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Scaling, hyperscaling and finite-size scaling were long considered prob-
lematic in theories of critical phenomena in high dimensions. The scal-
ing relations themselves form a model-independent structure that any
model-specific theory must adhere to, and they are accounted for by the
simple principle of homogeneity. Finite-size scaling is similarly founded
on the fundamental idea that only two length scales enter the game
— namely system length and correlation length. While all scaling re-
lations are quite satisfactory for multitudes of physical systems in low
dimensions, one fails in high dimensions. The aberrant scaling relation is
called hyperscaling and involves dimensionality itself. Finite-size scaling
also appears to fail in high dimensions. Developed in the 1930s, Lan-
dau mean-field theory is valid in such high-dimensional systems. How-
ever, it too does not accord with hyperscaling and finite-size scaling
there. The advent of renormalization-group theory in the 1970s brought
deeper fundamental insights into critical phenomena, allowing systems
to be viewed at different scales. Above a critical dimensionality, higher-
order RG eigenvalues become irrelevant and scaling is governed by the
Gaussian fixed point. Although obeying all scaling relations including
hyperscaling, and although it appears to successfully explain scaling in
the correlation sector, the Gaussian fixed point fails to capture the free
energy and derivatives, even in infinite volume. In the 1980s, to fix this
for the magnetisation, specific heat and susceptibility, Fisher introduced
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the notion of dangerous irrelevant variables. Since the correlation sec-
tor did not appear to be broken, no attempt was made to repair it and
Fisher’s modified RG formalism worked quite well in the thermodynamic
limit of infinite volume. However, finite-size scaling fails. Also in the
1980’s, Binder, Nauenberg, Privman and Young extended Fisher’s con-
cept to the free energy itself and to finite-size systems. While putting
Fisher’s ideas on a more fundamental footing, the failure of finite-size
scaling there still presented a problem. This appeared to be resolved
by the introduction of “thermodynamic length” to replace correlation
length as the length scale that controls FSS. Thus hyperscaling and FSS
were both sacrificed in favour of the RG patched together by ad hoc so-
lutions. In the 1990’s, Luijten and Blöte went a long way to resolving the
dilemma by adding corrections to scaling to the above considerations.
It was clear that both of these played a role. However, as with previous
authors, and adhering to the principle of not fixing that appears not to
be broken, they did not address correlation length directly.

If hyperscaling is a scaling relation, ϙ is a critical exponent. If ϙ
is a pseudocritical exponent, hyperscaling is a FSS relation. So either
hyperscaling maintains its status, and ϙ is promoted or ϙ is like λ and ρ
but hyperscaling is demoted. The key to unlocking these, and extending
their validity to the high-dimensional regime, was to relax long-standing
assumptions that the correlation length has to be bounded by the phys-
ical length of bounded systems. This allowed and necessitated extension
of Fisher’s concept of dangerous irrelevant variables to the correlation
sector.
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To the memory of my friend, Ralph Kenna

Ralph and I started writing this review article for a volume of the series

edited by our common friend Yurij Holovatch while Ralph was already ill.

He knew that he would not see the book published. We had worked a

bit earlier on a lecture format published in Scipost,1 and this was not an

easy task to propose a different perspective. This is Ralph’s idea to write

a kind of story, with many personal views and quotations. The material

presented here covers about fifteen years of our collaboration, and there is

a lot to say. The result is maybe not really a scientific paper in the usual

sense. As I wrote above this is more like a story, as the title says already.

Unfortunately, Ralph passed away before this was finished. The reader will

easily recognize which parts were written by Ralph (the good ones), and

which are mine (those with little originality).

Those who met Ralph knew that he was a wonderful person. He was

always enthusiastic, he was bringing new ideas on the scene and was ready

to fight, in a positive sense, in support of his opinions. He has been an

excellent friend and an outstanding collaborator. We miss him.

At the time I am finishing this article for a volume edited by our

Ukrainian friend, (YuH) after more than two years of war imposed on his

country by Putin’s government of Russia, another terrible war, imposed by

Netanyahu’s government of Israel, is devastating the Gaza strip, denying

the right of Palestinian people to live there. Ralph is no longer there to

tell me how he would feel bad to witness such a horrible situation in the

Middle East, but I know how he, like many in Ireland, was against any

kind of apartheid and colonisation. This is a hard time for the world when

international laws and international regulations of Human Rights are tram-

pled in the complete disinterest of most countries. Many of these countries

claim at the same time that they are democracies and claim that they work
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for Human Rights. Those countries that sell weapons to destroy Gaza. As

simple human beings, we are against any kind of discrimination, any kind of

racism, antisemitism, or islamophobia. Today my thoughts are in support

of the Palestinian people who is suffering a tragedy imposed by Netanyahu’s

government of Israel. History and the international courts will qualify these

mass killings as they should be. Our thoughts have been on Israeli victims

of the hideous attacks of the 7th of October, today, they are for Palestinian

childrena.

April 2024

1. Introduction

In the proceedings of a conference held in Washington DC in April 1965,
Michael Fisher published what is an important but widely forgotten paper
titled “Notes, definitions, and formulas for critical point singularities”.2

Prior to Fisher’s intervention, different people used different symbols at
different times for different measures. Fisher pointed to us this when he
invited us to meet him at the Royal Society in London, just before his
retirement in October 2012. The paper opens with the introduction:

“For the convenience of participants a set of definitions and
notes concerning the various critical point singularities and a
table of formulas relating the lattice gas and Ising ferromag-
netic models were distributed at the Conference. These are
reproduced here with a few corrections and extensions.”

This is how the worldwide practice of using α, β, γ, δ, η and ν (arranged in

that order in Fisher’s paper) was introduced and accepted in the commu-

nity for critical exponents of the specific heat, spontaneous magnetisation,

susceptibility, induced magnetisation, anomalous dimension and correlation

length. Of course, phase transitions can only happen for infinite-sized sys-

tems and there is no mention of finite volume in Fisher’s paper; the term

“critical point singularities” in the title makes that clear.
In his paper, Fisher defined a generic critical exponent λ in the following

way:

“ if

lim
x→0+

log f(x)/ log x = λ

we may say

f(x) ∼ xλ as x → 0+.

ahttps://www.amnesty.org/en/latest/news/2024/02/israel-opt-new-evidence-of-

unlawful-israeli-attacks-in-gaza-causing-mass-civilian-casualties-amid-real-risk-of-
genocide/

https://www.amnesty.org/en/latest/news/2024/02/israel-opt-new-evidence-of-unlawful-israeli-attacks-in-gaza-causing-mass-civilian-casualties-amid-real-risk-of-genocide/
https://www.amnesty.org/en/latest/news/2024/02/israel-opt-new-evidence-of-unlawful-israeli-attacks-in-gaza-causing-mass-civilian-casualties-amid-real-risk-of-genocide/
https://www.amnesty.org/en/latest/news/2024/02/israel-opt-new-evidence-of-unlawful-israeli-attacks-in-gaza-causing-mass-civilian-casualties-amid-real-risk-of-genocide/
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Note that with this definition the statement f(x) ∼ xλ does
not exclude the possibility of a logarithmically divergent factor,
i.e., Axλ| log x| ∼ xλ. In particular if λ = 0 the function f(x)
might diverge as | log x|, for example, or f(0) might be finite,
the function f(x) then being either continuous or discontinuous
as x passes through zero.”

This is an example of the meticulous attention to detail characteristic of

Fisher; he had not forgotten logarithmic corrections as an essential fea-

ture in the physics of critical phenomena. Although explicitly mention-

ing logarithmic corrections to the specific heat when α is zero in the two-

dimensional Ising model, for example, he did not address them further in

his paper. He did, however, distinguish between critical exponents at either

side of the phase transition, using primed exponents for the broken phase

and unprimed ones for the symmetric phase. Thus α was used as the crit-

ical exponent for the specific heat when temperature T exceeds its critical

value Tc, for example, while α′ was used for T < Tc.

This is why, when one of us reported on the exponents of logarithmic

corrections in Volume III of this series (2012), hatted, rather than primed

notations, were used.3 Thus if f(x) has a logarithmic correction it is ex-

pressed as f(x) ∼ xλ| lnx|λ̂ with α̂, β̂, γ̂, δ̂, η̂ and ν̂ representing exponents

of logarithmic corrections for the observables listed above. Just as there

are scaling relations between the leading critical exponents, so too are there

relations between their logarithmic counterparts. Indeed, it was the intro-

duction these scaling relations in Refs.4,5 (and in Volume III of this series)

that captured Fisher’s attention and led to our memorable invitation to

meet him at the Royal Society.

However, the analogue is not perfect; for the scaling relations between

the hatted exponents to match exact and numerical calculations for spe-

cific models, there needed to be a logarithmic correction to the finite-size

behaviour of the correlation length. This was termed q̂ in Refs.3–5 and had

no counterpart in Fisher’s list. Indeed, it referred to finite systems where a

singularity cannot emerge, so that if L denotes the linear extent of a finite

system, the correlation length scales as ξL ∼ L(lnL)q̂. Serendipitously, the

missing counterpart emerged the same year as our meeting with Fisher in

our paper about hyperscaling above the upper critical dimension published

as Ref.6 Since we had used q̂ for the exponent governing logarithmic cor-

rections to finite-size scaling [FSS] of the correlation length, it was natural

to use q as its leading counterpart, so that ξL ∼ Lq.b

bThe symbol q̂ was used in Ref.4 simply because q is next in the alphabet after p,
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“There is one thing wrong with your theory” were the terrifying words

of Michael Fisher at our meeting — “the letter ‘q’ is not right”. It did

not match the Greek alphabet! Our relief that the deficiency in our theory

rested only with nomenclature, and not in bringing finite-size concepts into

descriptions of (infinite-volume) critical-point singularities, emboldened us

to offer an excuse that all the Greek letters had been used up! This was

met with calm assurance that again revealed Fisher’s meticulousness as he

etched out the symbol “ϙ”: “use “coppa”, he said “- its an archaic Greek

letter”. And thus a new symbol entered the pantheon tamed by Fisher

nearly half a century earlier.

Our claims of a superlinear correlation length in high dimensions raised

eyebrows in some quarters, as did the usage of ϙ. Resistance to the former

was due to dogmatic belief that the correlation length dare not exceed

the length of a finite system, despite this already having been proved in

specific models twenty years earlier by Édouard Brézin.7 Hostility to the

nomenclature is captured in the statement: “The authors’ introduction of

their new exponent with the ankh notation is thus a gimmick which is

not recommended in the scientific literature. Instead, they should perhaps

find a new letter that can be easily typeset.” Faced with the options of

defying that anonymous referee or Michael Fisher, we did not waver and A

new critical exponent ϙ and its logarithmic counterpart ϙ̂ was published in

Condensed Matter Physicsc, John Cardy having come to the rescue for the

typesetting.8

Hyperscaling, which is one of the four scaling relations that interlink

the six most prominent critical exponents α, β, γ, δ, ν and η, usually reads

as

νd = 2− α. (1)

which was used instead of the gap exponent for scaling of Lee-Yang zeros in an earlier
version of that paper. This usage of p was intended to indicate that the theory set out in

Ref.4 was not reliant on concepts such as renormalization-group eigenvalues. While the

eventual usage of ∆ instead of p preempts the double meaning of “gap” (both meanings
are explained below), the consequent usage of q and q̂ was serendipitous, as it fits very

well with the convolution of related literature, as we shall see below.
cThe journal was founded in 1993 by the Institute for Condensed Matter Physics of the

National Academy of Sciences of Ukraine. In March 2022 they issued the statement “Our
country has suffered an unjust and unprovoked aggression. Our army and our people
are carrying an existential fight for Ukraine’s very survival as an independent state, for

our lives and freedom. Despite everything, we here, not at the frontline, are determined

to do our job and continue publishing new issues of our journal on a regular basis, as
long as it is possible. If you wish to support the Ukrainian scientific community, we are

cordially inviting you to submit your manuscripts to our journal.” We refer the reader
to the journal’s website: http://www.icmp.lviv.ua/journal
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Here, d is the dimensionality of the system and does not feature in the

other three scaling relations (which we list in Subsection 2.1, below). The

Ginzburg criterion (explained below) marks the critical value duc of dimen-

sionality beyond which critical fluctuations of the order parameter cease to

play a leading role. Mean-field theory is a valid first approximation there

and the criterion dictates that ν and γ are fixed to their critical-dimension

values. The remaining critical exponents, α included, are fixed by the re-

maining scaling relations. With α and ν so fixed, and d free to roam above

its critical value duc Eq(1) cannot hold there and, for this reason, it is fre-

quently said (including in textbooks, reviews and even new literature) that

FSS fails above the upper critical dimension.

The introduction8 of the new exponent ϙ renders such statements ob-

solete; a small alteration to the expressions (1) based on a foundational

alteration to the renormalization group, delivers a new form which is valid

above (and below) duc. In volume IV, we provided a renormalization-group

basis for the correlation length ξL to take the form

ξL ∼ Lϙ, (2)

with

ϙ =
d

duc
(3)

above duc and ϙ = 1 below. The new hyperscaling relation is then

ν
d

ϙ
= 2− α. (4)

This statement of hyperscaling is far from trivial - it is no mere “gimmick”

or cosmetic alteration of Eq.(1) to phenomenologically render νduc = 2−α.
It is rooted in a very subtle and fundamental extension of the renormal-

ization group to the correlation sector. The subtlety of this extension is

evinced by it having lain hidden for nearly fifty years — precisely because

of the success and simplicity of mean-field theory.

As stated, the superlinear behaviour of the correlation length was al-

ready introduced in Volume III of this series in a renormalization-group-

independent manner.3 Ref.3 reported on a series of papers,9–13 where one

of us presented a self-consistent theory of finite-size scaling at the upper

critical dimension itself. There, logarithmic corrections modify mean-field

behaviour in an essential way. Expressed into ϙ̂ instead of into q̂, the coun-

terparts of Eqs.(2) and Eqs.(3) are

ξL ∼ L(lnL)ϙ̂. (5)
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with

ϙ̂ =
1

duc
. (6)

These led to a logarithmic counterpart of the new hyperscaling relation (4),

namely

ν̂ = ϙ̂− α̂

duc
. (7)

One of the objectives of this chapter is to report on the origins of and

necessity for the above formulae for hyperscaling — over fifty years after

the old version was first set down.14–17 Eq.(6) holds in most cases but there

are exceptions — see Refs.18,19 for details. (We do not require those details

for what is to come.)

Finite-size scaling is also considered to fail above the upper critical

dimension duc. Its standard form, valid below (but not above) the upper

critical dimension, reads

QL(τ = 0)

Q∞(τ)
= FQ

[
L

ξ∞(τ)

]
. (8)

Here Q is a generic thermodynamic function such as specific heat c or

magnetic susceptibility χ. The variable

τ = T/Tc − 1 (9)

represents the reduced temperature of the system and vanishes at the crit-

ical point of its infinite-volume thermodynamic limit. The subscripts in

Eq.(8) represent the system size and ξ is the correlation length. A hand-

waving argument often used in favour of the FSS form (8) is that L and ξ

are the only two length scales associated with a given system, so all forms

of scaling should depend on their ratio. If Q∞(τ) diverges as the critical

point is approached as |τ |−ρ, say, this divergence has to be matched by the

functional dependence of FQ on the correlation length. This delivers the

classic FSS form

QL(0) ∼ Lρ/ν , (10)

which is not divergent for finite L.

In the case of magnetic susceptibility, this gives χL(0) ∼ Lγ/ν . How-

ever, the FSS ratio γ/ν is not matched by Brézin’s exact calculations and

numerical simulations by Kurt Binder for specific models above the upper

critical dimension.7,20 In particular, already in the 1980’s both methods

showed that ξL ∼ L5/2 for the 5D Ising model, rather than L2 which is
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what standard FSS with γ = 1 and ν = 1/2 would predict. Eq.(10) there-

fore fails above the upper critical dimension and this is frequently stated in

the same textbooks, reviews and other literature that condemn hyperscal-

ing to failure there. A primary outcome of our chapters in Volumes III and

IV is the replacement of Eq.(8) by

QL(t = 0)

Q∞(t)
= FQ

[
ξL(t = 0)

ξ∞(t)

]
, (11)

where

t =
T

TL
− 1, (12)

in which TL is a pseudocritical point. We refer to this as QFSS to distin-

guish it from standard FSS. There are two important changes in QFSS of

Eq.(11) relative to standard FSS in Eq.(8). The first is the replacement

ξL/ξ∞ for L/ξ∞. The necessity for this change was already suggested in

1991 when, in Ref.,9 it was used to theoretically identify and numerically

test FSS for Fisher zeros and the specific heat for the ϕ4 model in four

dimensions. The second change is the replacement of reduced temperature

τ = T/Tc − 1 by t = T/TL − 16 (see also Volume IV21).

As stated, in Volume III, narrowly preceding our 2012 Royal-Society

meeting, q̂ was used rather than Fisher’s ϙ̂. Three years later, in Volume

IV (2015), we presented a chapter on scaling above the upper critical di-

mension centered on ϕ4 theory and Ising models with short- and long-range

interactions. There the new archaic symbol ϙ (and ϙ̂) was deployed. In the

meantime, the notation has been taken up in multiple studies of phase

transitions in high dimensions, e.g. recently in Refs.22–25

Here, in Volume VII, we again deploy the notation suggested by Fisher.

The purpose of this chapter is to generalise and extend some of the concepts

presented previously. We start in Section 2 by introducing very funda-

mental (model-independent) Widom scaling concepts and extending them

to the correlation sector when logarithmic corrections are present. This

latter move will be justified by posteriori, by a similar extension to the

renormalization-group formalism in Section X. These extensions are a main

contribution of this body of work.1,3–6,8–13,18,21,26–28 On this basis, we re-

derive three of the scaling relations for logarithmic corrections. We also

introduce the fundamental theory of phase transitions, finite-size scaling,

and pseudocritical concepts. This provides a base for us to build upon

Volumes III and extend Volume IV to the more general case of ϕn theory.
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2. Homogeneity, scaling, logarithms and the enigmatic ϙ

“It should be clear that the purely thermodynamic approach
employed in this paper cannot in and of itself tell us the be-
haviour of various functions near the critical point. Rather, it
provides correlations among data obtained from experiments,
or from statistical calculations, and checks on their consistency.
The value of thermodynamics for checking consistency has al-
ready been demonstrated.”

These are the words of Robert Griffiths whose name, through his paper,16

is associated with one of the scaling laws for critical exponents. The same

can be said for Refs.4,5 on which Section 3 of this chapter rests. The scaling

theory presented there is based on self-consistencies, which are manifest as

relations between the various exponents associated with logarithmic correc-

tion to scaling and finite-size scaling. For ab initio model-specific theories,

the renormalization group and related approaches are appropriate. That

was the subject of our contribution to Volume IV of this series. There we

addressed the ϕ4 model, a model that trims back to the bare essentials of

dimensionality and symmetry - the essence of universality.

In the usual spirit of the renormalization group, we consider a model

with even and odd control parameters or fields τ and h. The even field τ

may be thought of as a reduced temperature in the case of spin models:

τ = T/Tc − 1. The odd ordering field h can be thought of as h = βH

where β = 1/kBT is the inverse temperature up to the Boltzmann constant

kB . In Ising-type models, H is the external magnetic field. In the case of

percolation theory, for example, where there is no temperature or magnetic

field the probability of site occupation plays the role of β.

2.1. Homogeneity

A homogeneous function f(τ, h) is one that is only affected by a multi-

plicative rescaling if τ and h themselves are multiplicatively rescaled. The

Widom scaling hypothesis is that the singular part of the free energy density

of ϕn theory is so governed and

f∞(τ, h) = b−df∞(bytτ, byhh), (13)

where b is an arbitrary rescaling factor.29,30 The precision that this is the

singular part of the free energy density is important as we know that regular

contributions do also exist but they do not enter the following discussion.

Here the subscript indicates we are dealing with a system of infinite

extent in all d directions. A similar hypothesis may be applied to the
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correlation function and the correlation length so that

g∞(x, τ, h) = b−2xϕg∞(b−1x, bytτ, byhh) (14)

ξ∞(τ, h) = b ξ∞(bytτ, byhh). (15)

Here x is a measure of physical distance in any direction of the d-

dimensional system and isotropy is assumed.

If the theory exhibits a phase transition at T = Tc or τ = 0 and

H = h = 0 between a low-temperature phase which is ordered and a high-

temperature one which is disordered, the two phases are distinguished by

the value of an order parameter, and, at this critical point, physically mea-

surable properties become singular. These thermodynamic quantities are

derivable from the free energy density as follows:

m∞(τ, h) =
∂f∞(τ, h)

∂h
= b−d+yhm∞(bytτ, byhh), (16)

e∞(τ, h) =
∂f∞(τ, h)

∂τ
= b−d+yte∞(bytτ, byhh), (17)

χ∞(τ, h) =
∂2f∞(τ, h)

∂h2
= b−d+2yhχ∞(bytτ, byhh), (18)

c∞(τ, h) =
∂2f∞(τ, h)

∂τ2
= b−d+2ytc∞(bytτ, byhh). (19)

In these relations, signs and multiplicative factors that do not compro-

mise the form of the singularities are omitted.

Thus the simple homogeneity assumption allows the various thermody-

namic functions to be expressed in terms of only two scaling dimensions yt
and yh. We may express them in the conventional form that predates the

renormalization group as follows.2 Firstly, setting τ = 0 and b = |h|−1/yh ,

m∞(0, h) ≃ D
−1/δ
c |h|1/δ, δ = yh

d− yh
, D−1/δ

c = m∞(0, 1). (20)

Then, in zero magnetic field, setting b = |τ |−1/yt deliversd

m∞(τ, 0) ≃ B−|τ |β , β =
d− yh
yt

, B− = m∞(−1, 0), τ < 0 , (21)

χ∞(τ, 0) ≃ Γ±|τ |−γ , γ =
2yh − d

yt
, Γ± = χ∞(±1, 0), (22)

c∞(τ, 0) ≃ A±

α |τ |−α, α =
2yt − d

yt
,

A±

α
= c∞(±1, 0). (23)

dRepeated differentiation wrt field delivers higher moments so that the nth magnetic

moment scales as |τ |(d−nyh)/yt . The “gap” between exponents is then yh/yy = β+ γ =
βδ and is conventionally given the label ∆.
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Here, we omit non-universal metric factors (see Refs.31–33). We can apply

a similar convention to the correlation function and correlation length to

obtain

g∞(τ = 0, h = 0,x) ∼ 1

|x|d−2+η
, (24)

and

ξ∞(τ, 0) ≃ Ξ±|τ |−ν , ν =
1

yt
, Ξ± = ξ∞(±1, 0), (25)

ξ∞(0, h) ≃ Ξ̃±|h|−νc , νc =
1

yh
, Ξ̃± = ξ∞(0,±1). (26)

Eliminating the scaling dimensions yt and yh in favour of the measurable

critical exponent delivers the scaling relations

νd = 2− α, (27)

α+ 2β + γ = 2, (28)

β(δ − 1) = γ, (29)

ν(2− η) = γ. (30)

These famous scaling relations were developed in the 1960’s through

altogether different methods by Benjamin Widom,14–17 Leo Kadanoff,30

John Essam and Michael Fisher.34,35 The first three are most commonly

referred to as Josephson’s,36 Rushbrooke’s37 and Griffiths’38 scaling laws,

in honour of their eponymous proponents, and the fourth was developed by

Fisher.39,40 The first and last scaling relations are conspicuous in that they

involve the dimension of the system d and the anomalous dimension η. The

first formula here recovers Eq.(1) and, although named hyperscaling , it does

not hold for a hypercube such as the Ising model above four dimensions. As

stated earlier, it only holds at and below the upper critical dimension. The

quantity η in the last scaling relation is called the anomalous dimension

because its deviation from zero is a measure of deviation from mean-field

theory. It governs the decay with distance of the correlation function as

d− 2 + η = 2xϕ. (31)

David Nelson, in his remembrances,41 reports:

“Fisher is uniquely responsible for the prediction of the anoma-
lous critical exponent η (Michael once owned a boat that sailed
on Lake Cayuga in Ithaca, New York, named the Eta.), which
controls the decay of order parameter correlations at the critical
temperature. This exponent also plays a key role in quantum
field theories, where it is closely related to the anomalous scal-
ing dimensions. As Michael himself once said, the exponent is
numerically small, but nevertheless quite important.”
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We also find

νc =
δ − 1

2δ
. (32)

The last formula is less commonly used and does not have a name (that we

know of). We display it distinctly here as it hides a subtlety emblematic of

some of the features we wish to bring to the fore in this review.

To summarise, a simple application of the homogeneity assumption (be-

fore the RG comes into play) for the free energy, correlation function and

correlation length, enables the critical exponents α, β, γ, δ, ν, η, as well

as νc to be written in terms of scaling dimensions yt, yh and xϕ as well

as the dimensionality d. This enables us to write down the scaling rela-

tions which were derived by other means in the 1960’s (before the advent

of the renormalization group). We have not yet discussed the actual values

of the scaling dimensions or critical exponents as these are model-specific.

We repeat that exact and numerical results show that hyperscaling in the

form (27) fails above the upper critical dimension. Next, we do similar for

logarithmic corrections - we refer to the literature for their independent

derivation and re-derive them from the homogeneity assumption.

2.2. Logarithmic corrections

At the critical dimension d = duc, logarithmic corrections arise. These were

presented using a similar formalism to that used above for ϕ4 theory over 20

years ago by Nevzat Aktekin.42 The introduction of logarithms, of course,

loses the homogeneous properties of the free energy and related functions

- multiplicative rescaling of the argument of a logarithm does not result

in multiplicative rescaling of the logarithm itself! Notwithstanding this,

inspired by the Privman-Fisher form (13) Aktekin proposed the following

formula for the 4D Ising model (n = 4):

f sL(τ, h) = L−4Y [L2(lnL)1/6τ, L3(lnL)1/4h]. (33)

with τ = T/Tc − 1. From this, FSS for the thermodynamic functions en-

sue, finding support in Ref.42 by Monte Carlo simulations on simple four-

dimensional lattices linear extent up to L = 16 with periodic boundary

conditions. Aktekin justifies this structure by referring to previous work by

Erik Luijten and Henk Blöte:43 “for the Ising model in d = duc, the expres-

sion for f sL(τ, h) derived starting with the renormalization group equations

in differential form43 reduces to the one given in Eq.(33) for L → ∞ and

confirms it.” We return to Luijten and Blöte’s seminal contribution in

Subsection 8 below.
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The contributions of homogeneous and inhomogeneous terms to the scal-

ing formalisms of the renormalized Schwinger functions for the ϕ4 theory

(including finite size) were also described in Refs.10,44,45 Below four di-

mensions, the inhomogeneous term is not divergent in the thermodynamic

limit. There the homogeneous term leads to critical behaviour (as captured

in Subsection 2.1 above). As we shall see, the Gaussian fixed point is un-

stable for d < 4 and does not govern large distance behaviour. Instead,

the Wilson-Fisher fixed-point governs critical behaviour. In contrast, the

Gaussian fixed point is stable above the critical dimension four. As the

critical dimension is approached, merged fixed point at the origin leads to

a double zero of the so-called Callan–Symanzik beta function and this is re-

sponsible for the occurrence of logarithmic corrections. The inhomogeneous

term then contributes to the leading singular behaviour too. The homoge-

neous term remains singular, however, and, as shown in Ref.,10 contributes

to divergences such as that in the susceptibility. Thus, while movement of

the Wilson-Fisher fixed point to its Gaussian counterpart is responsible for

triviality, the double zero gives rise to logarithmic corrections.

Keeping focus on the inhomogeneous term (but not forgetting the well-

known role still played by the homogeneous one as explicitly described in

Ref.10), a straightforward extension to the general ϕn case was outlined in

Ref.13 Besides the trivial background term (13) (see Refs.10 and43), one

accounts for leading logs through.3

f∞(τ, h) = b−df∞[byt(ln b)ŷtτ, byh(ln b)ŷhh]. (34)

At the risk of stating the obvious, the same formula was recently claimed

in Ref.46 with the explicit background term but without the backing of

theoretical motivation of Luijten and Blöte’s RG calculations.43

Thermodynamic quantities are derivable as before but with logarithmic

corrections:

m∞(τ, h) = b−d+yh(ln b)ŷhm∞[byt(ln b)ŷtτ, byh(ln b)ŷhh], (35)

e∞(τ, h) = b−d+yt(ln b)ŷte∞[byt(ln b)ŷtτ, byh(ln b)ŷhh], (36)

χ∞(τ, h) = b−d+2yh(ln b)2ŷhχ∞[byt(ln b)ŷtτ, byhh(ln b)ŷh ], (37)

c∞(τ, h) = b−d+2yt(ln b)2ŷtc∞[byt(ln b)ŷtτ, byhh(ln b)ŷh ]. (38)

Setting b = |h|−1/yh(ln |h|)−ŷh/yh or b = |τ |−1/yt(ln |τ |)−ŷt/yt , appropri-
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ately, delivers

m∞(τ, 0) ∼ |τ |β | ln |τ ||β̂ for T < Tc, β̂ = βŷt + ŷh (39)

m∞(0, h) ∼ |h|
1
δ | ln |h||δ̂, δ̂ = d

ŷh
yh

(40)

χ∞(τ, 0) ∼ |τ |−γ | ln |τ ||γ̂ , γ̂ = −γŷt + 2ŷh (41)

c∞(τ, 0) ∼ |τ |−α| ln |τ ||α̂, α̂ = d
ŷt
yt
. (42)

Note that all hatted exponents are by default defined with a positive sign,

even when the leading singularity is diverging.

A counterpart formula for the correlation length was not considered in

Ref.42 In anticipation of superlinearity, we express it as

ξ∞(τ, h) = b (ln b)ϙ̂ξ∞[byt(ln b)ŷtτ, byh(ln b)ŷhh]. (43)

Here we have used the notation ϙ̂ in anticipation of what is to come (as

stated, until Ref.,8 we had used the more prosaic symbol q̂). We thus have

now

ξ∞(τ, 0) ∼ |τ |−ν | ln |τ ||ν̂ , ν̂ = − ŷt
yt

+ ϙ̂. (44)

Eliminating the scaling fields ŷt and ŷh in favour of the measurable

critical exponents,

ŷt =
β̂

β
− δδ̂

β(1 + δ)
=

2β̂ − γ̂

2β + γ
(45)

and

ŷh =
δδ̂

1 + δ
=
γβ̂ + βγ̂

2β + γ
, (46)

delivers the scaling relations for logarithmic corrections

α̂ = 2β̂ − γ̂ (47)

(δ − 1)β̂ = δδ̂ − γ̂. (48)

ν̂ = ϙ̂− ν(2β̂ − γ̂)

2− α
. (49)

Eqs.(47) and (48) are logarithmic counterparts for the scaling relations (28)

and (30), respectively, and inserting them in Eq.(49) delivers Eq.(7). These

scaling relations for logarithmic corrections were developed and verified in

Refs.4,5 through very different means (not reliant on phenomenologically

modified Widom scaling).
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In Ref.,4 one of us stated “relations (47) and (48) but not (49) can be de-

rived starting with a suitably modified phenomenological Widom ansatz.”

That ansatz was Eq.(34), later put to writing for the 4D Ising model by

Aktekin in Ref.42 What was missing then was the extension of the “suit-

ably modified phenomenological Widom ansatz” to the correlation sector,

namely Eq.(43) and the corresponding homogeneity assumption for the cor-

relation function which reads as32

g∞(x, τ, h) = b−2xϕ(ln b)η̂g∞[b−1x, byt(ln b)ŷtτ, byh(ln b)ŷhh]. (50)

That extension, together with Eq.(43), had no basis then because of

the evidence that was lacking. Evidence comes from two sources. The first

basis is empirical; as documented in Volume III of this series,3 the three

formulae (47), (48) and (49) hold for different universality classes, including

the Ising model, O(N) ϕ4 models, long-range Ising models, m-component

spin glasses, percolation, the Yang-Lee edge and lattice animals, all at their

respective upper critical dimensions. In each of these cases if ϙ̂ were set to

zero the scaling relation would fail.

The second basis for Eq.(43) was reported on in Volume IV, some of

which we next elaborate upon.

Let us mention here that in Ref.,3 one of the scaling laws among hatted

exponents, η̂ = γ̂ − ν̂(2− η), was not correct in the case ϙ̂ ̸= 0. Indeed, we

reported in Ref.32 the correct form,

η̂ = γ̂ − ν̂(2− η) + γ
ϙ̂

ν
(51)

satisfying the condition gL(τ, h, |r| → ∞) → m2
L(τ, h) which was erro-

neously relaxed in Ref.3

2.3. The enigmatic nature of ϙ̂ and of ϙ

To enable a physical interpretation of ϙ̂, we escalate Eqs.(34), (43) and (50)

to allow for finite size:

fL(τ, h, L
−1) = b−dfL[b

yt(ln b)ŷtτ, byh(ln b)ŷhh, bL−1], (52)

ξL(τ, h, L
−1) = b (ln b)ϙ̂ξL[b

yt(ln b)ŷtτ, byh(ln b)ŷhh, bL−1], (53)

gL(x, τ, h, L
−1) = b−2xϕ(ln b)η̂gL[b

−1x, byt(ln b)ŷtτ, byh(ln b)ŷhh, bL−1].

(54)

As described in Ref.,10 this is possible in RG terms because of its local

nature — the renormalization constants that apply in the infinite-volume
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theory, apply for finite volume too.10 Setting τ = h = 0 in the first two

arguments of ξ, and b = L in the third argument (to sit at or in the vicinity

of the pseudocritical point t = 0), we obtain Eq.(5) as the logarithmic

counterpart of Eq.(2). It also enables the QFSS form (11) by expressing

the free energy and its derivatives as a function of ξ∞ and ξL instead of τ

and L.

Despite the previous widespread dogma that the correlation length can-

not exceed the length, this logarithmic superlinearity was explicitly derived

by Brézin for the large N limit of the N -vector model (spherical model)

for periodic boundary conditions. Brézin expected that the picture “is

qualitatively unchanged for finite N”.7 In particular, the value ϙ̂ = 1/4

was explicitly laid out there. This was implicitly verified for PBCs in the

four-dimensional Ising model Ref.9 and explicitly (also for PBCs) in Ref.47

The value ϙ̂ = 1/4 extends to all values ofN in the O(N) theory. TheN -

dependency of partition function zeros and thermodynamic functions were

also studied in Ref.13 There it was found that leading logarithmic correc-

tions to the finite-size dependency are independent of N in the odd sector

— i.e., for Lee-Yang zeros, magnetic susceptibility and related functions.

In contrast, Fisher zeros, specific heat and other quantities associated with

the even sector were found to be N -dependent. It is now well established

on model-specific theoretic and scaling grounds, as well as from numerical

simulations that the correlation length of a confined system can exceed its

physical length.

And herein lies the enigmatic nature of ϙ̂. The three scaling relations

(47), (48) and (49) are valid for infinite size but one of them is sourced

in finite-size concepts. If hyperscaling (1) is a scaling relation between

critical exponents α and ν, its logarithmic counterpart (7) is too and ϙ̂

is a critical exponent, just as α̂ and ν̂ are. On the other hand ϙ̂ is a

manifestation of finite-size; it characterises the correlation length through

Eq.(53) and does not appear in infinite volume systems where only the

exponent ν describes the correlation length in Eq.(25). In that case, ϙ̂ is a

pseudocritical exponent and Eq.(7) is a finite-size relation. But what then

is the status of Eq.(1) if it is to be replaced by Eq.(4)?

In anticipation of a RG foundation, we next relax Eq.(15) to encompass

superlinearity as we have done for Eq.(43)

ξ∞(τ, h) = bϙξ∞[bytτ, byhh]. (55)

With ϙ = d/duc as in Eq.(3) this delivers the modified hyperscaling form

(4). Eq.(3) itself was also derived by Brézin for PBCs in Ref.7 and was
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numerically verified by Jeff Jones and Peter (A.P.) Young in Ref.47 There

it was stated that “for free boundary conditions, it seems obvious that even

for d > 4 the behaviour of the system will be affected when ξL becomes of

order L, rather than only change when ξL becomes of order the much larger

length [L5/4]”.47 The expectation in Ref.47 was that standard FSS should

apply for FBCs and that the ratio ξ∞/ξL “may also enter” but presumably

for “corrections to the scaling terms which involve ξ∞/L”. Ref
47 ends with

the statement “Since FSS for models with free boundary conditions in d > 4

is poorly understood, it would be interesting to investigate such models in

some detail.”

Thus we arrive at a rather puzzling situation. On the one hand, if

the new hyperscaling from (4) and its logarithmic counterpart (7) are to

stand as scaling relations, ϙ and ϙ̂ would have to be considered as scal-

ing exponents. But since their physical interpretations are finite-size, they

are pseudocritical (like λ and ρ to be discussed below). Moreover, since

the critical exponents listed by Fisher in Ref.2 are associated with singu-

larities, they are not burdened by limitations of boundary conditions. So

the question arises to what extent ϙ and ϙ̂ are universal - independent of

boundaries. This is the main topic of this chapter.

2.4. Summary

At this point, we have introduced a very general scaling picture based on a

simple assumption of homogeneity in the free energy, correlation function

and correlation length. This delivers the standard scaling relations which

have been in place since the 1960’s and are known to work for d ≤ duc.

We then dropped homogeneity and introduced logarithmic corrections to

this picture with hatted exponents for each thermodynamic function. In

anticipation of the next section, this included an exponent ϙ̂ which has no

leading-scaling counterpart below the critical dimension. To give physical

meaning to ϙ̂ we promoted the logarithmically-corrected form to finite-size

systems. Thus captured the QFSS form (11) for the critical dimension but

not above it. Moreover, at the critical dimension itself, this superlinear

scaling behaviour has mathematical and numerical backup, at least for the

Ising model and for PBCs, and by extension for the O(N) model, at least

in the magnetic (odd) sector. At this point, then, the situation for FBCs is

“poorly understood” and puzzling. Universality suggests ϙ̂ should manifest

there but conservative thinking (that the correlation length cannot exceed

the length) suggests it cannot.
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We have not, so far, paid attention to the symmetry group of a given

underlying Hamiltonian or the structure of the Hamiltonian itself. We have

only considered measurable parameters τ or t and h as driving the phase

transition. Next, we explore these concepts further as we allow them to

take complex values! To do this, we briefly revisit the origins of scaling

relations in its broadest context as reported in Volume III.3 Our purpose

here is not to revisit old ground covered in Volume III but to provide

context for higher dimensions. For the question arises what is the high

dimensional counterpart of ϙ̂ and Eq.(6)e. This will lead us to the new

hyperscaling relation Eq.(4). Structuring the RG to achieve this relation

opens a whole new area in high dimensional that has been hidden since

Fisher first introduced DIVs.

3. The fundamental theory of phase transition as a frame-

work

In addition to thermodynamic and correlation functions, advocates of the

partition-function-zero approach have an extra tool at their disposal for the

understanding of critical phenomena. One of these was Fa Yueh (Fred) Wu

who described them as delivering a “fundamental theory of phase transi-

tions”.49 The zeros approach itself was invented in the 1950’s (well before

the discovery of the renormalization group) in two papers by Tsung-Dao

(T.D.) Lee and Chen Ning Yang.50,51f As stated by Wu, “these two papers

have profoundly influenced modern-day statistical mechanics.”

Partition function zeros are not simple derivatives of the free energy

and are usually considered on a model-by-model basis. In terms of the free

energy, the partition function itself is given by

ZL(τ, h) = exp

[
− 1

kNT
FL(τ, h)

]
. (56)

This is a real function which cannot vanish for finite FL(τ, h). When the

free energy becomes singular in the infinite-volume limit, however, it can.

Yang and Lee’s insight was to relax usual (physical) restriction that the

external field h be a real parameter. As a complex variable it “opened

eWe mention here an early audacious hypothesis which has not been published ten years

ago but was recently proposed to a special issue of the journal Condensed Matter Physics
in memory of Ralph.48
fA few years later, in 1957, this dynamic pair were awarded the Nobel Prize “for their

penetrating investigation of the so-called parity laws which has led to important discov-
eries regarding the elementary particles.”
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a new window”49 by enabling the vanishing of the partition function at

values of field now called Lee-Yang zeros. The celebrated Lee-Yang circle

theorem, which holds for models with certain symmetries such as the Ising

model, these zeros occur when h is purely imaginary [on a unit circle in

the fugacity exp (βh) plane]. Symmetry demands this is the case whether

the system is infinite in size or finite. While interesting, the Lee-Yang

theorem is not required for the considerations that follow in this chapter.

Still, whatever its shape, the line of Lee-Yang zeros is known as the singular

line. In the symmetric phase, for temperatures above the critical one, this

line stays away from the real magnetic-field h axis and terminates at what

is known as the Yang-Lee edge (this name, too, was proposed by Michael

Fisher52). As the (real) temperature drops to the critical value, the Yang-

Lee edge approaches the real h axis at its critical value h = 0. At the

critical temperature itself (in infinite volume) the line of zeros pinches the

real axis at this point (from the upper and lower halves of the complex h

plane) and analytic continuation from Re(h) > 0 to Re(h) < 0 is forbidden.

Hence a first-order phase transition is precipitated at h = 0. We denote

the Yang-Lee edge (in infinite volume) by rYL(t). Its approach to the real

axis is characterised by a power law with the possibility of logarithmic

corrections:9

rYL(τ) ∼ |τ |∆| ln |τ ||∆̂, (57)

where ∆ is the gap exponent.g We may identify this, and its logarithmic

counterpart, from the form of the free energy in Eq.(34) which, on setting

the first argument to a constant is a function of h|τ |yh/yt | ln |τ ||yhŷt/yt−ŷh .

Since the partition function holds this functional dependency, its zeros occur

at given values of h, including at h = rYL(τ), with

∆ =
yh
yt

= β + γ = βδ =
γδ

δ − 1
(58)

and

∆̂ = ∆ŷt − ŷh = β̂ − γ̂. (59)

One may similarly investigate zeros in the complex temperature plane.

These were introduced in 1964 by Michael Fisher in a series of lecture

notes53 and are called Fisher zeros. While Lee-Yang zeros are those of

gAs stated earlier, ∆ represents the “gap” between critical exponents labelling sequential

magnetic moments. That it also describes the Yang-Lee “gap” is a fortuitous etymolog-
ical co-occurrence.
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the grand canonical partition function, the Fisher zeros are of the canoni-

cal partition function only. As for Lee-Yang zeros, these remain away from

the real (temperature) axis if the external magnetic field is non-critical, i.e.,

non-zero. As h approaches zero, the zeros approach the real axis and pinch-

ing occurs. However, Fisher zeros are rarely considered in non-vanishing

h. Like Lee-Yang zeros in the complex field plane, Fisher zeros sometimes

lie on curves in the complex temperature plane. However, their distribu-

tion is more elaborate than a simple line and may even disperse across

2-dimensional areas (this mostly occurs in circumstances of anisotropy).

As for Lee-Yang zeros, we do not require the precise shape of Fisher zeros

for most of the considerations that follow in this chapter (it was required

for Volume III which concerned logarithmic corrections at low dimensions

as well).

3.1. Lee-Yang zeros

Be it for Lee-Yang or Fisher zeros, for finite-size systems the singular line

lacks continuity of its infinite-volume counterpart. Instead one has a dis-

crete bead of zeros. This is clear by writing the partition function as a

sum over all possible configurations of the microscopic degrees of freedom.

We can gather these configurations into a histogram of frequencies of even

and odd macrostates - energy and induced magnetisation, respectively. For

the Ising model, with spins si at the sites i of a regular lattice compris-

ing Ld nodes and dLd links, for example, these are E = −J
∑

(i,j) sisj and

M =
∑

i si, respectively. We set the strength of interaction J to one so that

E can take integer values ranging from −dLd and dLd andM =
∑

i si takes

integer values from −Ld to Ld. The grand canonical partition function in

the presence of an external magnetic field H is then

ZL(β, h) =
1

N
∑
{si}

e−β(−E−HM) =
1

N
∑
{si}

e(βE+hM) , (60)

where β = 1/kBT is the inverse of the Boltzmann constant times the tem-

perature and h = βH is the reduced external magnetic field. The factor N
is introduced for normalization purposes and serves no active role in what

follows. The partition function may be expressed as

ZL(β, h) =

Ld∑
M=−Ld

dLd∑
E=−dLd

ρL(E,M)eβE+hM , (61)

where the spectral density ρL(E,M) denotes the relative weight of config-

urations having given values of E and M . ZL(β, h) can be written as a
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polynomial in the fugacity z defined by

z = e−2h , (62)

as

ZL(β, h) = z−
1
2L

d
Ld∑
n=0

ρL,β(n)z
n , (63)

in which

ρL,β(n) =

dLd∑
E=−dLd

ρL(E,L
d − 2n)eβE (64)

is an integrated density. That the partition function (63) and the corre-

sponding free energy (as given by its logarithm) are completely analytic for

finite L, establishes that no phase transition can occur in a finite-size sys-

tem. However, as L is allowed to go to infinity phase transitions manifest

themselves as points of non–analycity. For a given value of L and β, ZL

has strictly complex roots zj . Again, this is consistent with the fact that

the free energy is analytic at any real value of the magnetic field H for a

finite system; the partition function has no zeros at real H. Complex zeros

do, however, exist and we can write the partition in factorized form:

ZL(β, h) = AL(β, h)

Ld∏
j=1

(z − zj), (65)

with AL(β, h) a smooth non-vanishing function. The Lee-Yang theorem

states that the zeros lie on the unit circle in the plane of complex variable z,

which means they lie on the imaginary h axis.50,51 As stated, this theorem

is not required in what follows.

From conformal invariance, we can just as well operate in the complex h

plane and we write the jth zero there as hj(τ) where it is to be understood

that the actual value is L-dependent. One may then write the finite-size

free energy as a sum over Lee-Yang zeros,

fL(τ, h) = A′
L(τ, h)L

−d
∑
j

ln(h− hj(τ)], (66)

where AL(τ, h) is a normalizing factor which plays no active role in what

follows. (Even in the thermodynamic limit, it contributes only to the regu-

lar part of the free energy and its derivatives and not to critical behaviour.)
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We therefore drop it from our considerations. Differentiating twice wrt field

h then gives

χL(τ, h) = −L−d
∑
k

1

[h− hj(τ)]2
(67)

(having dropped a regular additive term). For a finite system, the sus-

ceptibility would manifest a singularity if the magnetic field h coincided

with a complex Lee-Yang zero hj(τ). However, for purely classical systems,

complex h is not physical. Only the thermodynamic limit enables the zero

impact onto the real axis to precipitate a real phase transition. In this sense

complex zeros may be considered as “proto-critical” points52 – they have

the potential to become critical points.

If we assume the critical behaviour is dominated by the first few zeros,

or even just the first zero, one arrives at

χL(0, 0) ∼ L−dh1(0)
−2. (68)

At this point, we deploy the QFSS form (11) to determine each side of the

equation. This amounts to the substitution

|τ | → L
−ϙ
ν (lnL)−

ϙ̂−ν̂
ν (69)

in the scaling expressions (41) for the susceptibility and (57) for the Yang-

Lee edge to find

χL ∼ L
ϙγ
ν (lnL)γ̂+γ ϙ̂−ν̂

ν (70)

and

h1 ∼ L− ϙ∆
ν (lnL)∆̂−∆ ϙ̂−ν̂

ν . (71)

Matching the leading scaling behaviours of these two expressions in Eq.(68)

delivers

γ = 2∆− νduc (72)

which, since hyperscaling in the form (1) always valid for d = duc, gives

∆ = β + γ which we already had in (58). This validates our assumption

that the critical behaviour of susceptibility is dominated by the scaling of

the first zero. Note also that ϙ, or dimensionality d, has dropped out of

this equation, so it is valid in all dimensions. Note also that without the ϙ

exponent (or if ϙ = 1), Eq.(72) would read γ = 2∆−νd. This is a standard

form for hyperscaling and it fails for d > duc.

Applying the same considerations to logarithmic corrections gives

2∆̂ = −γ̂ + (2∆− γ)
ϙ̂− ν̂

ν
. (73)
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With Eq.(72), this gives

2∆̂ = duc(ϙ̂− ν̂)− γ̂. (74)

Note that ϙ̂ has not dropped out of this equation. Adhering to the dogma

that the correlation length cannot exceed the length of the finite-size system

is equivalent to setting ϙ̂ = 0. If we follow this route, we find the logarithmic

correction counterpart of the gap exponents: 2∆̂ = −(ducν̂ + γ̂). This

equation, however, is incorrect.

In the late 1980s and early 1990s, before CERN confirmed the existence

of the Higgs bosonh, the question of triviality of the ϕ4 model was very much

in vogue and logarithmic corrections played a crucial role. i Martin Lüscher

and Peter Weisz were amongst those to the fore using the RG on this and,

in a series of papers, addressed scaling laws and triviality bounds in lattice

ϕ4 theory.54–56 Their review drew on earlier perturbation-theory results

which were “perhaps not as well-known to the lattice gauge community as

they deserve to be”.44,57 From these results, it was known that ν̂ = 1/6

and γ̂ = 1/3 so ϙ̂ = 0 would force ∆̂ = −1/2 and standard FSS would

force h1 ∼ L−∆
ν (lnL)∆̂+∆ ν̂

ν . For the Ising universality class this would give

h1 ∼ L−3(lnL)0. The Q-alternative that ϙ̂ = 1/4 leads to ∆̂ = 0 so that

h1 ∼ L−3(lnL)−1/4. A negative exponent for the log term, compatible with

this latter prediction, was confirmed in Ref.10 using simulations of the 4D

Ising model with L = 8 to 24 using the Swendsen—Wang cluster algorithm.

Thus we conclude that scaling relations for logarithmic corrections from

a modified Widom hypothesis adhering to the non-superlinear dogma are

not correct. Instead, superlinearity as identified forty years ago by Brézin

is supported by numerics. Of course Brézin’s calculations and the numerics

hTen years ago (4 July 2012), the ATLAS and CMS collaborations at the Large Hadron

Collider(LHC) announced the detection of the Higgs boson, as predicted by the Standard

Model of particle physics, and one year later François Englert and Peter Higgs won the
Nobel Prize, having predicted the existence of the particle with Robert Brout, decades

earlier.
iTriviality does not mean that field theories are useless for descriptions of elementary

particles and their interactions; they may not be free at all if a finite (albeit large) ultra-
violet cutoff is introduced. The lattice achieves precisely this and if it lies well beyond

what is experimentally accessible the theory is perfectly valid for as an accurate and
mathematically well-defined model of elementary particle interactions, albeit at suffi-
cient energy. Other theories such as pure QED and the standard SU(2) Higgs model

are also expected to be trivial.54 Nonetheless, triviality represents a defect in the the-

ory as the cutoff has to be put in from the outside and cannot be fundamental. The
Fields medal was awarded to Hugo Duminil-Copin in 2022 for proving mean-field critical

behavior of the 4D Ising model and triviality of the 4D Euclidean scalar quantum field
theory.
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contained in Ref.10 are for the Ising model in four dimensions with PBCs

only. We will broaden these to far more general circumstances in what

follows.

3.2. Fisher zeros

A similar approach was used in Ref.9 Written in terms of the Fisher zeros,

the canonical partition function is

ZL(β) =

dLd∑
M=−dLd

ρL(E)eβE , (75)

where the spectral density ρL(E) counts configurations with given values

of E only. The partition function is a polynomial in y = exp (−β) and the

counterpart of Eq.(65) is

ZL(β) = AL(β)

dLd∏
j=1

(y − yj). (76)

The free energy may then be written as a sum over Fisher zeros so that

fL(τ) = A′
L(τ)L

−d
∑
j

ln(τ − τj), (77)

having again used conformal invariance to switch to the complex τ plane

where the zeros are labelled τj and implicitly depend on L. Differentiating

appropriately wrt temperature, one may write the specific heat in terms of

Fisher zeros as

cL(t) = −L−d
∑
k

1

(τ − τj)2
. (78)

Again setting τ = 0 and taking the leading scaling to come from the first

zero, one arrives at

cL(0) ∼ L−dτ−2
1 , (79)

where τ1 is a measure of the difference between the first zero and the critical

point.

QFSS in the form (69) applied to c gives

cL(0) ∼ L
ϙα
ν (lnL)α̂+

α(ϙ̂−ν̂)
ν . (80)

To determine QFSS of the Fisher zeros we again appeal to the scaling ratio

x = ξL(0)/ξ∞(τ) in Eq.(11). Expressing the partition function in terms of

x, one finds Z(τ) = 0 when τ = τ1 with

τ1 ∼ L− ϙ

ν (lnL)
ν̂−ϙ̂
ν (81)
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Combining Eqs.(79) and (81) through Eq.(79), dimensionality d again drops

out of the leading scaling relations to recover νduc = 2−α, and one recovers

the scaling relation (7): α̂ = d(ϙ̂− ν̂).j

Again, ignoring ϙ would give the standard hyperscaling form νd = 2−α,
which fails above the upper critical dimension.

Ignoring ϙ̂ or setting ϙ̂ = 0 in Eq.(81), would deliver L2τ1(L) ∼ (lnL)1/3

for Eq.(79) when mean-field values of α and ν are inserted. Incorporating

ϙ̂ = 1/4, on the other hand, delivers L2τ1(L) ∼ (lnL)−1/6. Indeed a

negative logarithmic exponent compatible with this was observed for the

4D Ising model in Ref.9 This establishes a positive (non-zero) value of ϙ̂

The inverse Eq.(79) above was used in Ref.9 to express the lowest-lying

Fisher zeros in terms of specific heat:

τ1 ∼ 1√
Ldcv

. (82)

There, this was used as an alternative approach to finding the FSS of Fisher

zeros — an approach not reliant on the QFSS form (11). With α = 0,

and the logarithmic exponent α̂ = 1/3 having again been provided by

Lüscher, Weisz and others,44,54–56 this also predicts that the first zero scales

as τ1 ∼ L−2(lnL)−1/6, as verified.3

A similar but more sophisticated approach was recently used by Aydin

Deger and Christian Flindt.58–61 They used fluctuations of the total energy

and the magnetisation to extract partition function zeros in systems with

surprisingly small lattices (see also Ref.62 where this becomes a strategy to

avoid resort to large-scale simulations which cost a lot in terms of carbon

footprint). The extra degree of sophistication provided by Deger and Flindt

was to combine cumulants of different orders (not just the second-order

cumulants used above). Moreover, with their approach, “critical exponents

can be determined even if the system is away from the phase transition,

for example at a high temperature.” Finite-size scaling in high dimensions

is addressed in Ref.60 The methods introduced by Deger and Flindt are

powerful ways to extract partition function zeros from finite-size systems

solely using fluctuations of thermodynamic observables and do not require

prior knowledge of the partition function itself. Thus their approach opens

new ways to access zeros numerically and in experiments.

Indeed, partition function zeros have found relevance for experiments

only recently. Long thought to be mathematical constructs without physical

jThis is not the full story, however, and a subtlety arises in circumstances where the

leading exponent α vanishes and the Fisher zeros inmpact at an angle of π/4. This
happens in the 2D Ising model, for example. We refer the reader to Refs.5 for details.
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realization, in 2015 manifestations of imaginary fields were observed in

magnetic resonance experiments performed on the spins of a molecule in

Ref.63 The experiments followed a theoretical proposal made by Bo-Bo Wei

and Ren-Bao Liu a few years earlier.64 They had considered an Ising spin

bath and found an equivalence between its partition function with complex

field and the quantum coherence of a probe spin coupled to the spin bath;

“the times at which the quantum coherence reaches zero are equivalent

to the complex fields at which the partition function vanishes—that is,

the fields that produce the Lee-Yang zeros”. This was nicely verified in

experiments by Xinhua Peng and her colleagues Ref.63 See Ref.65 for

a non-technical summary of these important theoretical and experimental

results.6364

3.3. Pseudocriticality, shifting and rounding

In the discussion around Eqs.(67) and (68), we purposefully relaxed no-

tation. In particular, we did not pay heed to any difference between the

real and imaginary parts of the partition function zeros. If our focus is on

Lee-Yang zeros, in situations where the Lee-Yang theorem holds, the zeros

necessarily lie on a singular line which is on the imaginary axis. I.e., the

real part of the Lee-Yang zeros is zero for any lattice size. In this case,

there is no ambiguity and h1(τ) refers to the imaginary part of the first

Lee-Yang zero.

In the case of Fisher zeros, however, the situation is slightly more com-

plicated. Here τ1 has both real and imaginary parts which depend upon

the system size L. Let us suppose the leading FSS behaviour for the

real part is Re[τ1(L)] ∼ |τ |−1/νreal and that for the imaginary part is as

Im[τ1(L)] ∼ |τ |−1/νimag . The partition function zero then scales as the

slower of these two so that ν = min(νreal, νimag). The Fisher zeros im-

pact onto the real axis at an angle given by tanϕ ≈ Im[τ1(L)]/Re[τ1(L)] ∼
Lνreal−νimag . If νreal < νimag, the impact angle would be zero in the infinite-

volume limit, meaning a spread of singularities instead of a single critical

point. If νreal > νimag, on the other hand, the zeros impact vertically. This

means there is a symmetry between the ordered and disordered phases and

the specific heat amplitudes on either side of the critical point have to

coincide. Indeed, this happens in the 2D Ising model because of its self-

dual property. If νreal = νimag, any angle of impact is possible. For a full

discussion of these matters, see Ref.3,66

Therefore, in most circumstances the real part of the first Fisher zero
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scales to the infinite-volume critical point in the same way as the imaginary

part approaches zero. The only circumstance where that might not be

expected to happen is when the specific-heat amplitude ratio (a universal

quantity) is one.

Moreover, Eq.(79) suggests that specific heat peaks when τ1 is smallest,

i.e., when the temperature is close to the real part of the first Fisher zero.

This means that the real part of the first zero is a pseudocritical point and

this is shifted away from the critical point by an amount proportional to

L−νreal , to leading order. The location of the specific heat peak and the

susceptibility peak are other pseudocritical points. To encapsulate the more

general nature of pseudocritical points, we follow traditional notation for

the so-called shift exponent and denote it by λ (not to be confused with the

generic critical exponent λ used in the quotation by Fisher in Section 2).

For a system of linear extent L, then, the pseudocritical point τL =

TL/Tc − 1 scales to leading order potentially with logarithms as

|τ |L ∼ Lλ(lnL)λ̂, (83)

where

λ =
1

ν
(84)

provided the specific heat amplitude ratio is not one.

As stated, we do not wish to revisit the old ground covered in Volume

III and Volume IV of this series. Instead, we simply summarise how these

critical exponents are related and refer the reader to Refs.3,21 for details.

Suffice to say that the scaling relation associated with the logarithmic coun-

terpart to the shift exponent λ is

λ̂ = −ŷt =
ν̂ − ϙ̂
ν

. (85)

.

Pseudocriticality in this context can be defined in a number of ways and

may even depend on the quantity Q itself. Strictly speaking, we should use

a notation such as τQL to enforce this point. In that case, τχL would vanish

at the value of T where the magnetic susceptibility reaches its peak value.

Likewise, τ ξL would vanish at the value of T where the correlation length

peaks. The correlation function doesn’t have a peak, of course, and one

way to identify it may be as the value of T at which it becomes pure power

law, possibly with logarithmic corrections. Again, if we are to be strict, we

should also introduce different notations for different reduced temperatures

for different functions. Thus τχ would represent T/Tχ
L − 1 and so on.
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Thus there is no ambiguity in the definition of pseudocritical points or the

reduced temperatures for finite-size systems. We find the notation τQ and

τQL with different Q’s unwieldy, however, so we use τ and τL throughout.

The precise definition should be clear from the context. Regardless of the

definition of τ and TL, they always revert to τ and Tc in the thermodynamic

limit.

Finally, we also mention the rounding exponent θ and its logarithmic

counterpart θ̂. This is associated with the smoothening out of an infinite-

volume divergence into a finite-volume peak. One (rather arbitrary) mea-

surement of rounding is the width of a particular curve at half of its max-

imum height. Thus the rounding associated with the susceptibility, for

example, is the width of the susceptibility curve when susceptibility attains

half its maximum value for finite size. We write

∆T ∼ L−θ(lnL)θ̂ (86)

to leading order in logarithms.

3.4. Summary

At this stage of our considerations, we still have not paid attention to the

details of any given underlying Hamiltonian. We have not even considered

symmetries that lead to the Lee-Yang theorem or Fisher circles. We have

limited our presentation to circumstances where the partition function zeros

fall on a singular line but even that is not a requirement for our considera-

tions. See Ref.67 for circumstances where the zeros are not restricted to a

curve in the complex plane and/or come in degenerate sets.

To take this further, we wish next to get to the heart of the reasons

for superlinear correlation length and the origins of the ϙ and ϙ̂ exponents.

The issues we wish to address are, then, the correlation sector, hyperscaling,

and finite-size scaling (FSS) in very general renormalization-group terms.

Our contribution to Volume III sets the framework: if ϙ̂ is required for

self-consistency of FSS with logarithmic corrections, including at the crit-

ical dimension, what is the source and role of its counterpart ϙ in higher

dimensions? This is where RG comes into play. Until the work presented

in Volume IV, dangerous irrelevant variables (DIV) had been considered

only to apply to the free energy of a given model and related thermody-

namic functions, which otherwise might fail to match the valid predictions

of mean-field theory. DIVs were believed not to manifest in the correlation

sector which appeared not to fail. The other two mechanisms, hyperscal-

ing and FSS, were considered to fail in high dimensions. Each of these
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three beliefs — the non-failure of the correlation sector and the failure of

both FSS and hyperscaling — were overturned in Volume IV, in a move

that endowed the renormalization group with a more complete degree of

encompassment.21 Here we extend those considerations to ϕn theories and

update them with the latest relevant literature.

Our purpose in this section is not to re-derive the full details of scaling

relations for log corrections. We refer to Refs.3,32 for a more comprehensive

treatment. Instead, our intent here is to give a pedagogic and self-contained

account of superlinearity and the validity of QFSS - a framework around

which a self-consistent theory must be built. In the above considerations

we have seen how critical behaviour is driven by the first few Lee-Yang

or Fisher zero. The gross approximations of dropping the summations in

Eqs.(67) and (79) are justified posteriori — it works. For a more extensive

exposition, higher-order zeros and the density of zeros along the singular

line should be accounted for. We refer the reader to Refs.4,5 for such an

account.

4. Ginzburg-Landau theory (mean-field)

In Ginzburg-Landau theory, we consider physical systems described in ther-

mal equilibrium by the partition function

Z =

∫
Dϕe−F [ϕ], (87)

where the functional

F [ϕ] =

∫
ddx f(ϕ,∇∇∇ϕ) (88)

is a free energy (or action) integrated over all space and

f(ϕ,∇∇∇ϕ) = 1
2rϕ

2(x)+ 1
3u3ϕ

3(x)+ 1
4u4ϕ

4(x)+ 1
6u6ϕ

6(x)− hϕ(x)+ 1
2 |∇∇∇ϕ|

2.

(89)

is a free energy density. In presenting the free energy density as a power ex-

pansion of the order parameter and its derivatives, this expression captures

the essence of a multitude of models in statistical physics and, as such, can

be applied to many different systems. In reference to any specific system,

such as the Ising model itself, the Ginzburg-Landau-Wilson theory may be

considered phenomenological. According to the Oxford Learners’ Dictio-

nary, the word “phenomenological” pertains to “the branch of philosophy

that deals with what you see, hear, feel, etc. in contrast to what may actu-

ally be real or true about the world.” In this sense, it is not fundamental.
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However, describing ϕ4 theory in this way misses the point. The ϕ4 theory

removes details such as the quantum nature of the spins behind the Ising

model or the precise details of interaction strengths. It strips these back

to the bare minimum in terms of dimension and symmetry group that is

required for a phase transition in the same universality class. In the case

of the Ising model, there is even an (almost) exact mathematical transfor-

mation (called the Hubbard-Stratonovich transformation, see e.g. Ref.68)

that maps the Ising model onto the corresponding field theory (“almost”

since a ln cosh term is expanded to quartic order). Thus, in moving to the

Ginzburg-Landau-Wilson model we are not losing any fundamental aspect

of the theory - it is not a mere simplification of a specific model, it cap-

tures the real and true essence of what is dimensionality, symmetry and

boundary conditions without worrying about non-universal details.

To avoid unnecessary clutter we present this chapter in terms of a scalar

matter field with O(1) symmetry rather than in terms of vector fields.

These O(N) theories involve higher values of N and we refer the reader to

Ref.13 for a finite-size scaling theory at the upper critical dimension. The

extension of the considerations presented in this chapter to the general N

case is similarly obvious.

The coefficient r in Eq.(89) is a reparameterisation of the reduced tem-

perature τ we had earlier. We take it as positive in the disordered phase

and negative in the ordered one. This is required by consistency to have

a vanishing order-parameter in the disordered phase as we will see below.

In the case of percolation, for example, there is no temperature and r is

anyway preferred (over τ). We denote by un the highest power of ϕ in

the above Lagrangian. The case n = 3 refers to percolation and the case

n = 4 with u3 = 0 is the standard Ginzburg-Landau-Wilson model. As

stated, it maps (almost exactly) to the Ising model. The case n = 6 is of

a tricritical point which marks the singular behaviour at the end of a line

of first-order phase transitions. An example of this is found in the Blume-

Capel model.62,69–71 Thus, despite trimming it back to bare essentials, the

ϕn model indeed covers a range of universality classes.

A simplified version called the Ginzburg-Landau theory does not take

into account fluctuations of the order parameter close to the critical point

and in this sense, it is a mean-field theory where only averages count (an

even simpler version in which the order parameter is spatially uniform is

called the Landau theory). Nonetheless, the theory is accurate in most of

its predictions when the system is connected enough and this is the case for

high-dimensional systems. To access it, we identify the field configurations
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ϕ0(x) which have the highest weight,

δF

δϕ

∣∣∣∣
ϕ0(x)

= 0 (90)

from which

∂f

∂ϕ
−∇∇∇ · ∂f

∂(∇∇∇ϕ)
= 0, at ϕ = ϕ0(x). (91)

The gradient term in Eq.(89) does not have an associated coefficient be-

cause it has been absorbed into the other coefficients to render the term

dimensionless once integrated over space. Therefore, the matter-field scal-

ing dimension, xϕ, is

xϕ =
d

2
− 1. (92)

Compare this to Eq.(31), which was derived from power counting. We see

that the η exponent vanishes for mean-field theory.

We consider the ϕn, then, in its generic form:

f(ϕ,∇∇∇ϕ) = 1
2rϕ

2(x) + 1
nunϕ

n(x)− hϕ(x) + 1
2 |∇∇∇ϕ|

2. (93)

Dropping the gradient term for an infinite homogeneous system, Eq.(90)

gives

ϕ0(r + unϕ
n−2
0 ) = h. (94)

If h = 0 we identify the order parameter m∞ as ϕ0 so that

m∞(τ) = (−r/un)
1

n−2 , T < Tc, (95)

m∞(τ) = 0, T > Tc. (96)

From this we extract the critical exponent

βMFT =
1

n− 2
. (97)

and magnetisation amplitude in the ordered phase, as used in Eq.(21), as

then B− = (un)
−1/(n−2). The magnetic field dependency of the order

parameter at the critical temperature r = 0 also comes from Eq.(94) and is

m∞(h) = sgn (h) (|h|/un)
1

n−1 , T = Tc, (98)

from which, comparing to Eq.(20),

δMFT = n− 1 (99)

together with the amplitude Dc = (un)
−1/(n−1).
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The second derivative of Eq.(94) wrt h gives the susceptibility

χ∞ = [r + (n− 1)unϕ
n−2
0 ]−1. (100)

Eqs.(95) and (96) then give

χ∞(τ) = [(n− 2)(−r)]−1, T < Tc, (101)

χ∞(τ) = r−1, T > Tc, (102)

for the two phases. Both of these deliver the same critical exponent [see

Eq.(22)]

γMFT = 1, (103)

and the associated amplitudes are Γ− = (n− 2)−1 and Γ+ = 1.

The free energy is given by inserting the equilibrium order parameter

(95) and (96) in the expansion (93), so that

f∞(τ) =

(
1

n
− 1

2

)
u

2
2−n
n (−r)

n
n−2 , T < Tc, (104)

f∞(τ) = 0, T > Tc. (105)

The second temperature derivative gives the specific heat exponent from

equation (23) as

c∞(τ) =
1

2− n
u

2
2−n
n (−r)

4−n
n−2 , T < Tc, (106)

c∞(τ) = 0, T > Tc. (107)

Thus a jump appears at the phase transition and the exponent is associated

with the low-temperature regime only (for this, the mean-field solution).

Notwithstanding this, we write,

αMFT =
n− 4

n− 2
, (108)

with the amplitude in this regime given by (A−/αMFT) = (un)
−2/(n−2)/(2−

n).

For the correlations, one has to reinstate the gradient term to Eq.(93).

The Euler-Lagrange equation (91) then leads to

rϕ(x)− unϕ
n−1(x)−∇∇∇2ϕ(x) = h. (109)

The space dependency of the correlation function can be extracted from the

order parameter profile when a localized magnetic field h0δ(x) is applied

at the origin. At criticality r = h = 0, and ϕ(x) can be considered small

enough to neglect the non-linear term. Outside the origin, this leads to a
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Laplace equation which happens to be independent of the value of n at this

level of approximation. One finds (assuming isotropy)

∇∇∇2ϕ(x) =
1

|x|d−1

d

d|x|

(
|x|d−1 dϕ(x)

d|x|

)
= 0. (110)

The solution takes the form

g(x) ∼ 1

|x|d−2
. (111)

This is consistent with the critical exponent

ηMFT = 0. (112)

Again, this does not depend on n. Beyond the critical temperature, [say

above Tc, since we are still neglecting the ϕn−1 term in Eq.(109)]k the

equation that has to be solved is

rϕ(x)−∇∇∇2ϕ(x) = h. (113)

The only one at our disposal in this, the infinite-volume, thermodynamic,

limit is the correlation length. For this reason, we identity the correlation

lengths ξ(τ, h = 0) and ξ(τ = 0, h)

ξ(τ, h = 0) ∼ 1/|r|1/2, ξ(τ = 0, h) ∼ |ϕ/h|1/2, (114)

for the two different phases. With ϕ ∼ h1/δ, both exponents of the corre-

lation length follow:

νMFT = 1/2, νc MFT =
δ − 1

2δ
=

n− 2

2(n− 1)
. (115)

For convenience, we collect the mean-field exponents for the Ising, per-

colation and tricriticality universality classes in Table 1.

Finally, we reflect on where the above considerations are valid. Fluctu-

ations are measured by the susceptibility, of course, and this is an integral

over space of the correlation function:

χ ≃
∫
ddx g(x) ∼ |τ |−γMFT . (116)

The square of the magnetisation inside the correlation volume, on the other

hand, is

ξdm2
∞ ∼ |τ |−dνMFT+2βMFT . (117)

kBelow the critical temperature we may assume the same τ dependency for the correla-
tion length below Tc (an argument that can be made more rigorous72).
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Table 1. Critical exponents for the Gaussian model and mean-field critical

exponents for percolation, Ising magnets (the SAW has the same exponents)

and for tricriticality as well as for the generic Landau model. RG eigenvalues
are yt = 2, yh = d/2+1 and yu = n+(2−n)d/2. The latter is negative when

d > duc. Despite this irrelevancy of the field u, only γ, ν and η match the

Gaussian prediction.

Model ϕn α β δ νc γ ν η duc

GFP ϕ2 2− d
2

d−2
4

d+2
d−2

2
d+2

1 1
2

0 2n
n−2

Percolation ϕ3 −1 1 2 1
4

1 1
2

0 6

Magnets, SAW ϕ4 0 1
2

3 1
3

1 1
2

0 4

Tricriticality ϕ6 1
2

1
4

5 2
5

1 1
2

0 3

Landau ϕn n−4
n−2

1
n−2

n− 1 n−2
2(n−1)

1 1
2

0 2n
n−2

These two quantities have the same dimensions and, comparing them, fluc-

tuations are relatively weak if d ≥ duc where

duc =
2βMFT + γMFT

νMFT

. (118)

The inequality d ≥ duc is the Ginzburg criterion — a neat indicator of where

order parameter fluctuations can be neglected and where mean-field theory

kicks in. Inserting Eqs.(97), (103) and (115) for the mean-field exponents,

we then get

duc =
2n

n− 2
. (119)

The demarcation point duc is the upper critical dimension and its values

for different models are given in Table 1.

5. The Gaussian fixed point: its apparent sufficiency for the

correlation sector and its insufficiency for the free-energy

sector

The dimensionlessness of the partition function in Eq.(87) dictates the di-

mensionality of each individual term in the free energy density (89) or (93).

From this we obtain the scaling dimension of the matter field as Eq.(92)

and

yt + 2xϕ = d, yt = 2, (120)

yh + xϕ = d, yh =
d

2
+ 1, (121)

yu + nxϕ = d, yu =
d

2
(2− n) + n. (122)
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Here, and henceforth, we use u for un and yu for yun). The renormalization

flow τ ′ = bytτ , h′ = byhh, u′ = byuu is controlled by these RG eigenvalues,

and τ = h = u = 0 is identified as the Gaussian Fixed Point (GFP). This

is because there the partition function (87) becomes a Gaussian integral,

Z =

∫
Dϕe−

∫
ddx 1

2 |∇∇∇ϕ|2 . (123)

The additional scaling field u takes us beyond the simple homogeneous form

(13) to

f sing∞ (τ, h, u) = b−df sing∞ (bytτ, byhh, byuu). (124)

Likewise, the correlation function and correlation length take the forms

gsing∞ (x, τ, h, u) = b−2xϕgsing∞ (b−1x, bytτ, byhh, byuu) (125)

and

ξsing∞ (τ, h, u) = bξsing∞ (bytτ, byhh, byuu), (126)

respectively.

The RG eigenvalues yt and yh in Eqs.(120) and (120) are positive so

their associated scaling fields are relevant in the sense that they drive the

system away from the fixed point (τ = h = u = 0) as the RG is applied.

I.e., under rescaling by a factor b > 0, they grow as τ → τ ′ and h → h′

with

τ ′ = b2τ, and h′ = b
d
2+1h. (127)

While the scaling field u can also have a positive RG eigenvalue in Eq.(122),

this is only the case when the Ginzburg criterion (119) fails. However, when

the Ginzburg criterion holds, yu < 0 and starting from any non-zero value of

u drives the system back to the critical point. For this reason, u is said to be

irrelevant above the upper critical dimension — its inclusion does not affect

the universality class (critical exponents) of the model. Precisely at duc,

one has the marginal situation where multiplicative logarithmic corrections

to scaling arise.

Therefore, naively (or without paying attention to fifty years of liter-

ature), one might expect the predictions from RG at the GFP to match

those coming from Landau mean-field theory of the previous section and

we also list them in Table 1 for ease of comparison. We extract these by in-

serting the scaling dimension (92) and the RG eigenvalues (120) and (121)

into Eqs.(20)–(31).

There are a number of interesting observations to make here. Firstly

the exponents γ, ν, η and the critical dimension all match the correct
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values coming from MFT. Secondly, all of these values are independent of

n. This, of course, is because the scaling dimensions (120) and (121) are

independent of n and, while the n-dependency lives only in yu [Eq.(122)],

that is irrelevant for the GFP above the upper critical dimension. The

critical exponents listed for percolation, the Ising model and tricriticality

have numerous verifications in the literature, confirming that the Landau

exponents and not the GFP predictions are the correct ones.

All critical exponents listed in the table obey the scaling relations (28)–

(30) as well as (32), derived from simple homogeneous assumptions out-

lined in Sec.2.1. The hyperscaling relation (27) only holds for the GFP.

Although it holds precisely at the upper critical dimension for percolation,

Ising magnets, tricriticality and the general Landau scheme, it does not

hold for general d > duc.

The key to unravelling why the GFP fails to match Landau theory

above duc, and why hyperscaling fails in Landau theory there too, is the

observation that the wrong exponents α, β and δ all come from derivatives

of the free energy, while the correct γ, ν and η are each associated with

correlations. This is why we distinguish between the “free energy sector”

and “correlation sector” in the introduction to this chapter and the title of

this section.

There are two exceptions to the rule that are extremely informative.

Firstly, although the susceptibility belongs to the free energy sector, the

GFP delivers the correct mean-field value of the critical exponent for it.

This is because, besides being a direct derivative of the free energy, the

susceptibility can also be extracted by integrating the correlation function.

Therefore it also belongs to the correlation sector. This suggests the robust-

ness of the correlation sector as delivering the correct Landau exponents

from the GFP. However, the GFP value for νc is νc G = 2/(d + 2) from

inserting Eq.(121) for yh into Eq.(26). This does not agree with the mean-

field value in Eq.(115) except when d = duc (where all exponents coincide).

This suggests that something is also wrong in the correlation sector! This

observation, along with the search for the leading counterpart of ϙ̂ guides

the way to open new insights into high dimensions that lay hidden since

the inception of RG.
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6. Dangerous irrelevancy: Rescuing the free-energy sector

in infinite volume and attempts at resuscitation in finite

volume

At this point, we have seen that, while the self-interacting field u is irrel-

evant above the upper critical dimension, the GFP is only partially suc-

cessful in its delivery of critical exponents there. Moreover, that success

lies in the correlation sector only. Also, while hyperscaling matches the

GFP, it fails for Landau theory when the Ginzburg criterion holds. Next,

we follow Fisher and seemingly rescue the situation for the thermodynamic

limit before we encounter another obstacle in finite systems.

6.1. Dangerous irrelevant variables for thermodynamic

functions at infinite volume

Gathering the seemingly innocuous amplitudes of Eqs.(95), (98) and (106),

namely

B− = u−
1

n−2 , (128)

Dc = u−
1

n−1 , (129)

A−

αMFT

=
1

2− n
u−

2
n−2 , (130)

we spot a danger: they are each singular when u → 0! Michael Fisher

highlighted this in the 1980’s73 although he may have noticed it ten years

earlier.74 Therefore, although “irrelevant” in the sense of RG flow, the field

u is dangerous for the amplitudes. The amplitudes of the usual quantities in

the correlation sector are not u-dependent and do not face the same danger.

An exception to this observation is ξc, the h−dependent correlation length

at Tc. This quantity is seldom discussed, however, so, as many others have

done, we leave it aside for the moment. Suffice it to say for now that u is

a dangerous irrelevant variable (DIV) for the free-energy sector.

If we define the exponents appearing in Eqs.(128)–(130) as

κ =
1

n− 2
, λ =

1

n− 1
, µ =

2

n− 2
, (131)

we may write the free-energy derivatives as

m∞(τ < 0, h = 0, u) ∼ |τ |βu−κ, (132)

m∞(τ = 0, h, u) ∼ |h|1/δu−λ, (133)

c∞(τ, h = 0, u) ∼ |τ |−αu−µ. (134)
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Eqs.(16)-(19) have clearly to be modified to take the DIVs into account

and we write

m∞(τ, 0, u)
u→0
= b−d+yh−κyuu−κM−(bytτ, 0), (135)

m∞(0, h, u)
u→0
= b−d+yh−λyuu−λMc(0, b

yhh), (136)

c∞(τ, 0, u)
u→0
= b−d+2yt−µyuu−µC±(bytτ, 0). (137)

Fixing b to |τ |−1/yt or |h|−1/yh in (135)–(137), appropriately then gives75

βMFT =
d− yh
yt

+
κyu
yt

=
1

n− 2
, (138)

1

δMFT

=
d− yh
yh

+
λyu
yh

=
1

n− 1
, (139)

αMFT =
2yt − d

yt
− µyu

yt
=
n− 4

n− 2
. (140)

These now match Eqs.(97), (99) and (108) so the free energy sector in

the RG formalism above duc is repaired. The amplitudes have also to be

consistent and we find, for example, B− = M−(0−)u−κ.

Following the principle of not repairing that which does not appear to

need repairing, nothing has to be modified for the correlation sector.

We have now reached a point where RG appears to be successful in its

treatment of critical properties above the upper critical dimension in the

thermodynamic limit at least.

6.2. A problem with FSS

There is, however a problem with FSS. Inserting the MFT exponents in the

FSS prescription (10), one expects at the pseudo-critical point t = 0

cL(t = 0, 0) ∼ L
αMFT
νMFT = L2n−4

n−2 , (141)

χL(t = 0, 0) ∼ L
γMFT
νMFT = L2, (142)

mL(t = 0, 0) ∼ L
− βMFT

νMFT = L− 2
n−2 , (143)

ξL(t = 0, 0) ∼ L. (144)

We call this Landau FSS because the exponents which appear in powers of

L are all ratios of exponents from Landau theory. Here we have presented

FSS at the pseudo-critical point t = 0 (see Eq.(12)) rather than the critical

point τ = 0 (see Eq.(9)). This is usually easier to work with numerically

because simulations, like pseudo-critical points, necessitate finite size. In

contrast, the critical temperature itself requires extrapolation to the limit
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of infinite volume. Usually (for example below the critical dimension), it

makes little difference whether we implement FSS at t = 0 or τ = 0. This

is because both of them fall within the same scaling window - they exhibit

the same FSS behaviour. This is the case if the rounding is not too narrow.

These standard FSS predictions, however, fail to match numerical simu-

lations and exact results. In the early 1980’s, Brézin7 considered finite-size

correlation length for the ϕ4 model above duc = 4 on a hypercubic systems

with periodic boundary conditions. His theoretical analysis predicted

ξL(τ = 0, 0) ∼ Ld/4 (145)

which contradicts Landau scaling (144). Then, in 1985, with Jean Zinn-

Justin, Brézin presented a more complete analysis for the ϕ4 model,76 de-

livering

χL(τ = 0, 0) ∼ Ld/2, (146)

for the susceptibility behaviour, above duc. In the same year, Binder pre-

sented numerical results for the susceptibility of the Ising model in 5D with

PBC’s20 (see also77). At the pseudo-critical point he obtained

χL(t = 0, 0) ∼ L5/2, and |τL| = |TL/Tc − 1| ∼ L−5/2. (147)

This is in agreement with the results of Brézin and Zinn-Justin, but dis-

agrees with Landau FSS.

Thus, despite Fisher’s DIV’s rescuing the GFP RG formalism above

duc, we arrive at a disagreement between Landau FSS and exact/numerical

results. Even though we know that GFP values for the critical exponents

do not match MFT, attempts to invoke them for standard FSS do not

come to the rescue. While they deliver different FSS in the free-energy

sector (namely, c∞ ∼ LαG/νG = L4−d and m∞ ∼ L−βG/νG = L−(d−2)/2),

they necessarily deliver the same as Landau FSS for χ and ξ because the

correlation sector is not (yet) perceived to be in danger. As we have seen,

these are independent of n and do not agree with exact or numerical results.

Therefore, while RG may have been rescued above duc, by 1985 FSS was

to be sacrificed. We next address an immediate attempt at resuscitation.

6.3. DIVs for finite size: the “starred” RG eigenvalues

The consequences of the existence of DIVs for the finite-size scaling form

of the free energy, and for hyperscaling, were investigated in 1985 in Ref.78

There, with Binder and Young, Michael Nauenberg and Vladimir Privman
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suggested to extend Fisher’s ideas so that not only the observable thermo-

dynamic functions but also the underlying free energy might be affected.

We refer to the authors of this important paper as BNPY. In particular,

BNPY suggested that [cf Eq.(13)]:

f∞(x, y, z)
z→0
= zp1f∞(xzp2 , yzp3 , 0) (148)

or

f∞(τ, h, u)
u→0
= b−d+p1yuup1F±(byt+p2yuτup2 , byh+p3yuhup3), (149)

where p1, p2 and p3 are constants feeding into κ, λ and µ used above. BNPY

also introduced a “starred” notation for the renormalised RG eigenvalues:

d∗ = d− p1yu, y∗t = yt + p2yu, y∗h = yh + p3yu. (150)

For the ϕn model of equation (93), differentiation of the DIV-affected

free energy density wrt τ , and to h allows

αMFT =
2y∗t − d

y∗t
, βMFT =

d− y∗h
y∗t

, (151)

γMFT =
2y∗h − d

y∗t
, δMFT =

y∗h
d− y∗h

. (152)

Comparing with Fisher’s (140) in Subsection 6.1, leads to

p1 = 0, p2 = − 2κyt
d+ 2κyu

= − 2

n
, p3 = −κ(2yh − d)

d+ 2κyu
= − 1

n
, (153)

having used Eq.(131) for the general n case. Inserting these values in

Eq.(150) gives

d∗ = d, y∗t = yt −
2yu
n
, y∗h = yh − yu

n
, (154)

In terms of d and n the starred scaling dimensions are

y∗t =
d(n− 2)

n
, y∗h =

d(n− 1)

n
, (155)

and in terms of ϙ they read as

y∗t = 2ϙ, y∗h =
d

2
+ ϙ. (156)

By construction, inserting y∗t for yt and y
∗
h for yh in (20) (21) (22) in (23)

delivers the correct Landau MFT critical exponents for α, β, δ and γ in

(97), (99), and (103), (108). Again by construction, the remaining main

critical exponents ν and η are left intact because the correlation sector is

untouched in Eq.(149).
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Having extended DIVs to the finite-size regime, DIVs also extend finite-

size scaling for the susceptibility and magnetisation in terms of the starred

exponents instead of the GFP ones. In particular, they find that

mL ∼ Ly∗
h−d

and

χL ∼ L2y∗
h−d.

These are indeed correct as we shall see. However, in BNPY’s formalism,

they do not come from FSS in a form like Eq.(8).

BNPY made an insightful step analogous to Eq.(149) for the correlation

length. They proposed that

ξ∞(τ, h, u)
u→0
= b1+q1yuuq1Ξ(byt+q2yuτuq2 , byh+q3yuhuq3), (157)

with the three parameters, q1, q2 and q3 initially left open. Then they make
the following crucial but erroneous assumption:

“Since the finite-size correlation length ξL is bounded by L, we
require q1yu < 0. (. . . ) if one adopts the plausible assumption
that for τ = h = 0, the correlation length increases up to the
linear dimensions of the lattice, which implies that q1 = 0.”

We will see later that the value q1 = 0 is not correct. It feeds into the

exponent ϙ in an essential way — the assumption that q1 = 0 is equivalent

to assuming ϙ = 1 as we shall see. BNPY did not pursue a discussion of

q2 or q3, leaving open the possibility that they might differ from p2 and p3.

We shall see below that, although this option has to be considered, this is

not the case.

At this stage, we are still confronted with the unsatisfactory situation

that, while all critical and finite-size scaling behaviour seems to be rescued,

the FSS prescription itself fails above the upper critical dimension. In an

attempt to replace that, a new length scale was introduced — to replace

the (seemingly unbroken), correlation length, as the relevant scale which

controls finite-size effects there. Several other length scales were invented

by other authors and these are discussed in Volume IV.21 We do not pursue

these considerations here as we believe them to be redundant. Instead, we

follow the outstanding work by Luijten and Blöte,79,80 which uses RG to

bring corrections to scaling into the DIV scenarios and to connect with

much of the mathematical literature.
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7. Scaling of the Fourier modes

Eq.(93 gives the free energy for the generic ϕn model, and its n = 4 reali-

sation is

FGLW[ϕ(x)] =

∫
ddx

(
1
2rϕ

2(x) + 1
4uϕ

4(x)− hϕ(x) + 1
2 |∇∇∇ϕ|

2
)
. (158)

If PBC’s are used, this can be expressed in Fourier space as

FGLW[ϕ̃k] =
1
2

∑
k

(r + |k|2)|ϕ̃k|2 − hLd/2ϕ̃0

+ 1
4uL

−d
∑

k1,k2,k3

ϕ̃k1
ϕ̃k2

ϕ̃k3
ϕ̃−(k1+k2+k3) (159)

with

ϕ(x) =
∑
k

ϕ̃kψk =
1√
V

∑
k

ϕ̃ke
ik·x, k =

2π

L
n, n ∈ Zd. (160)

The zero mode ϕ̃0 itself is worthy of being distinguished from other Fourier

modes ϕ̃k ̸=0 and we write

FGLW[ϕ̃0, ϕ̃k̸=0] ≃ 1
2

(
r +

3u

2Ld

∑
k̸=0

|ϕ̃k|2
)
ϕ̃20 +

1
4

u

Ld
ϕ̃40 − hLd/2ϕ̃0

+ 1
2

∑
k ̸=0

(r + |k|2)|ϕ̃k|2 + . . . . (161)

Here we have suppressed terms of higher order than Gaussian for the non-

zero modes because only the zero mode contributes to the non-vanishing av-

erage order parameter below the critical temperature. The non-zero modes

do not manifest non-vanishing average values even in the ordered phase

(see Section 2). Therefore we have two terms corresponding to two types

of Fourier mode. The DIV u enters alongside the temperature field r to

couple with the quadratic term in the zero mode expansion but the non-

zero modes do not suffer from this shift. This means that, while the zero

mode ϕ̃0 is governed by the DIV-adjusted GFP, the non-zero modes ϕ̃k̸=0

are only controlled by the GFP itself.

We refer to the anomalous scaling emanating from DIVs as manifested

in equations (145) or (146) as Q scaling. We discuss this in more detail in

Section 9). In Ref.,81 Wittmann and Young analyzed non-zero modes and

concluded standard FSS holds there. Thus one has for k ̸= 0,

χk̸=0 = Ld⟨|ϕ̃k ̸=0|2⟩L ∼ L2. (162)



April 16, 2024 2:52 ws-rv9x6 Book Title Q1˙WS˙v1 page 44

44 R. Kenna and B. Berche

This statement, however, hides another subtlety in the story of Q. Equa-

tion (162) as standard FSS can either refer to Landau scaling, or to the GFP

scaling (see Table 2) because both deliver an exponent 2. The standard pic-

ture is (or was) that standard FSS refers to the Landau picture. Indeed, in

our early contributions to this topic,6 although we referred to the χL ∼ L2

behaviour as Gaussian scaling, we had Landau or MFT in mind. In a later

publication, it became clear that it is Gaussian and not Landau scaling

that is at play in the non-zero modes.27 To disentangle them we looked at

the FSS behaviour of the non-zero modes for magnetisation as well. There,

Gaussian FSS predicts

mk̸=0 = ⟨|ϕ̃k̸=0|⟩L ∼ L− d−2
2 (163)

while Landau FSS would deliver L−1. In Ref.,27 Eq. (163) was shown

to indeed be correct. Nowadays We refer to the GFP scaling described

in Section 5 as G scaling to distinguish it from the Q scaling. It is G-

scaling (not Landau) that manifests as Eqs (162) and (163), associated

with non-zero modes. We keep the term standard FSS for that which

comes from the Landau picture in Section 4 even though it has no direct

physical manifestation.

8. Corrections to finite-size scaling and their dominance at

short distances

Luijten and Blöte considered RG equations for the scaling fields in the O(N)

ϕ4 model and we extended to the ϕn model (93) in Ref.1 The outcome is

that the DIV contaminates not only the amplitudes but the manner in

which the temperature and magnetic field enter the homogeneity assump-

tion as well. The RG equations

dr

d ln b
= ytr + pu,

du

d ln b
= yuu,

dh

d ln b
= yhh. (164)

lead to free energy density taking the form

fL(τ, h, u) = L−dF±[Ly∗
t (τu−2/n − p̃u(n−2)/nLyu−yt), Ly∗

hhu−1/n] (165)

where

p̃ = − p

(yu − yt)
(166)

and the temperature scaling field is

τ = r + p̃u. (167)
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From Eq.(165), two types of FSS for thermodynamic quantities emerge

— leading and correctedl. It also governs the leading FSS of the pseudo-

critical temperature.

Denoting the first argument by

X = Ly∗
t (τu−2/n − p̃u(n−2)/nLyu−yt), (168)

we identify a fixed value of it, say X0, as that for which a given thermody-

namic variable in the form of a derivative — susceptibility, for example —

peaks. This is the pseudocritical temperature τL, and we now have

τL = X0u
2/nL−y∗

t + p̃uL−(yt−yu). (169)

Because y∗t = yt − 2
nyu ≤ yt − yu above duc, the first term dominates for

large enough L, so that the shift exponent is λ = y∗t instead of λ = yt = 1/ν

in Eq.(84). This recovers Eq. (147) for the d = 5 Ising model, for example.
In our opinion, the analytic inclusion of corrections to scaling in equation

(165) is also a central result. The two-term structure was already proposed
in BNPY for FBC’s but not for PBC’s. While they proposed that the free
energy scales as Eq.(148) (with b = L) for PBC’s,

“for other boundary conditions, where the system has a sur-
face, it is probably necessary to use both τLy∗

y and τL1/ν for a
complete asymptotic description”.78

The second term in Eq.(169) when n = 4 corresponds to BNPY’s proposal

and extends it to other boundary conditions, including PBC’s.
Luijten and Blöte also derived two different decay modes for the spin-

spin correlation function on this basis. In Ref.,43 they differentiated the
finite-size free energy density wrt two local magnetic fields placed at posi-
tions 0 and x, “assuming that the finite-size behaviour is identical to the x
dependence of g.” With this neat trick, they can account for DIVs through
the free energy and incorporate them into the correlation function, with-
out compromising the belief that the correlation length itself is anything
other than linear in its dependency on finite size. As they say [we set the
long-range interaction-decay exponent to 2 for the short-range model under
consideration here],

“If we do not take into account the dangerous irrelevant vari-
able mechanism, we find g ∝ L2yh−2d = L−(d−2), just as we
found before from η = 0. However, replacing yh by y∗

h yields
g ∝ L−d/2, in agreement with the L dependence of the mag-
netic susceptibility. This clarifies the difference between the two
predictions: At short distances (large wave vectors), there is no
“dangerous” dependence on u. Hence, the finite-size behaviour

lFor a more elaborate discussion on the possible role of corrections, see.1,82
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of the spin-spin correlation function will be given by L−(d−2+η).
For k = 0, the coefficient of the ϕ2 term vanishes and thus the
uϕ4 term is required which implies that yh is replaced by y∗

h

and gL scales as L2y∗
h−2d.”

Thus Luijten and Blöte arrived at two modes for the correlation function,

the relative magnitudes of r and L determining which one applies. For

short distances G modes dominate and for long distances Q modes reign.

More explicitly, taking corrections into account, for Q modes they havem

gQ(L/2) = L2y∗
h−2d[co + c1t̂L

y∗
t + c2t̂

2L2y∗
t + . . . ] (170)

with t̂ ≡ τ + Const Lyu−yt . They have a counterpart formula for log cor-

rections. For G modes, on the other hand, they have

gG(L/2) = L2yh−2d[co + c1t̂L
yt + c2t̂

2L2yt + . . . ]. (171)

There are no logarithms at the upper critical dimension for G modes be-

cause G modes are not affected by dangerous irrelevancy.

Thus we have that to leading order, and above the critical dimension,

gQ ∼ gG×L−2yu/n and, since yu = −2(d− duc)/(duc− 2) is negative there,

gQ decays slower than gG. To determine if the two-decay-mode structure

is visible in finite systems they simulated the long-range Ising model in one

dimension and found that, indeed it is — provided the system size is large

enough to leave enough space to see it. Since this observation has been

overlooked in recent literature83 we reproduce it here (Fig. 1).

In terms of critical exponents, the more traditional way of presenting

the correlation function is through the scaling dimension as in Eq.(14) or

the anomalous dimension as in Eq.(24). In these terms, the Q-mode decay

at τ = 0 is

g(x) ∼ 1

|x|2d−2y∗
h
=

1

|x|2x
∗
ϕ
=

1

|x|d−2+η∗ =
1

|x|d−2ϙ
=

1

|x|2d/n
(172)

with η∗ = d+ 2− 2y∗h = 2− 2ϙ, while the G-mode decay is

g(x) ∼ 1

|x|2d−2yh
=

1

|x|2xϕ
=

1

|x|d−2+η
=

1

|x|d−2
. (173)

Quoting Luijten and Blöte again,

“The fact that the L dependence of g(L/2) is determined by the
k = 0 mode raises the question of whether one can also observe
the power-law decay described by η [= 0] in finite systems.”

mOf course Luijten and Blöte don’t use the notation gG for G-modes and gQ for Q-mode,
so we are somewhat preemptive in introducing our notation at this point.
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Figure 1. Figure from E. Luijten and H.W.J. Blöte, Classical critical behaviour of spin

models with long-range interactions, Phys. Rev. B 56, 8945–8958, 1997, 10.1103/Phys-
RevB.56.8945.

To this end, they sampled the correlation decay as a function of x far into
the high-dimensional regime. They found that very large lattice sizes are
required to leave enough space to observe the short-distance, η = 0, G-
mode decay at the start (for small x relative to large L). As stated by
Luijten and Blöte, for x of the order of the system size,

“the correlation function levels off. This is the mean-field con-
tribution to the correlation function which dominates in the
spatial integral yielding the magnetic susceptibility.”

In an attempt to fit it into the Q-scheme yet another approach was in-

troduced in Ref.28 The standard derivation of Fisher’s fluctuation-response

relation (30) involves integrating the correlation function (25) over the full

infinite-size correlation volume ξd∞ to obtain the susceptibility close to the

critical point. The same scaling relation ensues for finite volume provided

the correlation length ξL is bounded by the length. However, we now know

this is not the case. According to this view, the integral limits should de-

pend upon whether one integrates over a scale of length L and dimension

d or correlation length ξL and dimension duc. This delivers two different

anomalous dimensions — η = 0 on the scale of ξL and ηQ = 2−ϙγ/ν on the

https://link.aps.org/doi/10.1103/PhysRevB.56.8945
https://link.aps.org/doi/10.1103/PhysRevB.56.8945
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scale of L. Thus the standard version of Fisher’s scaling relation (30) holds

in high dimensions if length-scale is taken as correlation length. A cor-

responding counterpart to the fluctuation-dissipation relation (25) ensues

and is

ηQ = ϙη + 2(1− ϙ). (174)

The issue of correlation decay in high dimensions had previously been

addressed by John Nagle and Jill Bonner in 1970.84 In a numerical

study, they found a negative value for the anomalous dimension of a one-

dimensional chain with long-range interactions which took it above the

upper criticality. They termed this η̃. George Baker and Geoffrey Golner

attempted to provide an explanation a few years later.85 They suggested

a difference between “short long-range order” and “long long-range order”

with only the former controlled by the standard anomalous dimension. The

negative anomalous dimensions of Nagle, Bonner, Luijten and Blöte come

from measuring distance on a scale of ξL. Thus the η
∗ of Luijten and Blöte

is the same as the η̃ of Nagle and Bonner.
Finite-size effects in the high-dimensional Ising model were investigated

in an outstanding PhD thesis by Vassilios Papathanakos (under the super-
vision of Michael Aizenman) in 2006.

“These results are consonant with recent findings in the theories
of percolation and loop-erased random walks, which contribute
to an emerging picture of multi-scale criticality.”

The effect of boundary conditions was investigated using a random-
geometric approach coupled with a rigorous study of the Ising model on
a high-dimensional box of volume Ld. Papathanakos found that

“the short-range behaviour of the model is essentially unaffected
by the choice of boundary conditions, and can be understood
in terms of non-intersecting, independent simple random walks;
this is reflected in the behaviour of bulk quantities, at temper-
atures where the correlation length is small enough. However,
as the critical temperature is approached, the probability for
the intersection of the paths in the case of periodic boundary
conditions becomes significant: the reentrance temperature sets
the scale for the critical susceptibility, which is found to be at
least of order” ξL(Tc) ≳ Ld/2 “in contrast to the case of bulk
boundary conditions, where” ξL(Tc) ≲ Ld/2.

“Moreover, the periodic two-point function at criticality can be
essentially decomposed as the sum of the infinite-lattice two-
point function, and a mean-field plateau, which dominates in
the bulk. Furthermore, making the assumption that the sus-
ceptibility is not larger than” O(Ld/2), “we can also show that
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the renormalized coupling constant gL(Tc) of the system with
periodic boundary conditions has a non-vanishing scaling limit,
unlike the case of bulk boundary conditions, where the scal-
ing limit is Gaussian. This assumption also implies that the
value of the plateau at criticality is fixed at” gL = O(L−1/2).
“These findings are in essential agreement with recent numer-
ical results present in the literature, and forward a more clear
and intuitive explanation than theoretical estimates based on
renormalization group arguments.”

The main results for the Ising model are that the FSS for the suscepti-

bility with FBC’s is χL(Tc) ∼ L2 while that for PBC’s is χL(Tc) ∼ Ld/2.

Also for PBCs, the correlation function has reentrant behaviour vis

gL(Tc,x) ∼

{
C1

|x|d−2 if |x| ≤ C3L
d

2(d−2)

C2

|x|1/2 if |x| ≥ C3L
d

2(d−2) .
(175)

This brings us to the close of the century. But this by no means closes
the story. In 2000 Binder and Luijten say:86

“Another issue where there has been a longstanding contro-
versy between theory and simulation is the question of finite
size scaling at dimensionalities d above the marginal dimension
d∗ where mean field theory becomes valid [22–30]. For systems
with short-range forces, d∗ = 4, so in d = 5 all critical expo-
nents (including corrections to scaling) are known, and hence
finite-size scaling methods can be exposed to a stringent test.
However, it will be shown that the comparison between theory
[29] and simulation [30] is still disappointing!”

They conclude with:86

“In this work, two simple aspects of the bulk critical behaviour
of ferromagnetic Ising models were discussed, and it was shown
that both problems (crossover from one universality class to
another, and finite-size scaling above the marginal dimension)
still are incompletely understood.”

9. Extension of dangerous irrelevancy in the correlation sec-

tor: the use of ϙ, the rescue of hyperscaling and finite-size

scaling

Forty years ago Fisher rescued the RG framework for the free-energy sector

in the thermodynamic limit (Sec.6.1) above the upper critical dimension,

via his introduction of DIVs which were then extended to finite-size scaling

corrections (Sec.8). However, problems still remain and, following Ref.,1 we
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further build on Fisher’s legacy to preserve the RG framework, extending

DIV’s to the correlation sector. In doing so, we closely follow Luijten and

Blöte’s approach that we proposed to generalize in Ref.27

We return firstly to Section 6.3 and BNPY’s extension of the DIV mech-

anism to the free energy itself. As stated, they assumed that the correlation

length could obey a similar homogeneity law (157) but insisted that q1 = 0

and left q2 and q3 open. For the free energy in Eq.(149), BNPY gave three

reasons why p1 = 0 and hence d∗ = d. In a series of papers8 we advocated

that the correlation length should be allowed to exceed the length — as

Brézin had shown for d = 4 and general n. In particular, we showed that

ξL ∼ Lϙ (176)

with

ϙ = d/duc. (177)

Therefore we write

ξL(t, h, u) = bϙΞ±(by
+
t tuq2 , by

+
h huq3). (178)

where

ϙ = 1 + q1yy, y+t = yt + q2yu, y+h = yh + q3yu . (179)

The value for ϙ in Eq.(177) determines q1 = −1/n. In the thermal sec-

tor, matching Eq.(178) with the value νMFT = 1/2 in Eq.(115) determines

q2 = −2/n, identical to p2. Likewise, matching Eq.(178) with the value

νc MFT = (n − 2)/2(n − 1) in Eq.(115) determines q3 = −1/n, identical to

p3. Note that, while the correct correlation-length critical exponent νMFT is

identical to that coming from the GFP νGFP = 1/yt = 1/2 in Eq.(25), their

counterparts in the magnetic sector do not coincide and νc MFT differs from

νc GFP = 1/yh from Eq.(26). So, technically although νMFT = 1/yt, this is by

coincidence only and the correct expression is νMFT = ϙ/y+t = ϙ/y∗t . Note

also that because q2 = p2 and q3 = p3, one has y+t = y∗t and y+h = y∗h. We

henceforth only use the starred scaling dimensions. I.e., to extend Eqs.(151)

and (152) to the correlation sector, we write

νMFT =
ϙ

y∗t
νc MFT =

ϙ

y∗h
. (180)

Equations (154) and (155) can now be written above duc in a very consistent

manner as

d∗ = ϙduc, y∗t (d) = ϙyt(duc), y∗h(d) = ϙyh(duc). (181)
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Likewise, we believe that there is no reason to invoke a mechanism by

which the rescaling of the temperature and the magnetic field would differ

for different physical quantities. Therefore, the result that y+t = y∗t and

y+h = y∗h is satisfactory. A second extension proposed is to use the correct

(starred) scaling dimension (2x∗ϕ in fact) of the matter field to describe the

dimension of the correlation function. From these considerations, we are

led to the following scaling hypotheses (equation (165) is rewritten for the

sake of clarity),

fL(τ, h, u) = b−dF±(X,Y, bL−1), (182)

gL(x, τ, h, u) = b−2x∗
ϕG ±(b−1x, X, Y, bL−1), (183)

ξL(τ, h, u) = bϙΞ±(X,Y, bL−1). (184)

These are expressed in terms of the two rescaled variables

X = by
∗
t (τu−2/n − p̃u(n−2)/nbyu−yt), (185)

Y = by
∗
hhu−1/n, (186)

and with the scaling dimensions

y∗t = d
(
1− 2

n

)
, y∗h = d

(
1− 1

n

)
, x∗ϕ =

d

n
, ϙ =

d

2

(
1− 2

n

)
(187)

having used (154) with (120), (121), (122) and extended x∗ϕ from Ref.27

for the n = 4 case, and where p̃ is given in Eq.(166). Obviously these

scaling forms apply to the Q-sector only (Fourier Q-modes). The G sector

is unaffected by DIVs and the finite-size counterparts of Eqs.(13), (14)

and (15) apply there. Following a suggestion by Michael Fisher, a new

exponent ϙ was introduced in8 for the Q sector. We like the use of this

exponent, since it is very easy to translate equations from one universality

class to another in terms of d/duc, and also to generalize from the GFP

values (which we recover reverting ϙ to 1), so one can also rewrite the

exponents (187) in the form

y∗t = 2ϙ, y∗h =
d

2
+ ϙ, x∗ϕ =

d

2
− ϙ, ϙ = d

duc
. (188)

An interesting use of ϙ is in a new form of the hyperscaling relation.

Setting b = |τ |−1/yt in (184) delivers ξ∞ ∼ |τ |−ϙ/y∗
t , hence y∗t = ϙ/ν, then

in (182) we get f∞ ∼ |t|d/y∗
t ∼ |τ |2−α which leads to

α = 2− νd

ϙ

. (189)
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This repairsn the hyperscaling relation above duc, and it holds also below

duc where ϙ = 1. (Obviously ϙ = 1 for the non-zero or orthogonal Fourier

modes in high dimensions too.)

The new exponent already enabled predictions to be more naturally

expressed for models such as the nearest-neighbour Ising model, percola-

tion above its critical dimension duc = 6 and for Long-Range Ising Models

(LRIM’ with various dimensions above duc(σ) (with periodic boundary con-

ditions).60,88 The extension to general values of n is obvious and we collect

the predictions for arbitrary d > duc for quantities which have been dis-

cussed above:

mL ∼ L−( d
2−ϙ), χL ∼ L2ϙ, eL ∼ L−(d−2ϙ), cL ∼ L4ϙ−d, (190)

ξL ∼ Lϙ, gL(X0) ∼ L−(d−2ϙ), (191)

tL ∼ L−2ϙ, ∆βL ∼ L−2ϙ, |hL| ∼ L−( d
2+ϙ), (192)

hLYL ∼ L−( d
2+ϙ), tFL ∼ L−2ϙ. (193)

Note that all of the above scaling formulas are readily obtained by replacing

the standard FSS prescription Eq.(10) by the prescription

Q∞(t, 0) ∼ |t|ρ −→ QL(t = 0, 0) ∼ L−ϙρ/ν . (194)

This is what we call Q-scaling and it holds at the pseudocritical point as

we shall see shortly. With Q-scaling to hand, FSS holds above the upper

critical dimension.

The different approaches that we have discussed are collected and com-

pared in Table 2 for the ϕ4 model with periodic boundary conditions. In

this table, the first column lists known results in the thermodynamic limit

or for finite-size scaling. The remaining columns correspond to the differ-

ent approaches that we have described so far, with the symbol
√

to denote

an agreement and, in cases of disagreement, the prediction made by the

(incorrect) theory considered is given explicitly. The last column is for Q

scaling.

nSince Josephson’s inequality νd ≥ 2−α was introduced in 1967,87 literature, including

textbooks, on statistical physics, lattice field theory, etc. refer to hyperscaling as “failing”
above the upper critical dimension. This statement should no longer be used in statistical
physics — hyperscaling does not fail because the RG does not fail above the upper critical

dimension. Moreover, the hyperscaling relation should rather be rewritten properly as
(189) and not as (27).
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Table 2. Summary of the evolution of the scaling picture above the upper critical dimension

for the ϕ4 model. The first column presents the correct results (FSS predictions are for a

system with periodic boundary conditions). In the other columns, we give the (incorrect)
results predicted when they are different. A question mark means that the quantity hasn’t

been considered in the corresponding scenario.

The correct results Landau scaling1 GFP2 Fisher DIV3 BNPY4
ϙ
5

thermodynamic limit:

c∞(τ, 0) ∼ |τ |0
√

αG = 2− d
2

√ √ √

m∞(τ, 0) ∼ |τ |1/2
√

βG = d−2
4

√ √ √

χ∞(τ, 0) ∼ |τ |−1 √ √ √ √ √

m∞(0, h) ∼ |h|1/3
√

δG = d+2
d−2

√ √ √

ξ∞(τ, 0) ∼ |τ |−1/2 √ √ √
?

√

g∞(x, 0, 0) ∼ |x|−(d−2) √ √ √
?

√

FSS:

ξL(τ = 0, 0) ∼ Ld/4 L L L L
√

χL(τ = 0, 0) ∼ Ld/2 L2 L2 L2 √ √

τL(τ = 0, 0) ∼ L−d/2 L−1/2 L−1/2 L−1/2 √ √

mL(τ = 0, 0) ∼ L−d/4 L−1 L1−d/2 L−1 √ √

gL(L/2, τ = 0, 0) ∼ L−d/2 L−(d−2) L−(d−2) L−(d−2) ?
√

hLY
L (τ = 0) ∼ L−3d/4 L−3 L−(d+2)/2 √

τFL (τ = 0) ∼ L−d/2 L−2 L−2 √

1FSS with Landau exponents,
2Predictions from the RG eigenvalues at the Gaussian Fixed Point,
3Corrections made by the scenario of Fisher,
4Most of the results presented in this column correspond to BNPY’s version of the scenario
of Fisher and are checked in Ref.,20

5Q scaling of the results presented in the last column are checked e.g. in Ref.6

10. The case of Free Boundary Conditions

10.1. A mismatch between TL and Tc in free boundary con-

ditions

The case of free boundary conditions is more problematic. First the easy

part: the study of FSS properties of physical quantities evaluated at the

pseudo-critical point for FBC’s agrees with what we said previously for

systems with PBC’s. What is happening right at the critical point on the

other hand is still subject to debate.

Lundow and Markström have studied this problem intensively for the

Ising model in the d = 5 case, for very large systems (up to L = 160 in89).

They obtained, for the magnetisation and the susceptibility, the leading
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behaviours and corrections to scaling of the form:

χL(Tc) = 0.817L2 + 0.083L, (195)

mL(Tc) = 0.230L−3/2 + 1.101L−5/2 − 1.63L−7/2. (196)

There, the leading and correction exponents are fixed and the coefficients

are free, and the authors concluded in favour of a standard FSS behaviour

of the susceptibility at the critical temperature χL(Tc) ∼ L2. The same

conclusion, albeit with much lower accuracy, was reached in.6 There, by

standard it was referred to FSS with Landau exponents, χL ∼ LγMFT/νMFT ,

a conclusion that we will see is not correct, although L2 is (accidentally)

correct.

The case of the magnetisation in (196) is a bit more subtle, because the

leading exponent − 3
2 is not the standard Landau FSS (the ratio of MFT

exponents would be −βMFT/νMFT = −1 instead).

In order to clarify the situation, Wittmann and Young,81,90 and then

Flores-Sola et al.27 considered the behaviour of the Fourier modes in a finite

system with free boundary conditions. Following Ref.,91 a sine-expansion of

the scalar field in the ϕ4 action is performed with the boundary conditions

ϕ(x) = 0 at the free surfaces.

Wittmann and Young confirmed the scaling at Tc for the total suscepti-

bility (for FBC). They found that the single-mode susceptibility also obeys

a standard FSS behaviour, χk ∼ L2 for the modes which will not acquire a

nonzero magnetisation, namely with the smallest wave-vector with an even

wave number nα in the wave expansion (kα = nαπ/(L+1), nα = 1, 2, . . . , L,

α = 1, . . . , d). Wittmann and Young proposed to use t = T − TL, with

t = τ+const×L−λ, as the temperature-like scaling variable and the starred

RG dimensions in the scaling hypothesis for the susceptibility. They obtain

then χL(t) = L2y∗
h−dX (Ly∗

t t) in zero magnetic field and the compatibility

with the bulk behaviour in the thermodynamic limit χ∞(τ) ∼ |τ |−γMFT is

recovered by the demand that the asymptotic regime obeys X (x) ∼ x−γMFT

(with γMFT = 1 here) for x → ∞. Thid leads to χL(t) ∼ L2y∗
h−d+y∗

t |t|−1.

When λ = d/2, as is the case in PBC, this leads at criticality to the correct

result χL(Tc) = Ld/2. On the other hand if λ = 2 (FBC), this amounts to

χL(Tc) = L2, hence the scenario proposed is very compelling.

The discussion concerning standard FSS with Landau exponents, or

Gaussian FP exponents is nevertheless not settled by the study of the sus-

ceptibility alone and here we will present additional unpublished numeri-

cal results26 for low-dimensional Ising models with long-range interactions

above their respective upper critical dimensions.
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10.2. The three possible scenarios

As we have already noted several times, one cannot disentangle, with the

susceptibility alone, the predictions of standard (or Landau) FSS from

those of the Gaussian Fixed point FSS. The primary aim of Ref.27 was

to test the discriminating case of the magnetisation. The argument of

Wittmann and Young for the magnetisation would indeed lead tomL(Tc) =

L−λ/2, hence mL(Tc) = L−d/4 in PBC and mL(Tc) = L−1 in FBC. The

argument is thus equivalent to Landau scaling, because for FBC, λ =

1/νMFT.

So we are led to the point where one essentially faces three distinct

hypotheseso among which one has to discriminate (see Table 3).

Table 3. The three scenarios for the FSS of the susceptibility and the

magnetisation at Tc. There, ϙ = d/duc, duc and the MFT exponents take
their usual values and extension to different universality classes is obvious.

Hypothesis Scaling of χL(Tc) Scaling of mL(Tc)

1. Landau (or standard) scaling L
γMFT
νMFT L

− βMFT
νMFT

2. Q scaling L2ϙ Lϙ−d/2

3. G scaling L2 L1−d/2

In the case of the ϕ4 universality class, the options are the following:

— prediction 1 (Landau scaling) leads to χL(Tc) ∼ L2 andmL(Tc) ∼ L−1,

— prediction 2 (Q scaling) to χL(Tc) ∼ Ld/2 and mL(Tc) ∼ L−d/4,

— prediction 3 (G scaling) to χL(Tc) ∼ L2 and mL(Tc) ∼ L−(d−2)/2.

Option 2 is clearly ruled out at Tc by the results of Lundow and Markström

in (195) (as well as by the results of Wittmann and Young). Options 1 and 2

are compatible with the results measured for the susceptibility. For the 5D

model, it is easy to discriminate, with the magnetisation, between option

1 (which predicts the value −1), option 2 (prediction −1.25) and option 3

(prediction −1.5). Equation (196) is in favour of option 3.

10.3. Towards a GFP scaling at Tc

In Ref.27 the magnetisation of the LRIM was investigated, tuning the pa-

rameter σ of the interaction decay to control the upper critical dimension

oIn Ref.,1 a fourth scenario has been considered in which corrections to scaling could be

dominant at small sizes, but this hypothesis has not been confirmed by the numerics.
Therefore we do not discuss this fourth case further here.
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d/(2σ). In the thesis of Emilio Flores-Sola26 results are reported for vari-

ous values of σ and of d. Some of these are collected in Tables 4, 5 and 6

for the magnetisation, the susceptibility, correlation length and correlation

function at Tc and at TL. In the case of the magnetisation (Table 4), the ex-

pectation from GFP scaling is an exponent −βG/νG with βG = (d−σ)/(2σ)
and νG = 1/σ, while Q scaling predicts an exponent −ϙβMFT/νMFT = −ϙ.

Table 4. FSS of the magnetisation (upper panel) and the susceptibility

(lower panel) for the LRIM in d = 1, 2 with FBC’s at Tc and at TL.
The results at the critical temperature support G scaling ( d−σ

2
, resp. σ)

while those at the pseudo-critical temperature support Q scaling (d/4,

resp. d/2).

mL(Tc)
d−σ
2

mL(TL)
ϙβMFT
νMFT

= d
4

d = 1 σ = 0.1 L−0.450(4) 0.45 L−0.233(4) 0.25

σ = 0.2 L−0.401(3) 0.40 L−0.230(4) 0.25

d = 2 σ = 0.1 L−0.949(1) 0.95 L−0.501(2) 0.50

σ = 0.2 L−0.897(1) 0.90 L−0.494(1) 0.50

χL(Tc) σ χL(TL)
ϙγMFT
νMFT

= d
2

d = 1 σ = 0.1 L0.099(1) 0.1 L0.522(3) 0.5

σ = 0.2 L0.200(1) 0.2 L0.525(5) 0.5

d = 2 σ = 0.1 L0.094(2) 0.1 L0.985(2) 1.

σ = 0.2 L0.198(2) 0.2 L0.994(2) 1.

Table 5. FSS of the correlation length for the LRIM in

d = 1, 2 with FBC’s at Tc and at TL. The results at the
critical temperature support G scaling (1) while those at the

pseudo-critical temperature are more in favour of Q scaling
(d/(2σ)).

ξL(Tc) 1 ξL(TL) ϙ = d
2σ

d = 1 σ = 0.1 L1.01(3) 1 L4.03(7) 5

σ = 0.2 L1.03(2) 1 L2.21(4) 2.5

d = 2 σ = 0.1 L1.07(7) 1 L7.48(4) 10

σ = 0.2 L0.95(6) 1 L3.97(4) 5

Other quantities (temperature shift, correlation length, correlation func-

tion) are also reported in26 (and partially collected here) and, although

perfectible, all numerical results at Tc support the option 3 above (and also

confirm Q scaling, i.e. option 2, at TL). A recent work92 has revisited FSS

in the d = 5 Ising model (with short-range interactions) with FBCs and

also confirms the present results.
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Table 6. FSS of the correlation function at x| = L/2 for the LRIM in d = 1, 2

with FBC’s at Tc and at TL. The results at the critical temperature are more

in favour of G scaling (d− σ) while those at the pseudo-critical temperature
support Q scaling (d/2).

gL(Tc,
L
2
) d− 2 + ηG gL(TL,

L
2
) d− 2 + ηϙ

d = 1 σ = 0.1 L−0.86(6) 0.9 L−0.487(5) 0.5

σ = 0.2 L−0.83(6) 0.8 L−0.483(6) 0.5

d = 2 σ = 0.1 L−2.07(9) 1.9 L−0.954(3) 1

σ = 0.2 L−1.70(9) 1.8 L−0.974(3) 1

The picture now is the following for FBC’s: Either we study physical

quantities which are related to the Q modes (i.e. modes that have a non-

zero projection on the average magnetisation) or those related to the G

modes (modes that do not contribute to the average magnetisation). In

the first case, which is expected for FBC at TL, the DIV has to be taken

into account and Q scaling rules (option 2 in Table 3). In the second case,

which holds for FBC at Tc, u is not dangerous and the physics is controlled

by the GFP (option 3 in Table 3). The exponents there are Gaussian

exponents collected in Table 1 and not Landau exponents.

11. Conclusion

We have reached a point where we believe that ϙ and ϙ̂ are necessary in-

gredients of FSS at and above the upper critical dimension. They allow for

a natural, and simple, extension of the scaling hypothesis that governs the

behaviour of thermodynamic averages and correlations in systems having a

non-zero finite-size order parameter. This is the case at the pseudo-critical

points TL, and also at Tc for systems with PBC’s. There, the scaling hy-

pothesis for the singular part of the free energy density, for the correlation

length and for the order parameter correlation function can be written as
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follows

d > duc (197)

f(τ, h, L−1) = b−df(b2ϙτ, bd/2+ϙh, bL−1),

ξ(τ, h, L−1) = bϙξ(b2ϙτ, bd/2+ϙh, bL−1),

g(τ, h, L−1,x) = b−(d−2ϙ)g(b2ϙτ, bd/2+ϙh, bL−1, b−1x),

d = duc (198)

fuc(τ, h, L
−1) = b−ducf(b2(ln b)ŷtτ, bduc/2+1(ln b)ŷhh, bL−1),

ξuc(τ, h, L
−1) = b (ln b)ϙ̂ξ(b2(ln b)ŷtτ, bduc/2+1(ln b)ŷhh, bL−1),

guc(τ, h, L
−1,x) = b−(d−2)g(b2(ln b)ŷtτ, bduc/2+1(ln b)ŷhh, bL−1, b−1x)

and the scaling of other quantities follows from appropriate derivatives wrt

the scaling fields.

Hyperscaling relation among critical exponents and “hatted” critical

exponents of the logarithmic corrections take the form

α = 2− νd

ϙ
, (199)

ν̂ = ϙ̂− να̂

2− α
. (200)

They are valid above, below, and at duc for the first one (with ϙ = 1 below

and ϙ = d/duc above duc), and the second one is valid at duc.

In FBCs, a special situation arises due to the rounding which does not

scale like the shift of the pseudo-critical temperature, and, as a consequence,

the pseudo-critical temperature is somehow pushed far below the critical

temperature. It follows that at the critical temperature, there is no room

for the order parameter to develop in the free energy mode expansion (it

develops at the pseudo-critical point). The non-zero order parameter (this

would be the zero-mode in the PBC case), which is responsible for the

contamination of the scaling by the dangerous irrelevant variable, has no

influence there. It follows that the correct homogeneity assumption that

describes the singular behaviour in the very vicinity of the critical temper-

ature τ → 0 is as above except that ϙ stays stuck to 1 and the physical

quantities are controlled by the Gaussian fixed point. As far as we know,

this is the only instance (FBC, T = Tc) in which ratios of the Gaussian

exponents are measured in FSS and not ratios of MFT exponents. In a

similar manner, one may expect that the logarithmic corrections in the Q

sector which are due to the scaling field u becoming marginal at duc, do

not show up in the G sector.
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Ph.D. thesis, thèse de doctorat dirigée par Berche, Bertrand et Kenna, Ralph
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