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The statistics of quantum transport in nanostructures can be tailored by a time-dependent bias
voltage V (t). We demonstrate experimentally how correlations of current fluctuations at two dif-
ferent times t and t + τ depend on the shape of V (t) via the phase accumulated by the electronic
wavefunctions between t and t+ τ . For this we measure the current-current correlation of the shot
noise of an ac+dc biased tunnel junction using a 10 GHz bandwidth, time-resolved detection. Our
result allows to explore correlations within a single excitation period. It demonstrates the coun-
terpart of the ac Josephson effect in superconducting junctions, to a normal, non-superconducting
mesoscopic device.

Probing electron transport in coherent conductors be-
yond the average current is essential to capture how
quantum correlations affect the statistics of electrical cur-
rent. The effect of a time-dependent voltage V (t) on
the current-current correlator has attracted a long last-
ing, both experimental and theoretical interest. The
current noise spectral density at frequency f = ω/2π,
i.e. S(ω) = ⟨I(−ω)I(ω)⟩ in the presence of an ac
excitation of various shape (sinusoidal[1], shifted sinu-
soidal [2], bi-harmonic[3], Lorentzian[4]) at another fre-
quency f0 = Ω/2π has been observed in various quan-
tum systems (tunnel junction, diffusive wire, quantum
Hall edge states, etc.) and interpreted in terms of photo-
assisted noise [1, 2], spectroscopy of the distribution
function [3, 4], as well as quantum tomography of elec-
tronic signals [5, 6]. The same ac excitation has been
shown to induce correlations between currents at dif-
ferent frequencies, captured by the noise susceptibilities
βn(ω) = ⟨I(ω)I(nΩ− ω)⟩ with n integer[7, 8], leading
to the generation of squeezed vacuum in the microwave
domain[9]. All these experiments can be accounted for
by a single, simple formula which is enlightening in time-
domain[10]. For a conductor with low transmission like
a tunnel junction, it reads:

⟨I(t)I(t+ τ)⟩ = Seq(τ) cos[Φ(t, t+ τ)] (1)

with

Φ(t, t+ τ) =
e

ℏ

∫ t+τ

t

V (t′)dt′ (2)

the phase accumulated by electronic wave functions be-
tween t and t+ τ due to the applied voltage, and Seq(τ)
the current-current correlator at equilibrium, indepen-
dent of t (for a general conductor, one has to multiply
the r.h.s. of Eq.(1) by the Fano factor F , and add the
voltage-independent contribution (1 − F )Seq(τ), to re-
cover the equilibrium noise when V = 0). These formulas
are direct consequences of the voltage across the sample
acting on the phase of the electronic wavefunctions[11].
They bear strong similarities with Josephson equations
for the supercurrent Is(t) in a voltage-biased supercon-
ducting tunnel junction: Is(t) = Ic sinΦ(t) with Φ(t)

given by Eq.(2) where e has to be replaced by 2e, the
charge of a Cooper pair, and the integral spans from −∞
to t. In a superconductor all the electrons have the same
phase and the action of the voltage on that phase is visi-
ble in the average current. In a normal metal all electrons
have different phases but the voltage acts equally on all
of them. As a consequence, the average current follows
Ohm’s law, but according to Eq.(1) the current-current
correlator reveals the direct coupling between the applied
voltage and the phase of the electronic wavefunctions (in
the particular case of a ballistic system, a single volt-
age pulse has been predicted to generate oscillations of
the current analoguous to the ac Josephson effect [12]).
While causality implies that the current-current correla-
tor cannot depend on V after t+τ , nothing prevents it to
depend on the past of the voltage before t. Eq.(1) claims
that it does not: only the voltage between t and t + τ
matters. In contrast, the supercurrent at any time in the
Josephson junction depends on the voltage at all times
in the past.

Usual experiments, by averaging over time, have ob-
served consequences of Eq.(1) integrated over t. In
particular, the usual noise spectral density S(ω) =
⟨I(ω)I(−ω)⟩ corresponds to the Fourier transform with
respect to τ of ⟨I(t)I(t+ τ)⟩ averaged over the time
t. From the frequency dependence of S(ω), the τ -
dependence of the current-current correlator can be
reconstructed, leading to the observation of Pauli-
Heisenberg oscillations for a time-independent bias
voltage[13]. But the dependence on t cannot be recovered
from these experiments, and as far as we know Eq.(1) has
never been experimentally validated for a time-dependent
voltage. Here we provide the time-domain measurement
of current-current correlators synchronously with an ac
sinusoidal excitation at frequency f0 = 4GHz. This al-
lows us to explore correlations in current fluctuations in-
side a single excitation period, to define phase-dependent
noise and deduce noise susceptibilities and time / fre-
quency Wigner functions, all in agreement with predic-
tions from Eq.(1).

Phase-dependent noise. In the following we show an
experiment that aims at demonstrating the validity of
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FIG. 1. Schematics of the experimental setup. The φ symbol
represents a mechanical variable delay, the Att. symbol the
attenuation along the excitation line, which is distributed at
different temperatures.

Eq.(1). In order to measure the average current-current
correlator, one must experimentally use a periodic exci-
tation and take the average over many repetitions of the
same excitation. We have chosen to work with a sine-
wave excitation on which a dc voltage is superimposed,
which is enough for our goal: V (t) = Vdc + Vac cosΩt.
The current-current correlator ⟨I(t)I(t+ τ)⟩ is also pe-
riodic in t, so the initial time t plays the role of a
phase ϕ = Ωt. We define the phase-dependent noise
Sϕ(τ) = ⟨I(ϕ/Ω)I(ϕ/Ω+ τ)⟩, which can be expanded
in terms of a Fourier series:

Sϕ(τ) =
∑

n

βn(τ)e
inϕ (3)

The real functions Re[βn(τ)] and Im[βn(τ)] represent the
nth harmonic of the in-phase and in-quadrature response
of the noise to the ac excitation. We will also consider the
Fourier transform of the phase-dependent noise, Sϕ(ω),
which represents a phase-dependent spectrum. The noise
spectral density S(ω) usually considered in the literature
corresponds to the average of Sϕ(ω) over ϕ. Sϕ is 2π-
periodic in ϕ, and its Fourier coefficients are given by:
βn(ω) = ⟨I(ω)I(nΩ− ω)⟩ i.e., they are the noise sus-
ceptibilities, which measure the correlations between two
Fourier components of the current at frequencies sepa-
rated by nΩ [7, 14]. And β0(ω) = S(ω).
Wigner distribution function. While the definition of

the phase-dependent noise spectra presented above is
quite natural and makes a clear link with the noise sus-
ceptibilities, it suffers from being a complex quantity, un-
like S(ω), since in general ⟨I(t)I(t+ τ)⟩ is not an even
function of τ . The Wigner distribution function W (t, ω)
of the time-dependent current I(t), defined as the Fourier
transform with respect to τ of ⟨I(t− τ/2)I(t+ τ/2)⟩ is
also a real quantity, closely related to Sϕ(ω). It is given
by:

W (t, ω) =
∑

n

Mn(ω)e
inΩt (4)
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FIG. 2. Voltage excess noise ∆S(τ, Vdc) as a function of
eVdcτ/h = Φdc/(2π) for various times τ in the absence of
an ac excitation.

with Mn(ω) = βn(ω + nΩ/2). W (t, ω) is indeed real
since βn(ω) = βn(nΩ − ω) = β−n(−ω)∗. We discuss
later its link with the electronic Wigner function, another
quantity that has been shown to be a key concept to
perform tomography of quantum signals[5, 6, 15, 16].

Experiment. The experiment, presented in Fig.1, is
conceptually very simple: the sample, a tunnel junc-
tion of dc resistance 40Ω, is ac+dc biased through a mi-
crowave coupler and bias tee; the noise it generates is
amplified, digitized and recorded. From the time traces
we calculate the correlators Sϕ(τ). The ac excitation is
at frequency f0 = 4GHz and the digitization takes place
at a pace of 32GS/s, so we have access to 8 points per
cycle, i.e. 8 values of ϕ (or a time resolution of 31.25ps).
For each ϕ the current-current correlator is computed
on the fly for 128 values of τ , i.e. from -2 to +2ns,
which is much greater than the decay time of the cor-
relations [17]. It is then averaged over many repetitions.
Since the data averaging takes days, it is crucial to en-
sure that the digitization clock and the excitation of the
sample remain phase-locked over very long periods. To
achieve this we regularly measure the phase of the 4GHz
excitation that is reflected on the sample and digitized
together with the sample noise. The phase drift is cal-
culated then corrected by a motorized mechanical phase
shifter on the excitation line. This ensures a phase varia-
tion of less than one degree over weeks. A special care has
to be taken in the calibration process. As usual in noise
measurements, the power gain and noise temperature of
the setup are obtained by applying a large dc voltage
on the sample and measuring noise vs. voltage[18]. In
this limit the noise of the junction is simply the classical
shot noise eVdc/R. But time domain measurements are
affected not only by the gain or attenuation of the setup,
but also by its phase response. Indeed, noise suscepti-
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bilities involve the complex gain at different frequencies,
and the frequency-dependent phase response of the setup
matters. To calibrate out that effect we again consider
the classical limit of shot noise. In this limit the noise
of the junction follows instantaneously the applied volt-
age, i.e. ⟨I(t)I(t+ τ)⟩ = eV (t)δ(τ)/R. Thus the noise
susceptibilities are real and independent of frequency:
βn(ω) = e/R. Measuring the noise susceptibilities in
this regime provides a calibration of the phase response
of the experimental setup. The averaged current-current
correlator is deconvolved by the response function of the
setup to provide the calibrated experimental data shown
in the following.

Results: dc bias only. In the absence of ac bias,
Vac = 0, our experiment allows for a wide bandwidth
measurement of the noise spectral density S(ω) vs. fre-
quency in the presence of a dc voltage, as in [13]. From
these data we can compute the so-called voltage ex-
cess noise ∆S(τ, Vdc) = S(τ, Vdc) − S(τ, Vdc = 0), with
S(τ, Vdc = 0) = Seq(τ). This quantity, once put in time
domain, has been shown theoretically a long time ago to
oscillate as[19]:

∆S(τ, Vdc) = −Seq(τ) sin
2 Φdc (5)

which is nothing but a special case of Eq.(1) for a con-
stant bias voltage. Φdc is the phase generated by the dc
voltage, Φdc = eVdcτ/ℏ. We provide the experimental
validation of this formula in Fig.2. These data have been
obtained by sweeping the dc voltage bias and measure
the current-current correlations vs. τ for each voltage.
They make it clear that the voltage enters via the flux
Φdc. From these data, taking Φdc = π/2 provides a mea-
surement of the equilibrium noise in time domain. At
zero temperature, Seq(τ) = −ℏ/τ2. The divergence at
short time relates to the noise spectral density behaving
as Gℏω at high frequency. It corresponds to the zero-
point motion of electrons. Seq(τ) is negative at short
time as a result of the Pauli exclusion principle.

Phase resolved noise. To focus on the phase-
dependence of the noise we remove the phase-
independent part β0 = S to define, both in time- and
frequency domains, ∆ϕS = Sϕ − S, which is shown in
Fig. 3 as a function of τ for different phases ϕ. Agree-
ment between experiment (symbols and dashed lines) and
theoretical predictions of Eq.(1) (solid lines) is very good.

In order to get a deeper insight into the observed be-
haviour of ∆ϕS(τ), we calculate it for a small ac excita-
tion and find:

∆ϕS(τ) ≃ Seq(τ)Φac(ϕ, τ) sinΦdc(τ) (6)

It is a combination of an oscillation vs. the dc flux,
an oscillation due to the ac excitation, since Φac =
z sin(Ωτ/2) cos(ϕ+Ωτ/2), and a decay. Here z =
eVac/(ℏΩ).
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FIG. 3. Phase-dependent part of the time-domain noise Sϕ(τ)
vs. time τ for Vdc = 12.1µV and Vac = 3.63µV. Symbols
linked by dashed lines are experimental data, solid lines are
theoretical prediction of Eq.(1) for T = 38mK.

The theory in Fig. 3 is very close to Eq.(6) since
|Φac| ≤ z = 0.24 ≪ 2π. The curves show various sym-
metries: they are even functions of τ for ϕ = 0 and
π, and odd for ϕ = π/2 and 3π/2. This comes from
the symmetries in the excitation voltage: cos(ϕ+Ωτ) =
cos(ϕ− Ωτ) for ϕ = 0 or π, and cos(ϕ+Ωτ) =
− cos(ϕ− Ωτ) for ϕ = π/2 or 3π/2. There is no par-
ticular symmetry for ϕ = π/4. The curves have crossing
points. This comes from the total phase Φ = Φdc + Φac

accumulated by the voltage being the same for these
curves, for example ϕ = 0 and ϕ = −π/4 correspond
to the same phase for Ωτ = π/4. However in the first
case the ac voltage decays from its maximum value Vac

to Vac/
√
2 whereas in the second it grows from Vac/

√
2

and keeps increasing to reach Vac. In both cases the past
of the time-dependent voltage is totally different. Yet
Sϕ is the same, in agreement with the fact that only the
voltage between t and t+ τ matters via the accumulated
phase.

In Fig. 4 we show the real part, imaginary part and
modulus of βn(τ), i.e. the noise susceptibility in time
domain, for n = 1 at Vdc ̸= 0 (left) and n = 2 at Vdc = 0
(right). At equilibrium, V (t) oscillates between ±Vac at
frequency Ω. One expects the noise to respond at twice
that frequency, i.e. β1 = 0, thus we show the case n = 2
at zero dc bias (we indeed observe β1 ≃ 0). Both real and
imaginary parts of βn(τ) show a fast oscillation modu-
lated by a slow decay. The modulus |βn(τ)| decays con-
tinuously at long times without oscillating. In order to
understand this behaviour we introduce the coefficients
Mn(τ) of the Fourier series decomposition of the Wigner
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function W (t, τ):

W (t, τ) =
∑

n

Mn(τ)e
inΩt (7)

Mn(τ) are the Fourier transform of Mn(ω), see Eq.(4).
The definitions of Sϕ and W imply: βn(τ) =
Mn(τ) exp(inΩτ/2). From Eq.(1), it is easy to show that
for an excitation that has a symmetry point in time,
i.e. V (−t) = V (t), Mn(τ) is real. This implies that
βn(τ) is purely real for τ = 0 and alternates from being
purely real to purely imaginary every τ = π/Ω, while
|Mn(τ)| = |βn(τ)| acts as an envelope for the oscillation
at frequency nΩ/2 of βn(τ). This is precisely what is
observed in Fig. 4 with π/Ω = 125ps, i.e. half the period
of V (t). Oscillations occur indeed twice as fast for n = 2
(right) than for n = 1 (left).
Figs. 3 and 4 report time-domain, direct measure-

ments of the Wigner distribution function of the shot
noise generated by the tunnel junction. This is the
Wigner function of the detected signal. A few experi-
ments have achieved the measurement of the electronic
Wigner function We(t, ω) [5, 6] in quantum Hall edge
channels, by measuring the shift in zero frequency noise
caused by the addition of a small ac sinusoidal signal at
frequency nΩ, as suggested in [20]. The extra ac excita-
tion causes a change in W (t, τ), with a modulation in τ
at frequency nΩ/2, similar to Eq.(6). From this the noise
at zero frequency can be computed by averaging over the
time t and integrating over τ . While there is clearly a
link between We and W , a theoretical effort is called for
to make the mathematically sound connection between
them.

Conclusion. We have experimentally demonstrated
how a time-dependent voltage acts on the correlations
in current fluctuations taken at different times, via the
phase accumulated by electrons. This is the corner
stone for the generation of quantum microwaves by elec-

tron quantum transport. While squeezing and entan-
glement between electromagnetic fields at two differ-
ent frequencies has been demonstrated using ac-excited,
non-superconducting quantum conductors[9, 21, 22], our
time-domain experiment may yield to the detection of
similar properties where the quadratures of the electro-
magnetic field, given by sine and cosine at a given fre-
quency, need to be extended to time-domain [23] and the
excitation voltage engineered accordingly, using Eq.(1).
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