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We consider an electron confined in a gated nanowire quantum dot (NQD) with arbitrarily strong
spin-orbit coupling (SOC) and weak static magnetic field, and treat the latter as a perturbation to
seek the maximal spin-motion entangled states associated with the exact general solutions of the
perturbed equations. From the boundedness and self-consistence conditions of the general solutions
we find two corrected energies to any n level of the unperturbed system, which have level splitting
being much less than the unperturbed level-difference and correspond to a spin-orbit qubit. We
demonstrate the metastability of the two-level states and the decoherence-averse effect of SOC,
meaning insensitivity of the qubit to the local perturbations and the weak noise from environment.
We suggest an alternative scheme to perform the qubit control, simply by adjusting the orientation
of magnetic field to produce the quantized phase jumps for any fixed SOC. Such an adjustment can
lead to the spin flipping of the state vectors and the position exchanging of the probability-density
wavepackets which can be proposed as the non-Abelian quasiparticles. The results could be directly
applied to a weakly coupled array of NQDs for coherently encoding the robust spin-orbit qubits.
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I. INTRODUCTION

Electrons confined in a nanowire quantum dot (NQD)
with spin-orbit coupling (SOC) have been studied and
many important results were found [1–6]. The spin-up
and spin-down internal states of the system can be entan-
gled by the external motional states to form a spin-orbit
qubit. Phase coherence of the motion states can be used
to manipulate the qubit [7–9]. Coherent manipulation of
electron spins is one of the central problems of spintron-
ics [10–12] and is essential for spin-based quantum com-
puting and information processing [11]. The previous
investigation has paved the way for manipulating elec-
tron spins in nanowire quantum-dot-electron chain indi-
vidually [13, 14]. Recently, the search for non-Abelian
quasiparticles in semiconducting NQDs with strong SOC
has been a focus of theoretical and experimental efforts
[3, 15–20], motivated by their potential utility for fault
tolerant topological quantum computation [21–27]. A
Majorana particle [19, 27–29] is an electrically neutral
non-Abelian anyon [21, 30, 31] identical to its own an-
tiparticle. Interchanging the Majorana particles changes
the state of the system in a way that depends only on
the order in which the exchange was performed, which is
cornerstone of the braiding operations for encoding topo-
logical qubits [21]. It has also been demonstrated theo-
retically [32, 33] and experimentally [3, 34, 35] that the
elusive Majorana particles can be detected in some one-
dimensional (1D) systems, including the semiconducting
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NQD with strong SOC and large g factor [3, 18], and in
proximity to a superconductor. One of the current main
objectives may be the investigation of novel alternative
models for searching non-Abelian Majorana-like quasi-
particles [36, 37]. In the manipulation of electron spins,
a key element is the ability to induce transitions between
the spin states and to prepare their arbitrary superposi-
tions. This is commonly accomplished by magnetic res-
onance or via a local ac electric field [1, 2, 5, 6, 13, 14].
Here we will provide an alternative scheme to accom-
plish it by adjusting the orientation of the static mag-
netic field, which is in equivalent to simply exchanging
two wavepacket-based non-Abelian quasiparticles.

The considered NQD system is a harmonically trapped
electron with the Rashba-Dresselhaus coexisted SOC and
subject to a static magnetic field. The governing two-
component Schrödinger equation has the exact complete
solution with different constants for the zero magnetic
field case [6] or under a modulation resonance condition
with the corresponding strong magnetic field in the or-
der of the harmonic trapping [38, 39]. However, in the
actual experiments [5], the magnetic field is much weaker
than the harmonic trapping, which leads to that the ex-
act solution is proven to be challenging. Treating the
weak magnetic field as a perturbation, the perturbed
solutions in series form have been constructed [6] that
leads to some interesting results, including a pathway
for encoding the spin-orbit qubit and a method for de-
termining both the SOCs in the nanowire. It is worth
noting that the normative quantum perturbation theory
[40, 41] supposed the energy eigenfunctions of the un-
perturbed equation as a complete orthogonal basic vec-
tor (in Hilbert space) which was applied to expand the
corrected wave function as a series. Unfortunately, to
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avoid divergence of the series, the uncomplete orthog-
onal set lacking one basic vector was actually adopted.
It has been proved that [41] if the missing component
is added into the perturbed series, the corrected wave
function may increase a phase factor which is unimpor-
tant for the uncoupled Schrödinger equation. But for
the coupled two-component Schrödinger equation gov-
erning a two-spin system with SOC, such a phase fac-
tor may cause important coherence effect. Here we will
apply a different quantum perturbation theory to avoid
the loss of the coherence effect. In the previous works
[42, 43], we suggested an alternative theory for treating
stationary-state quantum perturbation, which is based
on the exact general solution of the single perturbed
equation with arbitrary energy constants to be deter-
mined by the physical conditions called the boundedness
conditions of the perturbed solutions. The general solu-
tion of a system can describe all properties of the sys-
tem and more physics than any particular solution can.
For a SO coupled system, the exact general solutions of
two perturbed equations and the corresponding bound-
edness conditions warrant attention. Given the general
solution and the corresponding physical conditions, we
are interested in how the wavepackets identical to the
norms of the motional states replace the vortices in Refs.
[21, 44] as the Majorana-like quasiparticles. Such quasi-
particles behave as electroneutrality without Coulomb in-
teraction between them, so that their interchange in one
spatial dimension becomes possible with one wavepacket
going through another without the classically impenetra-
ble barrier [38, 39, 45].

In this paper, we consider an electron confined in
a gated NQD with Rashba-Dresselhaus coexisting SOC
and weak static magnetic field, and treat the latter as
a perturbation to seek the coherent superpositions of
the two spin states, which just is the maximal spin-
motion entangled states [7, 8, 46, 47]. For any unper-
turbed n level with ground state n = 0 we obtain two
coupled perturbed equations of the motinal states and
their exact general solutions. From the boundedness and
self-consistence conditions of the general solutions we
find two corrected energieshe with level splitting being
much less than the unperturbed level difference, which
correspond to a spin-orbit qubit. We demonstrate the
metastability with high lifespan of the qubit by calcu-
lating the Einstein’s spontaneous radiation coefficients
[41]. This transparently reveals the qubit’s insensitivity
to the local perturbations and the weak noise from en-
vironment, and implies the decoherence-averse effect of
SOC. The quantization of phase-difference between the
two motinal states are found, which depends on the ori-
entation of magnetic field for arbitrary fixed SOC. Thus
the qubit can be coherently manipulated by adjusting
the orientation of magnetic field. We show that such a
quantized phase jump results in the spin flipping of the
spin-motion entangled states and the position exchange
of the probability-density wavepackets occupying the dif-
ferent spin states. The quantum quasiparticles described

by the wavepackets can be proposed as the Majorana-like
quasiparticles obeying the non-Abelian interchange after
which the new state cannot be expressed as a product
of the old state and a phase factor. Based on that the
spin-orbit qubit can respond to both magnetic and elec-
tric fields [6], the results could be directly applied to an
array of electrons separated from each other by differ-
ent NQDs with weak neighboring coupling for coherently
performing the robust quantum logic operations via the
electric-magnetic combined modulations.

II. EXACT GENERAL SOLUTIONS OF THE
PERTURBED EQUATIONS

We consider a single electron confined in a gated NQD
with Rashba-Dresselhaus coexisted SOC and a 1D har-
monic well controlled by the gate voltages on the static
electric gates, and subject to a weak static magnetic field
[48, 49]. The Hamiltonian governing the system reads [6]

H = H0 + αDσxp + αRσyp +
1

2
g(σx cos θ + σy sin θ),

H0 = −
1

2

∂2

∂x2
+ 1

2
x2, (1)

where we have adopted the natural unit system with
h̵ = m∗ = ω = 1 so that time, space and energy are

in units of ω−1, Lh =
√
h̵/(m∗ω) and h̵ω. Here [50]

m∗ = 0.014me is the effective electron mass with me the
free-electron mass, ω denotes the harmonically trapped
frequency, αR(D) is the structure-related Rashba (bulk-
originated Dresselhaus) SOC strength, σx(y) is the x(y)
component of Pauli matrix, g = geµBB with ge de-
noting the gyromagnetic ratio [51], µB being the Bohr
magneton, B and θ the strength and orientation of the
static magnetic field. Applying the usual state vector
∣ψ(t)⟩ = ∣ψ↑(t)⟩∣ ↑⟩+ ∣ψ↓(t)⟩∣ ↓⟩, the space-dependent state
vector is defined as

∣ψ(x, t)⟩ = ⟨x∣ψ(t)⟩ = ψ↑(x, t)∣ ↑⟩ + ψ↓(x, t)∣ ↓⟩ (2)

with ψ↑↓(x, t) = ⟨x∣ψ↑↓(t)⟩ being the motional states en-

tangling the corresponding spin states ∣ ↑⟩ = ( 1
0
) and

∣ ↓⟩ = ( 0
1
), respectively. The normalization constants

have been implied in the motional states. The spin-orbit
entanglement of Eq. (2) requires the linear independen-
cies [46, 52] of the probability amplitudes ψ↑(x, t) and
ψ↓(x, t). The probabilities of the particle occupying spin
states ∣ ↑⟩ and ∣ ↓⟩ read P↑↓(t) = ∫ ∣ψ↑↓(x, t)∣2dx. The
maximal spin-orbit entanglement can be associated with
[46] P↑ = P↓ = 1

2
. Applying Eqs. (1) and (2) to the

Schrödinger equation i∂∣ψ(x,t)⟩
∂t

= H ∣ψ(x, t)⟩ and taking
into account the stationary state solutions ψ↑↓(x, t) =
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e−iEtψ↑↓(x) yields the coupled matrix equation [38, 39]

E ( ψ↑(x)
ψ↓(x) ) = H0 (

ψ↑
ψ↓
) − iα ∂

∂x
( e
−iφψ↓
eiφψ↑

) + g
2
( e
−iθψ↓
eiθψ↑

) ,

α =
√
α2
D + α2

R, φ = arctan
αR
αD

, (3)

where we have used the definitions of the SOC strength
and SOC-dependent phase as [6] α ∈ [0,3] and φ ∈
[0, π/2] for the Rashba-Dresselhaus SOC coexistence sys-
tem.

Note that in the usual experiments [1, 2, 5], the Zee-
man splitting (g ∼ 1µ eV) is much less than the orbit

splitting (h̵ω ∼ 1meV). Therefore, we can treat the term
being proportional to g of Eq. (3) as a perturbation. To
decoupled the unperturbed terms, we make the function
transformations

ψ↑↓(x) =
1

2
e∓iφ/2[u(x)e−iαx ± v(x)eiαx]. (4)

Here ‘↑’ corresponds to the above signs of ‘∓’ and ‘±’,
and ‘↓’ the below signs, respectively. Inserting Eq. (4)
into Eq. (3), then multiplying the first line of the matrix

equation by ei(φ/2+αx) and multiplying the second line of
the equation by e−i(φ/2+αx), we obtain

E ( u
v
) = (H0 −

α2

2
)( u

v
) + 1

2
g ( e−i(θ−φ)(u − vei2αx) + ei(θ−φ)(u + vei2αx)

e−i(θ−φ)(ue−i2αx − v) − ei(θ−φ)(ue−i2αx + v) )

= (H0 −
α2

2
)( u

v
) + 1

2
g ( cos(θ − φ)u + i sin(θ − φ)ei2αxv
−i sin(θ − φ)e−i2αxu − cos(θ − φ)v ) . (5)

In the SOC-magnetism phase-locked case [38, 39] θ = φ
and under a modulation resonance with the magnetic
field strength being in order of the trap frequency, we
have obtained the exact stationary-state solutions of Eq.
(5). However, for arbitrary angle θ and strength g, the
final term of Eq. (5) cannot be decoupled, so it is hard
to construct an exact solution of the system. The corre-
sponding perturbed solution of series form has been con-
sidered in Ref. [6] by using the usual method [41], which
supplies a way to encode the spin-orbit qubits. Here
we are interested in the exact general solutions of the
first-order perturbed equations, by applying our differ-
ent quantum perturbation theory [42, 43]. Thus we will

find that there exist the boundedness and self-consistence
conditions of the exact solutions which result in some new
and interesting physics.

We adopt the Rayleigh-Schrödinger perturbation ex-
pansions up to any jth-order

u(x) =
j

∑
i=0

u(i), v(x) =
j

∑
i=0

v(i), E =
j

∑
i=0

E(i) (6)

for j = 1,2,⋯. Substituting Eq. (6) into Eq. (5) yields
the decoupled zeroth-order equations and any j-th order
perturbed equations

(H0 −E(0) −
α2

2
)( u

(j)

v(j)
) = ( ϵ

(j)
u

ϵ
(j)
v

) ,( ϵ
(0)
u

ϵ
(0)
v

) = ( 0
0
) ,

( ϵ
(j)
u

ϵ
(j)
v

) =
j

∑
i=1

E(i) ( u
(j−i)

v(j−i)
) − 1

2
g ( cos(θ − φ)u(j−1) + i sin(θ − φ)ei2αxv(j−1)
−i sin(θ − φ)e−i2αxu(j−1) − cos(θ − φ)v(j−1) ) for j = 1,2,⋯. (7)

The zero-order equation contains two same harmonic os-
cillator equations with the well-known solutions [6]

u(0) = u(0)n = Cnψn(x), v(0) = v(0)n =Dnψn(x),

E(0) = E(0)n = (1
2
+ n − α

2

2
) (8)

for n = 0,1,⋯. Here ψn(x) denotes the well-known eigen-
states of a harmonic oscillator, some real functions of x;

Cn and Dn are the complex undetermined constants in
the exponential forms with the phase difference ϕ,

Cn = ∣Cn∣eiϕC , Dn = ∣Dn∣eiϕD , ϕ = ϕC − ϕD. (9)

They will be determined by the normalization condition
of the zero-order solution and the boundedness conditions
of the first corrected solutions. The phase difference ϕ
will bring important coherent effect. Given E(j−1), u(j−1)

and v(j−1), any jth-order equation of Eq. (7) becomes



4

an inhomogeneous linear ordinary differential equation.
According to the constant variation method in ordinary
differential equation theory, general solution of the in-
homogeneous equation can be expressed as a sum of the

general solution of the corresponding homogeneous equa-
tion and any particular solution of the inhomogeneous
equation. Such a pair of exact general solutions can be
expressed in teams of the integral forms [42, 43]

u(j)n = u(0)n [A(j)un + ∫
x

0
ū(0)n ϵ(j)undx] + ū(0)n [B(j)un − ∫

x

0
u(0)n ϵ(j)undx],

v(j)n = v(0)n [A(j)vn + ∫
x

0
v̄(0)n ϵ(j)vn dx] + v̄(0)n [B(j)vn − ∫

x

0
v(0)n ϵ(j)vn dx], j = 1,2,⋯. (10)

Here (A(j)un ,B(j)un ) and (A(j)vn ,B(j)vn ) are arbitrary con-
stants determined by the physical conditions, namely the
normalization and boundedness of the motional states,

and the reality of the energy. The functions ū
(0)
n =

u
(0)
n ∫ [u(0)n ]−2dx and v̄

(0)
n = v(0)n ∫ [v(0)n ]−2dx are two un-

bounded solutions of the zeroth-order harmonic oscillator
equations, respectively. The terms A

(j)
unu

(0)
n + B(j)un ū(0)n

and A
(j)
vn v

(0)
n + B(j)vn v̄(0)n are the general solutions of the

two homogeneous equations in Eq. (7) with j = 0. It has
been proved that general solutions (10) are bounded if
and only if the boundedness conditions [42]

I
(j)
un± = lim

x→±∞
[B(j)un − ∫

x

0
u(0)n ϵ(j)undx] = 0,

I
(j)
vn± = lim

x→±∞
[B(j)vn − ∫

x

0
v(0)n ϵ(j)vn dx] = 0 (11)

(j = 1,2,⋯) are satisfied. Applying Eqs. (6) and (8) to
Eq. (4) yields the probability amplitude

ψ↑↓n(x) =
∞

∑
j=0

ψ
(j)
↑↓n(x),

ψ
(j)
↑↓n(x) =

1

2
e∓iφ/2[u(j)n e−iαx ± v(j)n eiαx]. (12)

The normalization conditions of the solution (2) are
thereby [41]

Pn = ∫
∞

−∞

[∣ψ↑n(x)∣
2

+ ∣ψ↓n(x)∣
2

]dx

=
∞

∑
i=0

P (i)n =
∞

∑
i=0

[P (i)
↑n + P

(i)
↓n ] = 1,

P (0)n = 1, P (i≥1)n = 0, (13)

where P
(i)
↑↓n is a sum of the ith-order terms O(gi) in the

integration ∫
∞

−∞
∣∑∞j=0 ψ

(j)
↑↓n(x)∣

2

dx. The boundedness

conditions (11) and the normalization conditions (13) de-

termine the corrected energy E
(j)
n and the normalization

constants Cn,Dn,A
(j)
un ,B

(j)
un . In the next section, we will

focus on the first-order (j = 1) perturbed solutions to
the ground state (n = 0) of the unperturbed zeroth-order
equation. The similar treatment can be applied to any
j, n case.

III. MAXIMAL SPIN-MOTION ENTANGLED
STATES AND ENERGY CORRECTIONS

In the case (j = 0, n = 0), combining Eqs. (8), (9) with
Eq. (12), we get the zeroth-order and ground state vector

∣ψ(0)0 (x, t)⟩ = e−iE
(0)
0 t[ψ(0)

↑0 (x)∣ ↑⟩ + ψ
(0)
↓0 (x)∣ ↓⟩] (14)

of Eq. (2) with the corresponding probability amplitudes
and their norms being

ψ
(0)
↑↓0(x) =

1

2
e∓iφ/2[u(0)0 e−iαx ± v(0)0 eiαx]

= 1

2
ei(ϕC∓φ/2)[∣C0∣e−iαx ± ∣D0∣ei(αx−ϕ)]ψ0(x),

∣ψ(0)
↑↓0(x)∣

2 = 1

4
[∣C0∣2 + ∣D0∣2 ± 2∣C0D0∣ cos(ϕ − 2αx)]

×∣ψ0(x)∣2. (15)

Clearly, the zeroth-order probability amplitudes ψ
(0)
↑0 (x)

and ψ
(0)
↓0 (x) are linearly independent for α ≠ 0. This

means that the zeroth-order state (14) is a spin-motion
entangled state [7, 8, 46], if and only if SOC exists. Such
an entangled state just is the coherent superpositions of
the two spin states. The final term of Eq. (15) describes
the interference effect, which depends on the phase dif-
ference ϕ = ϕC − ϕD and the SOC strength α. When

the SOC vanishes, ψ
(0)
↑0 (x) and ψ

(0)
↓0 (x) become linearly

dependent, meaning existence of the decoherence-averse
effect of SOC. Thus we can suppress the decoherence [53]
by keeping the SOC. Applying the zeroth-order solutions
(8) and the perturbation terms of Eq. (7), the first-order
general solutions of Eq. (10) with (j = 1, n = 0) become
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u
(1)
0 = u

(0)
0 [A

(1)
u0 + ∫

x

0
ū
(0)
0 ϵ

(1)
u0 dx] + ū

(0)
0 [B

(1)
u0 − ∫

x

0
u
(0)
0 ϵ

(1)
u0 dx],

ϵ
(1)
u0 = E

(1)
0 u

(0)
0 −

1

2
g[cos(θ − φ)u(0)0 + i sin(θ − φ)ei2αxv

(0)
0 ],

ū
(0)
0 = u

(0)
0 ∫ [u

(0)
0 ]−2dx = C−10 ψ0 ∫ (ψ0)−2dx =

1

2
C−10 π3/4e−x

2
/2Erfi(x);

v
(1)
0 = v

(0)
0 [A

(1)
v0 + ∫

x

0
v̄
(0)
0 ϵ

(1)
v0 dx] + v̄

(0)
0 [B

(1)
v0 − ∫

x

0
v
(0)
0 ϵ

(1)
v0 dx],

ϵ
(1)
v0 = E

(1)
0 v

(0)
0 + 1

2
g[i sin(θ − φ)e−i2αxu(0)0 + cos(θ − φ)v

(0)
0 ],

v̄
(0)
0 = v

(0)
0 ∫ [v

(0)
0 ]−2dx =D−10 ψ0 ∫ (ψ0)−2dx =

1

2
D−10 π3/4e−x

2
/2Erfi(x). (16)

Here we have used the ground state ψ0(x) = π−1/4e−x
2
/2

of a harmonic oscillator to derive the function Erfi(x) =
Erf(ix)/i with Erf(ix) being the error function of ix. The
solutions (8) and (16) should obey the normalization con-

ditions P
(0)
0 = 1, P (1)0 = 0 of Eq. (13) and the bounded-

ness conditions (11) for j = 1, n = 0. From them we can
derive all the undetermined constants and the first-order
corrected energy.

Knowing Eq. (15), the corresponding probabilities of
the particle occupying spin states ∣ ↑⟩ and ∣ ↓⟩, and the
normalization condition of the zero-order solution read

P
(0)
↑↓0 = ∫

∞

−∞

∣ψ(0)
↑↓0(x)∣

2dx

= 1

4
[∣C0∣2 + ∣D0∣2 ± 2∣C0D0∣ cosϕ e−α

2

],

P
(0)
0 = P

(0)
↑0 + P

(0)
↓0 =

1

2
[∣C0∣2 + ∣D0∣2] = 1. (17)

The latter gives a relation between ∣C0∣ and ∣D0∣. Insert-
ing ϵ

(1)
u0 , ϵ

(1)
v0 of Eq. (16) and Eq. (8) into Eq. (11), from

I
(1)
u0+ − I

(1)
u0− = 0 we get the first-order corrected energy

E
(1)
0 = 1

2
g∫

∞

−∞

u
(0)
0 [cos(θ − φ)u

(0)
0

+i sin(θ − φ)ei2αxv(0)0 ]dx

= 1

2
g[ iD0

C0
sin(θ − φ)e−α

2

+ cos(θ − φ)]. (18)

On the other hand, from I
(1)
v0+ − I

(1)
v0− = 0 we arrive at

E
(1)
0 = −1

2
g∫

∞

−∞

v
(0)
0 [i sin(θ − φ)e−i2αxu

(0)
0

+ cos(θ − φ)v(0)0 ]dx

= 1

2
g[ C0

iD0
sin(θ − φ)e−α

2

− cos(θ − φ)]. (19)

Combining Eqs. (18) and (19) with Eq. (11), we obtain

the two first order constants

B
(1)
u0 = ∫

∞

0
u
(0)
0 ϵ

(1)
u0 dx = ∫

−∞

0
u
(0)
0 ϵ

(1)
u0 dx

= − g√
π
sin(θ − φ)DawsonF(α),

B
(1)
v0 = ∫

∞

0
v
(0)
0 ϵ

(1)
v0 dx = ∫

−∞

0
v
(0)
0 ϵ

(1)
v0 dx

= g√
π
sin(θ − φ)DawsonF(α) (20)

with DawsonF(α) = e−α2

∫
α
0 ey

2

dy being called the Daw-
son integration of α. The other two first order constants

A
(1)
u0 ,A

(1)
u0 can be determined by the first order normal-

ization condition P
(1)
0 = 0 of Eq. (13), which are useful

for computing the second-order corrected energy.
It is important for us to derive the energy correction

E
(1)
0 from Eqs. (18) and (19). At first we notice that the

energy must be a real constant that requires the unde-

termined constant C0

iD0
= ∣C0∣

∣D0∣
ei(ϕ−π/2) is a real constant.

This gives the quantized phase difference

ϕ = (l + 1

2
)π for l = 0,1,2⋯. (21)

We will call l the phase quantum number. By such a

phase difference we mean that Eq. (17) gives P
(0)
↑0 =

P
(0)
↓0 = 1

2
and Eq. (14) is the maximal spin-orbit entangled

state. Then let E
(1)
0 of Eq. (18) be the same with that

of Eq. (19) we derive the self-consistence conditions of
the general solutions (16) as

2 cos(θ − φ) = eilπ sin(θ − φ)e−α
2

[ ∣C0∣
∣D0∣

− ∣D0∣
∣C0∣
],

tan(θ − φ) = eilπ+α
2 2∣C0D0∣
∣C0∣2 − ∣D0∣2

= eilπ+α
2 ∣C0∣

√
2 − ∣C0∣2

∣C0∣2 − 1
. (22)

In the calculation, e−ilπ = eilπ and Eq. (17) have been
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FIG. 1: (Color online) Plots showing the relations (23) and
(24) among the amplitudes ∣C0+∣ (solid curve), ∣C0−∣ (thick
dashed curve), phase differences ϕ = (l± + 1/2)π and system
parameters (θ−φ) for le = 0, lo = 1, (θ−φ) ∈ [−π/2, π] and (a)
α = 0.1, (b) α = 1, (c) α = 2, (d) α = 3. The thin dashed line
indicates the touch value ∣C0+∣ = ∣C0−∣ = 1. All the quantities
plotted in the figures of this paper are dimensionless.

adopted. Given Eqs. (22) and (17), the simple calcula-
tion yields

∣C0∣ = ∣C0±∣ =
√

1 ± [1 + tan2(θ − φ)e−2α2]−1/2,

∣D0∣ = ∣D0±∣ =
√

1 ∓ [1 + tan2(θ − φ)e−2α2]−1/2. (23)

They confine the regions of ∣C0±∣ and ∣D0±∣ as ∣C0−∣ =
∣D0+∣ ∈ [0,1], ∣C0+∣ = ∣D0−∣ ∈ [1,

√
2] and directly af-

fect the state (14) and energy correction (18) and (19).

At tan(θ − φ) = 0, we have ∣C0−∣ = 0, ∣C0+∣ =
√
2, and

tan(θ − φ) = ±∞ means ∣C0−∣ = ∣C0+∣ = 1 with signs ±
depending on different l = l±. The self-consistence con-
ditions (22) reveal several important relations between
the undetermined constants (∣C0±∣, l±) and the system
parameters (θ,φ, ):

∞ > tan(θ − φ) ≥ 0, { ∣C0∣ = ∣C0−∣, l = l− = lo,
∣C0∣ = ∣C0+∣, l = l+ = le;

−∞ < tan(θ − φ) ≤ 0, { ∣C0∣ = ∣C0−∣, l = l− = le,
∣C0∣ = ∣C0+∣, l = l+ = lo. (24)

The signs le and lo denote the even and odd numbers re-
spectively, so that we have eileπ = −eiloπ = 1. Equations
(24) and (21) reveal that the sign-changing points of
tan(θ − φ), (θ − φ) = ±kπ/2 with k = 0,1,⋯, just are
the quantized phase jump points at which phase
difference ϕ jumps between l± = le and l± = lo. Such
phase jumps can be manipulated by adjusting the
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FIG. 2: (Color online) Plots of the first-order corrected ener-

gies E
(1)
0+ (solid curve) and E

(1)
0− (dashed curve) of Eq. (25) as

functions of (θ−φ) for g = 0.1 and (a) α = 0.1, (b) α = 0.5, (c)
α = 1, (d) α = 2. The phase quantum numbers l± are labeled

according to Eq. (24) and the correspondence between E
(1)
0±

and ∣C0±∣.

magnetic field angle θ or SOC phase φ, and con-
sequently cause the transitions of states (15) and
(14). The relations (23) and (24) are clearly shown by
the figure ∣C0±∣ vs (θ − φ) as in Fig. 1. In this figure we

also show that the maximal value ∣C0+∣ =
√
2 and minimal

value ∣C0−∣ = 0 appear at (θ−φ) = kπ for k = 0,±1 and any
α value. With the increase of α value, amplitudes ∣C0±∣
tend to two straight lines, approximately, ∣C0+∣ =

√
2 and

∣C0−∣ = 0, except for the special value ∣C0±∣ = 1 at the
point (θ − φ) = ±π/2.
Applying Eqs. (21-24) to Eq. (18) produces the cor-

rected energy

E
(1)
0 = E

(1)
0± = E

(1)
0 (∣C0±∣, l±)

= g

2
cos(θ − φ)[1 − eil±π−α

2 ∣D0±∣
∣C0±∣

tan(θ − φ)]

= ±g
2
cos(θ − φ)

√
1 + tan2(θ − φ)e−2α2 . (25)

The level splitting ∣E(1)0+ − E
(1)
0− ∣ = 2∣E(1)0+ ∣ = 2∣E(1)0− ∣ =

g
√
cos2(θ − φ) + sin2(θ − φ)e−2α2 is in agreement with

that of Ref. [6]. We plot the first-order corrected en-
ergies as functions of (θ−φ) for several different α values
in Fig. 2. From this figure we can see that in the interval
(θ − φ) ∈ (−π/2, π/2) corresponding to cos(θ − φ) > 0, it
is shown that E

(1)
0+ > 0 and E

(1)
0− < 0. While in the in-

terval (θ − φ) ∈ (π/2, π) associated with cos(θ − φ) < 0,

we observe that E
(1)
0+ < 0 and E

(1)
0− > 0. At the phase

jump points (θ − φ) = ±kπ/2, the corrected energy may
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be continues for an even number k. While for an odd k
the energy inversions may be found, where E

(1)
0± inverts

and hops a height ge−α
2

, and tends to 0 with the increase
of α value that leads to the approximate level crossing.
For any fixed α value, Fig. 2 shows the maximal absolute

value ∣E(1)0± ∣ at (θ − φ) = 0, π, and the minimal ∣E(1)0± ∣ at
(θ − φ) = ±π/2.

In Figs. 1 and 2 we have observed that for a set
of experimentally tunable system parameters (g, θ,φ,α),
there exist two sets S+ and S− of constants, S± =
{∣C0±∣, ∣D0±∣, l±,E(1)0± } associated with the signs “+ ” and
“−” respectively. While any constant set corresponds to
a state vector of Eq. (14) and energy correction of Eq.
(25). Hereafter, we will consider the states to leading
order and the energies to first order. Adopting the phase
quantum number l± to label the states and using Eqs.
(21) and (23), we rewrite the maximal spin-motion en-
tangled states (14) as the space-dependent state vectors

∣ψ(0)0l±
(x, t)⟩ = e−iE0±t[ψ(0)

↑0l±
(x)∣ ↑⟩ + ψ(0)

↓0l±
(x)∣ ↓⟩], (26)

ψ
(0)
↑0l±
= 1

2
ei(ϕC∓φ/2)[∣C0±∣e−iαx + ∣D0±∣ei[αx−(l±+

1
2 )π]]ψ0,

ψ
(0)
↓0l±
= 1

2
ei(ϕC∓φ/2)[∣C0±∣e−iαx − ∣D0±∣ei[αx−(l±+

1
2 )π]]ψ0.

Note that Eq. (26) contains the four state vectors:

∣ψ(0)0,l+=le
⟩, ∣ψ(0)0,l+=lo

⟩, ∣ψ(0)0,l−=le
⟩ and ∣ψ(0)0,l−=lo

⟩ associated

with two different (θ−φ) values. For a single fixed (θ−φ),
l+ and l− are fixed that means Eq. (26) including only
two states with l+ ≠ l− and E0+ ≠ E0−. Obviously, at the
phase jump points, the changes of l± between le and lo
result in the motional-state exchanges between ψ

(0)
↑0l±
(x)

and ψ
(0)
↓0l±
(x). This is equivalent to the spin flipping in

the spin-motion entangled states ∣ψ(0)0l±
(x, t)⟩.

Now we simply prove the metastability of the station-
ary states by calculating the Einstein’s spontaneous ra-
diation coefficients [41]. Taking into account the periodic
weak noise from environment which includes the ac elec-
tric potential χx cos(ω±t) with small strength χ and fre-

quency ω± = ∣E(1)0+ −E
(1)
0− ∣/h̵ = 2∣E

(1)
0± ∣/h̵ given by Eq. (25).

After a long and easy calculation, the spontaneous radi-
ation coefficient of the electron from the positive-energy

∣E(1)0± ∣ state to the negative-energy −∣E(1)0± ∣ state is ob-
tained as [41]

Asr =
4e2ω3

±

3h̵c3
∣xl+,l− ∣2

= 4e2ω3
±

3h̵c3
∣⟨ψ(0)0l+

(x, t)∣x∣ψ(0)0l−
(x, t)⟩∣2

= 4e2ω3
±
α2 sin2 φ

3h̵c3[e2α2 + tan2(θ − φ)]
. (27)

In the calculation, Eqs. (26), (23) and l+ = 0, l− = 1 have
been used. At the phase jump points (θ − φ) = ±kπ/2,
we have the minimal spontaneous radiation coefficient

Asrmin = 0 for an odd k, which corresponds to infinite
lifespan of a stable qubit. We also obtain the maximal
spontaneous radiation coefficient

Asrmax =
4e2ω3

±
α2 sin2 φ

3h̵c3e2α2 ∼ 10−6/s (28)

for an even k, where we have taken [6] g/h̵ = 0.03ω

in order of 1010Hz and α2e−2α
2

sin2 φ ∼ 0.1. The cor-
responding minimal lifetime 1/Asrmax of the positive-
energy state is in order of Ms, a longer time for the
microcosmic system. For any other (θ−φ) value, the cor-
responding lifespan is greater than the minimal lifetime.
While the negative-energy state is a ground state with
lifespan being much greater than 1/Asrmax. So we can re-
gard these states as metastable ones and the related qutbit
is robust. This transparently reveals the qubit’s insensi-
tivity to the local perturbations and the weak noise from
environment. In addition, both the level spacing and the
spontaneous radiation lifespan have periodic responses to
the direction of the static magnetic field. These responses
can be used to determine the magnitude α and phase φ
of SOC in the nanowire [6]. The two metastable states

∣ψ(0)0l+
(x, t)⟩ and ∣ψ(0)0l−

(x, t)⟩ are associated with two levels
E0± and one spin-orbit qubit. Because at any moment,
the electron can be in only one state of them. Conse-
quently, we can apply an external ac electric field to the
system to make the resonance of the driving frequency
and the level splitting of the spin-orbit qubit such that
the transitions happen between the two states [6, 38, 39].
The level splitting is much less than the zero-order quan-
tum gap h̵ω, so the resonance transition is insensitive
to the environment, and the coherence of the two-level
system can be kept well.
It is worth noting that the key element of spin manip-

ulation is the ability to induce transitions between the
spin states and to prepare their arbitrary superpositions
[1, 2, 5, 6, 13, 14]. In next section, we will demonstrate
that this can be accomplished in a transparent manner,
namely by using the orbital part of the spin-motion en-
tangled states (26) to adjust the orientation angle of the
static magnetic field for changing the (θ−φ) value, which
is in equivalent to the spin flipping and the wavepacket-
based non-Abelian quasiparticles exchanging.

IV. COHERENTLY CONTROLLING QUBITS
BY EXCHANGING THE NON-ABELIAN

QUASIPARTICLES

Given the maximal spin-motion entangled states (26),
we are interested in how the density wavepackets iden-
tical to the norms of the motional states replace the
vortices in Refs. [21, 44] as the Majorana-like quasi-
particles obeying non-Abelian exchang. Such quasiparti-
cles behave as electroneutrality without Coulomb inter-
action between them, so that their interchange in one
spatial dimension becomes possible with one wavepacket
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FIG. 3: (Color online) The 3D wavepackets of the probability densities (29) for (a) l+ = 0, α = 1 and varying (θ − φ) from 0
to π/2; (b) l+ = 1, α = 1 and varying (θ − φ) from π/2 to π, (c) l+ = 0, (θ − φ) = 1.5 < π/2, and varying α from 0 to 3; (d)

l+ = 1, (θ − φ) = 1.6 > π/2, and varying α from 0 to 3. The blue wavepackets describe ∣ψ
(0)
↑0l+
∣
2 and the red means ∣ψ

(0)
↓0l+
∣
2.

going through another without the classically impenetra-
ble barrier [38, 39, 45]. Noticing cosϕ = cos(l± + 1

2
)π =

0, sinϕ = cos(l±π) and Eq. (17), the probability densities
of Eq. (15) occupying different spin states (26) become

∣ψ(0)
↑0l±
∣2 = 1

2
[1 + ∣C0±D0±∣ cos(l±π) sin(2αx)]∣ψ0∣2,

∣ψ(0)
↓0l±
∣2 = 1

2
[1 − ∣C0±D0±∣ cos(l±π) sin(2αx)]∣ψ0∣2. (29)

By l± we mean the corresponding constant set S± =
{∣C0±∣, ∣D0±∣, l±,E(1)0± } is used, respectively for the signs
“ + ” and “ − ”. Equation (29) and Fig. 2 tell us
that for a small variation from the phase jump points

(θ − φ) = ±kπ/2 the densities exchange between ∣ψ(0)
↑0l±
∣2

and ∣ψ(0)
↓0l±
∣2. In order to see the exchanges of quasiparti-

cles, from Eqs. (29), (23) and (24) we plot four 3D figures
for displaying evolution of the density wavepackets with
the coordinate x and the parameter (θ − φ) and α, as
shown in Fig. 3. In these figures, we concentrate on the
zeroth order probability densities, because the perturba-
tion corrections to them are ignorable [43]. In Figs. 3(a)
and 3(b), we show that the wavepackets exchange posi-
tions and arrive at the largest distance between them at
(θ−φ) = π/2 and for α ∼ 1. They close to each other with
the increase or decrease of (θ −φ) from π/2 to π or to 0,
where the minimal distance zero reaches. By Figs. 3(c)

and 3(d), we display evolution of the wavepackets with
SOC strength α before and after the position exchange,
respectively. The distance between wavepackets change
with α, and their largest distance appears at α ≈ 1 for
(θ − φ) = 1.5 < π/2 and for (θ − φ) = 1.6 > π/2. From
Eqs. (23) and (24) we observe ∣C0+D0+∣ = ∣C0−D0−∣ and
l+ ≠ l− implying cos(l+π) = − cos(l−π) such that Eq. (29)

means ∣ψ(0)
↑0l−
∣2 = ∣ψ(0)

↓0l+
∣2 and ∣ψ(0)

↓0l−
∣2 = ∣ψ(0)

↑0l+
∣2. Therefore,

we take only ∣ψ(0)
↑0l+
∣2 and ∣ψ(0)

↓0l+
∣2 as examples in Figs. 3

and 4.

We now illustrate that such exchanges of quasiparticles
based on probability densities correspond to the state

transitions between ∣ψ(0)0l±=0
(x, t)⟩ and ∣ψ(0)0l±=1

(x, t)⟩ with
the spin flipping. They can be divided into two cases
according Fig. 2, Fig. 3 and Eq. (26) as the following.

Case 1. Exchanging positions of two small-distance
wavepackets with varying (θ−φ) from (k−λ)π to (k+λ)π
for 0 < λ ≪ 1, as shown in Figs. 4(a) and 4(b) with
k = 0, λ = 0.1. Such an exchange changes the states and
shifts the energy of Fig. 2 only an ignorable value. Such
operations of quantum states are insensitive to the en-
vironment, and similar to the topological quantum op-
erations of the degenerate ground states without level
difference [38].

Case 2. Exchanging positions of two large-distance
wavepackets with adjusting (θ − φ) from (k + 1

2
− λ)π
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FIG. 4: (Color online) Plots of the spatial evolutions of the

quasiparticle wavepackets ∣ψ
(0)
↑0l+
∣
2 (dashed curve) and ∣ψ

(0)
↓0l+
∣
2

(solid curve) for α = 1 and (a) (θ − φ) = −0.1, l+ = 1,E
(1)
0+ =

0.498g; (b) (θ − φ) = 0.1, l+ = 0,E
(1)
0+ = 0.498g; (c) (θ − φ) =

π
2
− 0.01, l+ = 0,E

(1)
0+ = 0.187g; (d) (θ − φ) = π

2
+ 0.01, l+ =

1,E
(1)
0+ = −0.187g. The position exchange and energy keep of

the quasiparticles at (θ − φ) = 0 are shown by 4(a) and 4(b),
and the position exchange and energy inversion at (θ−φ) = π

2
are exhibited by 4(c) and 4(d).

to (k + 1
2
+ λ)π for 0 < λ≪ 1, as shown in Figs. 4(c) and

4(d) with k = 0, λ = 0.01. Such an exchange transfers the

states and inverts the energy between E
(1)
0+ and −E(1)0+ . In

the two figures, we observe the distance between peaks

of wavepackets being about ⟨ψ(0)0l+=0
(x, t)∣x∣ψ(0)0l+=1

(x, t)⟩ ≈
2(Lh) = 2[

√
h̵/(m∗ω)] ∼ 10nm.

The exchanges of wavepacket positions are performed
through the changes of the coherent terms of Eq. (29).
So we can identify quantum interferences as the heart
of the above quantum control, and call the operation of
the density exchanges the coherent manipulation [54, 55].
Particularly, the quantum quasiparticles described by
such wavepackets obey the non-Abelian interchange after
which the new state of Eq. (26) cannot be expressed as
a product of the old state and a phase factor, and can
be proposed as the Majorana-like quasiparticles thereby.
Under some given initial conditions, motions of the quasi-
particles possess the 1D helicity [5], namely the moved
direction of the spin-up quasiparticle differs from that
of the spin-down quasiparticle. The exchanges of quasi-
particles imply some unclear spatiotemporal evolutions
similar to the resonance transitions, which may also be
quantum-mechanically allowable [41].

V. CONCLUSION AND DISCUSSION

We have investigated a single spin-orbit coupled elec-
tron confined in a gated NQD with Rashba-Dresselhaus
coexisted SOC and weak static magnetic field. Treating
the weak field as a perturbation, we obtain the maximal
spin-motion entangled states with the exact general solu-
tions of the perturbed equations. We find that there exist
two corrected energies to any level of the unperturbed
system for fitting the boundedness and self-consistence
conditions of the general solutions. The level splitting
are much less than the unperturbed level difference and
the perturbed state corresponds to a spin-orbit qubit.
We calculate the Einstein’s spontaneous radiation coef-
ficients [41] by which we reveal the qubit’s insensitivity
to the local perturbations and the weak noise from en-
vironment. The quantized phase-difference between the
two motinal states are found, which depend on the ori-
entation angle of magnetic field for arbitrary fixed SOC.
Thus the qubit can be coherently manipulated by adjust-
ing the orientation of magnetic field. We show that such
a quantized phase jump results in the spin flipping of the
spin-motion entangled states and the position exchange
of the probability-density wavepackets occupying the dif-
ferent spin states. The quantum quasiparticles described
by the wavepackets can be proposed as the Majorana-like
quasiparticles obeying the non-Abelian interchange. The
operations based on the interchanges of the non-Abelian
quasiparticles may be robust . The spin-motion entan-
glement depend on the existence of SOC that implies the
decoherence-averse effect of SOC. While the operations of
quasiparticle exchanges depend on the interference terms
of the probability-density wavepacket, meaning the co-
herent controls.

For a fixing (θ −φ) value, Eq. (26) includes two states
with l+ ≠ l− and E0+ ≠ E0−. From Fig. 2 we have seen
that E0+ = −E0− > 0 for ∣θ−φ∣ < π

2
, and E0+ = −E0− < 0 for

∣θ − φ∣ > π
2
. We can initially prepare a ground state with

the lower energy and create a quantum transition from
the ground state to the excitation state with higher en-
ergy, by using a laser with resonance frequency to match
the level difference [6] ∣E0+ − E0−∣. Generally, the usual
quantum transition with energy exchange is equivalent
to the state transfer. Differing from the resonance tran-
sition, we create the quantum transition in this work by
fine tuning the orientation angle θ of magnetic field to
vary (θ − φ) value for fixed other experimental parame-
ters. Treating the maximal spin-motion entangled states
(26) as leading-order solutions, the obtained results could
be transparently applied to an array of electrons sepa-
rated from each other by different quantum dots with
weak neighboring coupling as another perturbation. Al-
though the operation to angle θ of the static magnetic
field cannot be performed individually for the electrons
in quantum-dot-array, it is useful for combining with a
local ac electric field to create the required initial state,
then to perform the individual operation to any one of
qubits by using the electric-magnetic combined modula-



10

tions [1, 6, 11, 38], which could be fundamental impor-
tant for encoding the robust qubits and accomplishing
the spin-based quantum information processing.

In addition, because the two sets of time-independent
motional states are associated with different energies

E
(1)
0± , they obey two different stationary-state equations

of Eq. (3) for E
(1)
0+ and E

(1)
0− , respectively. There-

fore, their linear superposition is not a solution of Eq.
(3). However, the linear superposition of the two time-
dependent state vectors (26) still is a solution of the time-
dependent Schrödinger equation. Such a superposition
state denotes a nonstationary coherent state with peri-
odically variable probability amplitudes. Their physical
properties and possible applications in coherent manipu-

lation of electron spins should be further investigated. It
is also quite interested to apply our method for seeking
quantum chaos not only for the spatiotemporal coordi-
nate but also for spin in a NQD electron system with SOC
and driven multiminima potential [56]. The results will
lead to a new method of the chaotic spin-manipulation
in nanostructures.
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