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Finding ground state energies on current quantum processing units (QPUs) using algorithms like
the variational quantum eigensolver (VQE) continues to pose challenges. Hardware noise severely
affects both the expressivity and trainability of parametrized quantum circuits, limiting them to
shallow depths in practice. Here, we demonstrate that both issues can be addressed by synergistically
integrating VQE with a quantum subspace expansion, allowing for an optimal balance between
quantum and classical computing capabilities and costs. We perform a systematic benchmark
analysis of the iterative quantum-assisted eigensolver of [K. Bharti and T. Haug, Phys. Rev. A 104,
L050401 (2021)] in the presence of hardware noise. We determine ground state energies of 1D and
2D mixed-field Ising spin models on noisy simulators and on the IBM QPUs ibmq quito (5 qubits)
and ibmq guadalupe (16 qubits). To maximize accuracy, we propose a suitable criterion to select
the subspace basis vectors according to the trace of the noisy overlap matrix. Finally, we show how
to systematically approach the exact solution by performing controlled quantum error mitigation
based on probabilistic error reduction on the noisy backend fake guadalupe.

I. INTRODUCTION

The rapid advancement and deployment of quantum
processing units (QPUs) demands parallel development of
quantum algorithms, which can leverage this evolving tech-
nology to address open scientific challenges. Many near-
term quantum algorithms have been proposed, among
which state preparation, energy estimation, and dynamics
simulation methods are particularly pertinent to physics,
chemistry, and materials science research [1–7]. Repre-
sentative practical calculations on QPUs include post-
quench or periodically driven nonequilibrium dynamics
and correlation function measurement utilizing Trotter-
decomposed circuits [8–17], ground state energy estima-
tion using auxiliary-field quantum Monte Carlo guided by
trial states prepared on a QPU (QC-AFQMC) [18], and
state preparation by optimizing parameterized quantum
circuits (PQCs) [19–21]. Near-term applications with a
large number of qubits favor quantum dynamics simula-
tions with Trotter circuits owing to their modest circuit
depth scaling and the possibility of matching the required
gates to the hardware connectivity [8–11]. The execution
of variational algorithms like the variational quantum
eigensolver (VQE), on the other hand, are generally more
demanding [2, 22–25]. Here, the limiting factors are that
deep circuits are often needed to accurately represent the
ground state, in addition to the need to perform a costly
high-dimensional classical optimization of a (generally
nonconvex) noisy cost function that often experiences
barren plateaus [26, 27]. The quantum-classical feedback
loop in VQE results in large measurement overheads, al-
though some of the difficulties can be alleviated with
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alternative algorithms such as the quantum imaginary
time evolution [28–30].

Alternatively, quantum subspace expansion (QSE) algo-
rithms have been proposed to simulate ground and excited
states as well as nonequilibrium dynamics. The quantum
Krylov subspace expansion and its generalizations uti-
lize subspaces that are generated along the trajectory
of quantum imaginary- [29, 30] or real-time [31–36] evo-
lution from various initial states. These algorithms are
still challenging to implement on noisy intermediate-scale
quantum (NISQ) devices. For example, measuring off-
diagonal elements of Hamiltonian and overlap matrices
in the nonorthogonal subspace involves the use of the
Hadamard test, which generally involves deep Trotter
circuits controlled by an ancilla qubit. For practical
calculations on current QPUs, QSE methods where the
basis states are prepared by applying tensor products of
Pauli operators on a reference state are preferable [37–40].
They only require direct measurements, even though a
substantial number of measurements is often needed.

Here, we focus on the iterative quantum-assisted eigen-
solver (IQAE) [38] to highlight the general idea that VQE
and QSE can be synergistically integrated (VQESE) to
improve the accuracy of ground state energy estimation
on noisy intermediate-scale quantum (NISQ) hardware.
We systematically investigate the benefits and trade-offs
of balancing the depth of the VQE ansatz (parametrized
by the number L of circuit layers) with the dimension of
the QSE basis (parametrized by the expansion moment
K) to obtain a desired ground state energy accuracy.
Since we specifically explore IQAE along these two dif-
ferent directions parametrized by L and K, we refer to
the algorithm as the “paired iterative quantum-assisted
eigensolver” (PIQAE) in the following.

Our results emphasize the capacity of PIQAE to en-
hance the accuracy of ground state calculations by choos-
ing variational ansätze of circuit depth L that are com-
patible with hardware errors and subsequently refining
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the variationally optimized state via expansion in a fine-
grained Krylov subspace (to be defined below) up to an
expansion moment K that is allowed by the classical and
quantum computational budget. The expansion increases
the expressivity of the resulting wavefunction without
complicating trainability, since the diagonalization of the
low-energy Hamiltonian in the Krylov subspace (whose
coefficients are obtained via quantum measurements) is
performed fully classically. Thus, one can consider various
PQC forms of controlled depth, including adaptively gen-
erated, problem-specific ansätze [30, 41]. To demonstrate
the versatility of PIQAE, we here employ the layered
Hamiltonian Variational Ansatz (HVA), which offers flex-
ibility in adjusting circuit depth via the layer number
L.
Through statevector simulations of 1D and 2D trans-

verse and mixed-field Ising models (TFIMs and MFIMs),
we show that PIQAE achieves accurate ground state solu-
tions along the pair of parameter axes defined by the VQE
ansatz depth L and the QSE moment K. Our findings
reveal that the convergence with K occurs more rapidly
with increasing L. We then investigate the effects of hard-
ware noises, focusing first on shot noise. Noise poses a
severe challenge since the generalized eigenvalue problem
(defined by noisy Hamiltonian and overlap matrices) is
not bounded from below by the true ground state energy
EG. One therefore needs to impose a criterion to choose
the optimal subspace dimension Mo to obtain accurate
energy estimates. Here, we propose a criterion based on
the trace of the overlap matrix, which we find to provide
reliable and accurate energy estimates across different
system sizes and noise levels. We then perform PIQAE
calculations of 5- and 16-site MFIMs on the ibmq quito
and ibmq guadalupe QPUs. Using quantum error mit-
igation techniques, we observe an order of magnitude
improvement of the energy error per site compared to
the initial VQE energy. Finally, we demonstrate on the
noisy simulator fake guadalupe how one can approach
the exact solution of the 16-site MFIM using controlled
quantum error mitigation based on probabilistic error
reduction, which includes noise tomography.

II. METHOD

For completeness, we now describe the iterative
quantum-assisted eigensolver of Ref. [38], which is a NISQ-
compatible algorithm to obtain the ground state energy
of a Hamiltonian based on the Krylov subspace (KS)
expansion. Let us define a generic qubit Hamiltonian

Ĥ =

NH∑

j=1

cjP̂j (1)

as a weighted sum of Pauli strings (P̂j = {Î , X̂, Ŷ , Ẑ}⊗N )

for an N -qubit system, where {Î , X̂, Ŷ , Ẑ} are the identity
and Pauli operators, respectively. The coefficients cj are

real owing to the fact that Ĥ is Hermitian.

Starting from a (normalized) state |Ψ⟩ which can be
prepared on a quantum computer, the fine-grained Krylov
subspace (FGKS) of moment K is defined as as the union

CSK ≡
{
|Vj⟩

}NK

j=1
= ∪K

k=0Sk , (2)

where Sk ≡ {|Vj⟩ ≡ P̂j |Ψ⟩}P̂j∈Pk
. Here we define

Pk ≡ Hk \ ∪k−1
l=0 H

l (3)

with Hk being the set of Pauli strings in Ĥk and H0 ≡
{Î⊗N}. Thus, Pk is the set of Pauli strings in Ĥk that

did not appear in any lower power of Ĥl (l < k). Note
that NK denotes the number of terms in the overcomplete
basis |Vj⟩ that spans CSK , which may be different from
the dimension of the FGKS, because some of the vectors
|Vj⟩ can be linearly dependent.
An approximation to the ground state is given by the

lowest energy eigenvector |ΨKS⟩ of the generalized eigen-
value equation

∑

j

HijVjk =
∑

j

SijVjkλk . (4)

Here, Hij = ⟨Vi|Ĥ|Vj⟩ and Sij = ⟨Vi|Vj⟩ are the Hamilto-
nian and overlap matrices, respectively, given in terms of
the overcomplete basis vectors of the subspace CSK . The
kth eigenvalue λk is associated with (column) eigenvector
Vjk. Notice that one can measure the matrix elements
of H and S directly on a quantum computer, as they
amount to the expectation values of Pauli strings in state
|Ψ⟩. In the following, we use DK = |CPK | to denote the
size of the set of unique Pauli strings in

CPK ≡
{
P̂iP̂kP̂j

}P̂k∈∪1
k=0Pk

P̂i,P̂j∈∪K
k=0Pk

(5)

that are used in the computation of H and S. As dis-
cussed in Ref. [38], the accuracy the IQAE ground state
solution depends on the initial (or zero-moment) state
|Ψ⟩ and the moment K of the subspace expansion. The
critical moment Kc for convergence to a desired accuracy
is problem-dependent and upper bounded by the rank of
the Hamiltonian Ĥ.
Within PIQAE one approaches this dependence on

|Ψ⟩ and K systematically with the goal of improving the
ground-state solution along these two different directions,
while balancing the quantum and classical computational
costs according to the available hardware. The quality of
the zero-moment state |Ψ⟩ can be described by the depth
of a state preparation circuit. For the numerical studies
here, we adopt the Hamiltonian Variational Ansatz (HVA)
to prepare the zero-moment state,

|Ψ⟩ = ΠL
l=1U(θl) |Ψ0⟩ , (6)

where each layer of parameterized unitaries U(θl) depends
on the Hamiltonian and the circuit depth is proportional
to total number of layers L. The reference state |Ψ0⟩ =
H⊗N |0⟩, where H is the Hadamard gate and |0⟩ ≡ |0⟩⊗N

,
is taken to be a uniform product state in the x basis.
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III. MODELS AND HVA ANSÄTZE

We consider an N -site spin-1/2 MFIM with Hamilto-
nian

Ĥ = J
∑

⟨ij⟩
ẐiẐj +

∑

i

(hxX̂i + hzẐi), (7)

where X̂ and Ẑ are Pauli matrices, J is the nearest-
neighbor coupling amplitude, and hx and hz are the
transverse and longitudinal magnetic field strengths, re-
spectively. ⟨ij⟩ indicates that the summation is restricted
to nearest-neighbors. The model reduces to the TFIM
by setting hz = 0. In the following calculations, we set
J = −1 to be a ferromagnetic coupling and use |J | = 1
as the energy unit. The other parameters, hx and hz,
are given within each specific calculation below, where
we consider systems in both one and two dimensions. In
2D, we consider both a square lattice geometry and the
heavy-hex lattice geometry of the IBM QPUs.
For the MFIM, we adopt the following form for the

one-layer unitaries of the HVA ansatz:

U(θl) = Ux(γl)Uz(βl)Uzz(αl), (8)

where

Uzz(α) = exp


−i

α

2

∑

⟨ij⟩
ZiZj


 , (9)

Uz(β) = exp

(
−i

β

2

∑

i

Zi

)
, (10)

Ux(γ) = exp

(
−i

γ

2

∑

i

Xi

)
. (11)

The unitaries above originate from the exchange coupling
term and the longitudinal and transverse field terms in
the Hamiltonian, respectively. The associated variational
parameters are denoted by α, β, and γ. For the TFIM,
the one-layer unitaries take a simpler form since the lon-
gitudinal field term vanishes:

U(θl) = Ux(γl)Uzz(αl). (12)

IV. QUANTUM RESOURCE ESTIMATION

The quantum resources required for a PIQAE calcula-
tion comprise the PQCs for preparing the zero-moment
state |Ψ⟩ in Eq. (8) and measurement circuits for the
DK Pauli strings in CPK . Since the preparation of the
zero-moment state is a typical VQE calculation with
a particular choice of ansatz, for which the associated
quantum resource requirements have been extensively
discussed [22–24], we focus on the contribution from mea-
surements needed for the QSE. Here the quantum resource
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FIG. 1. System-size dependence of the number of
groups of commuting Pauli strings in CPK for the 2D
TFIM. (a) Number of self-commuting groups Ng of Pauli
strings as a function of system size N for moments K = 1
(black circles) and K = 2 (red squares) for the 2D TFIM.
These numbers are obtained using a heuristic greedy coloring
algorithm with vertices of largest degree first [42]. The blue
line represents an analytical upper bound for K = 1. (b) Total
number of Pauli strings Dk in CPK for PIQAE calculations of
the 2D TFIM on the square lattice with K = 1 (black circles)
and K = 2 (red squares).

cost is controlled by the number of groups of commuting
Pauli strings in CPK , such that all Pauli strings in a given
group can be measured simultaneously. In Fig. 1 (a), we
plot the number of groups of Pauli strings Ng as a function
of system size N for the 2D TFIM. As the partitioning
of observables into self-commuting groups is equivalent
to an NP-hard graph coloring problem, we use a heuris-
tic greedy coloring algorithm which includes vertices of
largest degree first [42] to determine Ng for two different
values of the expansion moment K. As expected, Ng for
K = 2 (red squares) is much larger than that for K = 1
(black circles) due to the larger DK , as shown in Fig. 1 (b).
Nevertheless, Ng shows a modest, approximately linear
growth for large N . In practice, this places within reach
system sizes N on the order of a hundred, which can be
challenging to simulate classically.

For reference, one can get a loose upper bound for Ng

by considering the specific case of the TFIM [Eq. (7)].
For moment K = 1, CPK can be split into the following
self-commuting groups: all Z site-wise, all X, all Y , all Z
except Xi, all Z except Yi, all X except a nearest neighbor
pair ZZ, all X except a nearest neighbor pair Y Z, and
all X except a nearest neighbor pair ZY , which amounts
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to the upper bound

Ng ≤ 1+1+1+N +N +2N +2N +2N = 8N +3 , (13)

denoted by the blue line in Fig. 1 (a). Notice that this
analytical upper bound is close to the greedy coloring
results and that the overestimation becomes larger as N
increases.

V. STATEVECTOR SIMULATIONS

In this section, we demonstrate numerically the per-
formance of the PIQAE method in ground state calcula-
tions by investigating its dependence on the HVA ansatz
layer number L and the FGKS expansion moment K.
We choose here the 1D N = 16 MFIM, and the 2D
N = 4× 4 square lattice TFIM and MFIM as examples,
and perform statevector simulations. The transverse field
strength is set to hx = −3.05 for both the 2D TFIM
and MFIM, thus placing the former in the vicinity of a
ferromagnetic-paramagnetic critical point [43]. On the
other hand, for the 1D MFIM we set hz = −hx/2 = 0.5,
while hz = −hx/2 = 1.525 for the 2D MFIM. In the

calculations, we vary L from zero (i.e., |Ψ⟩ = |+⟩⊗N
is a

product state) to L = 2, and K from zero (i.e., with a
single state |Ψ⟩ in the FGKS) to K = 3.

In order to evaluate the accuracy of PIQAE calculations,
we consider in Figure 2 as a figure of merit the energy
error per site

ε =
E − EG

N
, (14)

where EG is the exact ground state energy found via exact
diagonalization (ED) of the Hamiltonian in Eq. (7), and
the infidelity

1−F = 1− | ⟨g(K,L)|G⟩ |2 (15)

of the FGKS ground state |g(K,L)⟩ with respect to the
ED state |G⟩.
Generally, the fidelity and energy improve when in-

creasing the number of ansatz layers L or the expansion
moment K, as expected due to enhanced expressivity of
the wavefunction in the FGKS. Importantly, the conver-
gence rate with K clearly becomes faster with increasing
L. When L = 0, where the zero-moment state |Ψ⟩ is

reduced to a simple product state |+⟩⊗N
, the infidelity

and energy error reduce by about one order of magnitude
when K increases from zero to three for the 2D MFIM.
In contrast, with L = 2, they reduce by about six orders
of magnitude in the same range of K for the 2D MFIM.
One can reach an accuracy of 1−F ≈ 10−4 and ε ≈ 10−4

(relative error ∼ 0.01%) from the PIQAE calculations of
the MFIM either for L = 1 and K = 2 or for L = 2 and
K = 1. Note that the convergence behaviors of the 1D
and 2D MFIMs shown in Fig. 2 (a-d) resemble each other,
which shows that the dimensionality does not play an
important role in the performance of the algorithm.

Compared with the MFIM results, the PIQAE calcu-
lation for 2D TFIM shows overall slower convergence
behavior of the state infidelity and energy error with L
and K, which is consistent with the model being close
to quantum criticality. Here, the convergence rate with
K is similar for L = 1 and L = 2, but notably faster
than for L = 0. Still, both calculations with L = 1, 2
reach an accuracy of 1 − F ≈ 10−4 and ε ≈ 10−4 at
K = 2. For reference, in Fig. 2 we also plot the results
from simulations similar to PIQAE, but calculated within
the conventional Krylov subspace (KS) spanned by the set

of vectors {Ĥk |Ψ⟩}Kk=0, rather than the FGKS. Generally,
the KS expansion results show a slower convergence be-
havior than PIQAE calculations. For example, the state
infidelity is about 9× 10−4, and energy error per site is
about 7× 10−4 for the KS results of 2D TFIM, compared
to 1 − F ≈ 2 × 10−5 and ε ≈ 2 × 10−5 for the PIQAE
results at L = 1 and K = 2.

This demonstrates the flexibility of ground state prepa-
ration using PIQAE, where the simulation strategy can
be tailored to quantum hardware with specific error rates.
The classical resource cost set by by K (which fixes the
size DK of Hij and Sij) and the quantum resource cost
tied to L for the circuit depth and K for the number of
measurement bases needed, Ng, can be tuned to reach
optimal results.
Finally, we make a brief technical note. In the above

PIQAE calculations, the ground state is obtained by
numerically diagonalizing the generalized eigenvalue equa-
tion (4). In practice, the Hamiltonian matrix H and
overlap matrix S may not be full rank due to a linear
dependence of some the FGKS vectors in CSK . This
issue is resolved by the Hamiltonian regularization pro-
cedure, which reconstructs a Hamiltonian matrix in a
smaller subspace spanned by the set of eigenvectors of S
with eigenvalues larger than a threshold, which we set to
ξc = 10−6. We refer to the dimension of this truncated
subspace as M. We find that Hamiltonian regularization
can reduce the corresponding matrix dimension, with an
increasing reduction rate as a function of expansion mo-
ment K, ranging from approximately 33% for K = 1 and
75% for K = 3 in the calculations shown in Fig. 2.

VI. SHOT-NOISE EFFECTS

The statevector simulations assume infinite precision
for the expectation value ⟨Ô⟩ of an observable Ô, while in

practice ⟨Ô⟩ is always subject to statistical errors due to
the finite number of samples (or shots) Ms for each mea-
surement, even within a fault-tolerant quantum computer.
Therefore, it is crucial to assess and mitigate the impact
of shot noise on the PIQAE calculations. Specifically, we
are interested to determine how statistical noise in the
Hamiltonian H̃ and overlap matrix S̃ impact the accuracy
of the lowest eigenvalue Eg(K,L) of Eq. (4). This issue
has been discussed previously in the QSE literature [34],
and one possible solution is to use the Hamiltonian regu-
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FIG. 2. Fidelity and energy convergence of PIQAE calculations with HVA ansatz layer number L and FGKS
expansion moment K using statevector simulator. (a) State infidelity, 1−F ≡ 1− |⟨g(K,L)|G⟩|2, as a function of K
with L = 0 (black filled circles), L = 1 (orange filled squares), and L = 2 (blue filled diamonds) for the 1D MFIM of N = 16
sites. Here |g(K,L⟩) is the FGKS ground state, and |G⟩ is the ED ground state. (c, e) Similar to (a) but for the 2D MFIM
and TFIM on an N = 4× 4 square lattice. (b) Similar to (a) but for the energy error per site ε = [Eg(K,L)− EG]/N , with

Eg(K,L) ≡ ⟨g(K,L| Ĥ |g(K,L⟩ and EG ≡ ⟨G| Ĥ |G⟩. (d, f) Similar to (b) but for 2D MFIM and TFIM with N = 4×4 sites. For
reference, the state infidelity and energy error from the same type of subspace expansion calculations but within the conventional
Krylov subspace (KS), {Ĥk |Ψ⟩}Kk=0, are also presented in each panel, with L = 0 (black open circles), L = 1 (orange open
squares), and L = 2 (blue open diamonds). (See text for Hamiltonian parameters.)

larization method adopted in the statevector simulations
but with the truncated subspace dimension M fixed by a
modified eigenvalue size threshold ξc tied to the number
of shots Ms. Here, however, we propose using a different
approach based on preserving the trace of the overlap
matrix, TrS. Since the vectors {|Vj⟩} are normalized, we
find TrS = NK in the noiseless case. After diagonalizing
S (with eigenvalues si ordered in decreasing size), we

impose the criterion
∑Mo

i=1 si = NK as a way to select the
optimal number M = Mo of states to keep.

Figure 3 shows results for the 2D square lattice TFIM
with N = 4 × 4 sites obtained on the quantum assem-
bly language (QASM)-based simulator as implemented
in Qiskit [44]. We set L = 1 for the HVA ansatz and
K = 2 for FGKS expansion moment. Since the focus
here is on the impact of shot noise on the solution of
the generalized eigenvalue equation [Eq. (4)], we fix the
variational parameters of the HVA ansatz to those ob-
tained from statevector simulations (α = 0.154, γ = 0.785
). We choose Ms = 214 for the number of measurements
of each Pauli string in CPK . Figure 3 (a) plots the energy

error per site ε = |Ẽg −EG|/N as a function of truncated

subspace dimension M. Here, Ẽg ≡ Ẽg(K,L,M) is the
lowest energy of the measured (noisy) Hamiltonian matrix

H̃ij = ⟨si|H̃|sj⟩ in the subspace spanned by the eigenvec-

tors {|sj⟩} of the noisy S̃ with the largest M eigenvalues.

From now on we shall use Õ to emphasize the observable
O evaluated in the presence of shot noise or device errors
where needed to avoid confusion. The associated ground
state |g⟩ ≡ |g(K,L,M)⟩ reads

|g⟩ =
M∑

i=1

ci |si⟩ =
NK∑

k=1

c′k |Vk⟩ , (16)

where ci and c′i are expansion coefficients. The energy
error per site starts at ε(M = 1) = 0.0217(2), which is
slightly higher than that of the HVA energy (EHVA −
EG)/N = 0.017(3) (upper dotted line in Fig. 3 (a)). Note
that the basis vector of the truncated subspace with M =
1 does not necessarily coincide with the zeroth-moment
HVA starting state |Ψ⟩ owing to the subspace construction
method involving the diagonalization of S. The energy
error initially decreases with increasing M, and reaches
a minimum of about ε(M = 310) = 0.1(9)× 10−4, which
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FIG. 3. QASM simulator results for 4 × 4 TFIM (a)

Energy error per site ε = |Ẽg −EG|/N of the estimated FGKS
ground state |g⟩ in the presence of shot noise as a function of
the truncated subspace dimension M. The zeroth moment
state is an HVA ansatz with L = 1 layer, the expansion
moment is K = 2, and we used Ms = 214 measurement shots
for each circuit. For comparison, we also show the error
|⟨g| Ĥ |g⟩ − EG|/N of the exact energy of the state |g⟩ as a
function of M (red squares). This quantity is a figure of merit

of the ground state |g⟩. (b) Absolute difference |∑M
i=1 si−NK |

between the sum of the largest M eigenvalues si of S̃ and the
trace of the overlap matrix TrS = NK as a function ofM. The
dashed grey line indicates Mo. Error bars in (a) are standard

deviations estimated based on 10 sets of H̃ and S̃, obtained
from sampling the expectation values of Pauli strings in CPK

according to the multivariate normal distribution specified
by the measured means and standard errors. For clarity, the
results are shown at every 10th point. We set hx = −3.05 for
the 2D TFIM as in Fig. 2.

is comparable to the K = 2, L = 1 statevector result
εSV = 0.8 × 10−4, denoted by the lower dotted line in
Fig. 3 (a).

The above discussion assumes knowledge of the exact
reference point EG, for which the minimal error is ob-
tained. Since this is unknown for larger systems, one
needs a criterion independent of EG to determine the
optimal value of M = Mo for noisy calculations. The
S-trace criterion takes note that TrS = NK since the
NK vectors {|Vj⟩} spanning the FGKS are normalized
(recall that this provides an overcomplete basis for the
FGKS). Therefore, the cumulative sum of the eigenvalues∑M

i=1 si of the overlap matrix S evaluated without noise
is upper bounded by the matrix dimension NK . Note
that the eigenvalues are ordered such that si ≥ si+1 for
all i. While this does not hold in the presence of noise,

Model Backend K L ε(Mo) εrel(Mo)

4× 4 TFIM QASM 2 1 1(1)× 10−3 0.03(3)%
5-site MFIM ibm quito 2 2 2.9(6)× 10−3 0.18(4)%
16-site MFIM ibm guadalupe 1 1 0.05(4) 3(2)%
16-site MFIM fake guadalupe 1 1 1(1)× 10−3 0.06(6)%

TABLE I. Summary of ground state energy accuracies obtained
in the different simulations in the presence of noise. Here,
ε(Mo) = |Ẽg(K,L,Mo)− EG|/N denotes the error per site

at the optimal value of Mo and εrel(Mo) = |Ẽg(K,L,Mo)−
EG|/EG the relative error.

we propose the S-trace criterion to determine Mo by
minimizing the distance

Mo = min
M

∣∣∣∣∣
M∑

i=1

si −NK

∣∣∣∣∣ . (17)

In Fig. 3 (b) we plot the distance as a function of M.
Following the S-trace criterion, we determine Mo = 267.
This gives ε = (1± 1)× 10−3, which is close to the ranges
of estimation above (0.1(9) × 10−4). We include these
results in Table I, which summarizes the accuracy of
the ground state energy obtained for the different noisy
simulations performed in this work. As a figure of merit
for the estimated ground state |g⟩ in Eq. (16), we show

its exact energy expectation value, Eg = ⟨g| Ĥ |g⟩ (after
normalizing |g⟩), as a function of M in red squares in
Fig.3 (a). Note that we use the exact Hamiltonian from
Eq. (7) here. One can see that the two curves in Fig.3 (a)
exhibit a similar behavior, showing a larger deviation
around M ≳ 200, and starting a slight upturn around
Mo = 267, above which they continue to increase. The
presence of a minimum of Eg = ⟨g| Ĥ |g⟩ at Mo validates
the S-trace criterion and provides a sense of its operational
meaning.

VII. QUANTUM HARDWARE CALCULATIONS

A. 5-site MFIM simulations on ibm quito

To demonstrate PIQAE calculations on quantum hard-
ware, we first choose a MFIM of N = 5 on a lattice match-
ing the qubit layout of the ibmq quito QPU, as shown
in Fig. 4. An HVA ansatz of L = 1 is adopted, and the
FGKS moment is set to K = 2. Similar to the benchmark
calculations with shot noise, we optimize the parameters
of HVA using the statevector simulator to focus on the
impact of device errors on the subspace expansion step.
We obtain the optimal values α = −1× 10−8, β = −1.09,
and γ = 1.57, which define the zeroth moment state |Ψ⟩.
To obtain H̃ij and S̃ij , we have to execute Ng = 142

measurement circuits, which yields the expectation values
of DK=2 = 822 Pauli operators in CPK=2. We adopt
the model-free twirled readout error extinction (TREX)
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FIG. 4. PIQAE results on ibmq quito QPU. (a) En-

ergy error per site ε = |Ẽg − EG|/N (black dots) as a func-
tion of subspace dimension M for a 5-site MFIM on the
ibmq quito lattice (see inset). For comparison, we show the

error |⟨g| Ĥ |g⟩ − EG|/N of the exact energy of the FGKS

ground state |g⟩ obtained from the noisy H̃ij and S̃ij (red

squares). (b) Absolute difference |∑M
i=1 si −NK | between the

sum of (sorted) eigenvalues si and the dimension of the noise-
less overlap matrix TrS = NK as a function of M. Panels
(c,d) show the same information as (a,b) except that the en-
tangling gates have been omitted from the HVA ansatz owing
to the small optimal angle α < 10−3. The error bars in (a,c)
are obtained in the same way as in Fig. 3. We set hx = −1
and hz = 0.5, and use Ms = 214 shots to measure each group
of commuting Pauli strings in CPK .

technique in all the QPU calculations [45]. Diagonaliz-
ing the generalized eigenvalue problem (4) then yields

Ẽg(K = 2, L = 1,M).
Figure 4 (a) shows that the average energy error per

site, ε(M), of the estimated ground state |g⟩ decreases
with M from its initial value ε(M = 1) = 0.0788(5)
and reaches a minimum around M = 49. However, if
we were working in a regime where the exact ground
state energy was not available, we would not be able to
select M a posteriori according to the criterion of minimal
energy error. In this case, it is desirable to implement a
heuristic like the S-trace criterion to select M. As shown
in Fig. 4 (b), the S-trace criterion suggests an optimal
Mo = 29, where the average error is ε(Mo) = 0.0029(6).
This is more than an order of magnitude improvement
compared to the initial error and also to the L = 1 HVA
energy error per site 0.13(2). We observe that the exact

energy Eg = ⟨g|Ĥ|g⟩ of the state |g⟩ reaches a minimal
error around Mo = 29, again validating the S-trace
criterion. The minimal error of the exact energy at Mo

is | ⟨g|Ĥ|g⟩ − EG|/N = 0.0009(1), which is about three
times smaller than the noisy error ε(Mo). This arises

from the difference between Ĥ and the measured H̃ij and
suggests sizable device errors.

In the above calculation, the HVA circuit is directly
transpiled to the native gates of ibmq quito without
optimization. As a result, the transpiled circuit has
8 CNOT gates, which is expected to dominate the er-
rors in the QPU calculations. To verify this conjecture,
we leverage the fact that the optimal angle for the en-
tangling gates is negligible, α ≈ 10−8, and repeat the
calculations with the two qubit unitaries Uzz [Eq. (9)]
removed from the HVA ansatz. Figure 4 (c) shows that

the agreement between the noisy energy Ẽg and the exact

Eg = ⟨g|Ĥ|g⟩ is much better. At the optimal Mo = 17,
we find ε(Mo) = 2(4) × 10−4 in close agreement with

| ⟨g|Ĥ|g⟩−EG|/N = 4(1)× 10−4. The error is lower than
in Fig. 4 (a) due to the simplified circuit free of entangling

gates, which also improves the noisy overlap matrix S̃ij .

B. 16-site MFIM simulations on ibm guadalupe

Next we perform PIQAE calculations of a 16-site MFIM
on the ibmq quadalupe QPU, where we choose the spin
model lattice to match the heavy-hex lattice qubit layout
of the hardware. We use an L = 1 HVA ansatz at optimal
angles α = 5× 10−9, β = −1.17, and γ = 1.57, obtained
using statevector simulations. Note that rotation gates
with negligible angles are also explicitly included in the
QPU calculations to account for noise present in the HVA
circuit at generic angles, and also to test the effect of error
mitigation techniques. We set the subspace moment K =
1 for the FGKS expansion, which amounts to measuring
DK = 14672 Pauli strings in CPK on the QPU to obtain
H̃ij and S̃ij . Grouping into qubit-wise commuting sets of
Pauli strings using a greedy coloring algorithm [42] splits
CPK=1 into Ng = 83 groups. We thus need to execute
Ng circuits with different measurement bases to obtain
expectation values of all DK Pauli operators. Besides
adopting the TREX technique for readout calibrations,
we also apply dynamical decoupling and Pauli twirling for
CNOT gates to mitigate device errors. Specifically, we
create 32 equivalent circuits with dynamical decoupling
and Pauli twirling, and use 214 shots for each circuit to
measure the observables.

As shown in Fig. 5 (a), the average error ε (black dots)
rapidly drops from ε(M = 1) = 0.45(1) to ε(M = 3) =
0.29(5) in the initial two steps. This is followed by a
rather slow decrease with increasing truncated subspace
dimension M to ε(Mo) = 0.21(4), where Mo = 48 =
DK=1 − 1 (see Fig. 5 (b)). The final point at M =
DK=1 = 49 is excluded from the analysis due to a sudden
large drop in energy by over 5.5. For reference, the L = 1
HVA energy error per site is 0.53(1). In contrast, the

exact energy Eg = ⟨g|Ĥ|g⟩ of the state |g⟩ experiences an
error that is about 10 times smaller (red squares), and
reduces only marginally from 0.015 to a final value of
| ⟨g|Ĥ|g⟩ − EG|/N = 0.011 at Mo. The error ε for the
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FIG. 5. PIQAE results on ibmq guadalupe QPU. (a)
Energy error per site ε = |Eg − EG|/N (black dots) as a
function of truncated subspace dimension M for a 16-site
MFIM on the ibmq guadalupe heavy-hex lattice (see inset).
For comparison, we show both the zero-noise extrapolated
curve (blue dots) and the error |⟨g| Ĥ |g⟩−EG|/N (red squares)

of the exact energy of |g⟩. (b) Absolute difference |∑M
i=1 si −

NK | of the (sorted) eigenvalues si of the noisy overlap matrix

S̃ij and the trace of the noiseless one NK as a function of M.
We set hx = −1 and hz = 0.5 for the model and use an L = 1
HVA ansatz and expansion moment K = 1. The error bars in
(a) represent the standard deviations estimated using 8 sets

of H̃ and S̃, each of which are derived from 7 out of 8 equal
partitions of the full set of measurement outcomes. For clarity,
the results are shown for every second point.

N = 16 model is much larger than for the N = 5 model,
which is due to the larger number of entangling gates,
which is NCX = 32 for the N = 16 site model compared
to NCX = 8 for five sites.

To improve the energy estimation for the state |g⟩, we
apply the digital zero-noise extrapolation (ZNE) tech-
nique [46, 47], where we assume a uniform CNOT gate er-
ror rate of 0.98 and perfect single-qubit gates. A noise scal-
ing factor is varied in the range λ ∈ [1, 1.25, 1.5, 1.75, 2],
with λ = 1 meaning no noise amplification. In addition,
we construct 32 circuits with random gate folding at each
λ using the open-source software package Mitiq [47], fol-
lowed by application of dynamical decoupling and Pauli
twirling. In Fig. 5 (a) we plot the average error of the
improved estimation of Eg based on ZNE with second-
order polynomial fitting. ZNE generally improves the
energy estimation, reducing the initial error at M = 1
from ελ=1 = 0.45(1) to εZNE = 0.38(1) and the final one
at Mo from ελ=1 = 0.21(4) to εZNE(Mo) = 0.05(4). The
extrapolation becomes more effective at large M, yielding

a smaller error ε as the subspace expands.
We perform ZNE in the following way: first we deter-

mine the ground state |gλ=1⟩ =
∑NK

i=1 ci |Vi⟩ according
to Eq. (16) from solving the generalized eigenvalue prob-

lem at λ = 1, i.e. with H̃ij and |S̃ij obtained at λ = 1.
Then, we evaluate the energy of |gλ=1⟩ with respect to the
noisy Hamiltonians at other values of λ > 1 by evaluating∑

ij cicjH̃ij/
∑

kl ckclS̃kl with H̃ij and S̃ij measured at

λ > 1. Note that it is important to renormalize |g⟩ at
each λ using the associated noisy overlap matrix.

VIII. PROBABILISTIC ERROR REDUCTION
ON NOISY SIMULATOR

In the previous section, we observed significant errors in
the L = 16 model [see Fig. 5 (a)] on the ibm guadalupe
QPU, attributed to the increase in the number of entan-
gling gates with system size. Despite applying quantum
error mitigation protocols such as ZNE, dynamical de-
coupling, and Pauli twirling, we noted a limited improve-
ment in energy estimates. Consequently, a more refined
error mitigation strategy is essential, necessitating the
learning of error channels through tomography. In this
section, we use a robust and controlled quantum error
mitigation protocol involving noise tailoring where ini-
tially, noise characterization is performed using Pauli noise
tomography (PNT) [48, 49]. Subsequently, error mitiga-
tion is carried out using the probabilistic error reduction
(PER) [50, 51] technique, which combines quasiprobabilis-
tic sampling similar to probabilistic error cancellation
(PEC) [46] with ZNE. The PNT technique entails convert-
ing arbitrary noise channels into Pauli error channels by
applying Pauli twirling to the entangling gates within each
quantum circuit layer. The resulting twirled noise chan-
nel is then modeled using a sparse Lindblad model that
only includes single-site and two-site Pauli operators on
physically connected qubits. This is based on the assump-
tion that strong noise correlation exists mostly between
physically connected qubits, particularly nearest-neighbor
pairs. This characteristic enables PNT to achieve con-
stant scaling in the number of qubits, rendering it efficient
for larger systems. Leveraging the obtained sparse Pauli
noise model, we efficiently sample PER circuits from a
partially inverted noise channel, where the noise strength
is controlled by an external parameter λ [50, 51]. Below,
we present the resources utilized and the results of the
calculations for the PNT and PER analyses performed
using a completely automated open-source software called
AutomatedPERTools [51, 52]. The objective of this sec-
tion is to conduct the PIQAE calculation utilizing the
error-mitigated expectation values of each of the Ng = 83
Pauli groups of commuting operators, which construct
the K = 1 FGKS on the fake guadalupe backend for
the N = 16-site MFIM, as described in Sec. VII.
We performed PNT and PER calculations on the

fake guadalupe backend for the L = 16 MFIM, uti-
lizing a lattice matching the native qubit connectivity
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FIG. 6. PIQAE results on fake guadalupe using PER
quantum error mitigation. (a) Energy error per site ε =

|Ẽg − EG|/N (grey dots) as a function of subspace dimension
M for a 16-site MFIM on the fake guadalupe backend. We
use an L = 1 HVA ansatz for the zeroth moment state and an
expansion moment K = 1. PIQAE calculations using H̃ij and
S̃ij obtained from PER (blue dots) yield substantially reduced

error. For comparison, we include the error |⟨gPER| Ĥ |gPER⟩−
EG|/N (red squares) of the exact energy of the FGKS ground

state |g⟩PER using PER, and the error |⟨gSV| Ĥ |gSV⟩−EG|/N
(green line) derived from an overlap matrix obtained from

statevector simulations. (b) Absolute difference |∑M
i=1 si −

NK | of the (sorted) eigenvalues and dimension of the overlap
matrix S as a function of M, demonstrating Mo = 29. We
set hx = −1 and hz = 0.5 for the model. The error bars in (a)
are obtained in the same way as in Fig. 3.

of the backend. Similar to Sec. VII, we used an L = 1
layer HVA ansatz at optimized angles obtained from stat-
evector simulations with the K = 1 FGKS expansion.
For PNT, we considered a total of 150 samples for the
Pauli twirl consisting of 50 samples for pair-fidelity and
100 single-fidelity. We run circuits of varying depths
([2,4,8,16]) with 1000 shots each to ensure the proper
diagonalization of the noise channel. This process gener-
ated a Pauli noise model necessary for PER, where we
sampled from the partial inverse of the noise model and
Pauli twirl. For PER, all 83 commuting Pauli groups are
measured with 1000 samples each for five noise strengths
λ ∈ [0, 0.25, 0.5, 0.75, 1, 1.5], evaluated with 1000 shots
each. This step in the procedure is the most resource-
intensive. We then extrapolate each Pauli expectation
value to zero noise using the PER results obtained for
different noise strengths λ for all measured Pauli groups.
These ZNE estimated expectations determine Hij and
Sij , which are used to perform the PIQAE calculation.

Note that we solve a single generalized eigenvalue problem
here to obtain Ẽg, |g⟩, and ε and the results are shown
in Fig. 6 . The average error with PER mitigated cal-
culations decreased by an order of magnitude between
M = 1 and the optimal subspace dimension Mo = 22.
In comparison to results for λ = 1 (grey points), indicat-
ing the original noise on fake guadalupe, we achieved a
significant two-order-of-magnitude error reduction up to
M = Mo. It is important to emphasize that the ZNE
results with PER closely approximate the exact calcula-
tions, wherein |g⟩ is derived by diagonalizing the overlap
matrix obtained from statevector simulations. This is il-
lustrated by the green line in Fig. 6 (a). When comparing
the results depicted in Fig. 5 (a) with those in Fig. 6 (a),
it becomes evident that PER proves more effective in mit-
igating device errors, and performing PER on quantum
hardware is a promising next step.

IX. CONCLUSION

In this paper we highlight the generic idea of improv-
ing the accuracy of ground state energy calculations by
synergistically integrating VQE with quantum subspace
expansion (VQESE). As a specific implementation, we
presented a detailed study of the paired iterative quantum-
assisted eigensolver (PIQAE) in the presence of hardware
noise, providing a benchmark towards near-term quan-
tum computing applications. We have shown that by
balancing the depth of the VQE ansatz L, which sets
the zeroth moment state |Ψ⟩, with the dimension of the
subspace, set by K, one can tailor the PIQAE method
according to the available QPU and CPU resources. We
have demonstrated a significant enhancement of the ac-
curacy of the ground state energy on ibm guadalupe by
about one order of magnitude compared with HVA.

Using statevector simulations of the 1D and 2D TFIM
and MFIM, we have established that the convergence of
the energy with the moment K occurs more rapidly for
larger L. Thus, one can choose the PQC depth L and
the subspace expansion moment K in order to achieve
accurate ground state estimations, which are compatible
with available resources. We also analyzed the impact of
shot noise and proposed a criterion based on the trace of
the overlap matrix to determine the optimal truncated
subspace dimension Mo. We used this criterion to per-
form PIQAE calculations on IBM hardware and have
simulated a 5-site MFIM on ibmq quito and a 16-site
MFIM on ibmq guadalupe. For the system with fewer
qubits, we have obtained reasonably accurate results with
an energy error per site of ε < 0.01, corresponding to
relative error εrel < 0.7%. For the 16-site system, we
employed standard error suppression and mitigation tech-
niques including ZNE to achieve an average error per site
of ε ≈ 0.05 (εrel ≈ 3%). Finally, we have demonstrated
that using a more controlled quantum error mitigation
technique such as PER can significantly improve the en-
ergy estimates and we report an improvement by two
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orders of magnitude to εPER = 0.001 (εrel ≈ 0.06%) for a
16-site MFIM on fake guadalupe.

Our study is a detailed benchmark of the performance
and robustness of QSE approaches in the presence of
hardware noise and thus lays the groundwork for future
applications of this method on QPUs to larger models
that are no longer accessible via ED. When combined with
controlled quantum error mitigation methods, our work
suggests that PIQAE is a viable candidate to perform
ground state calculations on such large systems to achieve
quantum utility before fault tolerance, adding to the
prospect for utility in quantum dynamics simulations [9].
Concretely, for PIQAE calculations of a N = 127 heavy-
hex spin lattice model on ibm sherbrooke with expansion
moment K = 1, we estimate the number of distinct mea-
surement circuits to be smaller than 8× 127 + 3 = 1019
according to the upper bound given by Eq. (13). Com-
bined with controlled quantum error mitigation methods,
such as those used here [50, 51] and demonstrated in
Ref. [9], we expect that PIQAE can provide accurate esti-
mates of the ground state energy and other ground state
observables for large model sizes that are not accessible

by classical computational approaches.
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