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We discuss the charge polarization in a generalized Rice-Mele model at arbitrary particle filling
per site as a model of charge ordered systems in one dimension. The model possesses neither the
conventional bond-centered inversion symmetry nor the one site translation symmetry alone, but
has combinations of these symmetries. We show that the charge polarization in the ground state
is quantized by the combined symmetry and is characterized solely by the filling. Especially, the
polarization can be 1/2 (mod 1) in the zero filling limit. Under the open boundary condition,
there exist excess charges accumulated near edges of the system irrespective of existence or absence
of edge modes. Correspondingly, we decompose the polarization into a bulk contribution and an
edge contribution, and numerically demonstrate that the polarization is dominated by the former
(latter) when the energy gap is large (small). We also discuss a simple generalization of our model
and examine absence/existence of a gapless edge mode protected by the inversion symmetry by
introducing intra unit cell and inter unit cell contributions of the charge polarization.

I. INTRODUCTION

An insulator can have polarization which characterizes
asymmetry of a charge configuration. A classical exam-
ple is the ionic insulator where positive point charges
and negative point charges are alternatively distributed.
Careful discussions are necessary for an appropriate def-
inition of the polarization even for such a simple system
under the periodic boundary condition. It is now widely
accepted that the polarization can well be described by
the Berry-Zak formula, which clarifies an intimate re-
lationship of the polarization to topology and symme-
try 1–6. The celebrated prototypical model of dipole
topological insulators is the Su-Schrieffer-Heeger (SSH)
model, where the hopping integral has a staggered mod-
ulation7–9. The polarization of the SSH model is quan-
tized by an inversion symmetry, and there have been ex-
tensive theoretical studies of the generalized SSH models
and many interesting properties have been clarified10–18.
Topological nature of the charge polarization is clearly
seen in charge pumping where a change of the polariza-
tion in an adiabatic cycle in a parameter space is quan-
tized by the Chern number19,20. Indeed, the Rice-Mele
(RM) model21 was experimentally realized in cold atoms
and the Thouless pumping was observed22–24. In this
way, the SSH and RM models are regarded as one of
the most important models in the context of topological
insulators.

The very basic physics behind the SSH and RM mod-
els is charge ordering due to the Peierls instability 25,26

as they were originally proposed for polyacetylene and
diatomic polymers7,8,21. A trimerized variant of the SSH
model was also studied with an application to the Peierls
system TTF-TCNQ8, although related models have been
discussed in relation to various systems such as engi-
neered materials and cold atoms14–18. In a general one-
dimensional metal with the Fermi wavenumer kF , the
charge susceptibility shows singularity at the wavenum-
ber Q = 2kF and the system has strong instability to-

ward a charge order. The Peierls phase transition and
charge orders have been discussed in both organic ma-
terials and inorganic materials, and there are a variety
of charge orders with different modulations Q 25,26. In
this context, the standard SSH and RM models corre-
spond to the simplest charge order with Q = π. In spite
of the extensive studies on the charge polarization, how-
ever, focus has been made mainly on this particular case
and polarizations for other charge orders with general Q-
vectors have not been well explored. Since there are a
lot of charge ordered one-dimensional materials25,26, it
is natural to consider generalization of the Q = π or-
der to Q = 2kF ̸= π orders. Such generalization may
be interesting also in the context of symmetry protected
topological phases beyond the non-interacting fermions.
For example, an S = 1/2 trimer spin chain exhibits a
1/3 magnetization plateau implying a uniquely gapped
ground state under a magnetic field, which can be re-
garded as a generalization of more familiar spin dimer
orders27–29. Modulated spin systems could have “charge
polarization” associated with the U(1) spin rotation sym-
metry similarly to charge ordered fermion systems30–34.

In this study, we investigate the charge polarization in
a generalized RM model with a wavenumber Q = 2kF
at arbitrary filling per site ν. The model has neither
the conventional bond-centered inversion symmetry nor
the one site translation symmetry, but has a combina-
tion of these symmetries. The combined symmetry leads
to quantization of the charge polarization, and it is in-
dependent of the parameters and determined solely by
the filling ν in presence of the symmetry. Especially,
the polarization can remain non-zero in the low density
limit ν → 0. We also discuss excess charges accumu-
lated near edges of the system under the open boundary
condition. Correspondingly, the polarization can be de-
composed into a bulk contribution and an edge contri-
bution. It is found that these two contributions depend
on parameters, while their sum remains constant under
the symmetry. Finally, we investigate effects of a phase
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shift in the modulation as a simple generalization of the
model, where we introduce the intra unit cell and inter
unit cell contributions of the charge polarization and ex-
amine absence/existence of gapless edge modes protected
by the inversion symmetry.

II. QUANTIZED CHARGE POLARIZATION
UNDER SYMMETRY

It is well known that a one dimensional fermion system
has the Peierls instability where the modulation period is
determined by the Fermi wavevector or equivalently the
particle density 25,26. In this study, we consider fermion
systems with a modulated hopping integral and a modu-
lated on-site potential as a toy model for charge ordered
insulators. Such a system can be described by a general-
ized Rice-Mele model for spinless fermions7–15,17,18,21,

H0 = −
∑
j

tj(c
†
jcj+1 + c†j+1cj) +

∑
j

∆jc
†
jcj , (1)

tj = t+ δ cos(Qj), ∆j = ∆cos(Qj), (2)

where the sites are labeled as j = 0, 1, 2, · · · , L− 1. The
modulation wavenumber is given by Q = 2πν, where
ν = N/L = p/q is the particle filling per site with N be-
ing the total number of fermions and p, q being coprime
integers (p fermions per q-site unit cell on average). The
system size is assumed to be an integer multiple of the
unit cell for both the periodic and open boundary con-
ditions, L = Lqq, and is taken to be L = 600 for nu-
merical calculations in this study. The modulation could
be induced by interactions or arise from different atom
species in real materials, but here (δ,∆) are model pa-
rameters of the system. Note that the modulation factor
cos(Qj) reduces to the conventional factor (−1)j at the
half-filling ν = 1/2. One can introduce a phase shift such
as cos(Q(j − j0)) with j0 = 1, 2, · · · , q − 1 for which the
corresponding Hamiltonian is related to the above H0 by
the j0-site translation (see Sec. IV). It is straightforward
to numerically calculate single-particle spectra of Eq. (1)
and there exists an energy gap ∆E between the N -th
and (N + 1)-th single-particle energy eigenvalues under
the periodic boundary condition as shown in Fig. 1. One
can add interactions such as Hint =

∑
ij Vijninj where

nj = c†jcj and Vij keeps the symmetry of the system. A
large part of our discussions including symmetry-based
arguments presented below is applicable also to interact-
ing systems, which will be important when one considers
bosonic particles and spin systems.

Let us discuss symmetry of the Hamiltonian (1) and
the resulting quantization of the charge polarization un-
der the periodic boundary condition. Obviously, nei-
ther the one site translation symmetry Tx nor the bond-
centered inversion symmetry I0 about the bond ⟨L− 1, 0⟩
alone is preserved for general Q when δ and ∆ are non-
zero. (⟨j, j + 1⟩ denotes the bond between the sites j
and j + 1.) However, one can see that appropriate com-

(a) (b)

FIG. 1. Numerical results of the energy gap at (a) δ = 0,∆ =
0.5t and (b) δ = 0.5t,∆ = 0 for the system under the periodic
boundary condition.

binations of these symmetries are preserved. Indeed, the
Hamiltonian is invariant under the combined symmetry
when either δ or ∆ is zero,

Ik = (Tx)
kI0 =

{
TxI0 (δ = 0,∆ ̸= 0),
T 2
x I0 (δ ̸= 0,∆ = 0).

(3)

Namely, the system has the I1-symmetry (which is the
site-centered inversion symmetry about the site j = 0)
when δ = 0 and I2-symmetry (which is the bond-centered
inversion symmetry about the bond ⟨0, 1⟩) when ∆ = 0.
This can easily be shown as follows. For the potential
term, I0njI

−1
0 = nL−j−1 and T k

xnjT
−k
x = nj+k, which

leads to T k
x I0

∑
cos(Qj)nj(T

k
x I0)

−1 =
∑

cos(Q(−j +
k − 1))nj . This implies Qj = Q(j − k + 1) in mod-
ulo 2π and hence k = 1 (mod q). For the hopping

term, I0c
†
jcj+1I

−1
0 = c†L−j−1cL−j−2 and therefore Qj =

Q(j − k + 2) in modulo 2π, implying k = 2 (mod q).
Note that the Ik-symmetry is just an inversion symmetry
about an appropriate site or bond translated by T k

x from
the original inversion center ⟨L− 1, 0⟩, but it turns out
that clearly regarding Ik-symmetry as a combined sym-
metry is highly helpful. The inversion center dependence
will be essentially important for a system under the open
boundary condition. A generalization for shifted modu-
lations and inversion center dependence will be discussed
in Sec. IV.
The combined symmetries can put strong constraints

on the charge polarization as in the standard SSH model
at half filling ν = 1/2 where it is quantized to either 0 or
1/2 by the bond-centered inversion symmetry I0. Here
we consider the charge polarization in the ground state
|Ψ⟩ based on the Resta formula which is equivalent to
the Berry-Zak formula in one dimension1,2,35,36,

Px =
1

2π
Im log ⟨Ψ|Ux |Ψ⟩ , (4)

Ux = exp

2π

L

∑
j

j(nj − ν)

 . (5)

The operator Ux is often called Lieb-Schultz-Mattis
twist operator 30–32,37–39 and its expectation value in a
uniquely gapped ground state is known to be | ⟨Ux⟩ | ≃ 1
in one dimension. This is because the energy of the vari-
ational state |Φ⟩ = Ux |Ψ⟩ converges to the ground state
energy in the thermodynamic limit and therefore |Φ⟩
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must be essentially proportional to the ground state with
a phase factor, |Φ⟩ ≃ ei2πPx |Ψ⟩, in a uniquely gapped
system. See also Appendix A. Thus the Resta formula
for the polarization is well-defined in one dimensional
uniquely gapped ground state, although the expectation
value is vanishing in the thermodynamic limit for general
dimensions and an appropriate modification is necessary
to resolve such a problem 40,41.

The Lieb-Schultz-Mattis operator behaves under the
symmetries as

I0UxI
−1
0 = U−1

x , (6)

TxUxT
−1
x = Uxe

−i2πν . (7)

This implies that, for the uniquely gapped ground state
|Ψ⟩ which is an eigenstate of the combined operator Ik,

e2πiPx = ⟨Ψ|Ux |Ψ⟩ = e2πikν ⟨Ψ|U†
x |Ψ⟩ = e2πi(kν−Px).

(8)

Therefore, the charge polarization is quantized as

2Px = kν (mod 1). (9)

Px has two kinds of branches, namely, Px = kν/2+n and
Px = −1/2 + kν/2 + n with n = 0,±1,±2, · · · as shown
in Fig. 2. For example, Px = +1/4 and Px = −1/4 at
ν = 1/2 for δ = 0 are inequivalent. Similarly, Px = 0 and
Px = 1/2 at ν = 1/2 for ∆ = 0 correspond to distinct
gapped states of the standard SSH model. We stress that
Eq. (9) is valid in presence of an interaction under the Ik-
symmetry as long as the total Hamiltonian also preserves
the symmetry and the many-body energy gap does not
close.

𝜈

𝑃𝑥

0

−
1

2

−1

1

2

1

1

4

11

2

3

4

(a)

𝜈

𝑃𝑥

0

−
1

2

−1

1

2

1

1

4

11

2

3

4

(b)

FIG. 2. The charge polarization quantized by (a) I1-
symmetry for δ = 0,∆ ̸= 0 and (b) I2-symmetry for δ ̸=
0,∆ = 0. The branches in the same color are equivalent,
while those with different colors are inequivalent. Only the
region −1 ≤ Px ≤ 1 is shown for simplicity.

Interestingly, the symmetry arguments claim that the
polarization is Px → 1/2 (mod 1) in the limit of zero-
filling per site, ν → 0, for the blue-colored branches in
Fig. 2. This may be counter-intuitive at first sight, but
it does not contradict thermodynamics because charge
polarization is not a thermodynamic quantity. The non-
thermodynamic nature of the charge polarization is evi-
dent in a gedankenexperiment where the polarization is
easily changed by an additional tiny amount of charges

put on a surface of a system. Formally, there is no healthy
thermodynamic limit under a uniform electric field as an
intensive quantity which is conjugate to the polarization,
because the energy cost due to the corresponding scalar
potential is super-extensive similarly to the orbital an-
gular momentum in superfluids42,43. Nevertheless, it is
widely considered that a fractional part of the polariza-
tion is an intrinsic or “bulk” quantity, and therefore one
might naively expect that it vanishes in the low den-
sity limit. This seemingly antagonistic problem can be
resolved once one realizes that the charge polarization
is not a standard thermodynamic observable but is a
kind of a center of mass of the particles. The symme-
try arguments simply mean that the center of mass in
the present system can be O(1) at ν = p/q → 0, where
there are p fermions in each q-site unit cell on average.
Indeed, a single particle can have an O(1) center of mass
in the unit cell of large q ≫ 1. This can be confirmed
by a straightforward calculation in the strong potential
limit |∆| ≫ t at δ = 0, where the Hamiltonian is re-
duced to H =

∑
∆cos(Qj)nj . The ground state of this

Hamiltonian is simply given by a classical configuration
of fermions which minimizes the potential ∆ cos(2πpj/q).
We suppose p = 1 and q ∈ 2Z for simplicity, and then one
fermion is localized at every j = 0 (mod q) in the ground
state when ∆ < 0. The polarization for this state is

Px =
1

2π
Im log exp

i
2π

L

Lq−1∑
k=0

kq − i
2π

L

L−1∑
j=0

jν


=

1

2

(
L

q
− 1

)
− 1

2q
(L− 1)

= −1

2
+

ν

2
(mod 1). (10)

Note that the L-linear terms cancel out in the present
charge neutral system, and the final result is fully con-
sistent with Eq. (9). Similarly, one fermion is located at
every j = q/2 (mod q) when ∆ > 0, and thus

Px =
ν

2
(mod 1). (11)

We stress that these results obtained in the limit |∆| →
∞ are valid for general ∆ as long as the energy gap does
not close as |∆| is decreased, because Px is quantized by
the Ik-symmetry.

The above symmetry arguments are easily confirmed
by numerical calculations. We examplify numerical re-
sults of the Resta formula in Fig. 3 (see Appendix B for
technical details). They are fully quantized and char-
acterized solely by the particle filling ν under the Ik-
symmetry in exact agreement with the symmetry ar-
guments. As was shown above, the two inequivalent
branches correspond to different signs of δ and ∆. The
red-colored branches correspond to ∆ > 0 in Fig. 3 (a)
and δ < 0 in (b), while blue-colored branches to ∆ < 0
in (a) and δ > 0 in (b).
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(a) (b)

FIG. 3. Numerical results of the charge polarization at (a)
δ = 0, |∆| = 0.5t and (b) |δ| = 0.5t,∆ = 0. The branches in
the same color are equivalent, while those with different colors
are inequivalent. Only the region −1 ≤ Px ≤ 1 is shown for
simplicity.

In general, both of δ and ∆ can be non-zero simulta-
neously. One can parameterize them as

δ(τ) = δ0 cos τ, (12)

∆(τ) = ∆0 sin τ. (13)

We consider charge pumping during an adiabatic cycle
τ = 0 → 2π. An example of the calculated polarization
in this process is shown in Fig. 4. The pumped charge
∆Q is quantized as

∆Q =

∫ 2π

0

dPx

dτ
dτ = 1, (14)

as expected from the general theory of the Thouless
pumping19,20. This is a straightforward generalization
of the Thouless pumping in the standard RM model at
ν = 1/2 to that at arbitrary filling.

0.0 0.2 0.4 0.6 0.8 1.0
/2

1.0

0.5

0.0

0.5

1.0

P x

FIG. 4. Numerical demonstration of the charge pumping at
δ0 = ∆0 = 0.5t calculated with the Resta formula for the
system under the periodic boundary condition. The filling is
ν = 3/10.

III. CHARGE POLARIZATION UNDER OPEN
BOUNDARY CONDITION

In this section, we consider the model Eq. (1) under
the open boundary condition where there is no hopping
between the sites j = L − 1 and j = 0. In the stan-
dard SSH model (δ ̸= 0,∆ = 0) at ν = 1/2, there can
be gapless edge modes thanks to the chiral symmetry,

but existence of such single-particle edge modes are not
generally guaranteed in a system only with point group
symmetry44,45. Similarly, there are no edge modes in the
present system at almost all filling except for some spe-
cial cases which will be discussed in Sec. IV. Nevertheless,
one may naively expect that there are extra charges accu-
mulated near edges of the system for a given filling. Here
we introduce excess charges over one unit cell (length q)
compared to the uniform background charges,

δnk =

(k+1)q−1∑
j=kq

(⟨nj⟩ − ν). (15)

Figure 5 shows examples of the fermion density profiles
⟨nj⟩ and the corresponding excess charges δnk. Clearly,
the excess charges vanish in the bulk region of the sys-
tem, although the fermion density itself oscillates with
the period q. This is a general property for a gapped pe-
riodic system which has unit cell translation symmetry.
There are excess edge charges localized around the ends

(a) (b)

(c) (d)

FIG. 5. The fermion particle density ⟨nj⟩ and the excess
charge δnk for (a), (b) δ = 0,∆ = 0.5t and (c), (d) δ =
0.5t,∆ = 0 for the system under the open boundary condition.
The filling is ν = 3/10. Note that ⟨nj⟩ and δnk are not
inversion symmetric since there is no inversion symmetry in
the system.

of the system and they are quantified as

Qleft =

ke∑
k=0

δnk, Qright =

Lq−1∑
k=Lq−1−ke

δnk. (16)

ke specifies an edge region and is chosen as ke = [Lq/4]
for numerical stability when the energy gap is small or
equivalently the correlation length is large. We can nu-
merically confirm Qleft +Qright = 0 holds because of the
charge neutrality in the entire system, although δnk itself
is not inversion symmetric. (Typically, |Qleft +Qright| =
O(10−8∼−7) for the system size L = 600.) Note that
the present excess edge charges are different from the
(smeared or weighted) edge charges widely discussed in
the literatures 1,2,5,33,34. The smeared edge charge ex-
actly equals the polarization by definition, while our ex-
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cess edge charge only partly contributes to the polariza-
tion as will be discussed in the following. Our excess
charge in the present lattice model would correspond to
the extra charge in Bloch electron systems discussed in
the previous study46.
Let us now discuss the polarization under the open

boundary condition. There will be contributions to the
polarization from the edge region with width O(1), when
the excess edge charges are non-zero. At the same time,
microscopic charge configuration within a unit cell will
also contribute to the polarization and such a contribu-
tion comes uniformly from a bulk region of the system.
Correspondingly, we introduce a bulk contribution and
an edge contribution under the open boundary condition
by decomposing the polarization operator. The polariza-
tion operator is given by

P̂x =
1

L

L−1∑
j=0

j(nj − ν) (17)

and it is well-defined under the open boundary condition.
For a state with the above mentioned charge configura-
tion, the expectaion value of this operator is simplified
as

⟨P̂x⟩ =
1

L

Lq−1∑
k=0

q−1∑
j=0

(kq + j)(⟨nkq+j⟩ − ν)

≃ 1

q

q−1∑
j=0

j(⟨nkq+j⟩ − ν)
∣∣
k≫1

+
1

L

∑
k≃0,Lq

kq

q−1∑
j=0

(⟨nkq+j⟩ − ν). (18)

Therefore, the expectation value of the polarization op-
erator is simply evaluated as

⟨P̂x⟩ ≃ Pbulk + Pedge, (19)

Pbulk =
1

q

jb+q−1∑
j=jb

j(⟨nj⟩ − ν), (20)

Pedge = (Qright −Qleft)/2. (21)

jb = nq(n ≫ 1) defines a bulk region and is chosen as
n = [Lq/4] in the numerical calculations. This is an
almost trivial decomposition and is valid for general sys-
tems with gapped bulk excitations, for which effects of
a boundary condition are exponentially localized only
around an edge. In such a system, the edge contribu-
tion can be evaluated under the periodic boundary con-
dition as Pedge = Px − Pbulk in modulo 1, where Px and
Pbulk are calculated under the periodic boundary condi-
tion (see also Sec. IV). Therefore, the excess edge charge
is regarded as an intrinsic quantity of the system, which
holds true not only in non-interacting models but also in
interacting models.

In Fig. 6, we examplify numerical results of the bulk
and edge contributions when one of δ and ∆ is zero.

Each of the contributions depends on the parameters,
but their sum remains constant and is quantized under
the Ik-symmetry. We numerically see that

⟨P̂x⟩ ≃ Pbulk + Pedge ≃ Px (mod 1), (22)

where Px is the polarization evaluated with use of the
Resta formula under the open boundary condition. Note
that Px under the open boundary condition numerically
coincides with the one under the periodic boundary con-
dition, which would be a general property as discussed in
Appendix C. We confirm that typical difference between
⟨P̂x⟩ , (Pbulk+Pedge), and Px is small (O(10−4∼−3) when
L = 600), and it decreases as the system size increases in
the numerical calculations. Although the total polariza-
tion is a quantized constant under the symmetry, each of
Pbulk and Pedge changes continuously with the parame-
ters. The bulk contribution decreases as the modulation
strength is reduced and approaches zero, Pbulk → 0, when
δ → 0 or ∆ → 0, because the system becomes a simple
metal with a uniform bulk charge density in that limit.
At the same time, the edge contribution increases and ap-
proaches the quantized value, which means that the ex-
cess edge chargesQleft/right become quantized in the weak
modulation limit under the Ik-symmetry. Similar quan-
tization was discussed previously, but the fundamental
difference is that the edge charges in the previous studies
are defined so that they are equal to the total polariza-
tion for any parameters1,2,5,33,34. In contrast to the weak
modulation limit, the total polarization is dominated by
the bulk contribution while the edge contribution is de-
creased when the modulation is large, because the system
is deep in an insulating regime. In the strong modula-
tion limit (|δ| → ∞ or |∆| → ∞), the edge contribution
vanishes, Pedge → 0. These behaviors are generally seen
except for special cases which will be discussed in the
next section.

(a) (b)

FIG. 6. The bulk (blue) and edge (red) contributions of the
charge polarization for (a) δ = 0 and (b)∆ = 0 for the system
under the open boundary condition. The filling is ν = 3/10.
The total polarization (green) is the numerical sum of these
two contributions.

IV. GENRALIZATION AND BULK-BOUNDARY
CORRESPONDENCE

The discussions on the model Eq. (1) in the previ-
ous sections can be generalized to some extent. In this
section, we discuss a simple generalization of the model
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when either δ or ∆ is zero and examine existence/absence
of gapless edge modes protected by the inversion symme-
try. We introduce a phase shift in the cosine term and
focus on a “commensurate” phase shift cos(Q(j − j0))
where j0 = 1, 2, · · · , q − 1 for the filling ν = p/q. This
modulation is also reduced to the standard staggered
factor (−1)j−j0 at the half filling ν = 1/2. Under the
periodic boundary condition, the Hamiltonian Hj0 with
cos(Q(j−j0)) is related to H0 with cos(Qj) by the j0-site
translation,

Hj0 = T j0
x H0T

−j0
x . (23)

This means that the Hamiltonian Hj0 has the Ik+2j0-
symmetry when H0 has the Ik-symmetry. Besides, the
energy spectra for these Hamiltonians are unitary equiva-
lent and especially the ground states are uniquely gapped
under the periodic boundary condition. Thanks to the
Ik+2j0-symmetry, the charge polarization is quantized as

2Px = (k + 2j0)ν (mod 1). (24)

This is a natural result for the potential ∆ cos(Q(j−j0)),
because the phase shift will change the positions of the
potential minima by j0 sites and correspondingly the cen-
ter of mass of the particles will move by j0ν to minimize
the ground state energy. Note that the Hamiltonian has
the q-site (one unit cell) translation symmetry and the
center of mass comes to the position which is equiva-
lent to the original position under the q-site translation.
A similar thing will take place for the system with the
phase shifted hopping modulation, although it is not easy
to provide an intuitive picture.

Under the open boundary condition where there is no
hopping integral on the bond ⟨L− 1, 0⟩, Eq. (23) does not
hold and the Hamiltonians Hj0 and H0 are not unitary
equivalent. In this case, we numerically find that the
energy spectrum of Hj0 becomes gapless at particular
filling ν = ν∗ implying existence of gapless edge modes
as shown in Fig. 7. Alternatively, existence or absence of
an gapless edge mode depends on the position of cutting
a bond of the system (setting the hopping integral to
zero) to realize an open boundary condition. The gap
closing takes place when the filling satisfies the condition

Px =
1

2
(mod 1), (25)

or equivalently (k/2 + j0)ν
∗ = 0, 1/2 (mod 1) depend-

ing on the parameters as shown in Fig. 8. This in-
cludes the well-known gapless edge mode in the topo-
logically non-trivial state of the SSH model at ν = 1/2
(δ < 0,∆ = 0, j0 = 0 in our model). It is easy to
see that, under this condition, the Hamiltonian Hj0 has
the conventional inversion symmetry I0 about the bond
⟨L− 1, 0⟩, I0Hj0I

−1
0 = Hj0 . In presence of this inver-

sion symmetry, the bulk contribution of the polarization

is zero, P bulk
x = (1/q)

∑L−jb−1
j=L−jb−q(L− 1− j)(⟨nj⟩ − ν) ≃

−P bulk
x ≃ 0, because the summation of (⟨nj⟩ − ν) over

one unit cell in the bulk should be exponentially small.

Therefore, Eq. (25) simply means Px = P edge
x = ±1/2,

which can be confirmed numerically as seen in Fig. 9.
Strictly speaking, the inversion symmetric ground states
under the open boundary condition are nearly degenerate
and Qleft = Qright = 0 for each state due to the inversion
symmetry and charge neutrality. P edge

x = ±1/2 should
be understood as either the limit ν ↗ ν∗ or ν ↘ ν∗.

(a) (b)

FIG. 7. Numerical results of the energy gap at (a) j0 = 1, δ =
0,∆ = 0.5t and (b) j0 = 2, δ = 0.5t,∆ = 0 for the system
under the open boundary condition. The gap closing takes
place at (a) ν∗ = 1/3 and (b) ν∗ = 1/4, 3/4.

(a) (b)

FIG. 8. Numerical results of the charge polarization at (a)
j0 = 1, δ = 0, |∆| = 0.5t and (b) j0 = 2, |δ| = 0.5t,∆ = 0
for the system under the open boundary condition. The solid
lines are drawn with an emphasis on the gap closing for the
eyes.

(a) (b)

FIG. 9. The bulk (blue) and edge (red) contributions of the
charge polarization for (a) j0 = 1, δ = 0,∆ = 0.5t and (b)j0 =
2, δ = 0.5t,∆ = 0 for the system under the open boundary
condition. The total polarization (green) is the numerical sum
of these two contributions. The bulk contribution vanishes
and Px = P edge

x = ±1/2 holds (a) at ν∗ = 1/3 and (b) ν∗ =
1/4, 3/4.

The above discussions are consistent with the gen-
eral argument for Bloch band systems in the previous
study46. Here, we provide a brief explanation of the bulk-
boundary correspondence based on the Resta formula for
the many-body (interacting) ground state. Similary to
Eq. (18), we decompose the Lieb-Schultz-Mattis opera-
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tor as Ux = UintraUinter, where

Uintra = ei2πP̂
intra
x , P̂ intra

x =
2π

Lq

Lq−1∑
k=0

1

q

q−1∑
l=0

l(nkq+l − ν),

(26)

Uinter = ei2πP̂
inter
x , P̂ inter

x =
2π

Lq

Lq−1∑
k=0

k

q−1∑
l=0

(nkq+l − ν).

(27)

We call them the intra unit cell contribution and inter
unit cell contribution, respectively. Note that the bond
⟨L− 1, 0⟩ is an inter unit cell bond under the periodic
boundary condition and the sites j = 0 and j = L − 1
are the edges under the open boundary condition in the
present study. The intra (inter) unit cell contribution
under the periodic boundary condition corresponds to
the bulk (edge) contribution Pbulk(Pedge) under the open
boundary condition. Indeed, it turns out that

Pintra = Pbulk, Pinter = Pedge, (28)

where Pa = arg ⟨Ψ|Ua |Ψ⟩ /2π(a = intra, inter), because
the intra unit cell contribution and the bulk contribution
have no fluctuations.

The variational energy is ⟨Φa|Hj0 |Φa⟩ = O(1/L)
for each of the states |Φa⟩ = Ua |Ψ⟩ simiarly to
the original Lieb-Schultz-Mattis operator 37,38. Cor-
respondingly, deviations of the variational states from
the uniquely gapped ground state under the periodic
boundary condition are || |δΨa⟩ ||2 = O(1/L) when writ-
ten as |Φa⟩ = ei2πPa |Ψ⟩ + |δΨa⟩ (see Appendix A).
The ground state is almost an eigenstate of Ua in this
sense, and thus the polarization is given by ⟨Ux⟩ =
⟨Uintra⟩ ⟨Uinter⟩ + O(1/L), where ⟨· · ·⟩ = ⟨Ψ| · · · |Ψ⟩.
An important point is that P̂ intra

x is a normalized ex-

tensive operator whose norm is O(1), although P̂ inter
x

is super-extensive with the norm O(L). As a re-
sult, there are no fluctuations of the intra unit cell
contribution and ⟨Uintra⟩ = ei2πPintra + O(1/L) ≃ 1

holds, because (∂/∂θ) ⟨Uintra(θ)⟩ = i ⟨P̂ intra
x ⟩ ⟨Uintra(θ)⟩+

i ⟨Ψ| P̂ intra
x |δΨintra⟩ = 0+O(1/

√
L) for the inversion sym-

metric ground state with ⟨P̂ intra
x ⟩ = 0, where Uintra(θ) =

eiθP̂
intra
x (see also Appendix B). On the other hand, there

can be non-negligible fluctuations for the inter unit cell
contribution, since P̂ inter

x is super-extensive. Therefore,
the charge polarization is dominated by the inter unit cell
contribution for the inversion symmetric uniquely gapped
ground state in the thermodynamic limit,

⟨Ux⟩ = ⟨Uinter⟩ , Px = Pinter. (29)

The inter unit cell Lieb-Schultz-Mattis operator has
been used in the previous study, where it was shown that
a non-trivial expectation value ⟨Uinter⟩ = −1 in the in-
version symmetric ground state (for an infinite system)
implies existence of a gapless edge state in presence of an
edge (for a semi-infinite system) 32,39. Roughly speaking,

a local variant of the inter unit cell Lieb-Schultz-Mattis
operator Uloc(x) was introduced to characterize nature of
a finite large region around a point x ∈ R, where its ex-
pectaion value is ±1 under the inversion symmetry. The
condition ⟨Uloc(x)⟩ = −1 for x in the bulk of the system
together with the trivial condition ⟨Uloc(x)⟩ = +1 for x
outside of the system implies that there must be gap clos-
ing around the edge of the system. This index theorem
was rigorously proved as bulk-boundary correspondence
for an infinite system without an edge and a semi-infinite
system with an edge32,39, but we assume that it is ap-
plicable also to a finite large system with the periodic
boundary condition and the same system with the open
boundary condition. Thus, we can summarize the above
argument on the bulk-boundary correspondence for a (in-
teracting) uniquely gapped state as follows.

Claim. In an inversion symmetric insulator, there exists
a gapless edge state under the open boundary condition
if the charge polarization is Px = 1/2 (mod 1) under the
periodic boundary condition.

Finally, we remark that the existence of a gapless
(single-particle) edge mode or more generally degenerate
ground states under the open boundary condition could
also be understood as the filling anomaly 41,47. We dis-
cuss the ground state wavefunctions when δ = 0,∆ ≫ t
in view of the filling anomaly to have an intuitive under-
standing. Let us consider a simple case with j0 = 1 for
which Px = 1/2 is acheived when ν = 1/3(p = 1, q = 3).
There are degenerate potential minima at j = 0 and
j = 2 (mod 3) in a unit cell and the middle site j = 1
(mod 3) corresponds to the potential maximum. Here,
we define a unit cell as the sites {3k, 3k+ 1, 3k+ 2}, k =
0, 1, 2 · · · , L− 1 for which the bonds ⟨3k − 1, 3k⟩ includ-
ing ⟨L− 1, 0⟩ connect neighboring unit cells. The ground
state under the periodic boundary condition is

|Ψ⟩ ≃ 1√
2
(c†L−1 + c†0)

L3−2∏
k=0

1√
2
(c†3k+2 + c†3k+3) |0⟩ , (30)

where L3 = L/3 ∈ Z. A dimer (c†j+c†j+1) |0⟩ is formed by
the hopping t > 0 between neighboring unit cells, which
is analogous to the standard SSH model with Px = 1/2
where there are dimers on inter unit cell bonds. (See
Appendix D for direct calculations of the polarization in
the ground state (30).) The local excitated state on the

dimer bond ⟨j, j + 1⟩ is (c†j−c†j+1) |0⟩ with an energy gap
2t which has a different inversion eigenvalue from that of
the ground state. Under the open boundary condition
without a hopping integral on the bond ⟨L− 1, 0⟩, the
energy gap between the two states (c†L−1 + c†0) |0⟩ and

(c†L−1 − c†0) |0⟩ vanishes and the state

|Ψ′⟩ ≃ 1√
2
(c†L−1 − c†0)

L3−2∏
k=0

1√
2
(c†3k+2 + c†3k+3) |0⟩ (31)

becomes another ground state. (To be precise, there is an
exponentially small energy gap between these two ground
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states in a finite size system, but they are exactly degen-
erate in the thermodynamic limit.) We can also consider
linear combinations of these states which explicitly break
the inversion symmetry, |Ψleft⟩ = (|Ψ⟩ − |Ψ′⟩)/

√
2 and

|Ψright⟩ = (|Ψ⟩ + |Ψ′⟩)/
√
2. The state |Ψleft⟩ (|Ψright⟩)

has a localized fermion at the left (right) edge j =
0(j = L − 1), corresponding to the excess edge charges
Qleft/right = ±1/2. We stress that it is impossible to
realize a uniquely gapped ground state under the open
boundary condition with keeping the inversion symmetry
and the fermion particle number. Essentially the same
argument applies to other filling as well. This is a filling
anomaly47 and it can be discussed more rigorously with
use of a polarization index41.

V. DISCUSSION AND SUMMARY

We have studied the charge polarization in the general-
ized RM model in one dimension. Motivated by the vari-
ous charge ordered materials, we introduced modulation
wavenumber Q = 2πν with filling ν per site correspond-
ing to a charge order driven by the Peierls instability.
The model has the combination of the bond-centered in-
version and one site translation symmetries when either
the hopping modulation or the potential modulation is
zero. This symmetry leads to the quantization of the
charge polarization. Especially, the charge polarization
can be 1/2 (mod 1) at the low density limit ν → 0.
These results are confirmed by the numerical calculations
of the non-interacting model, and Thouless pumping at
arbitrary filling was also demonstrated. Under the open
boundary condition, there exist excess charges accumu-
lated near the edges of the system. Correspondingly, the
charge polarization can be decomposed into the bulk and
edge contributions. The sum of these two contributions
is a quantized constant under the combined symmetry,
while each of them depends on the modulation strength.
The polarization is dominated by the edge (bulk) contri-
bution in the weak (strong) modulation limit. We also
discussed the effects of a phase shift and examined the
absence/existence of gapless edge modes or more gener-
ally degenerate ground states. Especially, we introduced
the intra and inter unit cell contributions of the charge
polarization in the Resta formula and clarified the role of
the inversion symmetry.

A large part of our discussions including the symme-
try argument is applicable to general uniquely gapped
systems beyond the non-interacting fermions such as in-
teracting fermions, bosons and spin systems. For exam-
ple, it would be interesting to study spin systems with
large unit cells such as spin Peierls systems and trimer
spin chains in view of the Ik-symmetry protected topo-
logical state. Our work could provide an insight for a
further development in the understanding of the charge
polarization.
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Appendix A: The variational argument with the
Lieb-Schultz-Mattis operator

We quickly review the Lieb-Schultz-Mattis argument
in one dimension30–32,37–39. We consider the variational
state |Φ⟩ = Ux |Ψ⟩ for the uniquely gapped ground
state |Ψ⟩. The fermion creation operator behaves as

Uxc
†
jU

−1
x = ei2πj/Lc†j and a straightforward calculation

gives an estimate for the energy difference between these
two states,

⟨Ψ|U†
xH0Ux|Ψ⟩ − ⟨Ψ|H0|Ψ⟩ ≤ C

L
, (A1)

where C is a positive constant which is independent of
L. From this inequality, one can obtain an inequality
for the variational wavefunction as follows. We expand
the variational state in terms of the normalized energy
eigenstates |Ψn⟩ as |Φ⟩ = z |Ψ⟩ +

∑
n≥1 zn |Ψn⟩, where

|z|2 +
∑

n≥1 |zn|2 = 1 because Ux is a unitary operator.

Then, Eq. (A1) is rewritten as

|z|2E0 +
∑
n≥1

|zn|2En − E0 ≤ C

L
, (A2)

where En is the n-th eigenenergy. We denote the energy
gap between the ground state and the first excited state
as E1 − E0 = ∆E > 0. Clearly, En − E0 ≥ ∆E for
higher excited states. The above inequality immediately
implies that the deviation of the variational state from
the ground state, |δΨ⟩ =

∑
n≥1 zn |Ψn⟩, is vanishing in

the thermodynamic limit as

⟨δΨ|δΨ⟩ =
∑
n≥1

|zn|2 ≤ C

L ·∆E
. (A3)

Equivalently, |z|2 = 1 − C/(L∆E) and the variational
state is nearly proportional to the ground state, |Φ⟩ =
Ux |Ψ⟩ = ei2πPx |Ψ⟩+|δΨ′⟩ with |δΨ′⟩ = (z−ei2πPx) |Ψ⟩+
|δΨ⟩ and 2πPx = argz. This property is expressed as
⟨δΨ′|δΨ′⟩ = O(1/L) for simplicity and is used in the
main text and Appendix C.

Appendix B: Details of numerical calculations of
Resta formula

The Resta formula for the charge polarization can
be easily evaluated for a non-interacting fermion sys-
tem with use of the single-particle wavefunctions. Let
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{ujn}L−1
n=0 be the eigenvectors of the single-particle Hamil-

tonian, where the eigenvalues are in the ascending-order.
Then the many-body ground state is given by

|Ψ⟩ =
N−1∏
n=0

γ†
n |0⟩ , (B1)

where γn =
∑

j u
∗
jncj are the single-particle modes diag-

onalizing the Hamiltonian. Using Uxc
†
jU

−1
x = ei2πj/Lc†j ,

we obtain

⟨Ψ|Ux |Ψ⟩ = ⟨Ψ|
∏
n

(
Uxγ

†
nU

−1
x

)
Ux |0⟩

= detUN · e−2πi/L
∑

j jν , (B2)

where (UN )mn =
∑L−1

j=0 u∗
jmujne

i2πj/L, (m,n =

0, 1, · · ·N − 1).

We remark on fluctuations of the polarization within
the Resta formula. One can introduce a parameter θ in
the Resta formula as

Px(θ) =
1

2π
Im log ⟨Ψ|Ux(θ) |Ψ⟩ , (B3)

Ux(θ) = exp

 iθ

L

∑
j

j(nj − ν)

 . (B4)

It is straightforward to calculate ⟨Ux(θ)⟩ for general θ
similarly to the above. Then, higher order powers of the
charge polarization can be obtained as

P (n)
x =

∣∣∣∣∣
〈
∂nUx(θ)

∂(iθ)n

∣∣∣
θ=0

〉 ∣∣∣∣∣
1
n

. (B5)

We can numerically evaluate the higher order powers
by polynomial fitting of ⟨Ux(θ)⟩ as a function of θ.
Under the periodic boundary condition, we find that

P
(2n+1)
x < P

(2n+3)
x and P

(2n)
x < P

(2n+2)
x respectively, and

they all take different values. Therefore, fluctuations of
the charge polarization seem to exist in the present in-
sulator, which may be simply due to the fact that the
operator P̂x is not a good operator under the periodic
boundary condition. On the other hand, under the open

boundary condition, we see that P
(n)
x ≃ |Px(2π)| numer-

ically holds for all n = 1, 2, · · · . Therefore, there are
no fluctuations of the charge polarization in the present
system similary to standard thermodynamic quantities,
although the polarization itself is not a thermodynamic
quantity. We note that, in the numerical calculations, the
fluctuations under the periodic boundary condition arise
only from the inter unit cell contribution ⟨Uinter⟩ and the
intra unit cell contribution ⟨Uintra⟩ does not have fluc-
tuations, which is consistent with the general argument
in the main text. Under the open boundary condition,
there are no fluctuations in both contributions.

Appendix C: Robustness of the charge polarization
to boundary conditions

One would naively expect that the charge polarization
Px = arg ⟨Ψ|Ux |Ψ⟩ /2π is robust to boundary conditions
in an insulator. It was shown previously that the ex-
pectaion value of a local operator whose support is far
way from the boundary is almost unchanged by bound-
ary conditions in a gapped ground state based on the
exponential decay of correlation functions 48. However,
the operator Ux is non-local and some discussions may
be necessary for the robustness of ⟨Ux⟩.
Here, we provide an argument based on the locality of

the boundary condition and gapped nature of the ground
state by following the previous studies48–50, although it
is not rigorous. We introduce a parameter λ ∈ [0, 1] in
the hopping integral on the bond ⟨L− 1, 0⟩ as tL−1 →
λtL−1, where λ = 0 corresponds to the open boundary
condition and λ = 1 to the periodic boundary condition.
It is assumed that there are no gapless edge states under
the open boundary condition and the system is uniquely
gapped for all λ ∈ [0, 1]. (If there exists a gapless edge
state at λ = 0, one may introduce a small perturbation
to gap out it and turn off the perturbation at the end.)
Then, the ground state is almost an eigenstate of Ux

and the variational state can be written as Ux |Ψ(λ)⟩ =
ei2πPx(λ) |Ψ(λ)⟩+ |δΨ(λ)⟩ with || |δΨ(λ)⟩ ||2 = O(1/L) as
mentioned in Appendix A. We have

d

dλ
⟨Ψ|Ux |Ψ⟩ =

〈
dΨ

dλ

∣∣∣∣Ux

∣∣∣∣Ψ〉
+

〈
Ψ

∣∣∣∣Ux

∣∣∣∣ dΨdλ
〉

≃ ei2πPx
d

dλ
⟨Ψ|Ψ⟩

+

〈
dΨ

dλ

∣∣∣∣ δΨ〉
+

〈
δΨ

∣∣∣∣ dΨdλ
〉
, (C1)

where we have neglected the small error from |z−ei2πPx |.
The first term in the above equation is zero. On the
other hand, the inner product

〈
dΨ
dλ

∣∣ δΨ〉
can be O(1) for a

general change of the Hamiltonian, although || |δΨ⟩ ||2 =
O(1/L). For example, ⟨Ux⟩ can change when we vary the
model parameters in the bulk region of the system such
as the Thouless pumping as discussed in the main text.
However, since the change of the Hamiltonian is local
in the present setup, we can claim that the inner prod-
uct is exponentially small under an assumption. Here,
we suppose that there exist local operators such that

| ⟨Ψn|O(0)
n |Ψ⟩ | ≥ fn > 0, where the distance between

their supports Ω
(0)
n and the boundary bond ⟨L− 1, 0⟩

is O(L). Namely, the excited states above the gap can
be derived from local perturbations on the ground state.
Then, it was shown that one can construct local opera-
tors On whose supports Ωn are finite and include those

of O
(0)
n

48–50. The excited states can be well approxi-
mated by these operators as |Ψn⟩ = On |Ψ⟩ /||On |Ψ⟩ ||,
where errors are exponentially small with respect to

R = dist(∂Ωn,Ω
(0)
n ).
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Now, we write the Hamiltonian as H(λ) = H(0)+λW

with W = −tL−1(c
†
L−1c0 + c†0cL−1). By differentiating

H(λ) |Ψ(λ)⟩ = E0(λ) |Ψ(λ)⟩, we obtain〈
Ψn

∣∣∣∣ dΨdλ
〉

=
1

En − E0
⟨Ψn|δW |Ψ⟩ , (C2)

where δW = W −⟨Ψ|W |Ψ⟩. Note that the energy differ-
ence is greater than the excitation gap, En − E0 ≥ ∆E.
Then the inner product is rewritten as〈

δΨ

∣∣∣∣ dΨdλ
〉

≃
∑
n≥1

zn
En − E0

〈
Ψ
∣∣O†

nδW
∣∣Ψ〉

||On |Ψ⟩ ||
. (C3)

It is known that, for local operators A,B with the dis-
tance d between their supports, the correlation function is
exponentially small, | ⟨Ψ|δAδB|Ψ⟩ | ≤ const · e−const·d in
a gapped system51. From this exponential decay of corre-
lation functions and 0 = ⟨Ψn|Ψ⟩ ≃ ⟨Ψ|O†

n|Ψ⟩ /||On |Ψ⟩ ||,
we conclude that the numerator in the above equation is
exponentially small in the system size L with an appro-
priately chosen Ωn such that dist(Ωn, ⟨L− 1, 0⟩) = O(L).
This implies that d

dλ ⟨Ψ|Ux|Ψ⟩ ≃ 0 and the charge po-
larization within the Resta formula is independent of
the parameter λ. Especially, it does not change for the
open boundary condition and periodic boundary condi-
tion, Px(0) = Px(1). Further, the above argument is
applicable also to general perturbations localized around
the edges and hence the charge polarization is robust to
them.

Finally, one might think that the robustness of the
charge polarization will immediately follow from the pre-
vious study for local operators48, if one uses a local vari-
ant of the Lieb-Schultz-Mattis operator whose support is
far away from the boundary bond39. We naively expect
that expectation values of the global Lieb-Schultz-Mattis

operator and the local one are equal under the periodic
boundary condition. However, we are interested in the
physical quantity Pedge where the edge sites are included
in the operator support. In this case, the supports of the
local Lieb-Schultz-Mattis operator and the boundary op-
erator W are not separated and the robustness does not
follow immediately.

Appendix D: Direct calculation of polarization for
Eq. (30)

We can directly calculate the polarization in the
ground state Eq. (30) under the periodic boundary con-

dition. Since Uxc
†
jU

−1
x = ei2πj/Lc†j , the dimers be-

have as Ux(c
†
j + c†j+1) |0⟩ = ei2π(j+1/2)/L(e−iπ/Lc†j +

eiπ/Lc†j+1)Ux |0⟩. Note that | ⟨Ux⟩ | → 1 as L → ∞,

because
∏L3−1

k=0 cos(π/L) → 1. The argument of the ex-
pectation value is

1

2π
arg ⟨Ux⟩ =

1

L

L3−1∑
k=0

(3k + 5/2)− 1

L

L−1∑
j=0

jν =
1

2
. (D1)

It is also straightforward to calculate Pbulk for the k-th
unit cell (the sites j = 3k, 3k + 1, 3k + 2),

3Pbulk =

〈
2∑

l=0

(3k + l)(n3k+l − 1/3)

〉

=
1

4
[3k · 2 + (3k + 1) · 0 + (3k + 2) · 2]− (3k + 1)

= 0. (D2)

These results are fully consistent with the symmetry ar-
gument in the main text.
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