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Space-time metamaterials, or materials with properties changing in space and time, have gained a wide-spread
interest due to their exotic properties. In this Letter, we propose a novel temporal metasurface of phononic
crystals in one and two-dimensions, that combines the use of nonlocal interactions in phononic crystals to
customize dispersion relations, and the use of temporal interfaces to transition from a local material to a nonlocal
material and vice-versa, to achieve the interesting phenomenon of wave-freezing, where the entire propagating
wave is stopped without diffusing or spreading. The phononic crystals are modeled using spring-mass systems
and we use finite difference calculations to present our numerical results. We also demonstrate other effects
observed in such temporal metasurfaces, such as time-reversed waves, and anomalous temporal refraction.

Space-time metamaterials or temporal metasurfaces, have
physical parameters or material properties varying in time as
well as space[1–3], providing with even richer physics than
metamaterials where properties are only spatially varying,
and have resulted in the discovery of exotic properties like
space-time mirrors[4, 5], chromatic birefringence[6], space-
time cloaking[7], and photonic-time-crystals (PTCs)[8]. They
have gained huge popularity in the applications requiring ma-
nipulation of electromagnetic, photonic, acoustic, and elastic
wave propagation[9–13], thus, attracting the interest of several
physicists and engineers. The time modulation of properties
can be done either smoothly (continuously) or abruptly (dis-
continuously), in which case it is called a time-interface. An
important distinction between a time-interface and a spatial
interface is that the energy of a propagating wave is conserved
when it encounters a spatial interface (frequency remains the
same), whereas at a time-interface the wave energy typically
either increases or decreases, but momentum is conserved
(wavevector remains the same). In a remarkable experiment
with surface water waves by Bacot et al.[4], the effect of such
time-interfaces on wave propagation was shown, in which wa-
ter waves propagating on the surface of a water body split into
forward propagating waves and backward propagating waves
or time-reversed waves when a vertical jolt was given to the
water body. These time-reversed waves converged to recreate
the image of the initial source or disturbance.

In this Letter, we propose temporal metasurfaces made up
of phononic crystals featuring time-interfaces which introduce
tailored nonlocal interactions that enable extreme manipula-
tion of the propagating wave, particularly, focusing on the cru-
cial application of wave-freezing, wherein a propagating wave
is stopped at a location in space without diffusing or spread-
ing. The velocity of a propagating wave packet is determined
by the slope (∂ω(κ)/∂κ) of the material’s dispersion (ω vs.
κ) curves, where ω is the frequency and κ is the wavevector.
In elastic and acoustic materials, researchers are interested in
achieving waves with zero group-velocity ∂ω/∂κ = 0, the so-
called zero-group-velocity(ZGV) modes, which are important
in the applications of non-destructive testing and quantitative
characterization of structures[14–16]. Such modes are char-
acterized by the critical points of the dispersion relation. In

photonics and optics, several mechanisms have been proposed
to obtain ZGV modes at exceptional points and band edge,
that are crucial in the observation of slow-light or stopping
of light[17–23]. Although the existence of such nonpropagat-
ing modes is well known, an important question is how can
one stop the propagating wave at a given location for as long
a duration as desired without any scattering? For photonic
crystals, Figotin et al.[18, 24, 25] proposed the nonrecipro-
cal frozen mode regime to address this issue in certain cases.
Using anisotropic layered media, a stationary inflection point
∂2ω/∂κ2 = 0 in the dispersion relation was achieved [26],
which is even more desirable for wave-freezing as the value of
∂2ω(κ)/∂κ2, governs the wave-packet diffusion dynamics. In
our work, we present a simple mechanism to obtain on-demand
freezing of the entire propagating wave in one-dimensional
(1-D) and two-dimensional (2-D) phononic temporal metasur-
faces for a broad range of frequencies and wavevectors inside
the Brillouin Zone (BZ). We also highlight the phenomena of
time-mirrors[4, 5] and anomalous temporal refraction that oc-
cur when such time-interfaces, where the strength of nonlocal
interactions changes with respect to time, are considered.

Central to our work is the result that by using nonlocal in-
teractions up to N th nearest-neighbors, the dispersion relation
for the first-band of a phononic crystal takes the form of a
truncated Fourier series, as was first shown by Chen-Kadic-
Wegener[27], and can have critical points inside the first BZ.
Subsequently, it was shown that one can obtain obtain any
desired dispersion curve as the first band of a 2-D acoustic or
elastic metamaterial[28]. In[29], an inverse design method-
ology was proposed that allows customization of the first two
dispersion bands of a nonlocal phononic crystal in 1-D by
designing the strength of nonlocal interactions.

We first consider 1-D phononic crystals with nearest and
up to N th nearest neighbor interactions modeled by a discrete
spring-mass system with the mass displacements along the 1-
D. The equations of motion are solved numerically using the
finite-difference method. All values in this Letter are to be
considered in arb. units.

Consider a 1-D spring-mass chain with the lattice constant
denoted by a, and the neighboring interactions of the masses
modeled by linear springs with stiffness values that can change
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Figure 1. Wave-freezing in 1-D: (a) Schematic of the spring-mass system with nearest and third-nearest neighbor interactions. (b) Dispersion
curves, ω vs. κ, for the spring-mass system with N = 1 (local interactions only), i.e., k1 = 0.01, k3 = 0 (dotted yellow curve), and with
N = 3, i.e., k1 = 0.01, k2 = 0, k3 = k1/3 (solid blue curve). The green marker shows the frequency-wavevector pair of the propagating
wave before the time-interface, red and yellow markers show the frequency-wavevector pairs of the frozen-wave, and pink marker corresponds
to the backward propagating wave after the 2nd time-interface. (c) X-t plot of the wave displacement: The vertical red lines in the plot show
that the left and right propagating waves are frozen in space for a finite duration of time as long as the nonlocal interactions are present. After
the 2nd time-interface, a dominant forward propagating wave continues traveling in the original system as before, with negligible amplitude of
the backward propagating wave. (d) Displacement snapshots of wave propagation at different instants of time (frozen waves shown in red).

with respect to time (t). All masses are considered identical
and are denoted by m. For all examples considered in this
work, we choose m = 1, and a = π. Let k1(t) denote the
spring stiffness values for the nearest-neighbor or local interac-
tions, and k2(t), k3(t), . . . , kN (t) denote the spring stiffness
values for the second, third, . . . , and N th nearest-neighbor
interactions, respectively. A schematic of such a spring-mass
system with nonlocal interactions in 1-D is shown in Fig. 1(a).
The equation of motion that governs the displacement ui(t) of
the ith mass is given as,

müi =
N∑

n=1

ki(ui+n − 2ui + ui−n) + f(t), (1)

where, the dot denotes derivative with respect to time t. Us-
ing the Bloch form[30] of the wave solution, we obtain the
following form of the dispersion relation:

ω2 =
4

m

N∑

n=1

kn sin
2
(nκa

2

)
. (2)

At time t = 0, we begin by considering a spring-mass chain
with N = 1, i.e., with k1 = 0.01, and k2 = k3 = 0 =
· · · = kN = 0. With these values of kn in (2), we recover the
well-known dispersion relation for a 1-D spring mass chain
with nearest neighbor interactions only (shown by the dotted
yellow curve in Fig. 1(b)). The center mass of the spring-
mass system is excited by a constant frequency forcing given
as, f(t) = exp

(
− (t− µ)2/τ

)
cos(ω0t), where, τ and µ are

parameters of the Gaussian envelop of the forcing function,
and ω0 = 0.15 is the carrier frequency. The forcing pro-

duces right propagating and left propagating wave packets with
the frequency-wavevector pair (ω0, κ0) = (0.15, 0.5) (corre-
sponding to the green marker in Fig. 1(b)). Figure 1(c) shows
the X − t plot of the displacement with the color representing
the amplitude of the displacements. The 1st time-interface is
modeled at t = 6050, by introducing tailored nonlocal inter-
actions with k1 = 0.01, k2 = 0, k3 = k1/3, and transitioning
to a N = 3 system. The solid blue curve in Fig. 1(b) shows
the dispersion relation of this nonlocal system. At the time-
interface, the wavevector of the propagating waves is preserved
and is the same as κ0, while ω changes (red and yellow mark-
ers in Fig. 1(b)). The nonlocal interactions were so tailored,
that the dispersion relation of the resulting system has a van-
ishing second partial derivative of frequency with respect to

wavevector, i.e.,
∂2ω

∂κ2

∣∣∣
κ=κ0

= 0 at the wavevector κ0 of the
propagating wave. This means that not only the group-velocity
of the wave is 0, but also that there is no diffusion or spreading
of the wave packet (see [29, 31] for more detailed discussion
of wave-packet diffusion). As a result, there is no splitting of
the wave-packet after the first time-interface, and the propa-
gation of the entire Gaussian wave-packet is stopped, i.e., the
wave is frozen at a location in space for as long as desired
without diffusing. The frozen waves are seen in Fig. 1(c),
as the two vertical straight band portions. At t = 13500, we
implement the second time-interface, at which the nonlocal
interactions are reduced to 0, and we get back to the original
spring-mass chain with N = 1 and k1 = 0.01. At the 2nd

time-interface, the wave packet splits into a forward propagat-
ing wave and a backward propagating wave (corresponding to
the green and pink markers in Fig. 1(b), respectively) with
the frequency-wavevector pair (±ω0, κ0). We observe that the
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Figure 2. Image reconstruction from time-reversed waves in nonlocal
materials: (a) X-t plot of the displacement amplitude showing image
reconstruction from three backward propagating modes. (b) Snap-
shots of the wave displacement profile at different time instants. At
t = 19298, the 3 backward propagating modes reconstruct to form
the image of the source.

backward propagating wave is of negligible amplitude, and
hence can’t be seen in the X − t plot of Fig. 1(c), while the
forward propagating wave dominantly carries the energy of
the system. Negligible to small amplitudes of the backward
propagating wave can be observed depending on the instant at
which one applies the 2nd time-interface (examples provided
in the Supplementary Information document (SI)[32]). Figure
1(d) shows snapshots of the wave displacement, and we see
that from t = 6050 to t = 13500 (instants of first and sec-
ond time-interfaces, respectively), the wave envelop remains
frozen (shown in red) at the location, and starts propagating
again after the second time-interface.

It should be noted that, wave-freezing is not limited to a
specific (ω, κ) pair. Taking advantage of the Fourier series
representation of the dispersion relation (2), one can easily
(analytically) obtain tailored k1, k2, . . . , kN values so that a

flat band (with
∂2ω

∂κ2 = 0) can be obtained for a sufficiently
broad range of κ values (for e.g., see Fig. 2(a) in [29]).

Typically, time modulation of material properties in the pres-
ence of a propagating wave propagating requires energy to be
added to or removed from the system (except in some energy
conserving temporal metasurfaces[33]). For wave-freezing in
1-D, we present the energy exchange associated with the in-
troduction and removal of nonlocal interactions in Fig. S1 of
the SI[32]. We observe that at the 1st time-interface as the
nonlocal spring with stiffness k3 is introduced in the system,
the energy (E) of the system increases by an amount ∆E1,
and the wave is frozen. At the 2nd time-interface, we set
k3 = 0, and energy of the spring-mass system decreases by
an amount ∆E2. Interestingly, when ∆E1 > ∆E2, a small
amplitude of the backward propagating wave is observed, and
when ∆E1 ≈ ∆E2 almost negligible amplitude of the back-
ward propagating wave is observed.

Next, we demonstrate image reconstruction from the time-
reversal of waves in nonlocal 1-D temporal metasurfaces. Con-
sider a 1-D spring-mass chain that has nonlocal interactions
to begin with, we choose, N = 3, with k1 = 0.01, k2 =

0, k3/k1 = 3. The dispersion relation of the nonlocal system
is shown in Fig. S2 by the solid blue curve. When the center
mass of the spring mass chain is forced to oscillate atω = 0.25,
it produces three modes traveling to the right and three modes
traveling to the left (see, SI for more details). At t = 9998,
we model the 1st time-interface, where the spring stiffness
values of the nonlocal springs are reduced to 0, i.e., k3 = 0,
and then after time ∆t = 10 we model the 2nd time-interface
where original stiffness values of the springs are restored,i.e.,
k1 = 0.01, k2 = 0, k3/k1 = 3. TheX−t plot of the displace-
ment amplitude and the snapshots of the displacement profiles
are shown in Figs. 2(a)-(b), respectively. After the 2nd time-
interface, each of the 3 modes splits into a forward propagating
and backward propagating wave in nonlocal material (shown
by the displacement snapshot at t = 12498 in Fig. 2(b)). The
3 backward propagating modes, reconstruct to form an image
of the initial wave packet (see snapshot at t = 19298 in Fig.
2(b)). The case with just a single interface is shown in Fig.
S3 of the SI, where multiple images of the source are obtained
from time-reversed waves consisting of different frequencies.

The wave-freezing mechanism proposed above is robust
even in 2-D which we demonstrate below. In 2-D, we con-
sider masses with out-of-plane displacements (scalar wave
propagation) having nonlocal interactions in both the X and
Y directions. Let N and M denote the number of near-
est neighbors in the X and Y directions, respectively. Let
kx1

(t), kx2
(t), . . . , kxN

(t) denote the spring stiffness values
modeling the nonlocal interactions of the ith nearest neighbor
in the X direction, and let ky1(t), ky2(t), . . . , kyM

(t) denote
the spring stiffness values modeling the nonlocal interactions
of the jth nearest neighbor in the Y direction. The unit cell
of such a 2-D metasurface is shown in Fig. S4 of the SI. For
finite values of N and M , the dispersion relation of such a
nonlocal spring-mass system again turns out to be of the form
of a truncated Fourier series[28], which is given by,

ω2(κ1, κ2) =
−2

m

(
N∑

i=0

kxi
cos (iκ1a)+

M∑

j=0

kyj
cos (jκ2a)

)
,

(3)
where, (κ1, κ2) are wavevectors in the X and Y directions,
respectively (see SI for more information). Wang-Chen et
al.[28] used nonlocal interactions with N = M , to engineer
dispersion relations in acoustic and mechanical metamaterials.
We begin by considering a 2-D spring-mass system with local
interactions only, i.e., N = M = 1 and kx1

= ky1
≡ k1 = 1.

At t = 0, the masses are given an initial displacement in
the form of a Gaussian wave-packet given by the expression,
e−(x2+y2)/1000 sin (0.5x) sin (0.5y), resulting in a wave prop-
agating from the left bottom corner of the 2-D system at an
angle of 45◦ with theX direction, as shown in the displacement
amplitude snapshots at different instants of time in Fig. 3(c).
At the 1st time-interface at t = 100, we introduce nonlocal
springs with stiffness values given by kx3

= ky3
≡ k3 = k1/3,

thus, transitioning from a completely local to a nonlocal sys-
tem with N = M = 3. The dispersion relations of the local
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Figure 3. Wave-freezing in 2-D: (a) Dispersion curves along the BZ
boundary for the local (dotted red curve) and nonlocal (solid blue
curve) systems. (b) Iso-frequency contours of the nonlocal system.
Colorbar represents the ω values. The black arrows represent the
group-velocity vector-field for different (κ1, κ2) values. (c) The
displacement amplitude of the Gaussian wave-packet is shown as
it propagates along a line at an angle of 45◦ with the X-axis. At
t = 100, the local system transitions to a tailored nonlocal system,
and the wave-packet remains frozen at the same-location as long as
the nonlocal interactions are present, i.e., from t = 100 to t =
139. The frozen wave snapshots are highlighted in red color. At the
2nd time-interface when the system becomes local again, the wave
packet splits into a (dominantly) forward propagating wave, and a
backward propagating wave of much smaller amplitude as shown by
the displacement snapshot at t = 198.

and nonlocal systems along the BZ boundary are shown in Fig.
3(a) by the dotted red curve and solid blue curve, respectively
(see SI for details on the BZ boundary). Fig. 3(b) shows the
iso-frequency contours of the nonlocal system as a function
of (κ1, κ2), with the colorbar denoting ω values. The black

arrows show the group-velocity vector field, i.e.,
[ ∂ω
∂κ1

,
∂ω

∂κ2

]
,

and we observe some regions with vanishing group-velocities.
In fact, for the given problem, the values of kx3

, ky3
are so

chosen that, again we not only have zero group-velocity, but
also the Hessian of ω(κ1, κ2) is zero at (κ1, κ2) = (0.5, 0.5),
i.e.,




∂2ω

∂κ1
2

∂2ω

∂κ1∂κ2

∂2ω

∂κ1∂κ2

∂2ω

∂κ2
2



(κ1,κ2)=(0.5,0.5)

= 0. (4)

This is the point seen as the flat portion of the solid curve in Fig.
3(a) in the regionΓ−B. At the time-interface, as we transition
to this nonlocal system the wavevectors, (κ1, κ2) = (0.5, 0.5),
are conserved. As a result, the entire Gaussian wave-packet
is now frozen at the same location for as long as the nonlocal
interactions are present without diffusing. This frozen wave is
shown by the displacement snapshots highlighted in red color
in Fig. 3(c). After sometime, we change kx3 = ky3 ≡ k3 = 0,
at which the frozen wave encounters a 2nd time-interface and
generates in the local system, a forward propagating wave trav-
eling in the same direction as before, and a backward prop-
agating wave (seen at t = 198 in Fig. 3(c)). The forward
propagating wave carries the dominant part of the energy, and
the backward propagating wave is of a relatively small ampli-
tude.

In Fig. 4, we show an interesting case of anomalous re-
fraction at the temporal interface as one transitions from a
local system with kx1 = ky1 ≡ k1 = 1 to a nonlocal sys-
tem with N = M = 3, by introducing nonlocal springs with
kx3

= ky3
≡ k3 = k1. The dispersion curves for the lo-

cal (dotted red) and nonlocal (solid blue) systems along the
BZ boundary are shown in Fig. 4(a). Figure 4(b) shows
the iso-frequency contours of the nonlocal system as a func-
tion of (κ1, κ2), with the colorbar denoting ω values. The
group-velocity vector field represented by the black arrows
shows the regions with negative group-velocities as well as
vanishing group-velocities. Similar representation of the
group-velocity field for the local metasurface is shown in
Fig. S5 of the SI. Figure 4(c) shows the snapshots of the
displacement amplitude of the propagating wave. We con-
sider an initial Gaussian wave-packet given by the expression
e−(x2+y2)/500 sin (0.5x) sin (0.75y), propagating in the local
medium along the dashed black line (the cross-hairs help in
visualizing the direction of propagation of the wave-packet.).
At t = 160, the local system transitions to the nonlocal system
mentioned above, which results into a forward propagating
wave-packet traveling in the second-quadrant and a backward
propagating wave-packet traveling in the fourth-quadrant. If
the temporal metasurface had local interactions only, then the
forward and backward propagating wave packets would travel
in the first and third quadrants only, due to the group-velocity
components being both positive or both negative. Nonlocal
interactions make it possible to have either or both compo-
nents of group-velocity to be negative, as can be seen in Fig.
4(b), thus resulting in this anomalous temporal refraction. The
flexibility offered by such temporal metasurfaces make them
a great candidate for the applications of temporal aiming[12]
and beam steering.

In conclusion, we have proposed novel temporal metasur-
faces that employ time-interfaces introducing engineered non-
local interactions to achieve extreme wave manipulation, es-
pecially focusing on the phenomenon of wave-freezing, that
is of wide-spread interest. The idea is demonstrated in 1-D
and 2-D by using a discrete spring-mass system, and can be
easily extended to three-dimensions. Although the examples
considered in this work deal with waves propagating at a given
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Figure 4. Anomalous temporal refraction: (a) Dispersion curves
along the BZ boundary for the local (dotted red curve) and nonlocal
(solid blue curve) systems. (b) Iso-frequency contours of the nonlocal
system. Colorbar representsω values. The black arrows represent the
group-velocity vector-field for different (κ1, κ2) values. Regions with
one or both components of group-velocity being negative can be ob-
served. (c) The displacement amplitude of the Gaussian wave-packet
is shown as it propagates initially along the black dotted line, and the
black cross-hairs aid in visualizing the direction of propagation of the
wave-packet. At t = 160 (highlighted by the red rectangle), nonlocal
springs with stiffness values of kx3 = ky3 = kx1 are introduced. We
observe anomalous temporal refraction as the wave packet splits into
a forward propagating wave packet that propagates into the second-
quadrant and a backward propagating wave that propagates into the
fourth-quadrant.

frequency-wavevector value, but in principle, the proposed
mechanism is applicable for a broad range of frequency and
wavevector values inside the first BZ, except near the origin.
Nonlocal acoustic and mechanical metamaterials have been
realized in some recent notable works[27, 28]. At present, it
is not clear and requires further thought on how one would
change the strength of nonlocal interactions in such materials
to realize the time-interfaces discussed in this work. Alter-
natively, it is easier to experimentally realize a transmission
line model consisting of inductors, capacitors, and switches
(assuming negligible losses due to resistance) that is exactly
analogous to the spring-mass systems considered in this work
(see SI[32] for more discussion and a proposed model).

The author would like to thank Prof. Graeme W. Milton
at the University of Utah for his helpful discussions and en-
couragement in publishing this work. The author is grateful
to the National Science Foundation for support through grant

DMS-2107926.
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Wave-freezing in Temporal Metasurfaces

S1. ONE-DIMENSIONAL TEMPORAL METASURFACES

A. Energy exchange in one-dimensional temporal metasurfaces for wave-freezing

Here, we present the energy exchange taking place in the 1-D temporal metasurfaces used for

the wave-freezing application. Figure S1 shows two cases of wave-freezing in 1-D. It is well-known

that time-modulation of material properties is typically associated with energy being added to the

system or energy being removed from the system (except, in some energy conserving temporal

Figure S1. Two cases of wave-freezing in 1-D are shown, where the only difference between the two cases is
the instant of time at which the second time-interface is applied. (a),(c) X− t plots of the wave displacement
amplitudes for the two cases. (b), (d) Total energy of the system vs. time plots for the two cases in (a) and
(b), respectively.

2
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metasurfaces1). In both cases, we consider a spring-mass chain consisting of 4000 unit cells, with

a forcing f(t) applied to the center mass of the chain. Initially, the spring-mass chain has local

(nearest-neighbor) interactions only, with all masses having the same mass value m = 1, and the

spring stiffness values given by k1 = 0.01. The forcing function has a Gaussian envelop and is

given by the expression,

f(t) = Ae−(t−1500)2/τ2 cos (ω1t). (S1)

Here, A = 0.1 is the forcing amplitude, ω1 = 0.1414 is the frequency of the forcing, and

τ = 100/ω1 is the parameter controlling the width of the Gaussian envelop. This generates a wave

propagating in the system with the frequency-wavevector value (ω, κ) = (0.1414, 0.5).

In both cases, the first time-interface is applied at t = 4000, at which tailored third-nearest-

neighbor interactions, modeled by nonlocal spring with stiffness k3 = k1/3, are introduced in the

system so that the resulting nonlocal system has
∂2ω

∂κ2

∣∣∣
κ=0.5

= 0, i.e., an inflection point, at the

wavevector value of κ = 0.5. This causes the propagating wave to freeze in both cases, as both the

systems are similar until this point, as shown in Figs. S1(a) and S1(c). The two cases differ from

each other in the instant of time at which we apply the 2nd time-interface. In the first case (Fig.

S1(a),(b)), the 2nd time-interface is applied at t = 6000, and in the second case (Fig. S1(c),(d))

it is applied at a slightly different instant of time, t = 5980. At the 2nd interface, the value of k3
is reduced to 0, and the spring-mass chain now has nearest-neighbor interactions only. The frozen

wave starts propagating again by splitting into a forward propagating and a backward propagating

wave.

Figures. S1(b) and S1(d) show the total energy of the system as it changes with respect to

time for the two cases. We observe that initially the total energy of the spring-mass system is

increasing due to the forcing applied to the center mass. The total energy then remains constant for

a while after the forcing amplitude is reduced to 0 as a result of the Gaussian envelop of the forcing

function. At the 1st time-interface we observe a sudden increase in the total energy associated

with the introduction of nonlocal springs with stiffness value k3. Let this increase in energy at

the 1st time-interface be denoted by ∆E1. At the 2nd time-interface, the total energy suddenly

decreases by an amount ∆E2 as k3 changes to 0. The amount of decrease in total energy is different

(∆E1 ̸= ∆E2) in the two cases, and depends on the instant of time at which the 2nd time-interface

is applied. This is seen from the final total energies in Figs. S1(b) and (d). As the nonlocal springs

may be stretched or compressed by different amounts at different instants of time, it will result in
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different final total energies of the system. Interestingly, we observe that in the first case, when the

final total energy of the system is very close to the total energy before the first time-interface, i.e.,

∆E1 ≈ ∆E2, the backward propagating wave has a negligible amplitude as compared to the second

case, where the final total energy is slightly more than the total energy before the 1st time-interface,

i.e., ∆E1 > ∆E2, and we observe a noticeable amplitude of the backward propagating wave.

This leads us to the interesting question: Can we eliminate backward propagating waves that

appear after the 2nd time-interface by appropriately choosing the instant of the 2nd time-interface,

and what is its relation to the total energy exchange happening in the system? This question needs

further investigation to be answered concretely, and is a topic of further research.

Figure S2. Dispersion curves for the temporal metasurface of Fig. 2 in the main manuscript. Before the
time-interface, the spring-mass chain has nearest and third-nearest neighbor interactions with the dispersion
relation shown by the solid blue curve. The initial wave propagating in the nonlocal chain has three modes
shown by the green markers. At the first time-interface, the nonlocal interactions are reduced to 0, and the
spring-mass chain has local interactions only with the dispersion relation shown by the dotted yellow curve.
The red and blue markers are the (ω, κ) values of the three modes in the local spring-mass chain.
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B. Time-reversed waves in one-dimensional temporal metasurface

Figure S2 shows the dispersion curves of the local and nonlocal spring-mass chains that form

the temporal metasurface used for the 1-D example of Fig. 2 in the main manuscript showing

image reconstruction from time-reversed waves. Here, the center mass of the spring-mass chain

with 18000 unit cells is excited with a forcing that has a Gaussian envelop in time and is of the

form given by Eqn. (S1), with A = 0.1, ω1 = 0.25, and τ = 50/ω1.

We now demonstrate the case where a single time-interface is used to observe multiple re-

constructed images from the time-reversed waves in a 1-D temporal metasurface. Consider a

1-d spring-mass chain that has nonlocal interactions to begin with, we choose, N = 3, with

k1 = 0.01, k2 = 0, k3/k1 = 3. The dispersion relation of this nonlocal spring-mass chain is shown

in Fig. S3(a) by the solid blue curve. The center mass of the spring-mass chain is subjected

to a forcing of the form given in (S1) with A = 0.1, ω1 = 0.25, and τ = 50/ω1. The forced

Figure S3. Time-reversed waves creating multiple images of the source in a 1-D metasurface with a
single time-interface: (a) Dispersion curves ω vs. κ for the temporal metasurface which has nearest and
third-nearest neighbor interactions (solid blue curve) before the time-interface, and only nearest-neighbor
interactions (dotted yellow curve) after the time interface. The green circle markers represent the 3 wave
modes propagating at the same ω value, but different κ values before the 1st time-interface. The red and blue
markers represent the forward propagating and the backward propagating waves, respectively. (b) X− t plot
of the displacement amplitude showing multiple reconstructed images. Colorbar represents displacement
amplitude.
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oscillation produces 3 modes traveling to the right and 3 modes traveling to the left. The 3 right

traveling modes are represented by the green circle markers in Fig. S3(a), which show that they

have the same ω, but different κ values. At t = 9998, we model the 1st time interface, where the

stiffness values of the nonlocal springs are reduced to 0, i.e., k3 = 0, and the stiffness of local

springs is increased to k1 = 0.51. The X − t plot of the displacement amplitude is shown in Fig.

S3(b), where the colorbar represents the displacement amplitude. When the propagating modes

encounter the 1st time interface, they are propagating in a material that has local (nearest-neighbor)

interactions only (dispersion relation shown by yellow curve in Fig. S3(a)), and the 3 propagating

modes now split into modes which have different ω and κ values (shown by red and blue markers in

Fig. S3(a)). The modes corresponding to the red markers form the forward propagating wave and

the modes corresponding to the blue markers form the backward propagating wave. The backward

propagating wave, consisting of 3 modes with different (ω, κ) values, reconstructs to form three

images of the initial wave-packet response. Each of the modes has a distinct value of the pair

(ω, κ), that results in each mode traveling with a different group-velocity as determined by the

point on the dispersion curve. The different group-velocities of the time-reversed waves result in

multiple images, three in this case (two of the modes have group-velocity values very close to each

other and can be seen to form almost overlapping images). Thus, using a single time-interface in

the 1-D spring-mass chain, given a wave propagating at single frequency, we can obtain multiple

reconstructed images at different instants of time from waves with different frequencies.

S2. TWO-DIMENSIONAL TEMPORAL METASURFACES

Figure S4 shows the unit cell for the two-dimensional spring-mass systems used in the 2-D

numerical simulations presented in the main manuscript. The 2-D unit cell is a square lattice

with lattice constant a = π. The schematic shows a mass interacting with the first, second, and

third-nearest masses in both, the X , and Y directions. The examples shown in Fig. 3 and Fig. 4 of

the main manuscript, consider the same number of nonlocal interactions in the X and Y directions,

i.e., N = M . The nonlocal interactions are modeled by springs with stiffness values given by

kx1(t) = ky1(t) ≡ k1(t), kx2(t) = ky2(t) ≡ k2(t), and kx3(t) = ky3(t) ≡ k3(t).

In general, the number of nonlocal interactions in the X and Y directions can be different,

i.e, N need not be equal to M . The scalar displacements of the masses at the location (xi, yj) is

denoted by ui,j(t). With all the masses having the same mass value m, the equation of motion for
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Figure S4. Unit cell for the 2-D spring-mass system with nearest, second-nearest, and third-nearest neighbor
interactions modeled by springs with stiffness values given by k1(t), k2(t), and k3(t), respectively, in both,
the X and Y directions. The spring-mass system models the 2-D temporal metasurface of phononic crystals
that have the strength of nonlocal interactions changing discontinuously with respect to time.

the displacement ui,j is given by,

müi,j =
N∑

p=1

kxp (ui+p,j − 2ui,j + ui−p,j) +
M∑

q=1

kyq (ui,j+q − 2ui,j + ui,j−q) , (S2)

For the 2-D examples of wave-freezing and anomalous temporal refraction shown in Figs. 3 and

4 of the main manuscript, a finite difference code was implemented in MATLAB to solve initial

value problems. A sufficiently large domain of 300 × 300 unit cells is considered with fixed-end

boundary conditions, so that reflection of waves from the boundary does not affect the observations

to be made from the numerical experiments.

For both the examples in 2-D, we start by considering a spring-mass system with local inter-

actions (nearest-neighbor interactions) only, i.e., N = M = 1, and kx1 = ky1 = 1,m = 1, and

a = π. The initial displacement u0(x, y) of the masses is given by a Gaussian function of the form,

u0(x, y) = e−(x2+y2)/1000 sin (κ1x) sin (κ2y). (S3)

For the wave-freezing problem we choose (κ1, κ2) = (0.5, 0.5), and for the problem of anomalous

temporal refraction we choose (κ1, κ2) = (0.5, 0.75). The initial wave-packet splits into four

packets, propagating in the four quadrants of the X − Y axes. For brevity, using the symmetry of

the problem (without any loss of generality), the numerical results in the main manuscript for the
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Figure S5. Iso-frequency dispersion contours of the 2-D spring-mass system with local (nearest-neighbor)
interactions only, N = M = 1. The spring stiffness values are kx1 = ky1 = 1, all mass values are m = 1,
and the lattice constant has the value a = π. The black arrows denote the group-velocity vectors as a
function of the wavevectors (κ1, κ2). Colorbar denotes frequency (ω) values.

wave propagation are shown in the positive X and positive Y domain only.

Figure S5 shows the iso-frequency dispersion contours of the 2-D spring-mass system with local

(nearest-neighbor) interactions only, that is used in both these examples. The colorbar represents

frequency (ω) values. The black arrows represent the group-velocity vectors as a function of

(κ1, κ2). The arrows show that for κ1, κ2 ≥ 0, the group-velocity is positive everywhere.

Figure S6(a) and Fig. S6(b) show the iso-frequency dispersion contours of the nonlocal spring-

mass systems used for the 2-D examples of wave-freezing and anomalous temporal refraction. The

irreducible Brillouin Zone (BZ) is represented by the black triangle. In Figs. 3(a) and 4(a) of the

main manuscript, the frequency (ω) values are plotted for wavevector values along the boundary

of these Brillouin Zones shown here. The points of the triangle (BZ) are Γ = (0, 0), B = (1, 1),
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Figure S6. Dispersion surface colormaps: (a) Colormap of the dispersion surface of the nonlocal spring-
mass system used in the 2-D wave-freezing example in Fig. 3 of the main manuscript. The first BZ boundary
is shown by the solid black triangle Γ −A−B. Thin black curves represent the iso-frequency contours. (b)
Colormap of the dispersion surface of the nonlocal spring-mass system used in the 2-D anomalous temporal
refraction example in Fig. 4 of the main manuscript. The first BZ boundary is shown by the solid black
triangle Γ −A−B.

and A = (0, 1).

S3. PRACTICAL REALIZATION OF TEMPORAL METASURFACES

The time-modulation of material properties of the temporal metasurfaces discussed in this work

may be easily achieved in an analogous electrical setting by constructing a transmission line model

using inductors, capacitors, and switches, and assuming negligible loss due to the resistance. In an

equivalent electrical circuit, the inductor represents a mass and the capacitor represents a spring.

The inductance L of an inductor is analogous to the mass value m, and the capacitance C of the

capacitor is analogous to the reciprocal of the spring stiffness value k. The temporal metasurfaces

considered in this work require changing the stiffness values of the local and nonlocal springs in the

system, with the masses being unchanged. It is relatively easier to change the capacitance values

in an electrical circuit than changing the spring stiffness values in a spring-mass system, and the

electrical circuit gives a more precise control for time-modulation of properties. For more details

on transmission line models, the reader is referred to the work of Lurie et al.2,3, where transmission

line models were used to model space-time laminates and space-time checkerboards.

Here, we propose an example transmission line model, shown in Fig. S7, that is analogous to
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Figure S7. A proposed transmission line model analogous to the 1-D spring-mass system used for wave-
freezing in Fig. 1(a) of the main manuscript. The ith mass mi is identical to the inductor Li, and the
spring is analogous to a capacitor (with spring stiffness value analogous to the reciprocal of the capacitance).
Here, the local and nonlocal interactions of the mass mi with its nearest and third-nearest-neighbors are
highlighted by showing equivalent connections in the LC circuit for the inductor Li (shown in red). Using
the switches s1, the system can transition from a system with only nearest-neighbor interactions to a system
with nearest and third-nearest neighbor interactions, and vice-versa.

the spring-mass system in Fig. 1(a) of the main manuscript. To mimic this spring-mass system, we

need to be able to introduce third-nearest neighbor interactions in the transmission line. This can

be obtained by connecting the ith inductor with inductance Li to the inductors Li+3 and Li−3 by a

capacitor with capacitance C3. By closing the switches s1, we get a system analogous to the spring-

mass system with nearest and third-nearest neighbor interactions, and by opening the switches s1
we get an analogous system to the spring-mass system with nearest-neighbor interactions only.

Finally, it is worth noting that G. W. Milton and O. Mattei4,5 introduced field patterns, which is a

new type of wave possible in space-time microstructures that does not result in chaotic disturbances.

With regards to the wave-freezing problem considered in this work, for future work it is interesting

to investigate if one can find frozen field patterns and pose inverse design problems to find the

associated space-time microstructures.
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