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ABSTRACT
We analyze the volume-limited subsamples extracted from the sixteenth data release of the SDSS-IV eBOSS quasar survey
spanning a redshift interval of 0.8 < 𝑧 < 2.2, to estimate the scale of transition to homogeneity in the Universe. The multi-fractal
analysis used for this purpose considers the scaling behavior of different moments of quasar distribution in different density
environments. This analysis gives the spectrum of generalized dimension 𝐷𝑞 , where positive values of 𝑞 characterize the scaling
behavior in over-dense regions and the negative ones in under-dense regions. We expect fractal correlation dimension 𝐷𝑞 (𝑟) = 3,
for a homogeneous, random point distribution in 3-Dimensions. The fractal correlation dimension 𝐷𝑞 (𝑟), corresponding to
𝑞 = 2 obtained in our study stabilizes in the range (2.8-2.9) for scales 𝑟 > 80 ℎ−1 Mpc. The observed quasar distribution shows
consistency with the simulated mock data and the random distribution of quasars within one sigma. Further, the generalized
dimension spectrum 𝐷𝑞 (𝑟) also reveals transition to homogeneity beyond > 110 ℎ−1 Mpc, and the dominance of clustering at
small scales 𝑟 < 80 ℎ−1 Mpc. Consequently, our study provides strong evidence for the homogeneity in SDSS quasar distribution,
offering insights into large-scale structure properties and, thus can play a pivotal role in scrutinizing the clustering properties
of quasars and its evolution in various upcoming surveys such as Dark Energy Spectroscopic Instrument (DESI) and Extremely
Large Telescope (ELT).

Key words: cosmology: large-scale structure of Universe - Homogeneity scale – methods: statistical- Multifractal analysis –
galaxies: quasars: general.

1 INTRODUCTION

Galaxy redshift surveys are the most direct methods for exploring
the distribution of the Universe’s large-scale structure (LSS) across
space and time. These surveys tell us in the most straightforward
way what our Universe looks like. It is now confirmed that the Uni-
verse contains structures of varying size and shapes, from galaxy to
galaxy clusters, filaments, voids, walls, collectively called the cosmic
web (Bond et al. 1996). These structures have formed and evolved
from tiny density perturbations in the very early Universe by hi-
erarchical growth driven primarily by gravity (Loeb 2008; van de
Weygaert & Schaap 2009). Despite the existence of clustering at
small scales, we expect the Universe to be homogeneous on large
scales (Yadav et al. 2005; Hogg et al. 2005; Scrimgeour et al. 2012).
One of the foundational principles underlying the standard theory
of cosmology, known as the ΛCDM model (Cold Dark Matter with
a cosmological constant, Λ), is the "Cosmological Principle". This
principle posits that our Universe exhibits statistical homogeneity
and isotropy on large scales (typically > 100ℎ−1 Mpc ) (Milne 1937;
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Clarkson & Barrett 1999; Katanaev 2015; Camacho-Quevedo & Gaz-
tañaga 2022a). Testing these assumptions in the era of the vast current
and upcoming observational data is an essential robustness check of
the standard cosmological model. The assumption of isotropy has
been tested using various types of data sets like distribution of ra-
dio source counts (Bengaly et al. 2019), X-ray surveys of galaxy
clusters (Valotti et al. 2018; Migkas et al. 2020), the temperature
and polarization anisotropies of the Cosmic Microwave Background
Radiation (CMBR) (Planck Collaboration et al. 2020), by employ-
ing different statistical methods. These high-precision experiments
support the statistical isotropy of the Universe. However, certain ob-
servations have hinted at anomalies challenging the assumption of
isotropy (Kumar Aluri et al. 2023). For instance, anomalies like hemi-
spherical asymmetry and point parity symmetry violation have been
found in the Planck data (Planck Collaboration et al. 2020), along
with statistically significant higher dipole amplitude measured in the
distribution of quasars compared to the CMBR value (Secrest et al.
2021). Although numerous tests of the isotropy hypothesis have been
performed in a direct manner through observations, the assumption
of cosmic homogeneity can only be indirectly tested, this is because
we observe down the past light cone and not on the time-constant
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hyper-surfaces (Clarkson & Maartens 2010; Clarkson 2012). Thus,
investigating the statistical homogeneity of the Universe on very large
scales is a challenging endeavour (Maartens 2011).

The methodology for investigating the homogeneity involves ana-
lyzing the clustering properties of galaxies, quasars, and other tracers
of LSS across different length scales. Currently, most of the analy-
ses performed found a transition scale from a locally clustered to a
smooth, statistically homogeneous Universe, using galaxy or quasar
counts, in the interval 70 < 𝑟ℎ < 150 ℎ−1 Mpc (Hogg et al. 2005;
Yadav et al. 2005; Sarkar et al. 2009; Scrimgeour et al. 2012; Na-
dathur & Hotchkiss 2015; Laurent et al. 2016; Sarkar & Pandey
2016; Gonçalves et al. 2018b; Gonçalves et al. 2021; Pandey &
Sarkar 2021). However, some studies still argue against the existence
of any such homogeneity scale (Labini et al. 2009; Labini 2011;
Park et al. 2017). Any deviations from the assumptions of isotropy
and homogeneity can have significant implications for our current
understanding of the Universe (Lahav & Suto 2004). Therefore, it
is crucial to rigorously test these fundamental assumptions underly-
ing our standard cosmological model using a variety of existing and
upcoming cosmological data, utilizing the rich statistical tools avail-
able today (Li & Lin 2015; Jimenez et al. 2019; Camacho-Quevedo
& Gaztañaga 2022b).

At low redshifts, 𝑧 < 1, galaxies are used as direct tracers of the
matter density field, while at high redshifts 𝑧 > 2, clouds of neu-
tral hydrogen in the Lyman−𝛼 Forest, as illuminated by background
quasar-light, are similarly used to test the assumptions of homogene-
ity and isotropy of the Universe (Zavarygin & Webb 2019). Quasar
distribution provides a reliable tracer population in an intermedi-
ate redshift range (Einasto, Maret et al. 2014), since they are the
brightest objects, hence can be observed more easily at cosmological
distances. While it is true that quasars are biased tracers of matter
density field, this drawback is offset by the advantage that quasars
sample a very large volume of space and so are suited for testing cos-
mic homogeneity over large scales. Traditional methods like 2−point
correlation function (Laurent et al. 2017) and power spectrum ap-
proach (Gil-Marín et al. 2018; Hou et al. 2020; Zhao et al. 2022a)
have been employed to study the clustering of quasar distribution
in the Sloan Digital Sky Survey (SDSS) (Wang et al. 2020; Zhao
et al. 2022b). These methods assume the distribution of quasars to be
homogeneous within the survey boundaries and therefore, can not be
used to test the principle of homogeneity of the quasar distribution.
Most statistical methods used to measure homogeneity rely on the
"counts-in-spheres" technique. This involves counting the number of
sources (galaxies/quasars) within spheres of certain radius, centred
on each galaxy/quasar. By averaging these counts over a large num-
ber of centers, the expectation is that, for a random distribution of
points, the average number count scales proportionally to the volume
of the sphere (Borgani 1995). This formalism forms the basis of frac-
tal analysis where the scaling exponent of the average number count
is proportional to the fractal Dimension (Mandelbrot & Mandelbrot
1982). The most commonly used one is the correlation dimension,
𝐷2 (𝑟), which quantifies the scaling of the two-point correlation func-
tion. The counts in sphere is closely related to the volume integral
of the two-point correlation function, 𝜉 (𝑟). In a situation where 𝜉 (𝑟)
obeys a power-law behaviour, i.e. 𝜉 (𝑟) = (𝑟/𝑟0)𝛾 , the correlation
dimension is given by, 𝐷2 = 3−𝛾, on scales 𝑟 < 𝑟0, where 3 denotes
the ambient dimension of the space. Here, the ambient dimension by
definition is the dimension of space in which the particle distribution
is embedded, for example, it will be 3, for a 3-D spatial distribu-
tion of quasars or galaxies (Bharadwaj et al. 1999). Several previous
studies (Scrimgeour et al. 2012; Nadathur & Hotchkiss 2015; Lau-
rent et al. 2016; Sarkar & Pandey 2016; Gonçalves et al. 2018b;

Gonçalves et al. 2021) have employed fractal correlation dimension
analysis on the SDSS galaxy and quasar distributions to infer the
cosmic homogeneity scale. They conclude that the large-scale homo-
geneity assumption is consistent with the largest spatial distribution
of quasars currently available. Primordial non-Gaussianity (Li & Lin
2015) and non-linear evolution at later stages of evolution of the mat-
ter density field leads to the non-Gaussian distribution of tracers of
the density field. Therefore, a distribution of quasars in the Universe
is not necessarily a Gaussian distribution and hence may not be com-
pletely specified by its 2−point correlation function (or equivalently
𝐷2) and thus we must investigate the higher-order correlations.

In this study, we employ the concept of multi-fractal dimension
also known as Minkowski-Bouligand dimension (𝐷𝑞) (Hentschel &
Procaccia 1983; Bharadwaj et al. 1999) on the spatial distribution
of quasars. Here 𝑞 is an integer that can take positive and negative
values. These dimensions quantify the scaling behavior of different
moments of the counts-in-spheres in the distribution of points and
are related to a combination of n-point correlation functions (Borgani
1995). A monofractal is a special case of multi-fractal where the value
of 𝐷𝑞 is independent of 𝑞. The multi-fractal dimension of matter
distribution can be used to test the hypothesis of homogeneity. In
practice, for any given tracer distribution, one computes the multi-
fractal dimension of the point distribution, and the length scale above
which the multi-fractal dimension is equal to the ambient dimension
of the space can be considered as the scale of homogeneity of that
distribution.

The focus of this work is to investigate the homogeneity scale
in the distribution of quasars. We perform the multi-fractal analysis
to study the scaling properties (counts in the sphere) of the quasar
distribution in the latest SDSS-IV DR16 eBOSS survey (Ross et al.
2020) and test if it is consistent with homogeneity on large scales.
This data set covers a redshift interval, 0.8 < 𝑧 < 2.2, thus provid-
ing significant volume in the Universe to investigate the clustering
properties. We divide the sample into four redshift bins spanning the
whole redshift coverage of the survey and use counts in the sphere and
its different moments to study if there is evidence for the existence
of such a homogeneity scale. The generalized spectrum of fractal
dimension (𝐷𝑞) obtained from multi-fractal analysis complements
the more commonly used correlation dimension (𝐷2) to extricate the
underlying homogeneity scale from the distribution of quasars.

This paper is organized as follows. In Section 2, we briefly de-
scribe the observational data used in our analysis. In Section 3, we
describe our methodology. We present our findings in Section 4 and
the Section 5 gives a brief discussion of the results. Finally, the main
conclusions of our study are summarised in Section 6.

2 OBSERVATIONAL DATA

We have utilized the SDSS-IV quasar catalog available in the 16th
Data Release (DR16) of the extended Baryon Oscillation Spectro-
scopic Survey (eBOSS) survey.1 Ross et al. (2020). It consists of
about 218, 209 quasars located in the Northern Galactic Cap (NGC)
region and 125, 99 quasars in the Southern Galactic Cap (SGC)
region. These quasars cover a redshift range of 0.80 < 𝑧 < 2.20, rep-
resenting a substantial depth of observations. The observed quasar
distribution spans an effective area of approximately 4699 deg2.

1 The SDSS-IV DR16 eBOSS clustering catalogs (NGC & SGC) used in
this analysis are available at the following URL: https://data.sdss.org/
sas/dr16/eboss/lss/catalogs/DR16/
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It is worth noting that this survey has a mean completeness of
𝐶comp ∼ 0.98 for both regions.

To investigate the scale of homogeneity across different epochs,
we divided the sample into four distinct redshift bins. The mean
redshift and the corresponding number of sources in each bin are
presented in Table 1. We have applied a threshold on the minimum
number of quasars in the subsamples. This threshold is determined
based on the quasar subsample in the highest redshift bin. The width
of each redshift bin is determined to be the broadest possible range
encompassing an almost equal number of data points while ensuring
no overlap between adjacent redshift bins. The number of quasars is
kept similar across all the redshift bins so that the Poisson fluctuation
which is proportional to 1/

√
𝑁 is similar across all bins. This is

similar to what was followed in previous works (Gonçalves et al.
2018b; Gonçalves et al. 2021).

In order to have an estimate of the uncertainties due to var-
ious observational systematic effects, we have utilized the Ex-
tended Zel’dovich (EZ) mock catalogs (Zhao et al. 2021), which
has the same clustering property of the eBOSS DR16 quasar sam-
ple. The EZmock algorithm uses Zel’dovich approximation to con-
struct the density field at a given redshift, and populate matter tracers
(haloes/galaxies/quasars) in the field with a parameterized modelling
of tracer bias. This effective bias description includes linear, nonlin-
ear, deterministic, and stochastic effects, which have to be calibrated
with clustering statistics from observations or N-body simulations,
including typically the two-point correlation function (2PCF), power
spectrum, and bispectrum. Moreover, various geometrical survey
features are applied to the mocks, including survey footprints, veto
masks, and radial distributions. In addition, photometric and spec-
troscopic systematic effects associated with the observations are mi-
grated to the EZmock catalogs to have robust estimates of the covari-
ance matrices for Baryonic Acoustic Oscillation (BAO) and Redshift
Space Distortion (RSD) analysis. These EZmock catalogs display
good agreements with the observational data regarding various clus-
tering statistics, especially at small scales (Zhao et al. 2021). We
conducted an analysis on approximately 40 mock realizations using
the same methodology employed for the observed quasar data.

In addition, for quasar observation sample in each region (NGC and
SGC), a corresponding random sample (Ross et al. 2020) is gener-
ated that is at least 40 times as dense and approximates the respective
3D (RA, DEC, redshift) selection functions of the observed distri-
bution. Various weights are provided for both the data and random
samples to ensure that the latter matches the selection function and
optimizes the signal-to-noise of the clustering measurements. More
details about creating LSS clustering catalogs for the eBOSS DR16
quasar samples and the random catalogs can be found in Ross et al.
(2020). The analysis of random samples (which are Poisson sampled
homogeneous distribution by construction but with statistical fluctu-
ations) is important to check the scales at which real distribution is
close enough to the random ones. We utilized 40 samples of these
random catalogs in our analysis. In the following section, we give a
brief description of the multi-fractal analysis method.

3 METHODOLOGY

Past analysis of galaxy redshift surveys suggest that on small scales
matter distribution in the Universe resembles a fractal distribution,
characterised by a parameter called fractal dimension (Wen Zheng
et al. 1988; Peebles 1989; Teles et al. 2022). There are different
ways to calculate fractal dimension, and the Minkowski-Bouligand
dimension is of particular relevance in the context of cosmology

Table 1. The table shows the redshift interval and the respective number of
quasars in each bin for both NGC and SGC regions.

z interval �̄� 𝑁𝑞 (NGC) 𝑁𝑞 (SGC)

0.800-1.135 0.967 42488 23791
1.225-1.460 1.342 42720 24327
1.560-1.800 1.680 42771 25043
1.890-2.200 2.045 42574 25131

for analyzing distributions of galaxies or quasars (Martinez & Saar
2001). We now give an overview of the method adopted to measure
counts in the sphere in the 3-D distribution of quasars.

If we denote by ®𝑥𝑖 and ®𝑥 𝑗 , the position vectors of the 𝑖th and 𝑗 th
quasar, the distance between them is given by,

| ®𝑥𝑖 − ®𝑥 𝑗 | =
√︃
𝑑 (𝑧𝑖)2 + 𝑑 (𝑧 𝑗 )2 − 2𝑑 (𝑧𝑖)𝑑 (𝑧 𝑗 )𝑐𝑜𝑠(𝜃𝑖 𝑗 ) (1)

where 𝑐𝑜𝑠(𝜃𝑖 𝑗 ) = 𝑠𝑖𝑛(𝛿𝑖)𝑠𝑖𝑛(𝛿 𝑗 ) + 𝑐𝑜𝑠(𝛿𝑖)𝑐𝑜𝑠(𝛿 𝑗 )𝑐𝑜𝑠(𝛼𝑖 − 𝛼 𝑗 ),
and 𝛼, 𝛿, and 𝑑 (𝑧) are Right Ascension (RA), Declination (DEC),
the radial comoving distance of the source, respectively.

The 𝑑 (𝑧) is given by,

𝑑 (𝑧) =
∫ 𝑧

0

𝑐𝑑𝑧
′

𝐻 (𝑧′ )
(2)

and can be computed using the fiducial cosmological parameters
fixed at Ω𝑚0 = 0.30712, Ω𝑏0 = 0.048252, ΩΛ0 = 0.644628 and
𝐻0 = 67.77 km s−1 Mpc−1 (Planck Collaboration et al. 2014).
Therefore, the number of quasars within a sphere of the comoving
radius 𝑟 centered at the ith quasar is given by (Yadav et al. 2005),

𝑛𝑖 (𝑟) =
𝑁∑︁
𝑗=1

Θ(𝑟 − |𝑥𝑖 − 𝑥 𝑗 |) (3)

where Θ(𝑥) represents the the Heaviside function, which is defined
as Θ(𝑥) = 0 for 𝑥 < 0 and Θ(𝑥) = 1 for 𝑥 > 0. Furthermore, averaging
𝑛𝑖 (𝑟) by taking M number of different quasars (inside the considered
redshift bin after making edge correction) as centers and dividing by
the total number of quasars defines the correlation integral as;

𝐶2 (𝑟) =
1

𝑀𝑁

𝑀∑︁
𝑖=1

𝑛𝑖 (𝑟) (4)

where N and M are the total numbers of quasars and the number
of possible quasar centres at each 𝑟, respectively. For all considered
values of r, 𝑀 < 𝑁 (due to quasars removed from the edges of the
redshift bin). As the radius of the sphere increases, the number of
quasars available as centers decreases for larger spheres, i.e. the value
of M decreases as we increase r. Here,𝐶2 (𝑟) can be understood as the
probability of finding a quasar within a sphere of radius 𝑟 centered
on another quasar. If 𝐶2 (𝑟) exhibits a power-law scaling relation2,
𝐶2 (𝑟) ∝ 𝑟𝐷2 , the exponent 𝐷2 is defined to be the correlation di-
mension.

2 Since fractals are self-similar structures/distributions, a fractal analysis is
possible only if 𝐶2 (Or for that matter all 𝐶𝑞) follow a power law scaling.
However, throughout the entire observed range it may not be so. This is
because, at small scales, the discreteness of the distribution shows up signif-
icantly and, at very large scales, the finiteness of the volume of sample space
is a constraint. Further, the evolution of 𝐶2 with time can lead to a broken
power-law. Hence, we identified power-law regions and applied our technique
there as these are the faithful representation of the underlying distributions
devoid of the above artifacts.

MNRAS 000, 1–11 (2024)
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Figure 1. This figure shows log 𝐶𝑞 (𝑟 ) versus log r for q=2, for the DR16 eBOSS quasar data in both the NGC (upper left panel) and SGC region (upper right
panel). Each curve represents one of the four non-continuous redshift bins considered in our analysis, characterized by mean redshifts of �̄� = 0.967 (yellow
circles), �̄� = 1.342 (red triangles), �̄� = 1.680 (green stars), and �̄� = 2.045 (blue diamonds). Beneath the data points, we display the best fit linear model in
black, extending across various length scales, which implies the power law scaling behaviour of 𝐶2(r) with a positive exponent. Furthermore, in the lower panels
of each plot, we present the goodness-of-fit parameter (𝑅2) as a function of scale. This metric quantifies the robustness of our linear fitting. Notably, its value
exceeds 0.998 across all length scales, indicating that the assumption of power-law scaling behavior of 𝐶2 is well-justified.

𝐷2 (𝑟) =
𝑑 log𝐶2 (𝑟)
𝑑 log 𝑟

(5)

The scaling behaviour of 𝐶2 can be different at different scales,
therefore, we expect the correlation dimension 𝐷2 to be a function of
scale. For the special case of a homogeneous distribution, we see that
the correlation dimension equals the ambient dimension, i.e. 𝐷2 ∼ 3.

The full statistical quantification of a fractal distribution requires
a hierarchy of scaling indices similar to higher-order correlations
required to characterize all the statistical properties of the large-scale
structure distribution (Slepian et al. 2017; Marín 2011; McBride et al.
2011). It is in this context that the multi-fractal analysis used here is
important. It provides a spectrum of generalized dimension 𝐷𝑞 , the
Minkowski–Bouligand dimension. These dimensions quantify the
scaling behavior of different moments of the counts-in-spheres and
are related to a combination of n-point correlation functions (Borgani
1995). We generalize Equation 4 to

𝐶𝑞 (𝑟) =
1

𝑀𝑁

𝑀∑︁
𝑖=1

[𝑛𝑖 (𝑟)]𝑞−1, (6)

which is then used to define the Minkowski–Bouligand dimension
𝐷𝑞 as,

𝐷𝑞 (𝑟) =
1

𝑞 − 1
𝑑 log𝐶𝑞 (𝑟)

𝑑 log 𝑟
(7)

Here 𝑞 is an integer that can take positive and negative values. The
𝐶𝑞 (𝑟) for a fixed 𝑟 will be dominated by the contribution from high
(low) density regions if we consider high positive (negative) values of
𝑞. The varying values of 𝑞 in our analysis also help us determine the
scaling behavior of different moments of counts in spheres thereby
giving a combined view of the scale of homogeneity of the universe.
We have considered q in the range, −5 ⩽ 𝑞 ⩽ 5 in our study. The
finite number of quasars restricts us from considering any arbitrary
large values of |𝑞 |. The values of 𝐷𝑞 at 𝑞 = 1 and 𝑞 = 2 correspond to
the box-counting dimension and correlation dimension, respectively.
The case of 𝑞 = 1 has to be dealt with care by taking a suitable limiting

case of 𝑞 tending to 1. For a multi-fractal distribution, the values of
𝐷𝑞 will be different for different values of q. However, for a mono-
fractal, 𝐷𝑞 is constant, independent of 𝑞. And for a homogeneous
distribution in 3-Dimension, the value of 𝐷𝑞 should be equal to 3 for
all q. We now apply this multi-fractal methodology to the SDSS-IV
DR16 eBOSS quasar distribution, EZmocks and the random quasar
distribution to investigate the cosmic homogeneity scale in the quasar
distribution. The random samples are homogeneous by construction.
So, to determine the scale of transition to homogeneity, we compare
the results for observed quasar distribution with that from the random
sample.

4 ANALYSIS AND RESULTS

4.1 Behaviour of Correlation Integral and Correlation
Dimension

To estimate the homogeneity scale within each of the four redshift
bins outlined in Table 1 for both NGC and SGC observed quasar dis-
tributions, we first compute the correlation integral 𝐶2 (𝑟) as defined
in Equation 4. In the top left (top right) panel of Figure 1, we show
the variation of the logarithm of 𝐶2 as a function of the logarithm
of 𝑟 in the r range (20 − 140) ℎ−1 Mpc for the four redshift bins
in the NGC (SGC) region. These plots illustrate the relationship be-
tween log𝐶2 and log 𝑟 which appears to be linear. It can therefore
be asserted that 𝐶2 increases monotonically as a power law in 𝑟 .
However, the exponent of the power law in 𝑟 varies across the range
of 𝑟 investigated in our study. To deduce the power law exponent,
we have performed the linear fitting of log 𝐶2 versus log 𝑟 across
intervals of 10 Mpc range within the full range of [20-140 ℎ−1 𝑀𝑝𝑐],
where the slopes will represent the correlation dimension 𝐷2 value
as defined in Equation 5. Furthermore, to assess the robustness of the
linear fitting, we computed 𝑅2-squared correlation coefficient, which
serves as one of the indicators of goodness of fit for linear regression
models (Anderson-Sprecher 1994). The 𝑅2 provides a useful mea-
sure of how well a model fits the data, in terms of (squared) distance
from points to the best-fitting line. Its value ranges from 0 to 1, where

MNRAS 000, 1–11 (2024)
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values closer to 1 indicate a better fit of the model to the data. We plot
the 𝑅2 coefficient for each 10 Mpc interval in r for all the four redshift
bins in the bottom panels of Figure 1. We note that for the complete
𝑟 range, its value exceeds 0.998, suggesting that the relationship be-
tween log 𝐶2 versus log 𝑟 is well approximated by a linear model or
𝐶2 exhibits a power law behaviour in r. Additionally, we computed
𝐶2 (𝑟) for 40 realizations of EZmocks and 40 corresponding random
realizations in a similar manner as done for the observed sample.

As described above, we have now obtained the correlation dimen-
sion, 𝐷2 (𝑟) defined in Equation 5. The curves in Figure 2 represent
the variation of 𝐷2 with 𝑟, obtained for NGC quasar data (red curve),
their corresponding mock realizations (blue curve) and the random
distribution (green curve), with each panel corresponding to each of
the four redshift bins considered in our analysis. The mean and the
error bars for the mock and random curves are the average and 1𝜎
sample variance over 40 realizations. Analogous 𝐷2 curves (dash
lines) for the quasar distribution in the SGC region are presented in
Figure 3. We find 𝐷2 values of the observed quasar data and the
simulated mock data to be consistent (within 1𝜎) with the random
distribution beyond the comoving length scale of 𝑟 ∼ 80 ℎ−1 Mpc.
However, we notice 𝐷2 curves for data and mock deviating from that
of the random distribution below 𝑟 < 80 ℎ−1 Mpc. Also, at lower
values of 𝑟, the 𝐷2 curve for random distribution appears to be rising
faster than the 𝐷2 for the observed data and the simulated data, which
is as expected. The 𝐷2 for all three distributions under investigation
seems to be saturated in the range of 2.8 to 2.9 for 𝑟 > 80 ℎ−1 Mpc,
indicating the transition to homogeneity beyond this length scale. The
conventional way adopted in literature to estimate the homogeneity
scale (𝑟ℎ) is to consider the scale where the data become consistent
with the random distribution within 1𝜎 (Hogg et al. 2005; Yadav
et al. 2005, 2010) or to fit a polynomial expression to describe the
evolution of each 𝐷2 (𝑟) and then find the corresponding homogene-
ity scale (𝑟ℎ) where 𝐷2 = 2.97 (i.e. 1% of the ambient dimension,
which is equal to 3 for a distribution in 3-dimensions) for each realiza-
tion (Scrimgeour et al. 2012). However, these methods are arbitrary
and lack a strong physical motivation. Also, it is important to note
that our correlation dimension measure does not attain the value of
𝐷2 = 3, which is the ambient integer dimension in our case, even
at the largest scales of our analysis. This aligns with earlier studies
(Bagla et al. 2008; Yadav et al. 2010), where it has been demonstrated
that in all practical cases of interest, the fractal dimension differs from
the ambient integer dimension of the space. These deviations in the
fractal dimension are mainly attributed to weak clustering present
in the galaxy/quasar distribution, along with a smaller contribution
arising due to the finite number of galaxies/quasars present in the
distribution. 𝐷2 (𝑟) curves for the observed quasar data, mocks, and
random distribution in the SGC region as represented in Figure 3
exhibits similar behavior. We do not notice any specific trend with
respect to redshift in our correlation dimension analysis. To glean
higher-order clustering information from both overdense (positive q
moments) and underdense (negative q moments) regions of matter
density as traced by the quasar distribution, we extend the correlation
dimension to the spectrum of generalized dimension, 𝐷𝑞 (𝑟) in the
next section.

4.2 Generalized Dimension

To obtain more comprehensible and complete statistical information
on the clustering properties of quasar distribution, it is essential to
study the generalized spectrum of the Minkowski Bouligand dimen-
sion, i.e., 𝐷𝑞 . The 𝑞𝑡ℎ order fractal dimension will contain informa-

tion up to (𝑞 − 1)𝑡ℎ order correlation function, which is certainly a
better estimator of clustering than simply the two-point correlation
function (Borgani 1995). We therefore compute the generalised inte-
gral 𝐶𝑞 (𝑟) as defined in Equation 6 for various positive and negative
values of 𝑞 ∈ {-5,-3, -2, 0, 2, 3, 5}. The Figure 4 illustrates the vari-
ation of log 𝐶𝑞 for 𝑞 = −2 with log 𝑟 for each of the four redshift
bins defined for quasar distribution in both NGC (left plot) and SGC
(right plot) region. From these plots, we discern the linear relation-
ship between log𝐶−2 and log 𝑟 with a negative slope. We analyse the
scaling behaviour of 𝐶𝑞 (𝑟) for other positive and negative q values.
We find that 𝐶𝑞 (𝑟) increases (decreases) monotonically as a power
law in 𝑟 for positive (negative) values of q. However, the exponent
of the power law in 𝑟 varies across the range of 𝑟 investigated in
our study. We further determine the generalized dimension 𝐷𝑞 (𝑟)
as defined in Equation 7 from log 𝐶𝑞 (𝑟) vs log 𝑟 by performing a
liner fitting in the identified power-law regions. We plot this best-fit
linear model (as a black line) along with the data points in the top
panels of Figure 4. Additionally, we also plot the 𝑅2 coefficient in
the lower panels of Figure 4 which gives a measure of how well the
linear model fits the log 𝐶−2 versus log 𝑟 . The slope of this best fit
model gives the value 𝐷−2 or 𝐷𝑞 for that interval in the r range.
We expect 𝐷𝑞 (𝑟) to match with the ambient dimension (i.e. 3) for
a homogeneous distribution. The random samples are homogeneous
by construction and we expect them to have 𝐷𝑞 (𝑟) = 3 at all r. We
show 𝐷𝑞 (𝑟) as a function of 𝑟 for 𝑞 = −2 in Figure 5 for the observed
quasar data (red curves), mock data (blue curves) and the random
distribution (green curves) in the 1st and 3rd redshift bin (defined in
Table 1) for the NGC (top two panels) and SGC (bottom two panels)
region. The 1𝜎 error bars for the mock data and random sample
are obtained by analysing the 40 realizations of each distribution.
The 𝐷−2 curves in Figure 5 rise at small 𝑟, with its value reaching
higher than the value of ambient dimension and then starts to fall
and saturates at a value in the range 2.8 to 2.9 at the large scales.
These plots demonstrate the consistency (within 1𝜎) of the observed
and mock data with the random distribution. However, 𝐷−2 values
for all three distributions observed data, mocks, and random exhibits
significant fluctuations than their corresponding 𝐷2 curves. These
fluctuations can be attributed to the sparse distribution of quasars in
the low-density regions (traced by negative q moments), leading to
higher statistical fluctuations for negative 𝑞. However, 𝐷−2 value,
converging to a constant value in the range 2.8 to 2.9 for 𝑟 > 80 ℎ−1

Mpc, again indicates a transition to homogeneity at or beyond this
length scale. We illustrate in Figure 6 the behaviour of generalized
dimension 𝐷𝑞 (𝑟) as a function of 𝑟 for different 𝑞 values for the ob-
served quasar distribution in NGC (right panel) and SGC (left panel)
region at 𝑧 = 0.967 (i.e. the first redshift bin). The 𝐷𝑞 (𝑟) curves for
other values of q exhibit similar behaviour, i.e. 𝐷𝑞 (𝑟) rising at small
length scales and eventually saturating at higher r values typically
beyond 𝑟 > 80 ℎ−1 Mpc.

To further extract the transition to homogeneity scale from the
Minkowski Bouligand Dimensions analysis, we have computed the
𝐷𝑞 (𝑟) values over different ranges of length scales for the observed
quasar distribution, the random distribution, and the corresponding
mock data, using linear fitting as done before in the case of correlation
dimension. The plots in Figure 7 show the 𝐷𝑞 versus 𝑞 curve for the
observed quasar data in NGC (top panels) and SGC (bottom panels)
regions. The redshift bin is indicated in each panel. The multiple
curves in each panel correspond to the different length scales over
which scaling behavior is inspected. The scaling behavior at small
scales (𝑟 < 80 ℎ−1 Mpc) differs significantly from that at large
scales (𝑟 > 80 ℎ−1 Mpc). We analyse and interpret further the large-
scale behaviour of the 𝐷𝑞 . By examining the 𝐷𝑞 curves for scales
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Figure 2. The four panels in this figure shows the Correlation Dimension, 𝐷𝑞 (𝑟 ) for q= 2 versus distance scale (r) for the observed (red curve) and mock (blue
curve) quasar data, and the random (red curve) quasar distribution in the NGC region at each of the four redshift intervals used in our study. The mean and 1𝜎
error bars for the mock data and the randoms are the mean and sample variance of the 40 realizations of each. The black dashed horizontal line marks 𝐷2 = 3.
The pink vertical dashed line in each panel at 𝑟ℎ ∼ 110 ℎ−1 Mpc represents the scale beyond which each 𝐷2 curve saturates.

between 80 − 140 ℎ−1 Mpc, 95 − 140 ℎ−1 Mpc and 110 − 140 ℎ−1

Mpc across different redshift bins as displayed in Figure 7, we find
𝐷𝑞 curve to be most uniform (and closest to 𝐷𝑞 = 3) across both
positive and negative 𝑞 values in the range 110 − 140 ℎ−1 Mpc. We
then further checked 𝐷𝑞 versus 𝑞 variation for the corresponding
mock data and the random distribution which are shown in Figure 8
for both NGC (top panels) and SGC (bottom panels) samples. We
observe that the 𝐷𝑞 curve for the random distribution shows high
statistical fluctuations, however, overall we see 1𝜎 agreement of the
observed and mock quasar distributions with the random distribution
(homogeneous one). We can thus conclude from our analysis that
the Universe exhibits a transition from clustered to being smooth
homogeneous beyond the comoving length scale of 𝑟 > 110 ℎ−1

Mpc.

5 DISCUSSION

Our analysis, conducted through multi-fractal examination of the
SDSS-IV DR16 eBOSS quasar distribution, corroborates previous
findings based on the same dataset (Gonçalves et al. 2021; Pandey &
Sarkar 2021). Specifically, the measurement of the Baryon Acoustic
Oscillation (BAO) feature, which signifies excess clustering ampli-
tude in either the correlation function or the power spectrum, posi-
tions it at approximately 100 ℎ−1 Mpc for the SDSS-IV DR16 eBOSS
quasar distribution within the redshift range of 0.8 < 𝑧 < 2.2 (Hou
et al. 2020). Our analysis reveals a transition to homogeneity at a

scale surpassing this BAO peak. Therefore, our findings do not con-
tradict the presence of this physical length scale embedded in the
quasar distribution.

However, it is noteworthy that several studies (Hogg et al. 2005;
Yadav et al. 2005; Scrimgeour et al. 2012; Pandey & Sarkar 2021)
have observed that the scale of homogeneity, when deduced from
galaxy distribution, tends to be marginally smaller than what our work
reports using the quasar distribution. This discrepancy may stem from
the potential underestimation of the homogeneity scale in smaller
galaxy samples due to the suppression of inhomogeneities resulting
from the overlapping of measuring spheres (Pandey & Sarkar 2021).

The generalized fractal dimension 𝐷𝑞 (𝑟) for the observed distri-
bution of quasars, demonstrate a close agreement (within 1𝜎) with
mock quasar data (Zhao et al. 2022a) generated through N-body sim-
ulations based on the Friedmann-Robertson-Walker (FRW) model of
the Λ𝐶𝐷𝑀 cosmology. However, it is crucial to approach these find-
ings with caution when assessing their consistency with the Λ𝐶𝐷𝑀

model. This caution arises from their inherent dependence on the as-
sumption of the FRW metric, which in turn relies on assumptions of
homogeneity and isotropy. To mitigate these potential biases, an alter-
native approach involves measuring the angular homogeneity scale
within the quasar/galaxy distribution. Initially proposed by Alonso
et al. (2014), this method has since been applied in various stud-
ies (Gonçalves et al. 2018a; Andrade et al. 2022; Camacho-Quevedo
& Gaztañaga 2022b) to test the cosmic homogeneity in a model-
independent way.

The two-point correlation function and consequently, the correla-
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Figure 3. The four panels in this figure shows the Correlation Dimension, 𝐷𝑞 (𝑟 ) for 𝑞 = 2 versus distance scale (𝑟) for the observed (red curve) and mock (blue
curve) quasar data, and the random (red curve) quasar distribution in the SGC region at each of the four redshift intervals used in our study. The mean and 1𝜎
error bars for the mock data and the randoms are the mean and sample variance of the 40 realizations of each. The black dashed horizontal line marks 𝐷2 = 3
for the SGC region. The pink vertical dashed line in each panel at 𝑟ℎ ∼ 110 ℎ−1 Mpc represents the transition to the homogeneity scale.

Figure 4. This plot depicts log 𝐶𝑞 (𝑟 ) versus log r for q= −2, for the observed quasar data in both the NGC (upper left panel) and SGC region (upper right
panel). Each curve corresponds to one of the four redshift bins with mean redshifts of �̄� = 0.967 (yellow circles), �̄� = 1.342 (red triangles), �̄� = 1.680 (green
stars), and �̄� = 2.045 (blue diamonds). Below the data points we also plot the best-fit line shown in black across different length scales. This clearly reveals the
power law scaling behaviour of 𝐶−2 (𝑟 ) with a negative exponent across different length scales. Furthermore, in the lower panels of each plot, we illustrate the
goodness-of-fit parameter (𝑅2) as a function of scale. This metric quantifies the robustness of our linear fitting. Remarkably, its value exceeds 0.998 across all
length scales, indicating the validity of the assumption regarding the power law behavior of 𝐶−2.
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Figure 5. The four panels in this figure shows 𝐷𝑞 (𝑟 ) for 𝑞 = −2 versus comoving radius (𝑟) (of sphere) for the observed (red curve) and mock (blue curve)
quasar data, and the random (red curve) quasar distribution in the NGC region (top two panels) and SGC region (bottom two panels) in two redshift intervals
with mean 𝑧 = 0.967 and 1.680. The mean and 1𝜎 error bars for mock data and the randoms are the mean and sample variance over the 40 realizations of each.
The black dashed horizontal line marks 𝐷2 = 3. The pink vertical dashed line in each panel at 𝑟ℎ ∼ 110 ℎ−1 Mpc represents the transition to homogeneity scale.

Figure 6. The figure shows the variation of 𝐷𝑞 (𝑟 ) with r, for the observed quasar data in the first redshift interval with mean �̄� = 0.967 in NGC ( left panel ) &
SGC ( right panel ) region respectively. Each curve represents a different q value explored in our analysis.

MNRAS 000, 1–11 (2024)
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Figure 7. Top panels: These plots show the spectrum of generalized dimensions 𝐷𝑞 as a function of 𝑞 for the observed quasar data in the NGC region investigated
across different length scales indicated in the legend of each panel. The two panels correspond to two redshift bins with the mean redshift of �̄� = 0.967, 1.680
respectively. Bottom panels: These plots also show the variation of 𝐷𝑞 with 𝑞 as in the top panels except for the quasars in the SGC region.

tion integral denoted by 𝐶2 (𝑟) in this work is expected to be boosted
by the “Kaiser factor”. However, this multiplicative amplification
factor does not affect our results as the correlation goes to very small
values on the length scales of interest in this analysis. Addition-
ally, given that quasars are a highly biased dataset, characterized by
a high bias value, that suppresses the amplification factor (Kaiser,
1987). (Kaiser 1987). While a correction based on the quasar bias
is expected to offer better insights into the redshift evolution of the
universe’s homogeneity scale (Gonçalves et al. 2018b; Gonçalves
et al. 2021), we do not apply bias corrections to 𝐷𝑞 (𝑟) calculated
in our study. It will be considered in future works. Ultimately, de-
spite quasars being inherently biased tracers of the matter density
field, their advantage lies in their ability to sample a vast volume
of space. This characteristic makes quasars particularly suitable for
testing homogeneity over large scales.

6 CONCLUSIONS

In our study, we examined cosmic homogeneity on large scales in the
distribution of quasars using data from the SDSS-IV DR16 eBOSS
survey. This dataset was divided into NGC and SGC regions, with
each region further consisting of four redshift bins spanning 𝑧 = 0.8
to 2.2, each containing a similar number of sources. To analyze the
inhomogeneities in the quasar distribution and explore the poten-
tial existence of homogeneity on larger length scales, we employed
a multi-fractal analysis based on studying the scaling behaviour of

different moments of counts-in-spheres. We first computed the cor-
relation integral 𝐶2 (𝑟) and its logarithmic derivative, the fractal cor-
relation dimension 𝐷2 (𝑟) across the 𝑟 range of (20-140) ℎ−1 Mpc.
Additionally, to explore the higher-order clustering properties, we
have also estimated the spectrum of generalized dimension, 𝐷𝑞 (𝑟),
from 𝐶𝑞 (𝑟) for q ∈ {-5,-3,-2,0,3,5}. We summarise the main conclu-
sions from our study below,

• The distribution of matter, as traced by quasars in the universe,
exhibits multi-fractal behavior at length scales smaller than 80 ℎ−1

Mpc.
• On scales exceeding (𝑟 > 80 ℎ−1 Mpc), we observed the 𝐷2

curve stabilizing at a constant value, typically between 2.8 and 2.9.
Our analysis confirms that both observed and mock data adhere to
a random distribution within 1𝜎 on these larger scales We hence
conclude that the distribution of matter in the universe transitions to
homogeneity beyond these scales.

• The variation of 𝐷𝑞 with 𝑞 across different length scales, es-
tablishes that the eBOSS quasar distribution exhibits homogeneity
beyond 110 ℎ−1 Mpc.

• Also, in 𝐷𝑞 versus 𝑞 plots the transition to homogeneity is
unambiguous at positive 𝑞 as compared to negative 𝑞. This is expected
as contribution to 𝐶𝑞 (𝑟) for negative 𝑞 is dominated by under-dense
regions.

Thus our study where we use quasars as a tracer of underlying
matter density field has demonstrated that the Cosmological Principle
conjecture of a homogeneous Universe at large scales is fairly justified
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Figure 8. These plots show the spectrum of generalized dimension 𝐷𝑞 versus 𝑞 for the observed data (red curve), the random distribution (green curve) and the
mock data (blue curve) between length scales 100 to 140 ℎ−1 Mpc. The top two panels correspond to quasar distribution in NGC region for two redshift bins
with the mean redshift of �̄� = 0.967, 1.680. The bottom two panels demonstrate the similar variation of 𝐷𝑞 versus q for quasars in the SGC region.

to a large extent. Consequently, this study is crucial in advancing our
understanding of the universe’s large-scale structure, formation, and
evolution.
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