Relativity (DSR) Theory,
and Black Hole Physics[39] introduced modifications to
the commutation relations between position and momen-
tum, which are known as the Generalized Uncertainty
Principle (GUP)[40, 41].

Keeping in view the current status of quantum cosmol-
ogy, the GUP-modified cosmological dynamics require
more attention than before to extract the low-energy do-
main of quantum gravity. In particular, in this article,
we focus on the inflationary era due to GUP-corrected
effective dynamics for phantom scalar fields.

Phantom inflation leads to a cosmological scenario of
the Big Rip, where the universe undergoes a catastrophic
expansion that leads to tearing apart all the bound struc-
tures, including planets, galaxies, stars, and even fun-
damental particles. However, investigating these conse-
quences helps in understanding the possible fate of our
universe. Lately, there has been significant attention to
phantom cosmology, discussed in [42–45]

In this paper, in Sec.IIA we review the formulation
of GUP-corrected Hamiltonian by taking the Einstein-
Hilbert action with a minimally coupled phantom scalar
field with a positive cosmological constant. We ob-
tain the GUP-corrected Friedmann equation, Raychaud-
huri equation and the klien-Gordon equation. Later,
this is extended to include the arbitrary potential in
Sec.II B. The techniques of dynamical system analy-
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sis have been employed to extract qualitative informa-
tion about the system in Sec.III. We limit ourselves to
quadratic and exponential potentials. In Sec.IV 1, we
study inflationary dynamics by calculating the Equation
of State (EoS) parameter and slow climb parameters with
plots for quadratic potential and exponential potential in
Sec.IV 2.

II. GUP-MODIFIED BACKGROUND
DYNAMICS

The standard model of cosmology is based on the
”Copernican Principle” which says universe is homoge-
neous and isotropic on a large scale. This is encoded in
the maximally symmetric FLRW (Friedmann-Lemaitre-
Robertson-Walker) metric:

ds2 = −N2(t)dt2 + a2(t)
[
dr2 + r2dΩ2

]
, (2.1)

Chronologically, GR was developed using the Lagrangian
setup. Therefore, the dynamics are obtained as the
Euler–Lagrange equation by varying the metric and the
matter field of the Einstein-Hilbert action:

SEH =
1

2κ

∫
d4x

√
−gR+ Lm, (2.2)

to give Gµν = Tµν . Where Gµν is the Einstein Tensor
and Tµν is the energy momentum tensor. κ ≡ 1

8πG is set
equal to one for the rest of the paper owing to natural
units.

GR says that the dynamics of the geometry of the uni-
verse are dictated by the matter content of the universe,
which in turn tells matter how to move. This implies that
the dominant matter content of the universe determines
the rate of expansion of the universe for the given epoch
in question. An alternative school of thought proposes
to modify the geometric sector of the Einstein-Hilbert
action Eq.(2.2) giving rise to modified theories of grav-
ity to produce the desired rate of expansion in a given
epoch. The modified theories of gravity have been ex-
tensively employed to address both early- and late-time
scenarios.[46–49].

In this paper, we focus on the former approach-modify
the matter content to address the early epoch of the uni-
verse. To this effect, we adopt a phantom scalar field.
This has been extensively studied in the context of the
late-time era of evolution. The fact that the phantom
field produces a phase of accelerated expansion of the
universe makes it interesting to investigate its implica-
tion in inflationary dynamics.

One of our prime focus areas is to explore the tail-end
dynamics of the universe where quantum gravity effects
could still be important, though not dominant. This,
in the domain of loop quantum cosmology, has been re-
ported as transition phase from quantum to the classical
universe in pre-inflationary dynamics[50, 51].

Having said that, this paper takes a radically different
approach by directly invoking a generalized uncertainty

principle into the Hamiltonian cosmological dynamics.
This is an effective way of modeling the quantum cor-
rected background evolution of the universe.
In this section and in what follows, we review the con-

struction of the GUP-deformed background equation of
motion for a phantom scalar field.
Let us begin with the Lagrangian for the phantom field

with an arbitrary potential V (ϕ) [52],

L = −3aȧ2 − a3

(
ϕ̇2

2
+ V (ϕ)

)
. (2.3)

The Hamiltonian is constructed from the Lagrangian
with the help of the Legendre transformation H ≡ ȧPa+
ϕ̇Pϕ − L, to give

H = − P 2
a

12a
−

P 2
ϕ

2a3
+ a3V (ϕ). (2.4)

Eq.(2.4) is the classical Hamiltonian that governs the
background dynamics of a universe dominated by a phan-
tom scalar field with the following symplectic structure.

{a, Pa} = 1, {ϕ, Pϕ} = 1, (2.5)

where Pa ≡ δL
δȧ and Pϕ = L

δϕ̇
are the conjugate momen-

tum to a and ϕ respectively. Thus, the complete phase
space consists of (a, Pa, ϕ, Pϕ). While the symplectic al-
gebra 2.5 represents the kinematical structure of a theory,
the dynamical evolution is given by the Poisson flow of
the phase space variables w.r.t. the Hamiltonian H.

ȧ = {a,H}, Ṗa = {Pa,H},
ϕ̇ = {ϕ,H}, Ṗϕ = {Pϕ,H}. (2.6)

Using the above Eq.(2.6) the the Klien-Gordon and Ray-
chaudhuri equations for the phantom scalar field are ob-
tained as follows:

ϕ̈+ 3ϕ̇
ȧ

a
− dV (ϕ)

dϕ
= 0, (2.7)

2
ä

a2
+

(
ȧ

a

)2

=
ϕ̇2

2
+ V (ϕ). (2.8)

The treatment thus far has been purely classical. How-
ever, reformulating the dynamics in terms of Poisson al-
gebra is the point of departure from classical to quantum
mechanics. Next, we will see how to incorporate quan-
tum correction arising from GUP into the dynamics.

A. Phantom scalar field with cosmological
constant

1. Classical Dynamics

In this section, we consider the Einstein–Hilbert ac-
tion with a minimally coupled phantom scalar field and
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a positive cosmological constant.

SEH =

∫ √
−g

[
1

2κ
(R− 2Λ) +

1

2
∂µϕ∂νϕ

]
d4x, (2.9)

On the backdrop of a maximally symmetric spacetime
ds2 = −N2(t)dt2 + a2(t)[dr2 + r2dΩ2], where N(t) is the
lapse function. Given the FLRW background, our action
takes the following form:

S = V0

∫
dt

[
−3aȧ2

N
− a3

(
ϕ̇2

2N
+NΛ

)]
. (2.10)

where V0 is the fictitious volume introduced to facili-
tate our calculation in an otherwise non-compact FLRW
spacetime. However, because it does not affect the dy-
namics, it can be set equal to 1 without loss of generality.
Furthermore, for the rest of the paper we choose the nat-
ural unit κ = 1.
Thus, the expression of the Lagrangian from Eq.(2.10)

is given by

L = −3aȧ2

N
− a3

(
ϕ̇2

2N
+NΛ

)
. (2.11)

It is obvious that the Lagrangian, Eq.(2.11), is devoid of

Ṅ(t). and hence there is no dynamics in the lapse func-
tion N(t), PN ≡ ∂L

∂Ṅ
= 0 being a constant of motion.

Therefore, the dynamics of the system are completely
contained in the equation of motion for (a, Pa, ϕ, Pϕ) gov-
erned by the Hamiltonian:

H = N

[
P 2
a

12a
+

P 2
ϕ

2a3
− a3Λ

]
, (2.12)

which is obtained from Eq.(2.11) through the Legendre
transformation.
The Equation of motion can be obtained using Eq.(2.6)
and by substituting the form of Pa and Pϕ so obtained
from the Lagrangian Eq.(2.11). The Raychaudhuri equa-
tion is

2
ä

a
+

(
ȧ

a

)2

=
ϕ̇2

2
+ Λ. (2.13)

The Friedmann equation is

3H2 = − ϕ̇2

2
+ Λ. (2.14)

Furthermore, the Klein-Gordon (KG) equation is

ϕ̈+ 3Hϕ̇ = 0. (2.15)

The absence of the dV
dϕ term in the KG equation above is

because Λ acts as a constant potential.

2. GUP deformed dynamics

In this subsection, we review the inclusion of higher-
order correction of the uncertainty principle in the cos-
mological Hamiltonian. To achieve this, we perform a
canonical transformation of the phase space as follows:

x =
a3/2

µ
sin(µϕ), y =

a3/2

µ
cos(µϕ), (2.16)

While preserving the dynamics. To see it explicitly, we
note that differentiation of Eq.(2.16) gives

ẋ =
3

2

a1/2ȧ

µ
sin(µϕ) + (a3/2ϕ̇) cos(µϕ), (2.17)

ẏ =
3

2

a1/2ȧ

µ
cos(µϕ)− (a3/2ϕ̇) sin(µϕ). (2.18)

Now, multiplying both sides of Eq.(2.17) by sin(µϕ) and
Eq.(2.18) by cos(µϕ) and adding them together gives

ẋ sin(µϕ) + ẏ cos(µϕ) =
3

2

a1/2

µ
ȧ. (2.19)

Next by squaring both sides of Eq.(2.19), followed by

dividing the expression by 2N and considering µ =
√

3/8
one obtains,

ẋ2 sin2(µϕ) + ẏ2 cos2(µϕ) + 2ẋẏ sin(µϕ) cos(µϕ)

2N
=

3aȧ2

N
.

(2.20)
Instead, multiply both sides of Eq.(2.17) by cos(µϕ) and
Eq.(2.18) by sin(µϕ) and subtracting

ẋ cos(µϕ)− ẏ sin(µϕ) = a3/2ϕ̇. (2.21)

This is followed by squaring Eq.(2.21) and dividing it by
2N to obtain

ẋ2 cos2(µϕ) + ẏ2 sin2(µϕ)− 2ẋẏ cos(µϕ) sin(µϕ)

2N
=

a3ϕ̇2

2N
.

(2.22)
In addition, by considering the sum of the squares of the
components in Eq.(2.16), we have:

x2 + y2 =
a3

µ2
sin2(µϕ) +

a3

µ2
cos2(µϕ)

=⇒ x2 + y2 =
a3

µ2
=

8a3

3
. (2.23)

Now, from Eq.(2.23) we observe that the physical volume
of the universe under study can be elegantly expressed as
the radius of the circle, with (0, 0) as the center in the
plane containing the configuration variable (x, y). Since
the Friedmann equation is nothing but the fractional rate
of change of volume, intuitively, one can speculate that
the knowledge of the dynamics of the pair (x, y) suffices
to predict the evolution of the universe.
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Having set the stage in terms of Cartesian pair (x,y),
we now return to the question of dynamics. Using
Eq.(2.20) Eq.(2.21) and Eq.(2.23) we obtain the final
form of the Lagrangian in terms of configuration coor-
dinates (x, y, ẋ, ẏ) to be

L = −
[
ẋ2 + ẏ2

2N
+

3

8
(x2 + y2)ΛN

]
. (2.24)

A quick look at the form of the Lagrangian suggests that
dynamics is symmetric w.r.t the origin of the circle in the
plane of (x, y).
Given this, it is straightforward to obtain the canoni-

cally transformed Hamiltonian using the Legendre trans-
formation. Thus, the final form of the Hamiltonian looks
like

H0 = N

[
P 2
x

2
+

P 2
y

2
+

ω2

2
(x2 + y2)

]
, (2.25)

where ω2 = − 3
4Λ. The utility of the canonical transfor-

mation of Eq.(2.16) is clear from the elegant expression
of 2.25. It is straightforward to see that the dynamics
of a universe with a phantom scalar and a positive cos-
mological constant can be expressed as a system of two
decoupled simple harmonic oscillators in the new phase
space.

However, the Eq.(2.25) is still classical, though ex-
pressed in a different guise. To write down the dynamics
due to momentum deformation owing to the Generalized
Uncertainty Principle (GUP), we introduce semi-classical
canonical variables qi and Pi and introduce GUP in the
WDW equation in our cosmological model as followed by
[53].

qi = q0i, Pi = P0i

(
1− βγP0 + 2γ2 β

2 + 2ϵ

3
P 2
0

)
,

(2.26)
where P 2

0 = P0jP0j , β, ϵ and γ are constants. we calcu-
late the GUP distorted Hamiltonian up to the order of
γ2 [54] as:

H = H0 − βγ(P 2
0x + p20y)

3/2 + γ2(P 2
0x + p20y)

2

(
β2

6
+

2ϵ

3

)
+O(γ3), (2.27)

where H0 =
P 2

0x

2 +
P 2

0y

2 + ω2

2 (x2 + y2) is the unperturbed
Hamiltonian before introducing GUP. From now on, the
subscript 0 will be used to denote the unperturbed ver-
sion to represent Eq.(2.25). For example, the unper-
turbed x, y are represented as (q0x, q0y) while the unper-
turbed pair (Px, Py) are to be recognized as (P0x, P0y).
In the final step, we re-express the GUP deformed

Hamiltonian Eq.(2.27) in the cosmological phase-space
variable. This is achieved by applying the inverse trans-
formation to express Eq(2.27) in the cosmological vari-
ables, namely, the scale factor, the scalar field, and their
corresponding conjugate momenta. Using Eq.(2.17) and
Eq.(2.17), we obtain

P0x = ẋ =
3

2

a1/2ȧ

µ
sin(µϕ) + (a3/2ϕ̇) cos(µϕ), (2.28)

P0y = ẏ =
3

2

a1/2ȧ

µ
cos(µϕ)− (a3/2ϕ̇) sin(µϕ). (2.29)

Because there are no dynamics in the lapse function,
without loss of generality N(t) = 1,

∂L
∂ȧ

= Pa = −6ȧa,

and

∂L
∂ϕ̇

= Pϕ = −a3ϕ̇,

by substituting Pa and Pϕ in Eq.(2.28) the equations
becomes

P0x = − Pa

4a1/2µ
sin(µϕ)− Pϕ

a3/2
cos(µϕ), (2.30)

P0y = − Pa

4a1/2µ
cos(µϕ) +

Pϕ

a3/2
sin(µϕ). (2.31)

Applying P0x and P0y in the momentum-deformed
Hamiltonian due to GUP correction in Eq.(2.27) by tak-
ing ϵ = 1,

HGUP =
[
ω2

2 a3 +
P 2

a

12a +
P 2

ϕ

2a3 + 2γ2
(

P 4
a

108a2 +
P 4

ϕ

3a6 +
P 2

aP
2
ϕ

9a4

)]
. (2.32)

This is the required GUP distorted Hamiltonian in the cosmological phase space dominated by a phantom scalar field
with a positive cosmological constant up to second-order perturbation.
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Using Eq.(2.6)we can obtain the final Raychaudhuri equation

2
ä

a
+

(
ȧ

a

)2

=
ϕ̇2

2
− ω2

2
+ γ2

(
16a3H4 +

4a3ϕ̇4

3
+

32a3H2ϕ̇2

3

)
. (2.33)

The final Friedmann equation is

3H2 = −

[
ϕ̇2

2
+

ω2

2

]
− 2γ2

[
12H4a3 +

a3ϕ̇4

3
+ 4a3H2ϕ̇2

]
. (2.34)

and the KG equation is

ϕ̈+ 3ϕ̇H = 0. (2.35)

We notice that the Raychaudhuri Eq.(2.33) and the Friedmann Eq.(2.34) directly incorporate quantum corrections,
whereas the Klein-Gordon Eq.(2.35), there is no explicit dependence on quantum correction. Any quantum deforma-
tion entering the KG Eq.(2.35) arises only implicitly through the Hubble parameter. This situation is similar to the
models of loop quantum cosmology [57–62].

3. GUP corrected Friedmann equation with cosmological
constant

In this subsection we simplify the Friedmann Eq.(2.34)
Defining a new parameter for the perturbation term
2γ2 ≡ α, the Eq.(2.34) can be written as a quadratic

equation in terms of H̃ = H2 as

3H̃2 +

(
ϕ̇2 +

3

4αa3

)
H̃ − C0 = 0, (2.36)

where C ≡ −
(

ϕ̇2

2 + ω2

2 + αa3ϕ̇4

3

)
and C0 ≡ C

4αa3 . Solv-

ing the quadratic equation gives us:

H̃ =
−
(
ϕ̇2 + 3

4αa3

)
±
√(

ϕ̇2 + 3
4αa3

)2
+ 12C0

6
. (2.37)

Since H̃ = H2, the right-hand side of the Eq.(2.37) must
be greater than zero. This implies√(

ϕ̇2 +
3

4αa3

)2

+ 12C0 >

(
ϕ̇2 +

3

4αa3

)
. (2.38)

this is equivalent to

C0 > 0, (2.39)

or

ϕ̇2

2
+

αa3ϕ̇4

3
<

3Λ

8
. (2.40)

Rewriting Eq.(2.37)

H2 = − ϕ̇2

6
− 1

8αa3
+

(
ϕ̇2

6
+

1

8αa3

)√√√√1 +
12C0(

ϕ̇2 + 3
4αa3

)2 , (2.41)

and applying the conditions Eq.(2.38) √
1 +

12C0

M2
> 1, (2.42)

where M ≡ ϕ̇2 + 3
4αa3 . Applying binomial expansion of the Eq.(2.41) we get,

H2 = − ϕ̇2

6
− 1

8αa3
+

(
ϕ̇2

6
+

1

8αa3

)[
1 +

1

2

(
12C0

M2

)
− 1

2

(
1

2
− 1

)(
1

2!

)(
12C0

M2

)2

+O(3)

]
. (2.43)

Considering term up to the first order in 12C0/M
2,

H2 =

(
−ϕ̇2

2 + 3Λ
8 − αa3ϕ̇4

3

)
4αa3ϕ̇2 + 3

. (2.44)
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Eq.(2.44) is the required Friedmann equation with GUP modification for a phantom scalar field with a positive
cosmological constant.

B. Phantom scalar field with an arbitrary
potential

Now, we construct the GUP-modified Friedmann equa-
tion for arbitrary potential by applying the change in
variables shown in the previous section IIA 2

x =
a

3
2

µ
sin(µϕ), y =

a
3
2

µ
cos(µϕ). (2.45)

The Lagrangian Eq.(2.3) can be written in terms of

(x,y,ẋ,ẏ) by applying the procedure prescribed in the sec-
tion IIA 2 as

L = −
[
ẋ2 + ẏ2

2
+

3

8
(x2 + y2)V (ϕ)

]
. (2.46)

In addition, the unperturbed Hamiltonian can be ob-
tained by the Legendre transformation of the Eq.(2.46)

H0 =
P 2
x

2
+

P 2
y

2
− 3

8
(x2 + y2)V (ϕ). (2.47)

Introducing GUP, as given in section IIA 2 to the unperturbed Hamiltonian Eq.(2.47) generates

HGUP =
P 2
a

12a
+

P 2
ϕ

2a3
− a3V (ϕ) + 2γ2

(
P 4
a

108a2
+

P 4
ϕ

3a6
+

P 2
aP

2
ϕ

9a4

)
. (2.48)

From the above GUP corrected Hamiltonian Eq.(2.48) one can easily obtain the Raychaudhuri equation as:

2
ä

a
+

(
ȧ

a

)2

=
ϕ̇2

2
+ V (ϕ) + γ2

(
16a3H4 +

4a3ϕ̇4

3
+

32a3H2ϕ̇2

3

)
. (2.49)

Following the same procedure given in section IIA 3, after some algebraic manipulation, the Friedmann equation for
arbitrary potential can be derived as

H2 =

(
− ϕ̇2

2 + V (ϕ)− αa3ϕ̇4

3

)
4αa3ϕ̇2 + 3

, (2.50)

and the KG equations remain the same for any arbitrary potential as

ϕ̈+ 3ϕ̇H − dV (ϕ)

dϕ
= 0. (2.51)

We note that this feature is consistent with the loop quantum cosmology scenario in which the KG equation does not
receive any explicit quantum correction. Any quantum correction occurs only through the Hubble parameter; thus,
the classical form of the KG equation holds for any given potential in the GUP corrected regime.

In standard cosmology, the factor αa3ϕ̇4

3 is absent in the numerator of the Eq.(2.50), retaining only the energy
density term. The additional term arises solely from the quantum corrections due to GUP. In addition to this,
the Freidemann Eq.(2.50) reveals the possibility of singularity resolution. The occurrence of non-singular bounce in
phantom models has already been studied in [63–67]. The possibility of a non-singular bounce is further enhanced

by the presence of a negative quantum corrected term, −αa3ϕ̇4

3 , in the Friedmann Eq.(2.50). Though ȧ = 0 is a
necessary condition for the occurrence of a bounce, the solution must meet ä > 0 at the turning point of the bounce
for the contracting universe to reverse its trajectory and begin expanding again. This condition is satisfied by the
Raychaudhuri Eq.(2.49) as the right-hand side of the equation all the terms are positive due to even powers for the

non-zero arbitrary values of V (ϕ) and ϕ̇.

III. DYNAMICAL SYSTEM ANALYSIS

A nonlinear system is generally difficult to predict.
However, the method of dynamical system analysis serves

as a powerful tool for extracting qualitative information
from nonlinear systems. The Einstein’s equation when
applied to FLRW spacetime, becomes a set of coupled
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second-order differential equations. However, with a suit-
able choice of variables, they can be transformed to first-
order autonomous differential equations. The powerful
technique of dynamical system analysis (DSA) can be
widely employed to analyze the background dynamics of
cosmological models.

The approach of DSA is qualitative in nature. It pre-
dicts the overall dynamics of the of the system in question
without actually solving it. The most widely adopted
method is linear stability analysis. In this method the
system’s dynamics is cast as a set of first-order au-
tonomous differential equations, and the fixed points are
defined as the points where the vector flow of the dy-
namical variables vanishes. The precise nature of the
fixed points is obtained by examining the behavior of
the leading order perturbation around the fixed points.
Mathematically, the signs of the eigenvalues of the Ja-
cobian matrix evaluated at the fixed points indicate the
nature of the fixed points. For an extensive review of
DSA, we refer the readers to [68–71].

Phase portraits, on the other hand, are visual repre-
sentations of the trajectories of a dynamic system. It
provides insights into the qualitative behavior of the sys-
tem, pictorially. This is achieved by drawing a tangent at
each point given by the flow vectors of the autonomous
differential equations. When applied to cosmology, it of-
fers an intuitive understanding of the fate of the Universe
even without solving the equations.

In the subsequent subsections, we construct the au-
tonomous equations and henceforth perform dynamic
system analysis for background cosmology with GUP
modification.

We know that the Einstein’s equation are second or-
der in nature. However, to perform a dynamical system
analysis, they must be transformed into a set of first-
order differential equations. A widely practiced method
is to begin by normalizing the Friedmann equation by the
square of the Hubble parameter to make each term di-
mensionless. In the process, it brings all the components
contributing to the Hubble rate on equal footing. The
next step is to write the equation of motion for each inde-
pendent dimensionless dynamical variable obtained with
the help of the Raychaudhuri and Klien-Gordon equa-
tion. The final set of equations for each variable, when
expressed entirely in terms of newly defined dimension-
less variables, constitutes the required autonomous sys-
tem.

A. For V (ϕ) = V0ϕ
2

In this subsection, we study qualitative dynamics
(DSA) for a universe dominated by a phantom scalar field
with quadratic potential considering GUP correction.

Following the above-mentioned recipe, we perform dy-
namic system analysis by constructing autonomous equa-
tions for the chosen potential. This will allow us to per-
form fixed point analysis and study the behavior of phase
portraits. From the eq.(2.50), the expansion normalized
Friedmann equation can be written as

4αa3ϕ̇2 + 3 = − ϕ̇2

2H2
+

V (ϕ)

H2
− 2αa3ϕ̇2

3

ϕ̇2

2H2
. (3.1)

A suitable choice of dimensionless dynamical also called,
Einstein-Nordstrom, variable is

x ≡

√
ϕ̇2

6H2
, y ≡

√
V0ϕ2

3H2
, z ≡

√
αa3ϕ̇2. (3.2)

Expressing in terms of dynamic variables, the expansion-
normalized Friedmann equation is

x2 + y2 − 2

3
z2x2 − 4

3
z2 = 1. (3.3)

In addition to this from eq.(2.8) the KG equation is

ϕ̈+ 3ϕ̇H − 2V0ϕ = 0. (3.4)

From eq.(2.49) we can obtain,

Ḣ

H2
=

3

2
(x2 + y2 − 1)

+
(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)
. (3.5)

With this, the ground has been prepared to construct the
autonomous differential equation for EN variables. How-
ever, it should be noted that the EN variables alone fail
to close the autonomous system for power law potential.
For example, a new dynamic variable depending on ϕ

appears in the form of λ ≡ −V,ϕ
V with its independent

equation of motion.
The physical phase space for a power law system is

always represented by a positive y half-cylinder stretch-
ing from λ = 0 to +∞ due to symmetry[72–75], which
means that the phase space is not compact. To make
phase space compact, we choose a new dynamic variable
u, which is

u =
λ

λ+ 1
.

This transformation makes our phase space compact with
the range 0 ≤ u ≤ 1. finally we can write our system of
equations in terms of u.
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The autonomous set of dynamical equations for quadratic potential with GUP correction read as

f(x, y) ≡ dx

dN
= −3(1− u)x− u

(√
6y2
)
− (1− u)x

{
3

2
(x2 + y2 − 1) +

(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)

}
, (3.6)

g(x, y) ≡ dy

dN
=

√
6yxu− y(1− u)

{
3

2
(x2 + y2 − 1) +

(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)

}
, (3.7)

h(x, y) ≡ du

dN
= −

√
6(Γ− 1)(1− u)xz2, (3.8)

where Γ =
V V,ϕϕ

V 2
,ϕ

. The complete cosmological dynamics for the universe with quadratic potential and GUP correction

are contained in the three equations 3.7, 3.8 and 3.8.

1. Fixed point analysis

In this subsection, we perform a thorough analysis of
the fixed points of the cosmological system dictated by a
phantom scalar field with quadratic potential in a GUP-
modified scenario. Later, we compare the results with
those without GUP.

Fixed points are obtained by simultaneously solving
the autonomous system to zero. This physically means
that the system becomes stationary at that point. In
our present case, this is given by the set of all points
for which autonomous equations(3.7-3.8) simultaneously
equal to zero . We apply linear stability analysis to com-
ment on the nature of the fixed points. The fixed points
along with their behavior, as obtained, are tabulated in

IIIA 1. To compare our results with the original dy-
namics, we turn off the quantum perturbation by setting
α = 0 in Eqs.(3.7-3.8). The results are summarized in
Table (IIIA 1).

Comparison of the tables IIIA 1 and IIIA 1 reveals the
dynamics without GUP are richer than the dynamics af-
ter GUP modification. This is clear as IIIA 1 depicting
the dynamics without GUP contains a greater number
of fixed points than in IIIA 1 with GUP. However, intro-
ducing distortion due to GUP does not change the fixed
points as the eigenvalues in both tables contain zero. The
theory of linear stability analysis has no say on the prop-
erties of such fixed points. One requires higher order
analysis. However, in this paper, we confine ourselves to
linear stability analysis.

TABLE I. Fixed points and the stability analysis for the Potential V (ϕ) = V0ϕ
2 without GUP

x y u E1 E2 E3 Stability

A 0 0 c −3(1− c)/2 3(1− c)/2 0 saddle point
B 0 0 0 −3/2 3/2 0 saddle point
C 0 0 1 0 0 0 neutral point

D c 0 1 2
√
6c −

√
6c 0 saddle point

E 0 -1 0 −3 −3 0 stable point
F 0 1 0 −3 −3 0 stable point

TABLE II. Fixed points and the stability analysis for the Potential V (ϕ) = V0ϕ
2 with GUP

x y u E1 E2 E3 Stability

A +c(other than 0) 0 1 0 2
√
6c −

(
2
√

6c3+
√
6c5

c2(2+c2)

)
saddle point

B −c(other than 0) 0 1 0 −2
√
6c

(
2
√
6c3+

√
6c5

c2(2+c2)

)
saddle point

B. Exponential Potential

In this subsection, we consider a potential of the form

V (ϕ) = V0e
−kϕ, (3.9)

to study the GUP modified background dynamics. EN
variables are defined as

x ≡

√
ϕ̇2

6H2
, y ≡

√
V0e−kϕ

3H2
, z ≡

√
αa3ϕ̇2. (3.10)



10

The expansion-normalized Friedmann equation in the
form of EN variables is

x2 + y2 − 2

3
z2x2 − 4

3
z2 = 1, (3.11)

and from eq.(2.8) the Klein Gordon equation reads as

ϕ̈+ 3ϕ̇H + V0ke
−kϕ = 0. (3.12)

Furthermore, the Raychaudhuri equation (2.49) in terms
of EN variables is

Ḣ

H2
=

3

2
(x2 + y2 − 1)

+
(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)
. (3.13)

Because our potential is exponential, we can get Γ =
V V,ϕϕ

V 2
,ϕ

equal to 1. While constructing the autonomous

equation, we obtain a factor of Q ≡ −V,ϕ

V = k, which
is equal to a constant k. With these, we can write the
autonomous differential equations as:

f̃(x, y) =
dx

dN
= −3x−

√
3

2
Qy2 − x

{
3

2
(x2 + y2 − 1) +

(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)

}
, (3.14)

g̃(x, y) =
dy

dN
= −

√
3

2
Qyx− y

{
3

2
(x2 + y2 − 1) +

(2 + 6x4 + 8x2)(−1− x2 + y2)

(2x4 + 4x2)

}
. (3.15)

The complete dynamics of the system with exponential potential and GUP corrections are contained in the two
equations 3.15 and 3.15. The original dynamics without quantum fluctuations can be easily obtained as a limiting
case by setting α = 0.

1. Fixed point analysis

In this subsection, we perform dynamical system anal-
ysis for the exponential potential both with and without

GUP. Because of the exponential potential, the system
can be completely explained by two dynamical variables
x and y. The fixed points of the system with the eigen-
values of the Jacobian are summarized in the table III B 1
and III B 1, respectively, for GUP and without GUP.

TABLE III. Fixed points and corresponding eigenvalues of the Potential V (ϕ) = V0e
−kϕ without GUP

x y E1 E2 Stability

A −Q/
√
6

√
(Q2 + 6)/6 −(6 +Q2)/2 −(3 +Q2) stable point

B −Q/
√
6 −

√
(Q2 + 6)/6 −(6 +Q2)/2 −(3 +Q2) stable point

C 0 0 −3/2 3/2 saddle point

TABLE IV. Fixed points and the corresponding eigenvalues of the Potential V (ϕ) = V0e
−kϕ

x y E1 E2 Stability

A − Q√
6

√
Q2 + 6/6 −72Q2−18Q4−Q6

2Q2(12+Q2))
− 72+84Q2+21Q4+Q6

Q2(12+Q2))
stable point

B − Q√
6
−
√

Q2 + 6/6 −72Q2−18Q4−Q6

2Q2(12+Q2))
− 72+84Q2+21Q4+Q6

Q2(12+Q2))
stable point

The rigorous fixed point analysis shows that the introduc-
tion of GUP correction completely alters the fixed points

and hence their stability in the case of exponential po-
tential. It is found that the dynamics without GUP have
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two stable fixed points and one saddle point, whereas the
GUP-modified dynamics for exponential potential leave
us with two stable fixed points.

2. Phase portrait

However, from the physical perspective, only the upper
half of the plane, y ≥ 0, is of meaning. This is because
y ≤ 0 is not physically achievable for a positive potential.

Thus, we discard the set of the points, including the fixed
points, with y ≤ 0 as not being physical. The dynamic
variable x is proportional to the velocity. In both cases,
with and without GUP,
The phase portraits of the system are presented in

Fig.(1) for Q = 1. the saddle point C = (0, 0) disappears
upon the introduction of the GUP distortion. However,
the physically relevant point A = (−0.40, 1.08) remains
there even after quantum correction. Physically, the sta-
ble fixed point A = (−0.40, 1.08) implies that at a later
time, the scalar field settles down to a negative velocity
value with a positive field value.

FIG. 1. Phase portrait for potential V (ϕ) = V0e
−kϕ for value of Q = 1. Left without GUP fluctuation where the stable fixed

points are at A=(-0.40,1.08), B=(-0.40,-1.08) and a saddle fixed point at C=(0,0) and Right with GUP where the stable fixed
point are A=(-0.40,1.08), B=(-0.40,-1.08)

IV. GUP-MODIFIED INFLATIONARY
SCENARIO

In this section, we present inflationary dynamics un-
der the influence of the Generalized Uncertainty Principle
(GUP) for quadratic and exponential potentials. To un-
derstand the change in the behavior of the background
dynamics of our cosmology in the presence of GUP dis-
tortion, we need to study the behavior of cosmologically
relevant parameters like; of scale factor a(t), scalar field
ϕ(t) , Equation of State (EoS) (weff ) and slow climb
parameters ϵ and η with and without GUP deformation
[76]. In what follows, we do this case by case for each

potential considered in this article.

1. Quadratic potential, V (ϕ) = µ2ϕ2

During cosmic inflation, the behavior of a phantom
field differs from that of a normal scalar field. While a
normal scalar field undergoes a slow roll along its poten-
tial, a phantom field exhibits a slow climb along its po-
tential. This distinction is evident both mathematically
and graphically, as demonstrated in [77] for power-law
potentials.
After introducing GUP corrections to the Friedmann
equations, the slow climb parameters defined as ϵ ≡
− Ḣ

H2 , η ≡ V ”
3H2 and δ ≡ η − ϵ are expressed as follows:

ϵ =
3

2

(
ϕ̇2

6H2
+

V0ϕ
2

3H2
− 1

)
+ 4αa3H2 +

αa3ϕ̇4

3H2
+

8

3
αa3ϕ̇2. (4.1)
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For V (ϕ) = V0ϕ
2, we have

η =
2V0

3H2
. (4.2)

FIG. 2. Left panel : Plot of ϵ(t) vs time(t) for the initial condition as a(0) = 1, ȧ(0) = 1 and ϕ̇(0) = 0.1 for three different

values of α where, α = 0 shows no GUP fluctuation. Right panel : For initial condition as a(0) = 4, ȧ(0) = 4 and ϕ̇(0) = 0.1.

FIG. 3. η(t) vs t for the square potential.

In the cosmological context, EoS is a useful parameter
to understand and classify the acceleration and reaccel-
eration phases of our universe. EoS is the relationship
between energy density and pressure. For w = 0 cor-
responds to non-relativistic matter such as cold dark
matter (CDM) or non-relativistic baryonic matter and
0 < w < 1/3 refers to radiation dominated. For
w = −1,−1 < w < −1/3 and w < −1 refer to the
cosmological constant, Quintessence, and Phantom eras,
respectively.
The Raychaudhuri equation, in the standard case, can be
written in terms of EoS as follows:

ä

a
= −(1 + 3w)

ρ

6
, (4.3)

the GUP modified Raychaudhuri Eq.(2.49) looks like

ä

a
= −

[
1 + 3

(
−ϕ̇2

2 − V (ϕ)− 2αa3ϕ̇4

3 − 4αa3ϕ̇2V (ϕ)
3

− ϕ̇2

2 + V (ϕ)− αa3ϕ̇4

3

)]
ρ

6
,

(4.4)
comparing Eq.(4.4) with Eq.(2.49) we get

w =
−ϕ̇2

2 − V (ϕ)− 2αa3ϕ̇4

3 − 4αa3ϕ̇2V (ϕ)
3

− ϕ̇2

2 + V (ϕ)− αa3ϕ̇4

3

. (4.5)

For the quadratic potential, the EoS parameter is

w =
−ϕ̇2

2 − V0ϕ
2 − 2αa3ϕ̇4

3 − 4αa3ϕ̇2V0ϕ
2

3

− ϕ̇2

2 + V0ϕ2 − αa3ϕ̇4

3

. (4.6)
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FIG. 4. Comparison of EoS vs time for potential V = µ2ϕ2

for different values of α.

FIG. 5. Left panel : Plot of a(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9 respectively in

V = µ2ϕ2 potential with initial condition as a(0) = 1 and ϕ(0) = 1 and ϕ̇(0) = 0.1. Right panel : Magnified view.

FIG. 6. Left panel : Plot of a(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = µ2ϕ2 potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.
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FIG. 7. Left panel : Plot of logarithm of a(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9
respectively in V = µ2ϕ2 potential with initial condition as a(0) = 1 and ϕ(0) = 1. Right panel : Magnified view.

FIG. 8. Left panel : Plot of logarithm of a(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9
respectively in V = µ2ϕ2 potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.

FIG. 9. Left panel : Plot of ϕ(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = µ2ϕ2 potential with initial condition as a(0) = 1 and ϕ(0) = 1. Right panel : Magnified view.
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FIG. 10. Left panel : Plot of ϕ(t) along the Y-axis vs time(t) along the X-axis for three values of α = 0, 0.01, 0.9 respectively
in V = µ2ϕ2 potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.

Fig.(5) represents dynamics of scale factor with time, il-
lustrating a nearly exponential rise of the scale factor,
indicating inflation. However, the effect of GUP is not
readily discernible from the left side of Fig.(5) To observe
this effect, it is necessary to magnify the range presented
on the right side of Fig.(5). The blue line represents
the original scale factor without GUP modification. As
we increase the strength of (α), the value of the original
scale factor becomes nonlinearly distorted. In addition,
we present the behavior of the scale factor for different
initial conditions in Fig.(6).
The behavior of ϕ w.r.t cosmic time t for different initial
conditions is shown in Fig.(9) and Fig.(10). A magni-
fied view of the effect of GUP deformation for different
values of α is provided on the right-hand side of the fig-
ures. On the left side of the figures, the scalar field starts
from a very low value and then increases linearly upward
for different initial conditions. As we can observe from

the graph of ϕ vs t, the inclusion of a higher value of
GUP-strength, α, in the dynamics causes the evolution
to distort upwards from the original dynamics without
GUP.
The Fig.(4) depicts the behavior of the EoS parameter
with the introduction of a small strength of GUP distor-
tion. We observe that the EoS for the phantom remains
always less than −1 in the absence of GUP fluctuations
due to the negative pressure term. Even in this case
of GUP-modified dynamics, the behavior of the EoS re-
mains the same for most of the evolution. Only at the
later phase EoS increases w.r.t the unperturbed dynam-
ics.
In Fig.(2),Fig.(3) we present slow climb parameter |ϵ| and
|η| as a function of time with different initial conditions
and we clearly observe that value of |η|,|ϵ| << 1 indicate
inflation.

2. Exponential potential, V (ϕ) = V0e
−kϕ

In this subsection, we study the GUP-modified background dynamics for exponential potential. We determine the
slow roll parameters and equation of state and subsequently present them for different initial conditions.
The slow climb parameters are

ϵ =
3

2

(
ϕ̇2

6H2
+

V0e
−kϕ

3H2
− 1

)
+ 4αa3H2 +

αa3ϕ̇4

3H2
+

8

3
αa3ϕ̇2, (4.7)

and

η =
V0k

2e−kϕ

3H2
. (4.8)

The effective equation of state (EoS) for V (ϕ) = V0e
−kϕ is

w =
−ϕ̇2

2 − V0e
−kϕ − 2αa3ϕ̇4

3 − 4αa3ϕ̇2e−kϕ

3

− ϕ̇2

2 + V0e−kϕ − αa3ϕ̇4

3

. (4.9)
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FIG. 11. Left panel : For V (ϕ) = V0e
−kϕ with initial condition as a(0) = 1, ȧ(0) = 1 and ϕ̇(0) = 0.1 plot of ϵ(t) along Y-axis vs

time(t) along X-axis for three different values of α where, α = 0 with no GUP fluctuation. Right panel : For initial condition

as a(0) = 0.1, ȧ(0) = 0.1 and ϕ̇(0) = 0.1.

FIG. 12. η(t) vs t for exponential potential.

FIG. 13. Comparison of EoS vs time graph for potential V = e−kϕ for different values of α.
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FIG. 14. Left panel : Plot of a(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = e−kϕ potential with initial condition as a(0) = 1 and ϕ(0) = 1. Right panel : Magnified view.

FIG. 15. Left panel : Plot of a(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = e−kϕ potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.

FIG. 16. Left panel : Plot of logarithm of a(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively
in V = e−kϕ potential with initial condition as a(0) = 1 and ϕ(0) = 1. Right panel : Magnified view.
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FIG. 17. Left panel : Plot of logarithm of a(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively
in V = e−kϕ potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.

FIG. 18. Left panel : Plot of ϕ(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = e−kϕ potential with initial condition as a(0) = 1 and ϕ(0) = 1 . Right panel : Magnified view.

FIG. 19. Left panel : Plot of ϕ(t) along Y-axis vs time(t) along X-axis for three values of α = 0, 0.01, 0.9 respectively in
V = e−kϕ potential with initial condition as a(0) = 0.1 and ϕ(0) = 0.1. Right panel : Magnified view.

We analyze the effect of GUP modification on the back- ground dynamics for the exponential potential from
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Fig.(14),(15),(16) and (17). The figures depict the line
representing the small strength of α, α = 0.01 is closer
to the original dynamics. However, as we increase the
strength of the GUP modification, the dynamics deviate
further from the original dynamics.
The behavior of the EoS parameter in the phantom field
with and without the effect of GUP is represented in
Fig.(13). The EoS starts with a value of -1, indicating
proximity to the Cosmological constant era, and transi-
tions toward the phantom-dominated era for both GUP
and without GUP dynamics.
The behavior of ϕ and t for exponential potentials with
different initial conditions are shown in Fig.(18) and
Fig.(19). In addition, a magnified view of the GUP defor-
mation for different values of α is shown on the right-hand
side of the Fig.(18) and Fig.(19). On the left side of the
scalar field, it starts from the highest value and then de-
creases linearly downward for different initial conditions.
We observe from the graph of ϕ vs t that the inclusion
of a comparable level of GUP in the dynamics causes
the line to distort downward from the original blue line,
which represents the dynamics without GUP. Further-
more, the plots of |ϵ| and |η| in Fig.(11) and Fig.(12)
indicates inflation in the case of exponential potential.

V. CONCLUSION

In this paper, we comprehensively review the construc-
tion of the GUP-corrected effective Hamiltonian from the
scratch, ie. Einstein-Hilbert action. To this effect, we
consider a minimally coupled phantom scalar field with
the cosmological constant as the toy model. Following
this, we perform the same exercise with arbitrary po-
tentials. In particular, we focus on introducing momen-
tum deformation to our dynamics due to the general-
ized uncertainty principle. Having derived the effective
Hamiltonian, we obtain all the background equations of
motion in terms of the Raychaudhuri, Friedmann, and
Klien-Gordon equations. Interestingly, we show that the
Klien-Gordon equation is free from any explicit quan-
tum correction due to GUP. On the other hand, the
Raychaudhuri and Friedmann equation receives quantum
correction explicitly. This situation is consistent with the
cosmological models constructed using the framework of

loop quantum gravity.

The system of equations obtained is highly nonlinear.
This demands qualitative analysis using the tools of dy-
namical system analysis to extract information about the
system before actually solving it.

We achieve this by performing a detailed dynamical
system analysis using the tools of linear stability anal-
ysis. We observe that the introduction of GUP affects
the local behavior of the system, although the overall
dynamics remain similar by and large. This is confirmed
from Fig.(1) and from table(I,II,IV,III). In the case of
quadratic potential, we observe from table(I,II) that af-
ter introducing GUP distortion to the dynamics, certain
fixed points disappear from the scenario. In the case of
exponential potential, table(IV,III) indicates that after
introducing GUP corrections, only one saddle point dis-
appeared. Consequently, this leaves us with two stable
points in the GUP modified scenario.

As our final goal, we return to the question of the
cosmological implications of the considered model in
Sec.(IV). We discuss inflationary scenarios after GUP
correction through plots of scale factor and the logarithm
of scale factor for different sets of initial conditions in
Fig.(5,6,7,8)for square potential and in Fig.(14,15,16,17)
for exponential potential. We observe nearly exponen-
tial expansion for both potentials, indicating inflation.
Finally, we calculated the slow climb parameters for
both potentials and plotted them in Fig.(2,3,11,12) which
clearly shows inflation because of the values |η|,|ϵ| << 1.
This confirms the inflationary scenario in this study.

Furthermore, we calculated the GUP-induced EoS pa-
rameter and plotted it in Fig.(4,13) starting nearly from
-1 and then decreasing to more negative values for phan-
tom scenarios. To be precise in the case of quadratic po-
tential, when we incorporate the GUP correction term,
the graph of the Equation of Sate (EoS) parameter
rapidly approaches the value −1 compared to the case
without GUP corrections. We also observe a deviation
from the original dynamics.

Our analysis is general. In the future, we propose to
extend our analysis to more viable models of inflationary
scenarios. Also, the effects of GUP correction have not
been studied in the context of linearized gravity yet. We
leave it as our future project.
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