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In this work, we consider superconductor/flat band material/superconductor (S/FB/S) Josephson
junctions (JJs) where the flat band material possesses isolated flat bands with exactly zero Fermi
velocity. Contrary to conventional S/N/S JJs in which the critical Josephson current vanishes when
the Fermi velocity goes to zero, we show here that the critical current in the S/FB/S junction is
controlled by the quantum metric length ξQM of the flat bands. Microscopically, when ξQM of the
flat band is long enough, the interface bound states originally localized at the two S/FB, FB/S
interfaces can penetrate deeply into the flat band material and hybridize to form Andreev bound
states (ABS). These ABS are able to carry long range and sizable supercurrents. Importantly, ξQM

also controls how far the proximity effect can penetrate into the flat band material. This is in sharp
contrast with de Gennes’ theory for S/N junctions in which the proximity effect is expected to be
zero when the Fermi velocity of the normal metal is zero. We further suggest that the S/FB/S
junctions gives rise to a new type of resonant Josephson transistors which can carry sizeable and
highly gate-tunable supercurrent.

Introduction.—The study of flat band superconductors
had attracted much attention in recent years due to the
discovery of superconducting moiré materials with flat
bands [1–23]. One interesting property of flat band su-
perconductors is that the superfluid weight is not zero
but proportional to the quantum metric [24–26] of the
flat band despite the vanishing Fermi velocity [27]. This
finding inspired a large number of studies on the su-
perfluid weight of flat band superconductors [10, 28–44].
More recently, it was realized that the quantum metric
defines an important electronic length scale in flat band
materials called the quantum metric length ξ [45]. In
particular, ξ determines the superconducting coherence
length, which is expected to be zero for flat band su-
perconductors according to BCS theory [22, 45]. Link-
ing the superconducting coherence length with ξ [22, 45]
explained the observed long superconducting coherence
length in twisted bilayer graphene [21], which deviates
greatly from what the BCS theory predicted.

As the superconducting coherence length generally
controls the sizes of electronic objects in superconduc-
tors, we expect that ξ also governs the sizes of elec-
tronic objects such as Andreev bound states (ABS), Yu-
Shiba states in flat band materials. In this work, we
verify this speculation and demonstrate how the quan-
tum metric can control the ABS size at the weak link of
the superconductor/flat band material/superconductor
(S/FB/S) Josephson junctions (JJs). Furthermore, we
show that the superconducting proximity effect can pen-
etrate deeply into the flatband material and the decay
length is controlled by the quantum metric length, which
can be orders of magnitude longer than the lattice length
scale. Our results are in sharp contrast to de Gennes’
theory of superconductor/normal metal (S/N) junctions
which predicts that the superconducting proximity effect
into a flat band should be zero [46, 47].

In the rest of this work, we first use with a one dimen-
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FIG. 1. (a) A schematic illustration of a S/FB/S junction.
The blue dashed lines denotes two interface states in the small
quantum metric regime. When quantum metric increases, the
two interface states hybridize with each other to form ABS
at the junction as denoted by the solid red curves. (b) The
schematic band structure of the flat band material and the
superconducting leads. We assume an isolated flat band (red
line) near the Fermi energy of the JJ. (c) The lattice model
of the JJ. The flat band is described by a Lieb lattice with
three lattice sites per unit cell. The superconducting leads
couple to the nearest A-sites of the Lieb lattice with coupling
strengths TlA and TrA respectively. The purple dots represent
sites of the superconducting leads.

sional model to illustrate the properties of S/FB/S junc-
tions (as schematically shown in Fig. 1(a) and (b)) and
the conclusions can be easily generalized to two dimen-
sions. First, we build a model to describe the junction
where the weak link is a 1D Lieb lattice [48–51] which
possesses a pair of spin degenerate flat bands and tunable
quantum metric. The Lieb lattice model is illustrated in
Fig. 1(c). We define a quantum metric length ξQM for the
1D Lieb model. Second, when the Lieb lattice is coupled
to two superconductors and when the quantum metric is
small, two interface states (denoted by blue dashed lines)
are created at the S/FB and FB/S interfaces as shown
in Fig. 1(a). Third, when the quantum metric increases,
ξQM increases and the interface states penetrate deeper
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FIG. 2. (a) The energy spectrum of a 1D Lieb lattice. The
flat band (in red) is separated from the dispersive bands
by δJ . The parameters of the model are: J = 104∆sc,
δ = 0.03. The superconducting gap ∆sc = 1 is set to be the
energy unit for later discussions. (b) The probability distri-
bution of the A-component of the bound state wavefunction
|ψA(x)|2 localized near x = 0 for a Lieb lattice with a lo-
cal potential perturbation at x = 0. This decay length of
this bound state is well-fitted by the analytical expression of
ψA(x) ∝ exp (−|x|/8ξQM ).

into the bulk of the Lieb lattice as the decay length of the
interface state is controlled by ξQM . When ξQM is com-
parable with the junction length, the two interface states
hydridize to form two ABS (illustrated by the red solid
lines in Fig. 1(a)). As a result, the energy levels of these
ABS are sensitive to the phases of the superconductors so
that they can carry supercurrents. Finally, we show that
the critical Josephson current is sizable and highly gate-
tunable even for long junctions and such S/FB/S JJs are
new types of resonant Josephson transistors [52–56].

Quantum metric length ξQM of Lieb lattice— To start,
we first focus on the Lieb lattice which describes the weak
link of the flat band JJ. The Lieb lattice model possesses
two isolated, spin degenerate, flat bands near the Fermi
energy as depicted in Fig. 1(b) and 2(a). The Lieb lattice
model has three sites per unit cell, labeled as A, B and
C sites respectively [see Fig. 1(c)]. The Hamiltonian can
be written as:

HLieb =
∑
iσ

(J+a
†
iAσaiBσ + J0a

†
iCσaiBσ

+ J−a
†
i−1AσaiBσ + h.c.)−

∑
αiσ

µNa
†
iασaiασ.

(1)

Here, J± = J(1 ± δ), J0 = δJ , α is the orbital index,
µN is the chemical potential. The flat band of the Lieb
lattice in Eq. (1) is separated from the other two disper-
sive bands by an energy gap Jδ. The lattice constant is
a which is set to be unity.
It is important to note that there is a lack of natural

electronic length scale for the flat bands as the length
scales associated with kF and vF are either not well-
defined or zero. In the following, we show how the quan-
tum metric length of the 1D Lieb lattice ξQM governs the
decay length of bound states near the flat band energy
of the Lieb lattice. To find ξQM , we start with the Bloch
Hamiltonian of the Lieb lattice h(k) (with the spin index
omitted) and the Bloch states of the flat band |u0(k)⟩

which can be written as:

h(k) = 2J

 0 ak 0
a∗k 0 bk
0 b∗k 0

 , |u0(k)⟩ =


bk√

|ak|2+|bk|2

0

− a∗
k√

|ak|2+|bk|2

 ,

(2)
respectively. Here, ak = cos(ka2 )+ iδ sin(ka2 ) and bk = iδ.
For the 1D Lieb lattice, the real part of the quantum
metric tensor associated with the flat band [24] can be
simplified as g0(k) such that

g0(k) = Re⟨∂ku0(k)|(1− |u0(k)⟩⟨u0(k)|)|∂ku0(k)⟩. (3)

With g0(k), the quantum metric length of the Lieb
lattice is:

ξQM =

∫ π/a

−π/a

g0(k)
dk

2π
. (4)

For the Lieb lattice, and for small δ, we have ξQM =
a

16
√
2δ

where δ tunes the coupling strength between the

C-sites and the B-sites in the Lieb lattice. It is important
to note that the Lieb lattice only involves nearest neigh-
bor hopping but ξQM can be much larger than a. For
example, with δ = 0.01, ξQM is about 4.4a. In the fol-
lowing, we show that ξQM dictates the size of the bound
states which have energy near the flat band energy. For
example, we introduce a single impurity at position x = 0
at site A of the Lieb lattice to trap a bound state. It is
shown in the Supplemental Materials (SM) [57] that the
bound state wavefunction ψA(x), which is localized near
x = 0, can be written as:

ψA(x) ≈
∑
k

eikx|uA(k)|2 ∝ exp (−|x|/8ξQM ). (5)

Here, uA(k) = bk/
√
|ak|2 + |bk|2 is the first (A-site) com-

ponent of |u0(k)⟩ and the decay length 8ξQM is deter-
mined by the complex poles of |uA(k)|2. Since the de-
cay length generally depends on the wavefunctions of the
flat band, we expect that the factor of 8 is model depen-
dent. A bound state wavefunction calculated numerically
is shown in Fig. 2(b). Incredibly, the analytical solution
in Eq. (5), with ξQM = a

16
√
2δ
, matches the numerical

results of Fig. 2(b) extremely well and it clearly demon-
strates that the size of the bound state wavefunction is
controlled by ξQM . The more general bound state solu-
tions of the Lieb lattice are presented in the SM [57]. Im-
portantly, as shown below, the ABS sizes of a flat band
JJ are also governed by ξQM which determines the JJ
properties.

Interface states of flat-band JJs.— In this section, we
study a flat band JJ depicted in Fig. 1(a). The left (L)
and right (R) leads are set to be conventional s-wave
superconductors described by the Hamiltonians HL and
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FIG. 3. Probability distribution of the interface states ΨL(x)
and ΨR(x) (a) δ = 0.01 and (b) δ = 0.05. The wavefunctions
become more localized for larger δ. The junction length is
set to be L = 40. The parameters of the Hamiltonian HJJ

are: J = 104∆sc, t = 100∆sc. (c) The decay length ξL of
the interface states for different values of ξQM . The relation
ξL =8ξQM was found both numerically and analytically. (d)

The pairing correlation |F (x)|= |
∑

α⟨a
†
xα↑a

†
xα↓⟩| in log scale.

|F (x)| decays exponentially into the bulk for large δ. When
δ is small, which corresponds to large ξQM , the pairing corre-
lation can penetrate deeply into the bulk of the weak link.

HR, respectively, where

HL/R =
∑
⟨ij⟩σ

−(t+ µsδij)c
†
iσcjσ +

∑
i

(∆l/rc
†
i↑c

†
i↓ + h.c.).

(6)

Here, ⟨ij⟩ denotes the hopping between the nearest neigh-
bor sites, σ =↑↓ is the spin indice and µs is the chemi-
cal potential. The chemical potential is set to be µs =
µN = 0 in this section so that the flat band energy is
tuned to the Fermi energy of the superconducting leads.
The pairing potentials of the two leads are denoted by
∆l/r = ∆sce

±iφ/2 where φ denotes the phase difference
between the two superconductors and ∆sc is a constant.

The couplings between the superconducting leads and
the Lieb lattice (modelled by Eq. (1)) is described by the
coupling Hamiltonian Hc

Hc =
∑
ασ

(Tlαc
†
lσarασ + Trαc

†
rσalασ + h.c.), (7)

where Tl/r,α labels the coupling between the left/right
superconducting lead with the nearest A-site of the Lieb
lattice (See Fig. 1(c)). Coupling to other sites will only
change the results quantitatively.

The total Hamiltonian of the one-dimensional flat band
JJ can be written as HJJ = HR +HL +HLieb +Hc. In
conventional S/N/S JJs, the critical supercurrent as well
as the superconducting proximity effect are expected to
be zero when the Fermi velocity of the normal metal goes
to zero [47, 58]. In the following, we demonstrate how

an ABS which spreads across the JJ can emerge when
the quantum metric length ξQM of the Lieb lattice is
comparable with the junction length and these ABS can
carry sizable and long range supercurrents. The pairing
correlation can also penetrate deeply into the junction.
As depicted in Fig. 3(a), when the two superconduct-

ing leads are coupled to the Lieb lattice with flat bands,
two interface states, ΨL(x) and ΨR(x) are created as
schematically shown in Fig. 1(b). The states ΨL(x) and
ΨR(x) are not degenerate with each other in general, but
each of them is spin degenerate. These wavefunctions
have six components due to the electron and hole con-
tributions from the three orbitals (A, B and C orbitals)
of the Lieb lattice. Physically, as the middle band of
the Lieb lattice is exactly flat and the superconductor is
gapped, when an interface state with energy away from
the flat band energy is created, this state must be local-
ized at the interface. Given that the energy of the state is
also within the quasiparticle gap of the superconducting
leads. The question is, what is the localization lengths of
these interface states? According to de Gennes’ theory
of proximity effect [46, 47], the localization length of the
bound states should be zero because of the zero Fermi
velocity of the flat bands.
To answer this question, we recall that the quantum

metric length determines the superconducting coherence
length of flat band superconductors [22, 45]. It is reason-
able to speculate that ξQM should be related to the local-
ization lengths of the bound states and this is indeed the
case. Fig. 3(a)-(b) depict |ΨL(x)|2 and |ΨR(x)|2 at the
flat band JJ with two different values of δ, respectively.
Even though the two interface states look very differ-
ent from each other as the details of the wavefunctions
depend on the details of the interfaces, the localization
lengths of the wavefunctions (on the Lieb lattice side)
are the same and controlled by ξQM . Fig. 3(c) depicts
the localization lengths ξL of the two interface states as a
function of ξQM . The localization length of the interface
states is extracted by assuming that the wavefunction in-
side the weak link has a form ΨL/R(x) ∝ e−|x|/ξL , where
x is measured from the S/FB or FB/S interfaces. It is
clear from Fig. 3(c) that the numerically extracted local-
ization length of the interface states is ξL = 8ξQM where
ξQM = a/(16

√
2δ). This is the same decay length found

in Eq. (5), and analytical results are given in SM [57].
Importantly, when the ξQM is comparable with the

junction length, the two interface states hybridize into
two ABS which spread across the weak link region. In
this case, there is pairing correlation across the whole
weak link. The pairing correlation is defined as |F (x)| =
|
∑

α⟨a
†
xα↑a

†
xα↓⟩|, where α is the orbital index. F (x) in-

side the flat band material can be easily extracted from
the Green’s function G(E) = 1/(E −HJJ) in real space
and the results are shown in Fig. 3(d). F (x) with three
different values of δ were demonstrated. It is clear that
when ξQM is large, the superconducting proximity effect
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FIG. 4. (a) The energy-phase relation of the ABS at the junction for δ = 0.01 and δ = 0.05, respectively. As δ increases, the
bound state energy becomes insensitive against change of φ. At φ=0 and δ=0.01, the energy of the levels are: ER=−0.28∆sc

and EL =−0.97∆sc. While at δ=0.05, ER =−0.98∆sc and EL =−0.99∆sc. (b) The critical current as a function of δ with
L = 10a. The results obtained from the free energy calculations and lattice Green’s functions agree with each other. (c)
The critical current generally decays exponentially as the junction length L increases. (a)-(c) are calculated with temperature
T =0.1∆sc. (d) The critical current Ic as a function of temperature kBT , for different choice of δ. The above figures are plotted
using Tr/l,α=102∆sc and J =104∆sc. (e) The critical current Ic(µN ) as a function of the chemical potential of the flat band,
for different coupling strengths Tr/l,α. The temperature is set at kBT = 0.01∆sc. The full width at half maximum, ∆µN , is

proportional to |T 2
r/l,α|.

can penetrate deeply into the bulk of the flat band ma-
terial.

ABS and Josephson Currents— As shown in Fig. 3(c)
and schematically illustrated in Fig. 1(a), when ξL =
8ξQM is comparable with the junction length, the two in-
terface states hybridize into two ABS which spread across
the weak link. As a result, the energy levels of the ABS
depend of phase difference of the two superconducting
leads φ. Therefore, we expect a finite Josephson current

I = ∂FJJ (φ)
∂φ where FJJ(φ) is the free energy of the JJ. In

Fig. 4(a), the energy of the ABS as a function of φ are
shown. When ξQM is short compared with the junction
length (large δ), the two interface states do not couple to
each other and the bound state energies are insensitive
to the change of φ (dashed lines in Fig. 4(a)). On the
contrary, when ξQM is long (with small δ), the two in-
terface states hybridize. In this case, the energies of the
two ABS E±(φ) are φ dependent (solid lines) and finite
Josephson currents emerge. The critical Josephson cur-
rent at different values of the quantum metric length is
depicted in Fig. 4(b). The Josephson currents in Fig. 4(b)
are determined by numerically evaluating FJ(φ) through
exact diagonalization of a finite system. The same re-
sults are also obtained by the lattice Green’s function
approach [59, 60]:

I(ϕ) =
2e

ℏ
kBT Im

∑
ωm

Tr(Vn+1,nGn,n+1(iωm)−

Vn,n+1Gn+1,n(iωm)),

(8)

where ωm is Matsubara frequency, n is the index of lattice
site, V encodes the hopping amplitudes between neigh-
boring sites and [Gn,n+1(iωm)]αβ = ⟨nα|G(iωm)|n +
1, β⟩ refers to the matrix element of the lattice Green’s
function G(iωm) of the entire Josephson junction with
G(iωm) = (iωm −HJJ)

−1. The details can be found in
SM [57].

The length dependence of the critical currents at three
different quantum metric length is shown in Fig. 4(c). It

is important to note that for large ξQM , the critical cur-
rent can be in the order of 10−2 to 10−3 of I0 = e∆sc

ℏ ,
which is the maximum Josephson current of a single con-
ducting channel [61]. Interestingly, in our case, the large
critical Josephson current can appear even if the band
is exactly flat. This is one of the main results of this
work. Furthermore, the temperature dependence of the
Josephson current is shown in Fig. 4(d). It is interesting
to note that the Josephson current is nonmonotonic as a
function of temperature. This unexpected behavior can
be easily understood by the out of phase energy-phase
relations of the two ABS [See Fig 4(a)].

Resonant Josephson Transistor — The Josephson cur-
rent calculated above assumes that the energy of the flat
bands lies at the Fermi energy of the superconductors.
In this section, we show that the critical Josephson cur-
rent decreases dramatically once the flat band energy is
gated away from the Fermi energy of the superconduc-
tors. The critical current as a function of the chemical
potential of the Lieb lattice is determined by a Breit-
Wigner transmission probability function [62] as shown
in Fig. 4(e). It is clear from Fig. 4(e) that the criti-
cal Josephson current has a sharp resonance peak when
the ABS energy matches the Fermi energy of the su-
perconducting leads. Moreover, the full width at half
maximum (FWHM) of the resonance peak is propor-
tional to the amplitude of the coupling strength between
the superconducting leads and the Lieb lattice such that
∆µ ∝ T 2

r/l,α). This sharp resonance allows a new design

of resonant Josephson transistors [52, 53, 55, 56] in which
a long range Josephson current is highly gate-tunable.
Importantly, the theory discussed in this work applies to
two-dimensional Lieb lattice mediated Josephson effect
as well.

Discussion and Conclusion.— Before concluding, we
would like to discuss a few points. First, the Lieb lat-
tice is chosen to model the flat band material because
the lattice is incredibly simple which only involves near-
est neighbor hopping. At the same time, the model can
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give rise to a very long ξQM which far exceeds the lattice
length scale. This can avoid the complications induced
by long range hopping. Second, the conclusion that the
quantum metric can tune the critical Josephson current
in S/FB/S junctions is generally true. We demonstrate
the finite Josephson current with another flat band model
in the SM [57]. Moreover, the Lieb lattice has an energy
spectrum which closely resembles the case of twisted bi-
layer graphene (TBG) near magic angle [7]. Our S/FB/S
junction results is highly relevant to S/TBG/S JJs which
were fabricated experimentally [63–66]. We would like to
point out that the flat band Josephson effect was studied
previously in Ref. [36] but the quantum metric effect was
not investigated.

To conclude, we show that the quantum metric,
through the quantum metric length ξQM , plays an ex-
tremely important role in determining the properties of
S/FB/S JJs. In sharp contrast with conventional S/N/S
junctions in which the critical supercurrent is expected
to be zero when the Fermi velocity of the normal metal
goes to zero, there can be a large Josephson current in
S/FB/S junctions which is tuned by the quantum met-
ric. Also, we demonstrate that the superconducting prox-
imity effect can penetrate deep into the weak link even
when the Fermi velocity of the weak link is zero. This
is also in sharp contrast to the well-established theory
of de Gennes on superconducting proximity effects [46].
The understanding of S/FB/S JJs allows a new design of
highly gate-tunable resonant Josephson transistors.
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Huber, Phys. Rev. B 98, 134513 (2018).

https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1126/sciadv.aaw9770
https://doi.org/10.1126/sciadv.aaw9770
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1103/PhysRevB.102.201112
https://doi.org/10.1103/PhysRevB.102.201112
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1038/s41563-020-00840-0
https://doi.org/10.1038/s41563-020-00840-0
https://doi.org/10.1038/s41567-020-0928-3
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1103/PhysRevLett.126.027002
https://doi.org/10.1038/s41586-021-03192-0
https://doi.org/10.1073/pnas.2106744118
https://doi.org/10.1073/pnas.2106744118
https://doi.org/10.1016/j.cossms.2021.100952
https://doi.org/10.1016/j.cossms.2021.100952
https://doi.org/10.1038/s42254-022-00466-y
https://doi.org/10.1038/s42254-022-00466-y
https://doi.org/10.1038/s41586-022-05576-2
https://doi.org/10.1038/s41586-022-05576-2
https://doi.org/10.1103/PhysRevLett.132.026002
https://doi.org/10.1103/PhysRevLett.132.026002
https://doi.org/10.48550/arXiv.2310.15558
https://doi.org/10.48550/arXiv.2310.15558
https://arxiv.org/abs/2310.15558
https://arxiv.org/abs/2310.15558
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.48550/arXiv.1012.1337
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.134513


6

[33] X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Phys. Rev.
Lett. 123, 237002 (2019).

[34] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Phys. Rev.
Lett. 124, 167002 (2020).

[35] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä, and
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[43] P. Törmä, Phys. Rev. Lett. 131, 240001 (2023).
[44] M. Thumin and G. Bouzerar, Phys. Rev. B 107, 214508

(2023).
[45] J.-X. Hu, S. A. Chen, and K. T. Law, arXiv e-prints ,

arXiv:2308.05686 (2023).
[46] P.-G. De Gennes, Superconductivity of Metals and Alloys

(CRC press, 2018).
[47] F. Tafuri, Fundamentals and Frontiers of the Josephson

Effect, Vol. 286 (Springer Nature, 2019).
[48] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
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