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Nonlocal Gravity, Dark Energy and Conformal Symmetry Claudio Coriano

1. Introduction

Conformal symmetry and its back-reaction on gravity is expected to play an important role in
the physics of the early universe. It has been discussed in the context of General Relativity and
semiclassical gravity in several works (see for instance [1-4]). Indeed, modifications of General
Relativity derived by integrating out conformal sectors in an external gravitational metric induce
a conformal back-reaction on the same metric via the trace anomaly. These corrections take the
form of nonlocal actions that can be tested in their consistency, as we are going to show, using
the formalism of Conformal Ward identities (CWIs) in perturbation theory, by free field theory
realizations, order by order in the gravitational fluctuations around flat space. Such nonlocal actions
allow to address the dark energy problem in a dynamical way, very differently from the minimal
approach implemented in the standard cosmological ACDM model. This is phenomenologically
characterised by the inclusion of a cosmological constant (A) in the Einstein-Hilbert action, which
is the simplest answer to the late time acceleration of our universe, but it underscores a huge
hierarchy problem, according to current data. Future experiments may find out that A, after all, is
not a constant, opening the way to alternative solutions. However, quantum anomalies may come
to a rescue.

In this work, we aim to provide a brief overview of recent findings regarding the consistency of
anomaly-induced actions (AIAs). These actions are expected to capture the anomalous content and
are derived as variational solutions of the anomaly constraint. As such, they play a key role in the
study of a conformal back-reaction. We subject these AIAs to a rigorous test by examining the
hierarchy of equations for semiclassical correlators obtained when they are expanded around flat
space.

Our analysis focuses on a specific 4-point function whose structure has been thoroughly investigated.
Through a free field theory approach, we demonstrate that diffeomorphism invariance in flat space
proves the presence of Weyl-invariant terms in the anomalous hierarchy. These contributions are
accompanied by the ordinary "anomaly pole parts", formerly identified in 3-point functions (e.g.
in the TTT and TJJ), connected with the presence of RO~! contributions in the anomaly effective
action. We are going to illustrate this point in Section 4.4.

On the variational side, we investigate two forms of the nonlocal action, computed in the Riegert
(R) and Fradkin-Vilkovisky (FV) gauges respectively, showing that both actions do not reproduce
the expected hierarchy found perturbatively for the same correlator (the 77'JJ). We focus on two
hierarchies, the one induced by diffeomorphysim invariance and the one generated by the trace
anomaly constraint.

We are going to show the presence of double poles in the expansion of the AIA in the R-gauge,
while in the FV-gauge the trace Ward identity is manifestly violated. The presence of Weyl-invariant
terms in the perturbative expansion and the decomposition of the equations into two sub-hierarchies,
was already demonstrated in [5] through the analysis of the 4-graviton vertex (47), in a free field
theory investigation. Such terms are absent in 3-point functions. Indeed, two previous analyses
demonstrated agreement between the perturbative description of the TTT correlator [6] and the
prediction for the anomaly part of the same correlator computed using AlAs, as derived in the
R-gauge [7], as well as in the FV-gauge. This agreement stops at the level of 3-point functions.
The method that we apply relies on recent progress on the analysis of CFT in momentum space
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for tensor correlators for 3-point functions. The method, introduced in [8], has been extended to
free-field theories of 4-point functions in [5, 9] (see also [10]) and, more recently, to the parity-odd
case [11] for non-conserved currents. In [12] anomalous CP-odd correlators of chiral currents
(J5) with background gauge fields and gravitons, have been reconstructed by solving the conformal
constraints by the inclusion of an anomaly pole in their longitudinal chiral sector.

1.1 Anomalies, dark matter and dark energy

Chiral and conformal anomalies stand as potentially pivotal factors in unraveling the mysteries
of dark energy and dark matter within our universe.
Consider, for instance, the axion, currently one of the leading contenders for dark matter. Its
significance is underscored by its intricate association with a chiral anomaly inherent in the Peccei-
Quinn solution of the strong CP problem. Likewise, the tantalizing prospect that the conformal
anomaly might play a role in addressing the origin of dark energy is hinted at by the cosmological
constant itself. This constant, being a component of the trace of the stress-energy tensor, suggests a
deeper interplay between the fundamental aspects of spacetime geometry and the dominant energy
content that drives the evolution of the universe.
The trace anomaly extends this picture by rendering the origin of the trace of the gravitational stress
tensor dynamical, and relating it to conformal symmetry, rather than leaving it to a small constant
value.
Other issues, such as the asymmetry between matter and antimatter, as well as the origin of the
cosmological magnetic fields, may also be related to other anomalies.
Therefore, the idea that the dynamics of our universe be strongly associated with various types of
quantum anomalies, is not an extremal point of view, but simply recognizes the fact that some key
steps guiding its evolution are characterised by the breaking of some quantum symmetries. Other
symmetries, those related to gauge anomalies, are preserved, as indicated by the gauge stucture of
the Standard Model.
The investigation of these ideas from the grounds up, in order to make contact with phenomenology,
may follow a simplified path, such as the investigation of effective actions of various forms, and
relying on a methodology that is as close as possible to ordinary quantum field theory, leaving
gravity purely classical and treated as a background. This corresponds to a semiclassical gravity
approximation, but it allows to uncover some key aspects of the cosmological evolution that could
be tested in the near future. It also recognizes the fundamental role played by conformal symmetry
in the early stage of the cosmological evolution, no matter how simplified this approach might be.

2. Anomaly-induced actions

Conformal anomalies possess distinct features that render them more intricate compared to
chiral anomalies. This complexity arises from the inclusion of both topological and non-topological
terms in the anomaly functional. We recall that trace anomalies are linked with the emergence of a
parity-even anomaly functional, represented by

8uv (T = b1 E4 + by C*"P7 Cppypir + b3 V2R + by FFVF,,, (D)
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where C,,,,, denotes the Weyl tensor and E4 stands for the Gauss-Bonnet term:

1
C*P7 Cruvpor = R*"P7 Ryyper — 2RMY Ry + §R2, ®
Ey4= E =R"P Ruype — 4R* Ry + R%.

However, it was discovered by Christensen and Duff [13—16] on dimensional grounds and through
the requirement of covariance, that the structure of the trace anomaly in four dimensions can be
more general than (1) and constrained to the form

A =b; Es+by CﬂVpo-Cﬂvp(,—+b3 V2R+b4 FﬂvFﬂv+f1 S'UV'DO-RQﬁ/JVRagO-+f2 SMVpO-F”VFpa—, 3)

which encompasses both parity-even and parity-odd terms. The parity-odd terms were explored
in the action in [17] as potential sources of CP violation induced by gravity, offering a potential
resolution to a longstanding issue. Furthermore, their relationship with anomalies was central to
the study of the quantum inequivalence of different representations of antisymmetric tensor fields
coupled to gravity [18], [19]. Therefore, there are compelling reasons to investigate their signifi-
cance within a clear physical context, particularly in the early universe, where conformal symmetry
is anticipated to be fundamental.

Under parity inversion, all terms in the trace anomaly remain invariant except for the last two.
The parity of the FF term is odd, while for the RR term, it is not naturally defined in a curved
background. However, for both terms, we expect the coefficients to be real to maintain unitarity. It
is worth noting that FF ~ E - B is CP-odd as well as time reversal odd. Indeed, if we regard the
stress-energy tensor as a fundamental composite operator of the Standard Model (SM), the presence
of imaginary coefficients would jeopardize the theory’s consistency.

All coefficients in equation (1) have been computed in the parity-even case, and their values strictly
depend on the number and types of massless fields contributing to the perturbative quantum correc-
tions, yet they are real. The parity-odd case [12, 20, 21] has been discussed in the context of CFT
in momentum space in some recent works. In the following we are going to limit our discussion
only to the parity-even case.

2.1 The effective action in the parity-even sector

In this work we will focus on the parity-even sector. We look for an effective action that can
account for (1) from the flat spacetime limit with g,,,, = 6, + dg,, in the Euclidean case

_ S
S(g)p=S@)s+ Z 2 / ddxl cee ddxn V—81---V=&n <Tﬂ1V1 e T“"V">g35gp1v1 (x1) ... 5g,,nvn(xn)
n=1 ’
+ (gravity/photons terms) €))
expressed in terms of correlation functions of multi-graviton vertices (T#1”1 ... THr"n) defined in

a generic metric backgound g. They are evaluated by introducing a bare (B) Lagrangian containing
an arbitrary number of scalars, spin-1 and fermion fields. Other contributions, such as the mixed
photon/graviton vertices, have beeen not been explicitly displayed in (4).
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Figure 1: Examples diagrams in the perturbative realization of the 77'JJ with virtual fermions and scalars.

The bare effective action is renormalized by the inclusion of ordinary counterterms. These are
proportional to the Gauss-Bonnet term, the Weyl tensor squared and the square of the field strength
F?. The renormalized effective action satisfies anomalous conformal Ward identities which are
hierarchical.
Diagrammatically, the pure gravitational sector is identified, in free field theory realizations, by an
infinite sum of 1-loop diagrams labelled by an arbitrary number of external graviton lines. The
mixed sector, on the other end, will include contributions such as the 7TJ, TJJ and the TTJJ
correlation functions. Associated with this correlation function, that we will study in detail in free
field theory, are hierarchical costraints that take the form of CWIs (dilatation and special conformal)
together with those induced by diffeomorphsm invariance of the partition function. We are going to
show that the hierarchy associated with these second constraints, are not respected by the correlators
predicted by AIAs in flat space.
The TTJJ is the first correlation function that allows to test the consistencly between the conformal
anomaly effective action and the conformal constraints that it has to satisfy.
We are going to summarize the way this test is performed and identify the missing contributions
that are necessay in order to relate the two approaches, the perturbative one and the variational one.
The diagrammatic expansion of the (T7TJJ) for the fermionic and scalar cases are given in Fig.1.
In Dimensional Regularization (DR) the renormalized effective action is defined by the inclusion
of three counterterms

Zr(g) = N / D ¢~ 5080+ Vi (@d1+EV o (8.d)~Secount (8.4). 5)
where N is a normalization constant, € = d — 4, and

Vea (g, d) E,us/ déx =g C?,

©6)
Ve(g.d) =u° / d'x ZE,

In order to remove these divergences of the mixed graviton/gauge correlators we add to the
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action the counterterm

&

1
Scount(g’A) = _EVFZ(gs d) = _’u? Z I’l[/ ddx\/__g(ﬁc(l) F2) s (7)
I=f,s

corresponding to the field strength F? = FHVF v Where the coefficients S (1) refer to the scalar
and fermion contributions. The renormalized actions and vertices are extracted, ordinarily, from
the enormalized effective action

Sr = SO + Scount (8)

where the counterterms are purely gravitational and/or contain gauge fields. In the free field theory
realization, which allows to define a consistent framework for the analysis of the CWIs, the gauge
constraints and diffeomorphism invariance in the curved background, one can move a long way in
the analysis of such one-loop contributions to the effective action. The conservation/anomalous
contraints - on the currents and the stress energy tensors - by functional differentiation of S(g)r
can be extended to any order n of the expansion in the fluctuations. The CWIs take also a general
form for the entire hierarchy.

2.2 The TTJJ in free field theory

We will focus our attention on the case n = 4 and, specifically, on the TTJJ correlator, which
is more manageable compared to the 47, for being of lower tensor rank. The reason for moving to
4-point functions is that the disagreement between the inconsistency of the variational solutions of
the trace anomaly contraints start to emerge at this order. The analysis is performed by extending
a method of investigation of the CWIs developed in the context of CFT in momentum space. It
is well-known that for 3-point functions the conformal constraints are powerful enough to fix the
structure of such correlators, modulo few constants that depend on the spacetime dimensions.
Higher point functions need to be bootstrapped, an approach which, so far, has been investigated
mostly in coordinate space. The approach is based on the operator product expansion, and for this
reason it is rather inefficient as far as the analysis of the anomaly contributions are concerned, since
these come from regions where all the external points of the correlator coalesce in coordinate space.
Chiral and conformal anomaly contributions are easily captured in perturbation theory using the
usual diagrammatic Feynman expansion, arrested at one-loop. We allow free conformal field
theories of scalars, spin-1 and fermions to run in the corrections. In d = 4 spacetime dimensions
the general structure of the 3-point functions of correlators of stress energy tensors and/or/photons
is reproduced by a superposition of these three conformal sectors, each with arbitrary multiplicities.
This provides the simplest realization of the anomaly effective action, expanded in the external
fluctuations around flat space and in the presence of background photons. The structure of the
renormalized constraints, their hierarchical nature and the organization of the hierarchy in terms of
anomalous and non anomalous parts can be worked out explicitly.

We will review the case of the T7TJJ, a 4-point functions of gravitons and gauge fields, that allows
us to uncover the limitations of anomaly induced actions, solutions of (1).
The TTJJ correlator around flat space is extracted by taking four derivatives of the bare effective
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action Sp with respect to the metric and the gauge field, evaluated when the sources are turned off

5*Sp

H1V1 H2V2 H3 M4 -
(TH™ (x1) TH22 (x2) JH3 (x3) JH4 (x4)) = 4 Sems ) 58 (52) 6 (v2) 6 o) i

5, A=0

©)

The correlator is part of the general conformal anomaly effective action in the presence both
of a metric and of abelian gauge fields. The perturbative CWIs are organized in a way that allows
to identify two folds in the general hierarchy of the equations. Both folds/hierarchies are identified
by expanding the conformal constraints of the partition function order by order in the metric and
background gauge field fluctuations.

The symmetry constraints on Sg, induced by the coefficients of the expansion (4), take the form of
hierarchical Ward Identities (WIs). The conformal constraints, for instance, are linked to the Weyl
invariance of the renormalized effective action and its breaking. The derivation of the corresponding
WIs can be performed directly from either Sg or Sg, as demonstrated in [5, 7].
Recall that in a curved background, for a certain action S(g), Weyl invariance is expressed as a
symmetry of the form

S(g) =S(8) when gy, = guve*?. (10)

The relation between g and g defines a conformal decomposition, which remains valid under the
gauge transformation
g_>g62(r, ¢_)¢_0_’ (11)

where o (x) is a local shift. The renormalization of the quantum corrections, via the counterterms
above, breaks this symmetry. In the case of a flat background, one is essentially performing the
¢ — 0 limit of Sg after performing the metric variations, with the dilaton variation 6%5 replaced

by 28uv 5
In general, on the bare functional Sg(g), one derives the relation
0Sp
=4/- "), 12
5(]5()6) g g,uV < > ( )
and its invariance under Weyl transformations
Op8uv = 28uv09, (13)
and diffeomorphisms
6egﬂv = —V#EV - Vve,u, (14)
are summarized by the constraints
04Sp=0, 0.8=0, (15)

leading to trace and conservation conditions of the quantum averages of T#¥
(Tyy=0, V,(T*)=0. (16)

Ordinary trace and conservation WIs can be derived from the equations above by functional
differentiations of Sp(g) with respect to the background metric. As long as we stay away from
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d = 4 and include conformal fields in the classical action Sy, we have exact CWIs derived from
the condition of invariance of the generating functional Sp with respect to diffeomorphisms and
Weyl transformations. Anomalous CWIs are derived by replacing the effective action Sp with the
renormalized one Sg.

We proceed to discuss the derivation of the conformal and conservation Ward Identities (WIs) for
the correlator, illustrating its decomposition following the approach of [8] into a transverse traceless
sector, a longitudinal sector, and a trace sector. For our analysis, only the trace and conservation
WIs will be relevant.

Assuming that the generating functional of the theory is invariant under the action of certain
symmetry groups, the correlation function (TTJJ) satisfies

4
D Gola)) (T () TH2 (x2) I (x3) I (x4)) = 0, (17)
j=1

where G, represents the generators of infinitesimal symmetry transformations. These constraints
stem from the invariance of the generating functional under symmetry transformations:

SB[g/’A,] :SB[g’A]’ (18)

which can be equivalently expressed as

6Sp 6Ss
ddx( 0guv + —=0A%| =0. (19)
/ 6guy 1 SALTTH

Among these constraints, the conservation Ward Identity (WI) in flat space of the energy-momentum
tensor can be obtained by requiring the invariance of Sg[g, A] under diffeomorphisms x* —
x + e#(x), for which the variation of the metric and the gauge fields are the corresponding Lie
derivatives. In the case of a non-Abelian SU(N) gauge field AZ (a=1,2,...,N*—1), for instance,
we obtain

6AZ = —EaVaAz - ALV, (20)
0guv = —Vue, —Vye,. 21D

Inserting these variations into (19) and integrating by parts, we obtain the conservation WI:
Vi (THY) + (0HA® = 8V A%H) () + AYYV, (J) = 0. (22)

Similarly, the requirement of invariance under a gauge transformation with a parameter 6¢(x)
gives

OAL = 8,0% + g [P ALO", (23)
68y = 0. 24

The invariance of the generating functional under gauge transformations gives

V(M) = g fAPCAG (IPH) (25)
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Inserting this equation into (22) we obtain the conservation Wls
Vu (TH) + FARY (T3 =0, (26a)
Vi (T = g fUPCAL (1) = 0. (26b)
In the Abelian case, which is our focus, diffeomorphism and gauge invariance give the relations

Y, (THYY + Fpp, (JH) = 0, (27a)
V. (JHy =0. (27b)

2.3 A hierarchy from diffeomorphism invariance (4 — 3)

By functional differentiation of (27), we derive ordinary WIs for the various correlators in-
volving energy-momentum tensors and conserved currents. In the (T7JJ) case, after a Fourier
transform, we obtain the conservation equation

Py, (T (p0)TH (p2)J* (p3)J* (p4))
= [2 P2y, 6 (TN (py + pa)JH3 (p3)JH (pa)) — p2” (TH22(py + p2)J* (p3)J* (pa)) }

£

6! (“2p§2) (JH3(p1 + pa+ p3)JH (pa)) — 6" 28" py ) (JM (py + po + p3)J* (pa))

+

1 1
+ 55"3”'17341 (T (p1 + p3)TH" (p2)J* (ps)) — Ep? (J(p1+ p3)TH" (p2)J" (pa)) B e 4)]},
(28)

where the notation (3 < 4) means the exchange of the subscript 3 with 4, and the vector current
Ward identities

Pip T (p)TH (p2)J* (p3)J*(pa)) =0, i=3,4. (29)

In our conventions, all the momenta, in a given correlator, are incoming. Furthermore we consider
the invariance of the generating functional under Weyl transformations for which the fields transform
as in (13) and

6o Ay =0 30)
giving the naive trace Ward identity
guv (T*”) = 0. D
The functional differentiation of (31) gives the (non-anomalous) condition
Oy (THH (p)TH (p2)J*3 (p3)JH4 (pa)) = =2 (T*"* (p1 + p2)J* (p3)J* (pa)) . (32)

The analysis of the 3-point functions and their WIs/CWIs, in the 7JJ, has been investigated in
previous works, and are the first stepping stones in order to proceed with the current extension [22].
Renormalization will modify the equation above.
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3. Decomposition of the correlator

As previously noted, the (TTJJ) correlator can be systematically decomposed into transverse,
longitudinal, and trace components [8], leveraging their symmetries. The approach needs to be
extended to 4-point functions. This general strategy is that of expressing the operators 7" and J in
terms of their transverse traceless part and the longitudinal (local) components:

THYi(pi) = 17 (i) + 110 (pi), (33)
JHi(pi) = jH (pi) + j1 (P, (34)
where
1 (py) = T (po) TP (py), i (pi) = Zh2 (p) TP (pa), (35)
/Jl a; _ p pl ; ;
(pi) = 7oy (pi) J¥ (pi), Jre(pi) = p— JU(pi)- (36)

Here, we introduce the transverse-traceless (IT), transverse (), and longitudinal () projectors as

u
ki = ot - PP (37)
P
pr _ 1 L
Haﬁ 3 (ﬂ'aﬂ'ﬁ+ﬂ'ﬁ )— d—ln TTap> 38)
Hi Vi Vi e
vi _ PiBi i Hi Pia; Vi Pi P v (pi) i Vi i (pi)
Zf;;i = ’_.[258{ P? ) _ ﬁ (5#11’: +(d-2)— 21 )] + - l)l Oaipi = I(Z v Pig (d——l)l(saiﬁil
(39)

Utilizing these projectors, the correlator can be expressed as
(TR (p)TH" (p2) I (p3)J* (pa))
= (M (p1)f" (p2) j1° (p3) 4 (pa)) + (T (p1)1*2 7 (p2) J*° (P3) J* (Pa))ioe  (40)

where the transverse traceless sector satisfies the conditions

S vy (M ()22 (p2) j*2 (p3) j*4 (pa)) =0, i=1,2, 41)
P Y (p)t* 2 (p2) 2 (p3)j* (pa)) =0, i=1,...,4, (42)

and the contribution from the other sectors, collected in the local part, are expressed in the form

(0 (P12 (p2) 12 (P3) (Do) o = GHfy V2020 JH) 4 (T 1202 s ity — (gt 14422 e s

loc loc “loc
TV (pl) V2 (pz)
= [(Icl;ll”)lplﬁ] + @D ———bap 51125;;2 + I,uzvz Pap, + T Ll s, 5@:15;1
M (p1) 722 (py)
— (I(/;l”’lplﬁl (d 1) 6Q1B1) (I£2V2p2ﬁz (d 1) 6a2ﬁ2 <T(l]ﬁ]T(lzﬁ2J'u3Jy4> )

(43)

10
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The trace and longitudinal contributions, contained in the second term of (40) and explicitly
expressed in (43), are subject to the conservation WIs (28), (29), and (32). Consequently, the
undetermined portion of the correlator resides within its transverse-traceless (¢ j) sector, as the
remaining longitudinal and trace contributions - the local terms - are linked to lower point functions
through conservation and trace Wls. Hence, we can advance by examining the general decomposi-
tion of the transverse-traceless part {7z j) into a product of form factors and tensor structures.
Due to conditions (41) and (42), such a sector, utilizing the transverse and traceless projectors,
assumes the form

(1 (p1)1F272 (p2) 2 (p3) 4 (pa)) = T4 2 (p)TIET 2 (o)l (pa) s (pa) X Praafaenas,
(44)
where X ¥+ ¥ is a general rank six tensor constructed from products of metric tensors and momenta
with appropriate index selection. Notably, due to the presence of the projectors in (44), the terms
§%PBi i =1,2, or plf"', i=1,...,4, cannot serve as fundamental tensors and vectors for constructing
the X ¥ tensor. Additionally, the conservation of total momentum

pli+py +py+pli =0, (45)

permits the selection of a pair of momenta for each index «;, to be utilized in the general construction
of X. The parameterizaiton of X *'--* in terms of a minimal number of form factors is performed
is such a way that the momenta are treated symmetrically. This approach is efficient, reducing
the number of form factors to a minimum by exploiting the presence of a single ¢¢ projector
for each external momentum. Concerning the tensor structures formed from metric 6s, the only
non-vanishing ones in X 1% are:

6(1/161/2’ 6&'1(1/37 6(11(1’4’ 602(1/37 6(1/2&'4’ 6@3(14 (46)

alongside similar ones obtained by exchanging «; < B;, i = 1,2. This strategy, introduced in
[8] for 3-point functions and applied to 4-point functions in [5], will be elaborated upon in the
subsequent section to explicitly express the X “1--# expression in terms of the minimal number of
tensor structures and form factors, in general d dimensions [23].

3.1 Orbits of the permutations

The expression for X 1% relies on tensor structures and form factors, exploiting the symmetry
of the correlator. The (TTJJ) is characterised by two types of discrete symmetries related to the
permutation group: it must be symmetric under the exchange of the two gravitons (1 < 2), of
the two conserved J currents (3 <> 4), and the combination of both transformations. We denote
these transformations respectively as Py, P34, and Pc = P12P34. Notably, P, exchanges the pair
of indices of the two gravitons and the associated momenta, and analogously for the two currents
J’s. The tensorial structures in X -~ will be constructed by utilizing the metric tensors and the
momenta with a symmetric expansion in terms of different sets of independent momenta. Then, in
X @12 there are structures of four different types, depending on the number of metric tensors and
momenta used to saturate the number of free indices. We consider the general terms

800, 86pp, Spppp, PPPPPDs 47)

11
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Sector | # of tensor structures | # of orbits
660 3 2
o0pp 38 13
opppp 73 21
prpppp 36 11
Total 150 47

Table 1: Number of tensor structures and independent form factors in X -+ for the (TTJJ).

observing that these sectors do not mix when the permutation operator P;; is applied. This property
allows us to construct the general symmetric form of each sector separately.

As a first step, we determine the orbits of the P operators acting on the tensor structures belonging
to each tensorial sector (47). This can be achieved by applying all the P transformations to a tensor
structure and following the "trajectory" (orbits) in the sector generated by this process. For instance,
in the sector 60 pp, we encounter the two orbits

50231504,32]7“1‘0”3 _>P12 5011325@4,3117;’217;’3

P“T \ lpﬂ (48)

5B 5(lzﬁ2p ai 501[32502,81 p ‘lzp ay

S @ éﬁ]ﬁzp;%piu I;—lj> s rlz5ﬁlﬁng3pg4 . (49)
Py P34

In this way, we decompose every sector (47) into orbits. Every P transformation acts on an orbit
irreducibly, i.e. it connects every element on the orbit. The number of orbits for all the sectors
equals the number of independent form factors representing the correlator. In fact, a representative
can be selected for each orbit to which an independent form factor can then be associated. The orbit
provides a visual realization of the symmetry properties of the form factors that belong to it.

It is now clear that the study of the orbits of the tensor structures under the permutation group,
provides directly the answer about the minimal number of independent form factors that are needed
in order to describe the general solution of any 4-point correlator. This procedure can be simply
generalized to higher point correlation functions involving operators of any spin.

Once we identify and select representative of each orbit for every sector, then the general structure
of X@---® can be written down quite easily. In this way, we find that in d > 4 the general form of
X% related to (TTJJ) is written in terms of 47 independent form factors. This number reduces
significantly when d < 4 (see Table 1).

12



Nonlocal Gravity, Dark Energy and Conformal Symmetry Claudio Coriano

3.2 Degeneracies and Lovelock’s identities

In dimensions d < 5, the composition of X *'--* undergoes modifications due to the degen-
eracies present in the tensor structures [5, 24-26]. These degeneracies lead to a decrease in the
count of independent form factors, resulting in a notably simplified structure for the correlator.
Drawing from the insights outlined in [24, 25], it is established that every tensor in a d-dimensional
space corresponds to a fundamental tensor identity derived by antisymmetrizing over d + 1 indices.
Specifically, consider 7'21'_.“ bibi — g4 Lb1---b]

k — 7 lar...ar]
all of its indices, where A signifies an arbitrary number of additional lower and/or upper indices.

, representing a trace-free tensor across

Hence,
TA [b1...bg (5bl+l B 5b1+"] =0, (50)

[al,,,ak Ak+1 : Af+n)

where n > d —k -1+ 1andn > 0. In d = 4, the metric § loses its independence, allowing for a
new basis construction facilitated by the antisymmetric tensor €*!--#4 and three of the four external
momenta. This reduction is feasible when a correlation function in d dimensions includes at least
d — 1 independent external momenta. The resultant vector n* is transverse to pi, p2, p3, denoted
by n - p; = 0. Utilizing this new basis, termed the n-p basis, all tensorial structures defining the
correlation function can be constructed. In this basis, the metric tensor 6*” is expressed as

4
5ﬂvzz§:(z—1hinP;, (51)
i=1

where Z~! is the inverse of the Gram matrix Z = [P; - Pj]fszl and Pﬁ.‘ e {pt.p5, pk . n"}.
Specifically, the Gram matrix takes the form

p> pi-p2 pi-ps O
pi-p2 Py p2p3 O
pi-ps p2-ps  pi Of

0 0 0 n?

7 = (52)

where

: PPy nknY
14
oMY = § [(Pm P Pict - pie)) = (Pic1 - pj-D)(pist - Pjs) | == + —5— (53)
P n n

with the indices labelled mod-3. We show in Table 2 the number of tensor structures and independent
form factors in d = 4 with the n-p basis.

4. Renormalizing the hierarchy

In this section we are going to illustrate how the renormalization of the hierarchy works. The
transverse traceless sector manifests a divergence at d = 4 of the form 1 /¢, with € = d—4. We expect
that the form factors multiplying the tensorial structures with (28, 2p) and (36) are divergent. We
actually find, from the perturbative calculations, that the divergent part of the transverse traceless

13
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Sector | # of tensor structures | # of orbits
nnunpp 4 2
nnpppp 73 21
ppppPPP 36 11

Total 113 34

Table 2: Number of tensor structures and independent form factors in d = 4 with the n-p basis.

component is written, after some manipulation, as

MV iava sps pandiv _ pp(d-e) pvipr(d-e) pova _p3 s
(HrTgtaa ji g™ = H(llﬁl Hdzﬁz a3 ay

(e2 (4Ns + Ny)

. (0%
1272 ) {5a'“25ﬁ|ﬁzp34p43

46(11 02503(ﬁ2pﬁl) a4 + 45(11 (126(1;(1/4 (Blpfz) 46(11 (1/26(14(ﬁzpﬁl) s + 26(1/2(136(14ﬁzpﬂlp(ll + 26(11 (1/}6(14[31 BZPCVZ

2p4 p132601 @ gmas _ 2p4 pﬁléal 523 4 (g 3 +P2) [2501(04503)02(5,31,32 _ %501026/31,3250304} }’
(54)

where Ny and Ny indicate the the number of fermion and scalar families respectively, that are
arbitrary. The projectors I1 are expanded around d = 4 as

(4-¢) 4) € 2
HOllﬁI9 = l_lfll,li'll“VI B § 71#11’17.[(”,81 +0(&%) (55)

with I1®) the transverse traceless projectors defined in (38) with d = 4.
The counterterm vertex is

1
(THOATH g gy =~ Z Ni Be(D) V;;‘;VIHZ‘Q.US.UA& (P1, P2y P3s ), (56)
E
I=f.s
where
4 4 2
5" (V=g F?) (x) R
Vﬂ1V1#2V2M3M4(p1’pz’p3’p4) — 4/ ddx ddxk ele PjXj
F2 g 58;111/1 (xl)égpzvz(XZ)(SAm (X3)5A#4(X4) g6
(57)

is the fourth functionla derivatives of the Lagrangian density 1/4+/gF 2. From this counterterm we
can extract its transverse traceless part that can be written as

. . 4— 4
(R RV s ey H((”ﬁf)lllvl Hfzzﬁf)mvzﬂﬁz gi Z 2 Be(I) Ny {6“1 a 5P1B2 04p2t3
I=s f

_ 46(11 026(!3(,321)51)1)(14 + 4601 (1/25(!304p(,81pfz) 4601 025(!4(,321731)1)03 + 2602036(14,321)5117;11 + 26(/{1 036(!4,31pﬁ2p§1’2

_ 2]9'5]19?25”] a3 gmas _ 2]?4 p315m @ g@as (s _ p3 +p4) [2501(04503)025,31,32 _ 5501 025B1ﬁ25ma4} },

(58)
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where s = (p| + p2)?. The divergences are removed with the choices

2 2

e e
Be(fermion) = A (59)

96 2’

It is worth mentioning, as expected, that these are exactly the same choices that renormalize the

Be(scalar) =

2-point function (JJ) and 3-point function (T7J) as well as all the other n-point functions involving
two conserved currents.

4.1 Hierarchy of the counterterm contribution

Furthermore, the counterterm contribution satisfies a hierarchy of the form
Py <T/J1Vl (Pl )T'U2V2 (pZ)Jﬂs (p3)‘,ﬂ4 (p4)>c0unt =
) [2 P22, 8" 12 (M (1 + P2 (93)I (Pa)) coum = 2" (T (P14 P2) I (P2 (D)) corns ]

.

6" (“2p§2) (T (p1 + P2+ P3)T* (Pa)) count — 0" 28" ps3 . (JY (p1 + P2 + P3)I* (P4)) count

1 1
+ 55"3“17341 T (p1 + p3)TH (p2)I* (P4)) count — EP? (B (p1+ p3)TH"2 (p2)J* (P4)) count | + | (3 & 4)} }
(60)
generated by diffeomorphism invariance, where
DI D =| = D 2D Ny | [t g OFD) ) gipyervipess
count e ¢ O A (x3)0A 4, (x4)
4
=|- Z —Bc(I) Ny [5"”‘4(173 - pa) = pl Py (61)
I=s,f €
is the counterterm 2-point function of two photons when p3 = —p4. It is the counterterm of the

photon self-energy at one-loop with intermediate scalars and fermions, as clear from the sum over
s and f present in the equation above. The counterterm above renormalizes the 2-point function
(JJ), perturbatively expressed as

ez 2(d—2)Nf+Ns
(4m)> (d-1)

(JH3 (=pa)JH4(pa)) = §HH p — phEpht | Bo(p3), (62)

with By( pi) denoting the scalar (bubble) 2-point function, where the divergent part is extracted in
DR as

e? 4N ¢ + Ny

JH3 (=p ) JH4 e
=PI (P)any = 57—

§HIH p - pfﬁpﬁ:“] : (63)

Notice that the anomaly is generated by the trace of the counterterm due to the relation

5,“1/, (T“lVl (pl)Tﬂzvz (PZ)JM (p3)Jﬂ4(p4)>count _

=2[vg F?)"*"" " (pa, p3, pa) = 2 (T*2(p1 + p2)J* (p3)I* (P4)) count - (64)
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The equations above clarifies the way the renormalization of the hierarchy occurs. By tracing the
counterterm of the 77'JJ we generate an anomaly contribution, corresponding to the first term on
the rhs, together with the counterterm of the 3-point function 7'JJ, recursively. Having identified
the anomalous conservation and trace WIs satisfied by the correlator, the renormalization of the TJJ
in the hierarchy is ensured by the presence of the corresponding counterm, with its renormalized
epxression given by

(T (p)I*E (p3)I* (P4)Y Ren = (TH (p1)I* (p3)TH4 (P4)) pin + (TH (PIH (p3)IH (P4)) anom
(65)

where the first contribution on the rhs is the finite expression at d = 4, while its anomaly contribution
is given by

M1V 3M4
T () I () I Do = 3, Bel) P[] (s p). (66)
I=s,f

4.2 The reconstruction of the renormalized 77.JJ and the trace anomaly

The renormalized correlator is given by

(TH™ (p1)TH2 (p2) I (p3)JH (Pa)) Ren =
= ((T””V' (p)TH"2 (p2)J*3 (p3)JH4 (pa)) +(TH™ (p1)TH"2 (p2) I3 (p3) I (P4)) count )d_>4

= (THY (p) T (p2) ¥ (p3) I (pa)) fin + (T (p1)TH" (p2)J* (p3) I (P4)) anom » (67)

where the bare correlator and the counterterm are re-expressed in terms of a finite renormalized
correlator not contributing to the trace Ward identity, and a second part which accounts for the trace
anomaly.

Obviously, the renormalization procedure involves also an analysis of the local sector, as clear from
the reconstruction given in (43). An example is

HiVigruo vy Tu3 TH4 — MV vy U3 pH4 Vi vy TU3 TH4
<tl()c T S >Ren_(<tl()c T S >div+<tloc T SRS >count

—4
(d=4)
fin

(d=4)
anom’

+ <t;lolcw TH2V2 JH3 J.u4>

— <tﬁ;lcw TH2V2 JH3 JHs (68)
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where

<t#1"l TIJ2V2JH3J#4>(d:4) —

loc anom
ded s (,uznvz)/h(pl +p2) \ 722 (py + pa) \
= fBc {fél Jpm [2 P22, 3 [F2)°" (p3, pa) = p2™ —s [F2]"°" (p3. pa)
71./121/2 2) 2
+ %(5“3“11)341 [F2]™ (1 + 3. pa) — p5 |[F2]7 (p1 +p3,p4))
71-,“21’2( 2) Y 1
Tp 5 paa [F2 ™ (p1+ pasps) = pg [F?)™ (3, p1 + pa)

a1 (py) ©H272(py + p2)

-2
3 3

: a1 (py)
[F2]"" (p3, pa) + 2= [Vg F2)"*"" (py, p3, pa) |,

(69)

Combining all these expressions, we identify a renormalized hierarchy stemming from diffeomor-
phism invariance. This hierarchy splits into two distinct contributions: one adhering to an ordinary
hierarchy and the other constituting the anomalous hierarchy, which consists of two parts. The first
part of this anomalous hierarchy corresponds to a traceless correlator, referred to as the "O-residue
term". The second part, termed the "anomaly pole contribution", is structured around Fourier
transforms of RO~! operators, which in flat space are directly proportional to 7 projectors. Both
hierarchies satisfy diffeomorphism invariance.

4.3 The anomalous hierarchy

Let’s now focus on the anomalous hierarchy. The correlator that identifies the hierarchical
equations is organised in the form

d=4) _ /v (d=4) y723% (d=4) V] oV (d=4)
(THIVITH2Y2 JH3 T4y El nm)l — <tlolclTquz JHs Jﬂ4>anom + (TH t! Ozcz JHs J'u4>anom _ <tl olcl t Ozcz JH J#4>an0m

= <T#1V1 Tﬂzvz]ﬂ3‘]#4>0—residue + <T.u1V1 TM2V2Jﬂ3J#4>pOle . (70)

which are the two contributions mentioned above. Notice that the "O-residue" part

<T#1V1 TMVZJMJM)O—residue —

= 2 1
= B¢ {Iéld 4)#1V1Hﬁ§;22 (_ pz,h(smmﬂﬁz/h(l?l +po) — §pzm’.l.afzﬁz(p] +p2)) [lemm (p3, p4)

3
(d=4) povayym1vi 2 aja . B 1 @y 1P 2 H3H4
+ 1o, Mo (3 1 0777 (P14 p2) = 3p1 @ 2™ (p1+ p2) | [F2]7 (p3, pa)
(d=4) w1 7(d=4) 2 caas 7 (py + pa) [ 0]k
+Im I(tg 0! P2y pZﬂzf [F ] (p3, p4) s (71)

corresponds to a Weyl invariant contribution, for being traceless with the property

6#:"’[ <T/JIVI T#2V2J#3J”4>O—residue = O’ (72)
(73)
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but plays an essential role in order for the anomalous part of the correlator (TH1TH2V2 JH3 JHa) -
to respect the correct WI from diffeomorphism invariance. Indeed, such term is non homogenous
and contributes to the longitudinal sector

Pl <Tﬂ1 V! Tﬂzvz]”3']ﬂ4>0—residue =

2 1
= pBc {H/CZ}Z (— P2, 8" PN (py + po) - 3 P2 P2 (py + Pz)) [F2]"°" (p3. pa)

3
/11/12(
T p1+p2) M3
+ 6" poa, pia, — 5 [F2] (p3 P4)},
ULV T2V TH3 TH4 via 77/11/12(171 +p2) o | H3H4
Pl P2u, (T T JBT >O—residue =pBc {0 P2a, PZAzf [F ] (p3.p4) ;-

(714)

The renormlization of 3-point functions has so far shown, in all the previous analysis mentioned
above that the anomalous W1Is are directly linked to "anomaly poles", extracted from the longitudinal
projector 7, in the form

1
™ (p) = ?7?’” AHY = pgh” — ptp” (75)

with 1/p?, the pole, turning into a 0! term in coordinate space. One can verify by a lengthy
evaluation that the pole part that

MLV Hav2 +
<T,u1v1 TﬂszJﬂ3jﬂ4>pole = ,BC {2# ([\/g Fz]umﬂsm (pz,p3,p4) - # [F2]mll4 (P3,P4))

3

11V V2 314
+2 0 3(]71) us 3(p2) [FZ]# K (p3’p4)} (76)

T2 v +
+2—3(p2) ([\/?Fz]mvmw(m,pa,m) TR e (p3’p4))

satisfies the correct expression of the trace hierarchy

P1+Pp2)

e ﬂﬂjvj(
Spuavy (THMTH2JI G e = 2Bc ([\/EFZ]“’V’M”“(pj,ps,m) - 3 [F2]7°" (3, pa) |,

(77)

but not the conservation WI hierarchy, generated by requiring diffeomorphism invariance, since

2 Hivi i e
pﬂi <T#1V1TH2V2_]H3JIJ4>pole = M piui ([\/ng]ﬂlVIMIM(pi,pg,p;;)
i (py+ pa) ¢ oaqmama
—— = |F[ s , 78
3 [F?]7"™ (p3, pa) (78)
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differs from the correct expression of the hierarchy that is expected to be satisfied by the anomalous
sector

Py <T'UIV1 (pl)T'u2V2 (pZ)J'U3 (p3)‘,ﬂ4 (p4)>an0m =

) [2 P24, 6" 2 (TN (py + p2)J* (p3) I (Pa)) anom — P2 {T*"> (1 + p2)I* (P3)I* (P4)) anom ]

6H3VIP3/I| <J/ll (P1 +P3)T”2V2(P2)JM (p4)>anom - P;l <Jﬂ3 (p1+ p3)Tﬂ2V2(p2)1”4(p4)>anom

(79)

d

The perturbative analysis of the conservation WI provides the template that the AIA should respect,
since (TH1™ (p1)TH2"2(p2)J*3 (p3)J*(P4)) anom contains naturally, in the perturbative diagram-
matic expansion both the 0 — residue term and the pole part.

4.4 The anomaly-pole structure of the 77T

We show in Fig. (2) a pictorial description of the structure of the anomalous part of the 777T. In
this case, as already mentioned in the Introduction, there are no missing Weyl-invariant terms in the
hierarchy of this 3-point function. The anomalous hierarchies of this correlator, either built around
diffeomorphism invariance, special conformal invariance or dilatation invariance, are consistently
defined and are described pictorially in this figure. The dashed external lines in the figure symbolize
the insertion of external 7#” projectors, from which we have extracted an anomaly pole (1/p?).
These contributions, in coordinate space, indicate insertions of a RWa~! bilinear vertex on the
external lines, coupled to derivatives of the anomaly functional, with R(!) denoting the linearized
scalar curvature. By tracing the indices of each of these transverse projectors we obtain a trace
contribution. The anomaly functional is therefore reinterpreted as the residue at the 1/p? pole once
we trace the indices of the projector. A "O-residue” term, as we have defined it, is therefore deprived
of such external projectors. The projectors are linked to trilinear vertices contructed by functional
derivatives of the anomaly functional. We have

(T(p )T 2 (p2) T (53)) ) = (A4LETF22H5%3 (pa, p3) + 4[C1H272H2% (py, f3) (80)
(T(p))T(p2)TH (53)) 4 = Sanp, (ALE] WP (py, p3) + 4[CH P33 (s, 3))

T(PO)T(P)T(53))sr! = SayprOarsps (ALE) P20 (py, p3) +4[CH 2203 (py, j53))
(81)

where we have denoted by [E]#22#33 and [C?]*22#373 the second functional derivatives of the

Gauss Bonnet tensor E and of the Weyl tensor squared C. The anomaly part, in the case of the

19

+

ool



Nonlocal Gravity, Dark Energy and Conformal Symmetry Claudio Coriano

(@)
Figure 2: Anomaly interactions mediated by the exchange of one, two or three poles in the 3-graviton vertex.

They account for 77T, and there are no Weyl-invariant terms to be included. The same vertex is predicted
by the AlAs.

TTT, is only given by the pole terms

AHIVI
(T (p)TH2 (p2)TH (p3))an = %(T(m)ﬂ‘m (p2)T*"*(p3))an
1
TH2Y2 AH3V3
+ —(sz) (T (p)T (p2)TH (p3))an + #(TW1 (p)TH"2 (p)T (P3))an
3p2 3]73
AR (py)AH22 . RH2 (Do) AH3V3 .
- p])2 3 2) (T(p)T(p2)TH"(p3))an = p2)2 5 (p2) (THY (p)T (p2)T(P3))an
9p1p2 9p2p3
AH AVI(H AH fH22 ABVI(H _
9pip;3 21pip;pr;s
(82)

The consistency between this anomaly part of the 777 correlator and the anomalous part of the
hierarchy obtained by the corresponding pertturbative analysis of the T7TT has been shown in
previous works [7].

4.5 AlAs

Now, we move our focus towards an examination of the 77TJJ correlator computed by the
functional differentiation of anomaly-induced actions.
We represent the functional denoted by S4[g] as the integration of the trace anomaly

0 Salgl

2 _ e
Y g (X)

=\=g|bC*+b'E + B¢ F?|. (83)

This functional arises from a Weyl rescaling of the metric, g, (x) = e29) Zuv(x), leading to

Salgl = S[gl +AS[o. 8], (84)
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such that its conformal variation

6Salgl _ 6Salel
" 5g,uv(x) op(x)

_9(ASle.2])
ey 0800
_erg

(85)

:ﬁ[bcz+b'E+,8cF2

g=e2%g

represents the anomaly. The approach is well-known and has been reviewed in [10]. After
integrating (85) along a path ¢(x, 1) = 1 ¢(x) with 0 > A > 1, we obtain the explicit expression for

AS as
S[o.7] /d4/ 1 814S19.81)
S PP

/d4 / d/l[ (bC2+b E+ﬁcF2)} B(x). (86)
g=e2¢(x. 0 g

Following the integration, AS can be expressed as
- _ 2 - _
Sle. gl =b' / d*x[-g [2 ¢ Asgp + (E - §E|R)¢ + / d*x \/—g-[b C*+ Bc F2]¢, (87)

except for terms independent of o, i.e., conformally invariant terms, which do not contribute to the

0d(x, 1)
o

variation (85). In (87), we introduce the fourth-order operator A4 as

2 2 1
As=V, (V"V" +2R" ~ IR g’“’) Vy =P+ 2RV, Y, - SRO+ S VIRV, (88)

To derive a nonlocal form of the anomaly-induced action, one can impose a condition y(g) = 0,
ensuring the satisfaction of y(ge™??) = 0. From this condition, we solve for ¢ in terms of a
function of the metric, mainly ¢ = £(g), yielding

_ _ o
uv =€ 22(8) 8uvs gaﬁé_guv[g] =0. (39)
gaﬁ
Thus, the conformal decomposition is expressed as

S[gl = S[g] +Salg. =(g)] (90)

Salg,2(2)] = /d4x\/_[ (E—%DR)E+(Z)C2+,8CF2)E 2b’ 2A42] 1)

where S[g] and Sa[g, Z(g)] represent its conformal-invariant and anomalous parts, respectively.
There exist two distinct exactly solvable conformal choices in 4D, in which the gauge parameter
2(g) can be calculated in a closed form as a functional of g. They are discussed in [27]. One arises
from Fradkin and Vilkovisky (FV) [28]

xrv(g) = R(g) (92)
with

1
Ypy = —1In 1+8(|:|—R/6)_1R (93)
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where (0—R/6)~! denotes the inverse of the operator 0— R /6, playing the role of the corresponding
Faddeev-Popov operator. Another choice arises from Riegert [29] with

xr(8) = E() -~ 0R() o)

for which
1 —1 2
XR = 1 (A4) (E —30 R) , 95)

where (A4)~! represents the inverse of the operator in (88). A direct analysis of the T7JJ shows
that the hierarchy derived in the Riegert gauge does not admit an ordinary Fourer transform to
momentum space without the inclusion of a regularization cutoff. This is due to the appearance of
double poles, while in the Fradkin-Vilkovisky gauge the correlator does not satisfy the correct trace
Ward identities.

It can be shown, though, that the correct expression of the anomalous hierarchy, for the TTJJ
correlator, can be obtained by varying the following functional

1 1
Son :—@/d“ /d“ NP =) RUY+ F2(=—] RY

anom 6 X x' 9 ( 8 x 00/ x x 00/ .\ x

1 1 1 1 1 n(1 (1)

+ d4.x”[F2 (_) Dl ’ (_) R(;;) - - F2 (_) R(/ - R ”

/ * DO xx/( )x DO X' x!" X 6 x DO xx’ X DO x!x" X

1
3

3 1 ) 2 ( 1 ) (1)}}
<R =] Fi|l=| R} (96)
* (DO xx’ ¥ Ho x’x" *

which has been identified by resorting to the perturbative analysis in flat space.

5. Conclusions

Conformal back-reaction stands as an important possibility in the framework of cosmological
models, wherein the trace of the stress-energy tensor driving the cosmological evolution is attributed
not to the conventional cosmological constant but rather to the trace anomaly, characterising the
breaking of Weyl invariance in the early universe. This analytical paradigm offers the possibility
of studying dark energy in a dynamical context. This perspective finds its expression in nonlocal
actions, commonly termed AIAs.

The expansion of these nonlocal actions around Minkowski space is anticipated to yield semiclas-
sical correlators subject to hierarchical Ward identities, intricately linked to both the anomalous
conformal symmetry and diffeomorphism invariance.

In our inquiry, we direct our attention to the hierarchical structures inherent in a specific 4-point
function, namely the 2-graviton-2-photon correlator (TTJJ), within the domain of free field theory.
Our focus lies particularly on unraveling the structural intricacies of its hierarchy stemming from
diffeomorphism invariance.

This hierarchy naturally partitions into an ordinary, non-anomalous component and an anoma-
lous counterpart. Leveraging recent approaches from CFT in momentum space, we extend these
techniques to the domain of 4-point functions, conducting a general classification of the tensorial
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structures and form factors residing within its transverse traceless sector. We demonstrate the split
of the TTJJ correlator’s hierarchy into both an ordinary and an anomalous part, both of which
respect the conservation Ward Identities stemming from diffeomorphism invariance. However, our
analysis unveils that the anomalous hierarchy does not reproduce the structure predicted by the
perturbative analysis. The free field theory approach shows that starting from 4-point functions,
some Weyl-invariant terms contributions are essential for ensuring its consistency.
It is still open the problem of how to render these AIAs consistent on general grounds. Since the
attention of the theory community on nonlocal variants of GR is significant [30, 31][32], AIAs may
provide an important link in order to relate nonlocal cosmologies to a fundamental symmetry such
as conformal symmety.
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