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Environmental fluctuations degrade the performance of solid-state qubits but can in principle be
mitigated by real-time Hamiltonian estimation down to time scales set by the estimation efficiency.
We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in
real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability
distribution inside the quantum controller according to the Fokker–Planck equation, appropriate
for describing the effects of nuclear spin diffusion in gallium-arsenide. Evaluating and narrowing
the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical
tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive
strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe
time conditioned on the previous measurement outcomes, thereby further increasing the estimation
efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin
fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the
appropriate update equation to capture their distinct noise sources.

INTRODUCTION

Low-frequency environmental fluctuations cause deco-
herence in solid-state qubits [1–3]. Quantum error cor-
rection strategies [4] can detect and correct errors but
demand an increased number of physical qubits. Con-
ventional noise reduction techniques, such as dynamical
decoupling [5, 6] and active suppression of environmental
fluctuations [7–9], are not universally effective and may
not align with specific experimental goals.

Hamiltonian learning emerges as a promising solution
for compensating for uncontrolled environmental effects
and enhancing the qubit quality factor [10–16]. This ap-
proach leverages modern hardware capabilities to provide
real-time feedback, but comes at the cost of dedicating
time to estimate the fluctuating Hamiltonian parameters.
Although several theoretical estimation schemes [17–24]
have been proposed to boost the estimation efficiency,
no experiment has yet demonstrated a physics-informed
scheme within any qubit platform, where understand-
ing of the physical processes driving the fluctuations is
utilized to improve the estimations. Even the experi-
mental adoption of real-time adaptive Bayesian strate-
gies [25, 26], where measurement parameters are chosen

based on the previous measurements, is still missing in
gate-defined spin qubits. This work reports the first real-
time physics-informed and adaptive Bayesian estimation
of a qubit.

To demonstrate an adaptive and physics-informed esti-
mation protocol, we employ a singlet-triplet (ST0) qubit
in GaAs. In nitrogen-vacancy centers in diamond [27]
and semiconductor spin qubits [28], low-frequency noise
from spinful nuclear isotopes decreases qubit perfor-
mance through hyperfine interactions. Isotopic purifi-
cation techniques [29, 30] mitigate this issue in group IV
semiconductors such as silicon and germanium, though
it comes with significant effort and does not remove low-
frequency noise originating from other sources. For our
demonstration we chose GaAs as its nuclear noise spec-
trum is well understood [31, 32]. Our technique involves
programming a commercial quantum controller, powered
by an integrated field-programmable gate array (FPGA),
to propagate the probability distribution of the effective
nuclear fields on the dots in real time, using the Fokker–
Planck (FP) equation [23, 24]. This enables the dynamic
tracking of the fluctuating nuclear field gradient across
the qubit, which is the main source of decoherence in
ST0 qubits in GaAs [31, 32].
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FIG. 1. Qubit implementation and estimation sched-
ule. (a) Scanning-electron micrograph of a GaAs double-dot
device similar to the one used in this work [35] comprising
a singlet-triplet qubit (black circles) next to a sensor dot
(SD) used for qubit readout. Scale bar 100 nm. (b) Ex-
change coupling J(ε) and Overhauser gradient ∆B ∝ hfB(t)
drive rotations of the qubit around two orthogonal axes of the
Bloch sphere, providing universal qubit control if the prevail-
ing Overhauser frequency fB can be estimated sufficiently ef-
ficiently. (c) Qubit schedule, alternating between periods Top

of quantum information processing (dashed box), and short
periods Test for efficiently learning the fluctuating environ-
ment (gray box).

The propagation of probability distributions on the
quantum controller, here according to the FP equation,
can be replaced by other update equations, e.g., a tran-
sition matrix for Markov processes [33], or machine-
learning-based methods for signal prediction [34], the de-
tails of which depend on the specific nature of the qubit
system.

Real-time capabilities of quantum controllers can also
be used advantageously to choose optimal measurement
parameters within an adaptive estimation sequence (in
our case updating free-induction-decay times on the fly,
based on previous measurement outcomes), which we will
analyze separately below.

RESULTS

Device and Bayesian estimation

We employ the top-gated GaAs double quantum dot
(DQD) array from [35] with one of its ST0 qubits ac-
tivated using gate electrodes as in Figure 1(a). A di-
lution refrigerator provides a base temperature below
50mK and a 200-mT in-plane magnetic field defines the
z-direction. A commercial DAC [36] (FPGA-powered
quantum controller [37]) applies low-frequency (high-

frequency) baseband waveforms to the gate electrodes,
and radio-frequency reflectometry off one ohmic contact
of the sensor dot distinguishes the charge configurations
of the DQD, allowing single-shot qubit readout [38]. De-
tails about the experimental setup can be found in [15].
The qubit operates in the (1, 1) and (0, 2) charge con-

figuration, where the integers stand for the number of
electrons in the left and right dot of the DQD. In the
two-electron ST0 basis, the Hamiltonian can be approx-
imated in the regime of interest as

H(t) =
J(ε)

2
σz +

g∗µB∆B(t)

2
σx, (1)

where σi represent the Pauli operators, g∗ is the effec-
tive g-factor, and µB is the Bohr magneton. The energy
J(ε) characterizes the exchange interaction between the
two electrons, which is tunable via the relative electrical
detuning of the dots. By defining ε = 0 at the (1,1)–
(0,2) charge-state degeneracy, detuning is proportional
to the difference in the effective on-site potentials on the
two dots of the singlet-triplet qubit, where negative ε
corresponds to the (1,1) ground-state region. The field
∆B(t) denotes the z-component of the Overhauser gra-
dient, which is the difference in effective magnetic fields
on the two dots due to the hyperfine interaction of the
electrons with approximately 105–106 of spinful nuclei
on each dot [31]. This gradient fluctuates slowly, and our
goal is to efficiently estimate the corresponding Over-
hauser frequency fB(t) ≡ g∗µB∆B(t)/h in real time on
the quantum controller, using a physics-informed model
with and without adaptive probe times.

A Bloch-sphere representation of the two contribu-
tions to H is sketched in Fig. 1(b). The qubit under-
goes manipulation through voltage pulses applied to the
plunger gates of the DQD, which effectively control the
magnitude of J(ε). Deep in the (1,1) regime, where
J(ε) ≪ |hfB |, the qubit is almost purely driven by the
Overhauser gradient, whereas close to ε = 0 typically
J(ε) ≳ |hfB |.

After manipulation, the qubit is measured by project-
ing the unknown final spin state onto either the (1,1)
charge state (|T0⟩) or the (0,2) charge state (|S⟩), by
tuning to positive ε. Each single-shot readout of the
DQD charge configuration involves the generation, de-
modulation, and thresholding of a few-microsecond-long
radio-frequency burst on the quantum controller [15].

The fluctuating frequency fB is assessed on the quan-
tum controller using a Bayesian estimation approach
based on a series of N free-induction-decay experiments
with evolution times ti where i = 1, 2, . . . , N [10–12, 14–
16]. Employing mi to represent the outcome (|S⟩ or
|T0⟩) of the i-th measurement, the likelihood function
P (mi|fB) is defined as the probability of obtaining mi

given a value of fB ,

P (mi|fB) =
1

2
[1 +mi (α+ β cos (2πfBti))] , (2)
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where mi takes a value of 1 (−1) if mi = |S⟩ (|T0⟩), and
α and β are parameters accounting for the measurement
error and axis of rotation on the Bloch sphere during a
free-induction decay experiment [10]. In this work we
use α = 0.28 and β = 0.45 extracted from a series of
separate free-induction decay (FID) experiments. Ap-
plying Bayes’ rule to estimate fB based on the series
of measurements mN , . . .m1, which are assumed to be
independent of each other, yields the final probability
distribution Pfinal (fB) ≡ P (fB |mN , . . .m1) given by

Pfinal (fB) ∝ P0 (fB)
N∏

i=1

[1 +mi (α+ β cos (2πfBti))] ,

(3)
where P0 (fB) is the initial probability distribution as-
sumed for fB before the estimation starts. Equiv-
alently, the measurement outcome mi updates the
Bayesian probability distribution according to Pi(fB) ∝
Pi−1(fB)P (mi|fB), up to a normalization factor, where
the likelihood function P (mi|fB) is given by Eq. (2). The
final estimate of fB is taken to be the expectation value
⟨fB⟩, calculated over the final distribution Pfinal (fB) af-
ter all N measurements have been performed. The es-
timation protocol can be repeated at user-defined times
when the qubit is not in use for other operations.

Estimating low-frequency fluctuations is useful as out-
lined in the following example, depicted in Figure 1(c):
one starts by estimating the instantaneous magnitude of
the slowly fluctuating field (the Overhauser frequency in
our case), resulting in a strongly reduced uncertainty in
this field. Subsequently, that knowledge is used to com-
pensate for the random value of the field during coherent
qubit operation, resulting in an increased qubit quality
factor [15]. However, while operating the qubit for a
period Top, the field will again slowly drift, which can
be captured by letting its distribution function evolve
over time according to a known noise model [32]. For
the Overhauser gradient, this amounts to a diffusion of
its mean towards zero mean field and an increase of the
uncertainty towards a maximum value that depends on
the number and coupling strengths of the involved nu-
clear spins. Before such a stationary state is reached,
the known dynamics of the probability distribution can
be used to improve the feedback or make the next esti-
mation more efficient. After a user-defined period Top,
qubit operations are momentarily halted and a new real-
time estimation is initiated on the quantum controller.
Its duration, approximately Test ∝ N , depends on the
desired estimation accuracy as discussed below. A series
of estimation sequences, each resulting in an accurate dis-
tribution Pfinal(fB), is what we refer to as qubit tracking.

Physics-informed tracking of the qubit frequency

This section describes how such “stroboscopic”
physics-informed tracking of an Overhauser field is im-
plemented on the quantum controller and to what ex-
tent it produces higher-quality estimates than obtainable
via more commonly used estimation sequences [10, 15].
The protocol is physics-informed in the sense that the as-
sumed evolution of the distribution function in between
two estimations is based on a physical model describing
the nuclear spin dynamics in GaAs-based quantum dots.
The FPGA-based estimation of the Overhauser fre-

quency fB is illustrated in Fig. 2(a): One estimation se-
quence consists of N repetitions of a free-induction decay
(FID) probe cycle. In each probe cycle, a singlet pair is
initialized in (0,2) and then detuned deeply into the (1,1)
region. At ε ≈ −40mV, the quantum controller lets the
qubit evolve for a probe time ti = i t0, before threshold-
ing the resulting qubit state and updating the probabil-
ity distribution [Pi(fB) ∝ Pi−1(fB)P (mi|fB)]. In this
sequence, the probe times ti are predetermined and lin-
early distributed by the probe time spacing t0 = 1ns. We
assume that N is sufficiently small such that the Over-
hauser gradient remains constant during the sequence.
We model the dynamics of the Overhauser gradient as

an Ornstein–Uhlenbeck (or drift–diffusion) process [32],
driven by randomly occurring nuclear spin flips. The
time dependence of the distribution function P (fB , t) re-
sulting from such a process is governed by a Fokker–
Planck (FP) equation [23, 24, 39], allowing the predic-
tion of P (fB) in periods when the qubit is used for other
operations (Top). Assuming that each final distribution
Pfinal(fB) is sufficiently characterized by its mean and
variance, we instruct the quantum controller to effec-
tively approximate it by a Gaussian distribution [40].
Denoting the mean and variance immediately after es-
timation (time t = 0) as ff

B and σ2
f , respectively, the FP

equation yields as solution for t > 0

P (fB , t) =
1√

2πσ(t)2
exp

{
− [fB − µ(t)]2

2σ(t)2

}
, (4)

where

µ(t) = ff
Be

−Γt, (5a)

σ(t)2 = σ2
K +

[
σ2
f − σ2

K

]
e−2Γt. (5b)

Here, σK is the steady-state root mean square value of
the Overhauser field frequency (typically around 30 −
50MHz [32]), while Γ reflects the slow relaxation rate
of nuclear spin polarization (measured to be Γ ≈ 1.1Hz
from autocorrelation). Notably, the inverse of Γ, denoted
as Tc = Γ−1 ≈ 0.91 s, defines the timescale for the cor-
relation of fluctuations in fB ; this establishes the time
window within which an estimate of fB is expected to
remain useful.
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FIG. 2. Tracking of the Overhauser frequency by anticipating nuclear spin diffusion on the quantum con-
troller. (a) The physics-informed estimation sequence for fB initializes the prior distribution P0(fB) by evolving an older final
distribution Pfinal(fB) (Fokker-Planck update). For each of the N probe cycles, labeled i, the quantum controller initializes
the qubit to the singlet state, performs a FID for time ti = it0, then updates the probability distribution Pi(fB) based on the
measurement outcome mi. After N probe cycles, the final distribution Pfinal(fB) is saved. (b) Simulation of the unknown
fluctuating Overhauser gradient (black) and five physics-informed estimation sequences, illustrating the tracking protocol. Ev-

ery 40 ms, a sequence of FID probe cycles results in a final distribution with expected value ff
B = ⟨fB⟩ and error bar 2σf (red

markers). The simulation assumes a uniform prior distribution P0(fB) at t = 0, whereas subsequent priors P0(fB) are based
on the mean µ(t) and standard deviation σ(t) propagated by the Fokker-Planck equation over period Top (shaded in light red).
(c) Experimental results for the non-tracking reference protocol, using P0(fB) ≡ Puniform(fB) for each estimation sequence.
(d) Experimental results for the physics-informed tracking protocol, obtained simultaneously with non-tracking estimates in
panel (c). The initial prior P0(fB) for each column is Pfinal(fB) from the previous column, propagated in time according to
Equation (5). Note the absence of multi-peaked distributions Pfinal(fB).

In Figure 2(b) we numerically simulate a fluctuating
Overhauser gradient with Tc = 1 s and σK = 30MHz.
The associated unknown frequency fB (black trace) is
assumed to be be estimated every Top = 40ms (red
markers). The physics-informed evolution of probability
distributions (shaded red areas, adapted from Ref. [24])
captures two properties expected for nuclear spin diffu-
sion, namely the inclination of the average of the Over-
hauser gradient to drift back towards zero [Eq. (5a)], and
a progressive expansion of the uncertainty in the gradi-
ent towards σK [Eq. (5b)]. Both processes take place on
a timescale of Tc.

Initially, no knowledge of fB is available, reflected by
a uniform prior distribution Puniform(fB) at t =0 repre-
sented by the semi-transparent error bar spanning the
entire frequency range of the simulation (60MHz) [41].
A number of FID cycles are performed until the updated
probability distribution has a fitted σ < 2MHz. This es-

timation sequence is assumed to take only a few hundred
microseconds, i.e. much shorter than Top and Tc, and we

only plot the mean ff
B and 95% confidence interval of the

final distribution Pfinal(fB) (first red marker).
After the first estimation sequence, the Overhauser

fields are left to evolve freely for Top. During this time,
the distribution function is assumed to be Gaussian; the
time dependence of its mean and variance is given by
Eq. (5). The evolution of the 95% confidence interval is
indicated by the red shaded area in Fig. 2(b). At the end
of Top (t = 40ms) the associated Gaussian distribution is
characterized by µ(Top) and σ(Top), and serves as the ini-
tial prior distribution for the next estimation sequence.
Similarly, estimations at t = 80, 120, 160 and 200 ms use
as prior the most recent Gaussian.
If Top is smaller than Tc, the physics-informed P0(fB)

will remain somewhat constrained, providing a better
prior compared to a uniform distribution and potentially
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requiring fewer FID experiments for a more accurate esti-
mate of fB . If Top becomes comparable to or larger than
Tc, prior knowledge about fB becomes irrelevant and is
not expected to improve the next estimation.

To experimentally test the benefits of physic-informed
priors, we define a non-tracking estimation scheme that
always sets the initial distribution P0(fB) to a uniform
distribution Puniform(fB) between 1MHz and 70MHz
with 1MHz resolution. Thus, as in previous works [10,
15], each estimation sequence does not retain any mem-
ory of previous estimations. In parallel to this non-
tracking estimation, we instruct the quantum controller
to also generate estimates based on the physics-informed
initialization of P0(fB), thereby improving the estima-
tion accuracy as quantified below.

Figure 2(c) plots 1,000 final probability distributions
of the non-tracking scheme, acquired over a span of 2.6 s
using an N = 31 schedule with Test = 0.6ms and
Top = 2ms. Specifically, each FID probe cycle lasts
20 µs, of which 5µs is dedicated to qubit readout, 2.6 µs
to initialize the qubit and discharge the bias tee with a
zero-averaging pulse, and the remaining time is used to
update the non-tracking and physics-informed distribu-
tions Pi(fB) on the FPGA. Several estimation sequences
result in a multi-peaked probability distribution, with
secondary peaks that randomly jump from one column
to another. In simulations, such “outliers” also appear
in the absence of measurement errors and appear to be a
shortcoming of the algorithm, not an artifact of the de-
vice or the quantum controller. The known correlation
time of the Overhauser field dynamics makes it improb-
able that the sudden jumps of the outliers represent the
actual Overhauser field gradient, and similar jumps in
previous work were associated with compromised qubit
quality factors (cf. discussion of Fig. 2b of Ref. [15] in its
supplementary information).

Figure 2(d) shows the physics-informed estimates
Pfinal(fB), acquired concurrently with the non-tracking
estimates in panel (c). Strikingly, multi-peaked probabil-
ity distributions are absent, suggesting that the physics-
informed model on the quantum controller suppresses
unphysical jumps of the estimated Overhauser gradient
(here with Tc = 0.91 s and σK = 50MHz). By extracting
the standard deviation from each column in Figure 2(d),
we find that its average is reduced relative to the average
standard deviation extracted from panel 2(c), suggesting
an improved estimation accuracy.

Figure 3 compares the performance of the non-tracking
and physics-informed estimation sequences as a function
of the number of FID probe cycles, for different choices
of Top. Each data point corresponds to an independent
experiment comprising 10,000 repetitions of an estima-
tion sequence. The plotted uncertainty is defined as the
average standard deviation of the final probability distri-
bution Pfinal(fB) of each of the 10,000 estimations. The
shaded areas indicate the standard deviation of the as-
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FIG. 3. Efficiency of the non-tracking and physics-
informed protocols. (a) Estimation uncertainty as a func-
tion of the number of FID probes in the estimation sequence,
for the non-tracking (black) and physics-informed (red) proto-
cols. Symbols denote the average standard deviation of 10,000
⟨fB⟩ values, whereas shaded regions show their standard devi-
ation, for different choices of operation time. (b) Uncertainty
from (a) plotted as a function of the ratio Test/Top, where the
estimation time is Test = N · 20 µs. The dash-dotted gray line
indicates the resolution limit imposed by our setup, see main
text.

sociated 10,000 standard deviations. In our experiment,
the true value of the real field, and thus the actual er-
ror in the estimation, is unknown, and therefore we rely
on the uncertainty measure plotted as a reasonable met-
ric. Indeed, low uncertainties at the end of Test correlate
with increased quality factors of controlled Overhauser
rotations during Top (see Supplemental Material [42]).

The uncertainty of the non-tracking estimates in
Fig. 3(a) does not depend on Top. This is expected, as
the prior distributions P0(fB) in the non-tracking scheme
are always the uniform distribution Puniform(fB), with no
memory of the previous estimates. In contrast, the uncer-
tainty of the physics-informed estimates decreases with
decreasing Top, for fixed number of measurements in the
estimation sequence. This suggests that a narrower prior
yields a more accurate estimate.

Remarkably, with as few as 10 probes the physic-
informed estimates for Top = 1ms are more accurate than
non-tracking estimates based on 100 probes (in Fig. 3(a)
the uncertainties are approximately 3 MHz and 5 MHz,
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respectively.) With increasing number of probe cycles,
the uncertainty of non-tracking estimates saturates near
5MHz, whereas the physics-informed estimation uncer-
tainty approaches the limitation imposed by our choice
of frequency binning (0.8MHz [43]).

The trade-off between “qubit duty cycle” (Top/Test)
and estimation accuracy is evident in Fig. 3(b). Here,
we replot the uncertainties from (a) as a function of the
estimation time Test = N · 20 µs, where N is the num-
ber of qubit probes and 20µs is the probe cycle dura-
tion. Depending on the desired Hamiltonian uncertainty,
a maximum operation limit Top and a significant qubit
downtime (high Test/Top ratio) for estimation must be
tolerated. The optimum choice of N depends on details
of the noise spectrum and the estimation efficiency [24].

One may be tempted to pursue the lowest possible
uncertainty while estimating the environmental fluctua-
tions, but the operational benefits will depend on details
such as the tolerable estimation uncertainty for a certain
application and how long it is expected to survive given a
specific environment. Because achieving lower uncertain-
ties in general requires more qubit down time for estima-
tion, quantum information processing applications may
need to define a tolerated “error budget”, which trans-
lates into a useful operation time Top depending on the
correlation time of the fluctuations Tc and a minimized
estimation time Top depending on the efficiency of the
protocol.

So far, we demonstrated an improved Hamiltonian
learning protocol that tracks a slowly fluctuating environ-
mental parameter, by instructing a quantum controller
to generate in real time physics-informed priors. Next,
we instruct the controller to adaptively choose the probe
times, thereby reducing the length of the estimation se-
quences.

Adaptive Bayesian tracking of the qubit frequency

For the purpose of only monitoring fluctuating Hamil-
tonian parameters without interspersed qubit operation,
non-adaptive Bayesian estimation is straightforward to
execute because it does not require real-time feedback
and could even be carried out a posteriori. However,
numerical studies [17, 18, 20, 21, 23, 24] suggest the ben-
eficial use of adaptive estimation sequences in which the
probe times ti are chosen based on previous measurement
outcomes, as experimentally realized in nitrogen-vacancy
centers [25, 26].

Previous experiments with gate-defined spin qubits
employed non-tracking and non-adaptive FID-based
Bayesian estimation to probe the qubit frequency [10, 15].
In this section, we supplement the generation of physics-
informed time-evolved priors by the generation of adap-
tive probe times in real time, thereby reducing the num-
ber of required probes and showing a path towards much

shorter estimation sequences.

Figure 4(a) illustrates the key difference of the adaptive
estimation sequence, relative to that in Fig. 2(a): the
free-evolution time ti for the i-th FID probe now depends
on the previous Bayesian update as

ti =
1

cσi−1
, (6)

where σi−1 is the standard deviation of the Gaussian-
approximated probability distribution Pi−1(fB), except
σ0, which is the standard deviation of prior P0(fB) based
on the FP equation. The optimal numerical prefactor c
is expected to depend on the experimental setup [21].
Intuitively, this choice for the free evolution times can
be motivated by our desire that two oscillations with fre-
quencies that differ by ∆f develop a phase shift of π after
time t = 1/(2∆f). In other words, Eq. (6) maps a fre-
quency range of width cσi−1/2 to a large phase contrast
in the likelihood function.

Implementation of the estimation protocol of Fig. 4(a)
on the quantum controller yields reliable estimates for fB
from only 10 probes per sequence, as shown in Fig. 4(b)
for Top = 1ms and c ≈ 13 [44]. This example demon-
strates the estimation of a slowly fluctuating qubit fre-
quency within 200 microseconds, which is one order of
magnitude shorter and with better accuracy than pre-
viously reported [15]. Here, c ≈ 13 was chosen empiri-
cally, and further improvements may be possible by bet-
ter choices informed from numerical simulations, see the
Supplemental Material [42].

Outliers appear to be absent both for the physics-
informed [Fig. 2(c)] and adaptive tracking [Fig. 4(b)],
likely for similar reasons, motivating a quantitative com-
parison based on experimental data and theoretical in-
sights.

Figure 4(c) compares average uncertainties, inferred
from experimental data in Fig. S2 of the Supplemental
Material [42]. We choose Top = 5ms and perform 10,000
repetitions of three protocols, focusing on N≤30 to test
whether short sequences benefit from adaptive probe cy-
cles. The three squares at the end of the curves show the
uncertainties σ (defined as in Fig. 3 and computed on
the quantum controller from the posterior distributions
Pfinal) for non-tracking (black), physics-informed (red),
and adaptive (blue) estimation sequences. For N = 30,
the non-tracking scheme yields an average σ ≈ 7.3MHz,
while the physics-informed scheme yields σ ≈ 3.5MHz.
The uncertainty of the adaptive scheme is similar, though
obtained with fewer probes (N = 25).

To investigate how each probe cycle contributes in-
formation gain, we analyze how uncertainties evolve
within a sequence (additional details can be found in
Fig. S2 [42]). Specifically, we reconstruct the Bayesian
probability updates Pi(fB) from our record of raw single-
shot measurement outcomes mi [45]. For each i, we plot
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FIG. 4. Adaptive Bayesian tracking by real-time choice of qubit probe times. (a) In this adaptive Bayesian
estimation sequence, probe times ti are chosen based on the standard deviation σi−1 of the previous Bayesian distribution.
P0(fB) is initialized based on the FP equation. (b) Adaptive tracking obtained from short estimation sequences (N = 10) for
Top = 1 ms. (c) Reconstructed uncertainty in the distribution function within an estimation sequence (defined in the text) as a
function of the measurement update mi. Squares at the end of the curves correspond to the experimental posterior distributions
computed on the quantum controller. (d) Simulated uncertainty expected at the end of a short estimation sequence (N≤10)
for different probe time protocols, including evenly distributed ti (probe time spacing of 1 or 5 ns), adaptive probe times, and
random probe times (see main text). The initial prior distributions are assumed to be determined from the FP equation.

the standard deviation of Pi(fB) (reconstruction), aver-
aged over all 10,000 repetitions, as well as their standard
deviation (shaded areas).

The non-tracking method is clearly outperformed by
the physics-informed and adaptive schemes. This is ex-
pected, as both the physics-informed and adaptive pro-
tocols use physics-informed prior distributions. Further-
more, the adaptive scheme has consistently lower uncer-
tainty than the physics-informed scheme, though only
marginally. Finally, we note that the uncertainties for
the non-tracking and physics-informed schemes barely
decrease during the first few measurements (i ≲ 5), as
shown by the nearly flat curves in this range. In contrast,
the adaptive scheme shows a negative slope already for
the first measurement outcomes, indicating information
gain and a narrowing of the probability distribution.

To explore the ultimate estimation efficiencies that can
be expected for our spin-qubit system, unconstrained by
coarse frequency binning and limited memory on the
FPGA-powered controller, we now turn towards sim-
ulated Overhauser fluctuations, assumed to follow an
Ornstein–Uhlenbeck process with Tc = 1 s and σK =

40MHz, and simulate estimation sequences on a much
finer and larger frequency grid (0 to 150 MHz with
0.25 MHz bin size) than currently possible in our ex-
perimental setup.
Figure 4(d) shows the resulting uncertainties and their

standard deviations, assuming Top = 5ms, for different
distributions of probe times (see Figs. S3, S4 [42] for fur-
ther details): In the sequences with “linear” probe times,
ti = i t0, we observe that the choice of the probe time
spacing t0 (shown 1 and 5 ns) has a drastic influence
on the resulting accuracy. In the sequences with “ran-
dom” probe times, ti is randomly chosen from a uniform
distribution between 1 ns and 50 ns. In the sequences
with “adaptive” probe times, ti = 1/(cσi−1), now with
c = 6 and without rounding ti to the temporal granu-
larity of the quantum controller (see the Supplemental
Material [42]).
The adaptive-probe-time sequence outperforms the lin-

ear sampling approach with t0 = 1ns, yielding uncertain-
ties that are on average smaller by a factor of ≈ 2.7, and
is also superior to t0 = 5ns and random probe times,
resulting in approximately 30% smaller uncertainties for
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short estimation sequences (N ≲ 5). We therefore believe
that adaptive estimation sequences will become crucial
in applications that only permit a small number of probe
cycles.

In summary, the results shown in Fig. 4 present the
first adaptive Bayesian estimation scheme implemented
in a semiconductor-defined spin qubit.

The real-time capabilities of the quantum controller
enable probe times ti to be updated based on previous
measurement outcomes mi−1,mi−2, . . . ,m1, resulting in
a small but measurable improvement compared to lin-
early spaced probe times. Our approach is substantiated
by numerical simulations, indicating that high-quality es-
timates of the qubit frequency achieving only a few per-
cent error (approximately 3MHz uncertainty with a sim-
ulated dynamic range of ≈ 150MHz) should be possible
with fewer than five qubit probe cycles.

OUTLOOK

We have implemented physics-informed and adaptive
estimation sequences that allowed the efficient tracking
of low-frequency fluctuations in a solid-state qubit. A
quantum controller estimates in real time the uncon-
trolled magnetic field fluctuations in a gallium-arsenide
singlet-triplet spin qubit, yielding improved accuracy by
temporally evolving a sufficiently recent probability dis-
tribution according to the Fokker-Planck equation. In
addition, the adaptive choice of qubit probe times, based
on the standard deviation of the updated probability dis-
tribution, allows for significantly shorter estimation se-
quences yielding similar or reduced uncertainties. Com-
pared to previous experiments [15], this work extends
the estimation bandwidth from a few hundred Hz to
≈ 2.5 kHz, due a tenfold reduction of the estimation time
and a reduced uncertainty.

While our work marks the first real-time adaptive
tracking of a semiconductor spin qubit, determining opti-
mal protocols compatible with constraints of the control
hardware and application requirements remains an open
question. We anticipate further progress by research that
combines theoretical and hardware aspects.

Possibly useful modifications of the protocol could re-
lax the assumption of single-shot readout [46] or mitigate
state preparation and measurement errors by duplication
of probe cycles [17, 19]. Probe times can further be op-
timized by also taking into account the estimated qubit
frequency, not just its uncertainty, and possibly it is ad-
vantageous to terminate an estimation sequence when
reaching an accuracy target, rather than a predetermined
length.

By properly modifying the tracking equation relevant
to the specific noise source, this work offers an effi-
cient, physics-informed, and adaptive Hamiltonian learn-
ing protocol for real-time estimation of low-frequency

noise in solid-state qubits.
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VARIANCE OF THE DISTRIBUTION AS A MEASURE OF ESTIMATION ERROR
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FIG. S1. Improved qubit quality factor from lower estimation uncertainties. (a) Average measured singlet–triplet
oscillations resulting from averaging over only the best estimates, as a function of rotation angle and cutoff uncertainty σest,max.
(b) The fraction of used estimations as a function of σest,max. (c) Dots: the averaged oscillations at σest,max = 1.4 MHz (red,
corresponding to rejecting 97% of the repetitions), and 2.8 MHz (black, rejecting 3%), corresponding to the green and orange
vertical dashed lines in (a,b), respectively. Solid lines: Fitted exponentially decaying sinusoidal oscillations.

The true frequency of the Overhauser field gradient is not known, so to benchmark the different estimation protocols
we choose as a figure of merit the standard deviation σest of the final probability distributions resulting from the
estimations. Formally, this standard deviation follows from

σ2
est = Var(fB) ≡

∑

n

(
fB [n]− ⟨fB⟩

)2
Pfinal(fB [n]), (S.1)

where the index n labels the bins of the (discrete) probability distribution stored on the quantum controller. In this
section we demonstrate that lower σest indeed correlates with better estimation of fB(t), by performing Overhauser-
driven controlled rotations of the qubit based on the information provided by the final probability distributions [1].

We thus perform a series of N = 3, 668 estimations of the Overhauser gradient, spanning a few seconds of laboratory
time. The experiment ends whenever the number of repetitions with Overhauser-controlled rotations (explained later)
reaches 1, 000. Due to finite FPGA program memory, the controlled rotations are executed whenever 20MHz ≤ ⟨fB⟩ ≤
45MHz. The repetitions of controlled rotations happen to be executed 1, 000 times out of the N = 3, 668 repetitions
of estimations because of the chosen frequency range. The estimations are interspersed with series of the following
experiment: the quantum controller initializes the qubit in the singlet state, pulses deep into the (1,1) region, where
the qubit undergoes rotations along σx with the instantaneous frequency fB(t), and after time trot the quantum
controller pulses back into the (0,2) region for qubit readout. The quantum controller repeats this experiment 3, 668
times consecutively with τrot linearly increasing by 1 ns from τrot = 1ns to τrot = 50ns. The oscillations observed in
the fraction of measured final singlet states as a function of τrot reflect the Overhauser-driven rotations along σx and
in principle reveal the instantaneous fB(t).

After each of the 3,668 estimations, the quantum controller performs Overhauser-driven controlled rotations of the
qubit by an user-defined unit less target angle θrot = 2π⟨fB⟩τ̃rot, where ⟨fB⟩ is the expectation value for fB resulting
from the estimation performed just before the cycle of rotation experiments, which is different for each trace, θrot is
linearly spaced between 0 and 5 in 51 points and τ̃rot is computed on-the-fly on the quantum controller. The controlled
rotations consist of the following steps: the quantum controller initializes the qubit in the singlet state, pulses deep
into the (1,1) region, where the qubit undergoes rotations along σx with the instantaneous frequency fB(t), and after
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time τ̃rot to rotate the qubit by the wanted angle θrot, the quantum controller pulses back into the (0,2) region for
qubit readout. The time τ̃rot thus corresponds exactly to the required time to rotate the qubit by the user-defined
angle of rotation θrot, if the frequency was indeed exactly ⟨fB⟩. We then study the average of the 1,000 traces based
on their respective estimation uncertainty σ ; the quality factor of the averaged oscillations is the result of the qubit
decoherence time and the average accuracy of the knowledge about fB . We assume the qubit decoherence time does
not change across repetitions and the quality factor is mostly dependent on the uncertainty on fB .

To show that low-quality estimates play an important role in the loss of oscillation amplitude we post-process the
measured data based on the σest of all repetitions: We introduce the variable σest,max, and for given σest,max we reject
all repetitions with a probability distribution with a calculated variance of σ2

est > σ2
est,max, and we average over the

remaining traces. We consider the controlled rotations of the qubit taken whenever the 20MHz ≤ ⟨fB⟩ ≤ 45MHz
(the chosen interval is limited by the quantum controller program memory). In Fig. S1(a,b) we show the result for 10
choices of σest,max, ranging from 1.2MHz to 3.0MHz. Fig. S1(a) shows the singlet probability P (S) of the averaged
oscillations as a function of τ and σest,max, and in Fig. S1(b) we plot the corresponding fraction of used data for
each σest,max. In Fig. S1(c) we focus on two specific choices for σest,max [1.4MHz (red) and 2.8MHz (black)], that
correspond to rejecting 97% and 3% of the estimations, respectively [see the vertical dashed lines in Fig. S1(a,b)]. The
dots represent the averaged oscillations, as shown in Fig. S1(a), and the solid curves fitted sinusoidal oscillations with
an exponentially decaying envelope. We thus see a significant improvement in the quality factor of the oscillations,
which suggests that an important part of the observed decay may be associated with the performance of the estimation
scheme. In that sense, σest thus seems to be a valid metric to benchmark the different protocols when the real field
is not known.
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RECONSTRUCTING THE DISTRIBUTION DURING ESTIMATION [FIG. 4(c) OF MAIN TEXT]
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FIG. S2. Reconstruction of probability distributions. (a–c) Final probability distribution on the quantum controller
of 1,000 repetitions, using the non-tracking (a), tracking (b), and adaptive scheme (c). (d–f) Reconstructed evolution of the
distribution during the estimation, for 8 consecutive repetitions (top panels) and corresponding reconstructed uncertainty σ
during estimation (bottom panels).

In Fig. S2 we present more detailed data underlying Fig. 4(c) in the main text. Figure S2(a–c) presents the first 1,000
out of 10,000 repetitions of experimental final posterior distributions Pfinal(fB) computed on the quantum controller
with σK = 40MHz for the estimation methods tracking (a), tracking (b) (both with a total number of measurements
N = 30), and adaptive (c) (with N = 25). These repetitions serve as the benchmark for comparing the different
methods in Fig. 4(c) of the main text and the following. To compare the methods fairly in Fig. 4(c) of the main text
we exclude estimation runs where the estimated frequency ⟨fB⟩ is smaller than the minimum measurable value of
≈ 2.5MHz resulting from discretization in the quantum controller program (such small ⟨fB⟩ cause problems in the
adaptive-time scheme, as explained in more detail in Fig. S4 below). In the top row of Fig. S2(d–f) we display the
reconstructed evolution of the probability distributions during the estimation procedure for 8 consecutive repetitions,
where the ticks at the horizontal axis mark the end of each estimation. The bottom row shows the corresponding
evolution of the uncertainty σ during the estimations. While the distributions shown in (a–c) have been computed
on the quantum controller, (d–f) show results that were reconstructed from the recorded measurement outcomes mi

(see description below). As in the main text, squares represent uncertainties computed from the distribution in (a),
demonstrating good agreement with the reconstructions most of the time, with a few exceptions. These occasional
deviations are likely attributed to variations in numerical accuracy between the quantum controller and the desktop
computer. A detailed discussion of setup limitations is provided in the next section.

Method of reconstructing from the measurement outcomes

The reconstruction process involves the analysis of raw data, obtained from experimental measurements by the
quantum controller in conjunction with the evolution times ti used, where i = 1, 2 . . . N labels measurement updates
(shots). Differently from the main text, here we label the repetitions of estimation cycles by n. It follows the evolution
times tn,i are loaded from the quantum controller. On top of this, we use the corresponding thresholded reflectometry
measurement. As a result, the matrix representing single-shot measurements mn,i = ±1 is generated.

Subsequently, the elements of the arrays tn,i and mn,i are employed to update the probability distribution based
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on a Bayesian update rule:

Pn,i(fB,j) = Nn,iPn,i−1(fB,j)[1 +mn,i(α+ β cos(2πfB,jtn,i))]/2,

where N−1
n,i =

∑
j Pn,i−1(fB,j)[1 +mn,i(α+ β cos(2πfB,jtn,i))]/2 and fB,j is defined on a discrete grid.

At each pair of indices n, i, the first two moments are computed:

⟨(fB)k⟩n,i =
∑

j

Pn,i(fB,j)(fB,j)
k,

which can be linked to the expectation value (µn,i) and the standard deviation (σn,i) of the field:

µn,i = ⟨fB⟩n,i, σn,i =
√
⟨f2

B⟩n,i − ⟨fB⟩2n,i.

The quantity σn,i serves as a measure of field uncertainty, which is used as a figure of merit in the study. For
visual representation, reconstructed values of σn,i are depicted in Fig. S2 d-f) as a function of i for eight consecutive
realizations n = 641, 642 . . . 648.

In the first repetition (n = 1), the initial distribution P1,0(fB) is flat. In subsequent repetitions (n > 1), either
a flat distribution (non-adaptive schemes) or a Gaussian distribution with parameters computed from the previous
n− 1 are used (adaptive schemes). For the adaptive prior methods, we use the update equation:

P ′
n+1,0(fB,j) = exp

(
− (fB,j − µn+1,0[Top])

2

2σ2
n+1,0[Top]

)
,

with the normalization:

Pn+1,0(fBj ) = P ′
n+1,0(fB,j)/

∑

j′

P ′
n+1,0(fB,j′),

where the expectation value and uncertainty are propagated from the last measurement of the previous estimation
sequence, using Fokker-Planck update:

µn+1,0[Top] = µn,Ne−Top/Tc , σ2
n+1,0[Top] = σ2

K +
(
σ2
n,N − σ2

K

)
e−2Top/Tc .

Top serves as the separation time between two consecutive repetitions n and n + 1. In the reconstruction we use
parameters that mimic experimental setup, i.e. we set α = 0.28, β = 0.45, σK = 40MHz, Tc ≈ 1 s and use the
frequency grid fB,j = 1, 2 . . . 40MHz
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NUMERICAL SIMULATION OF ESTIMATIONS

We support our results by the numerical study, that aims at simulating relevant features of estimation setup.
For each realization of the algorithm we generate a random trajectory of the field fB(t), modeled as the Ornstein-
Uhlenbeck process with σK = 40Hz and Tc ≈ 1 s. We use quasistatic approximation, i.e. assume that the frequency

is constant during single evolution time f
(r,i)
B and varies only between the consecutive FID experiments. For each

repetition r and each measurement i, we use the value of simulated field to compute probability of measuring singlet

Pr,i(f
(r,i)
B ) = 1+ (α+β cos

(
2πf

(r,i)
B t

)
]/2, where the evolution time t is selected based on the method used. With this

distribution, we use a random number generator to draw the single-shot outcomes mr,i, which we then feed to the
algorithm described in the previous section.

Determine optimal adaptive-time parameter c

Firstly, we use the simulation to find the optimal value of parameter c = 1/(tiσi−1), that minimizes estimation
uncertainty, given the constraints of the quantum controller. To achieve that, we kept the simulation parameters from
experimental and reconstruction protocols, the details of which are described in the previous section. We sweep value
of c in the numerical simulation of the adaptive method that uses N = 5, 10, 25 measurements (colors) and find that
c ≈ 5− 10 typically gives the smallest uncertainties [see Fig. S3].

As our simulations do not include other sources of qubit dephasing, this range of c may not be the best choice in the
experiment. In principle, as σi−1 decreases, longer sensing times are more efficient in further decreasing the frequency
uncertainty. In practice, however, the range of useful sensing times is limited by the qubit decoherence time, on the
order of 100 ns in our system. Consequently, for experiments with N = 25, we empirically tuned the parameter c to
c ≈ 13, which seems to limit the allowed sensing time to a reasonable range.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
c

3

4
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6
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U
nc
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ta
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ty
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H
z)

N 5 10 25

FIG. S3. Optimal choice of c in ti = 1/(cσi−1). Numerically simulated uncertainty as a function of c and number of
measurements N = 5 (green), N = 10 (blue), N = 25 (yellow) for the adaptive estimation method. To reflect experimental
scenario we set α = 0.28, β = 0.45, σK = 40 MHz, Tc ≈ 1 s and us the frequency grid fj = 1, 2 . . . 40 MHz. The estimation
protocol consists of 1,000 realizations, and is averaged over 100 independent numerical experiments.

Benchmarking the different estimation methods [Fig. 4(d) of main text]

In our experimental setup, the estimations encountered limitations stemming from readout quality and quantum
controller memory constraints. We envision that advancements in both aspects could significantly enhance the speed
and robustness of the adaptive-time scheme (see also next section). To explore the potential, we conduct a benchmark
of the estimation schemes outlined in the main text, comparing them against two additional schemes incorporating
adaptive priors and using distinct evolution time schedules: randomly picked times ti and linearly spaced ti but with
a larger time step. We thus simulate a series of 4,000 estimations spaced by Top = 5ms, spanning 20 s of “lab” time,
using different estimation schemes. In our estimations, the true Overhauser gradient follows an Ornstein–Uhlenbeck
process with σK = 40MHz and Tc ≈ 1 s. We further assume for simplicity ideal conditions, amounting to:

• ideal readout (α = 0, β = 1);
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• a broader frequency grid [0, 150]MHz instead of (0, 40]MHz with 0.25MHz bin size;

• the possibility to use non-integer sensing times (ti = it0 with t0 = 1 ns).

We compute the average uncertainty at the end of 4,000 estimation cycles, separated by Top = 5ms. For statistical
purpose we additionally average this quantity over 100 independent realizations of the field and measurement outcomes.
Obtained in this way average uncertainty, as a function of number of measurements in each estimation N , is shown
in Fig. 4d) in the main text.

FIG. S4. Numerical simulation of estimation methods. (a) Simulated posterior distributions Pfinal(fB) for different
estimation methods, given the simulated frequency shown in (b). “FP prior” means that the prior distribution P0(fB) at the
beginning of each repetition follows from the Fokker–Planck equation, as described in the main text. (b) Simulated frequency
of the Overhauser magnetic field gradient. (c) Statistics of the uncertainties in the final distributions of the protocols shown in
(a) (except the inefficient non-tracking protocol), as a function of the measurement updates i = 0, 1, 2, 3, 4, 5 in estimation cycle
[same plot as Fig. 4(c) in the main text]. (d) Median of the absolute error of the protocols shown in (a) (except non-tracking)
as a function of i = 0, 1, 2, 3, 4, 5 [same legend as in panel (c)].

To shed more light on the performance of different estimation schemes as well as the correlation between uncertainty
and the error we concentrate on a single realization of the field. Fig. S4(a) shows the resulting final distributions as
a function of the lab time for N = 5, where all plots are based on the same simulated realization of fB,sim(t), whose
trajectory is shown in Fig. S4(b). The statistics of the uncertainties in the final distributions Pfinal(fB) (their mean
and standard deviation) are plotted in Fig. S4(c) as a function of measurement update, where value i = 0 corresponds
to average initial distribution while i = 5 is the average final one. We again used the uncertainties in Pfinal(fB) as a
measure for the error in the estimate, in order to make comparison to the experimental results fair. However, in the
simulations we of course know the true instantaneous value fB,sim(t) of the frequency, and we can thus also assess
the actual error in the estimation, which we define as |⟨fB⟩ − fB,sim| and plot its median in Fig. S4(d) for the same
collection of estimations as used in Fig. S4(c).

These findings show first of all that the non-tracking scheme [black in (a)] is relatively ineffective and, among the
methods using a physics-informed prior distribution, the adaptive-time scheme performs best. Furthermore, we see
that the uncertainties σ plotted in panel (c), which we use in the main text as a measure for the estimation error,
indeed correlate with the median of actual errors, shown in (d) (as also investigated above). We note that the overall
error can be as low as 2.5MHz, with N = 5, which would translate to total estimation time Test = 5 · 20 µs = 100µs,
where 20 µs is the typical duration of a single free-induction decay experiment.
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PHYSICS-INFORMED ADAPTIVE BAYESIAN TRACKING: SETUP LIMITATIONS

In this section we discuss the limitations of our setup. We show experimental results where the adaptive-time
scheme deviates from the expected behavior, affecting the statistics of the performance of the scheme. We explain
how we accounted for them when presenting the performance of the scheme in the main text, and we also discuss
potential underlying causes and propose possible solutions for future work.

Bias towards lower frequencies
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FIG. S5. Bias of the adaptive-time estimation scheme at low frequencies. (a) An example of a complete adaptive-time
estimation trace across 10,000 repetitions (≈ 30 s of laboratory time), with N = 40 and Top = 20 ms. (b) Histogram of the
means and standard deviations {⟨fB⟩, σf} of all repetitions in (a). (c) Zoom in on repetitions 6,000–6,700 from (a). (d)
Single-shot measurement outcomes used for the estimations during the repetitions shown in (c). (e) Sensing times used for all
single-shot measurement across the different repetitions.

Fig. S5(a) shows the final distributions of a series of 10,000 adaptive-time estimations (approximately 30 s of lab
time) where we used c = 6, N = 40, and Top = 20ms. We immediately notice that there seems to be an unexpectedly
large number of distributions that peak sharply in the first bin (the frequency range 0–1MHz). We corroborate
this observation in Fig. S5(b), which shows a two-dimensional histogram of the final mean and standard deviation
{⟨fB⟩, σf} of all estimations shown in (a). We see that there is indeed a disproportionate number of estimated
frequencies taking the lowest value of ⟨fB⟩ ≈ 0.5MHz, all having an extremely narrow final distribution. We consider
these estimations to be anomalies caused by the limitations of our setup, and thus filtered them out before performing
the benchmarking presented in the main text. Since we thus reject a number of estimations with very small associated
uncertainty, our comparison of the adaptive-time scheme to other methods in Fig. 4(c) of the main text can be seen
as a worst-case benchmark for the experimentally implemented adaptive-time scheme.

To investigate the cause of this behavior, we zoom in on a range of repetitions with a significant number of anomalous
estimations, shown in Fig. S5(c), and we plot the corresponding single-shot measurement outcomes mi [Fig. S5(d)]
and sensing times ti [Fig. S5(e)] used during each estimation. This allows us to make two observations: (i) The ranges
where the estimated frequency is small correspond to white “stripes” of singlet-biased data in Fig. S5(d), see, e.g., the
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repetitions in the interval [6400,6600]. (ii) Inside these ranges, the sensing times ti, shown in Fig. S5(e), increase much
faster than elsewhere; eventually it reaches the maximum sensing time of 200 ns allowed by the quantum controller,
after which the time is reset to the user-defined value of 1 ns. Below we will discuss several mechanisms we identified
that could play a role in this behavior, and we give an outlook on possible ways to mitigate these issues.

Qubit dephasing. We recall that the sensing time is determined by the posterior distribution variance at each step
as ti = 1/cσi−1, where c ≈ 13 was used in the experiments. This in fact helps the estimation being attracted to small
⟨fB⟩ and σf during the estimation cycle in the following way: Small posterior uncertainties σi lead to longer separation
times, which at some point become comparable with the qubit decoherence time T2, on the order of ≈ 100 ns. When
ti >∼ T2 there is no information left in the measurement outcomes and the probabilities for measuring mi = ±1 become
independent of ti. Since the scheme we use does not include a finite dephasing in the likelihood function, the absence
of oscillations at larger times is in fact processed as correct information and can be treated as evidence for vanishing
fB (depending on the saturation value of the singlet probability), yielding (i) an estimate with both very small ⟨fB⟩
and σf and (ii) a relatively quick divergence of ti during the estimation, as indeed seen in Fig. S5(e).

A straightforward improvement in the estimation scheme would be to modify Eq. (3) of the main text by adding a
phenomenological dephasing time T2 as follows

Pfinal (fB) ∝ P0 (fB)
N∏

i=1

[
1 +mi

(
α+ β e−ti/T2 cos (2πfBti)

)]
. (S.2)

The exponential factor will decrease the weight of the information gained at longer separation times, thus taking into
account the decoherence of the qubit.

Residual exchange coupling. The relatively high number of data points in the lowest frequency bin could also
be partly attributed to a non-vanishing field along the z-axis of the qubit Bloch sphere at the sensing point deep in
the (1, 1) region, due to residual exchange coupling. When the magnitude of the Overhauser field gradient becomes
comparable to or smaller than the instantaneous exchange splitting, i.e., hfB <∼ J(ε), then the free-induction decay
precession on the Bloch sphere will no longer let the qubit evolve approximately along a meridian from the north pole
(singlet) to the south pole (triplet) and back, but rather only partly reach the triplet state. This will thus bias the
measurement outcomes towards more singlets in this low-Overhauser-field limit. Since the likelihood function we use
for the Bayesian update assumes the rotations to be along the x-axis and thus does not account for residual exchange
coupling, the bias towards more measured singlets results in a bias towards believing that the qubit does not rotate
at all, thus contributing to confidence that the frequency is zero. As the Overhauser field becomes larger this biasing
effect becomes less and less pronounced.

The residual exchange may be reduced by reducing the tunnel coupling between the two dots during FID. Alter-
natively, the estimation protocol could be modified by considering the residual exchange when the qubit frequency is
estimated.

Gaussian approximation. The way we convert each final posterior distribution to a Gaussian, as input for
the physics-informed evolution of the distribution, can contribute to artificial narrowing of the distribution for small
⟨fB⟩. Indeed, an underlying probability distribution for fB that has significant weight at both positive and negative
frequencies will yield a distribution for |fB | on the quantum controller that is in fact narrowed, up to a factor 2.
The σf extracted as input for the FP evolution can thus be smaller than the actual uncertainty in the underlying
distribution, and this artificial reduction will contribute to the bias toward small {⟨fB⟩, σf} as described above.

For future experiments, one could try to derive an improved version of the FP equation, that takes the indiscernibility
of the sign of fB into account, not producing artificial narrowing of σ for small frequencies. However, one can argue
that for any practical purpose (e.g., using the Overhauser gradient as a coherent control axis) the regime of very small
fB should be avoided anyway, and the pragmatic way to mitigate this issue is thus simply to discard estimations that
yield an ⟨fB⟩ below some user-defined threshold. We note that this “sign problem” also plays a role in the numerical
simulations we performed, in contrast to the qubit dephasing and residual exchange coupling discussed above, which
we set to be absent in the simulations.

Numerical errors on the quantum controller hardware

Finally, we note that in some cases σi becomes sufficiently small or large to cause errors on the FPGA-powered
quantum controller, because of its available numerical accuracy, leading to presumably incorrect estimations. In
Figure S6 we show two examples of unexpected behavior during an estimation that we attribute to an error on the
quantum controller. In (a,c) we show in the right panel the final distributions of the two estimations as stored on
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FIG. S6. Examples of potential numerical errors. (a) (left) Reconstructed (by post processing) Bayesian update of
a distribution that becomes multi modal. (right) The corresponding experimental posterior as computed on the quantum
controller. (b) Sensing time and standard deviation for every single-shot outcome in the estimation run. (c) (left) Reconstructed
Bayesian update of a distribution that remains almost unchanged during estimation. (right) The corresponding final posterior
as computed on the quantum controller. (d) sensing time and standard deviation for every single-shot outcome in the estimation
run.

the quantum controller and in the left panel we present the reconstructed evolution of the distribution during the
estimation, as explained above. In (b,d) we show the corresponding series of ti and σi during the estimation, resulting
from the reconstruction. In dataset A [Fig S6(a,b)] we see that the sensing time ti suddenly jumps to a large value
(≈ 200 ns) and then drops back again to a very small value (≈ 1 ns). This results in a posterior that has many
peaks, due to the rapid oscillation of the likelihood function P (mi|fB) when ti is large. When waiting 20ms between
estimations, such upward jumps in ti over 100 ns happen for 30% of estimations. In dataset B [Fig S6(c,d)] the sensing
time [Fig S6(d)] almost does not change at all from 1ns so that the final posterior distribution is almost equal to the
initial prior distribution. This seems to happen much less frequently, with only about 1% of estimations (with 20ms
waiting time between estimations) having values of ti that are all smaller than 5 ns. We note that in both datasets
the final distributions end up having relatively large variances. When the waiting time in between estimations is 1ms
or 5ms, the only instances where ti suddenly jumps up is when the standard deviation is very low, and there are no
estimations where ti are all smaller than 5 ns.

It is only in the Top = 20ms case where the starting standard deviation at each estimation is above 8.9MHz,
indicating that numerical overflows are the likely cause. Indeed, overflow errors in the quantum controller are expected
to happen for variances outside the range of standard deviations 1/(8

√
10)MHz ≈ 40 kHz < σ <

√
80MHz ≈ 8.9MHz.

However, the adaptive separation times produced during overflow errors are not retrievable through post-processing,
preventing a definitive attribution of these errors to the aforementioned overflow issues. Nevertheless, for the two
examples depicted in the figures above, we observe that the reconstructed standard deviations (which are in good
agreement with the final posterior standard deviations found by the quantum controller) are greater than the 8.94MHz
threshold capable of causing the quantum controller to overflow.

A possible solution for future works when evaluating the standard deviation on the FPGA is to count the number
of zeros in the mantissa of the fixed point number [limited to the range [−8, 8)] and choose a different conversion
factor accordingly, at the expense of added program complexity.
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