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We investigate the ground-state phase diagram of a binary mixture of Bose-Einstein condensates
(BECs) with competing interspecies s- and p-wave interactions. Exploiting a pseudopotential model
for the l = 1 partial wave, we derive an extended Gross-Pitaevskii (GP) equation for the BEC mix-
ture that incorporates both s- and p-wave interactions. Based on it, we study the miscible-immiscible
transition of a binary BEC mixture in the presence of interspecies p-wave interaction, by combining
numerical solution of the GP equation and Gaussian variational analysis. Our study uncovers a dual
effect—either enhance or reduce miscibility—of positive interspecies p-wave interaction, which can
be precisely controlled by adjusting relevant experimental parameters. By complete characterizing
the miscibility phase diagram, we establish a promising avenue towards experimental control of the
miscibility of binary BEC mixtures via high partial-wave interactions.

I. INTRODUCTION

Quantum gas mixtures stand as a versatile platform
for ultracold collision research, quantum simulation and
quantum information processing across diverse atomic
species [1–11]. A paramount prerequisite for these pur-
suits is the precise control of the miscibility of cold gases,
which is intricately influenced by the interplay between
atomic interactions and experimental geometry [12–17].

The miscibility of a binary Bose-Einstein condensate
(BEC) mixture with s-wave interactions have been exten-
sively studied [9, 18–22]. The mixtures can be in either
a miscible (M) or an immiscible (IM) phase, dependent
on the strengths of inter- and intra-species interactions,
particle number ratio, trap potential and geometry [23–
26]. In the M phase, a homogeneous solution forms,
while the IM phase exhibits a ball-and-shell or side-by-
side condensate structure [27–29]. Under the Thomas-
Fermi approximation (TFA), the transition is determined
by (ac12)

2 = a11a22, where a11(22) is intraspecies s-wave
scattering lengths of condensate 1(2), and ac12 is the crit-
ical interspecies s-wave scattering length for phase sep-
aration. Manipulating this transition in binary BECs is
achievable via Feshbach resonance (FR), enabling control
of s-wave interaction strengths [30, 31].
Exploiting beyond-s-wave broad FRs to enhance high

partial-wave interactions, making them competitive with
s-wave interaction thus creating novel states of matter,
is of significant experimental interest [32–36]. A compre-
hensive theoretical study of broad s-, p-, and d-wave FRs
in various combinations of stable alkali-metal atoms was
presented in Ref. [37]. Using Feshbach loss spectroscopy,
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new broad s-, p-, and d-wave FRs have been identified in
diverse atomic mixtures, including Bose-Bose (41K-41K,
23Na-87Rb and 85Rb-87Rb) [33, 38–42], Fermi-Fermi (6Li-
40K) [30, 43–45], and Bose-Fermi (41K-6Li, 23Na-40K)
[42, 46]. Notably, the 23Na-40K mixture exhibits a broad
d-wave FR near 283 Gauss accompanied by a slightly nar-
rower s-wave resonance [46], and the 85Rb-87Rb mixture
features a broad p-wave FR with an associated s-wave
resonance near 260 Gauss [40]. The coexistence of differ-
ent partial wave FRs motivates the exploration of exper-
imental strategies that leverage multiple resonances to
control both inter- and intra-species interactions [47–49].

In this manuscript, we investigate the miscibility of a
binary mixture of BECs with competing s- and p-wave
interspecies interactions, shedding light on how these in-
teractions can shape the ground state miscibility phase
diagram. Previous studies extensively explored p-wave
interactions in fermionic systems or Bose-Fermi mix-
tures, while studies on p-wave interactions in degenerate
bosonic gases have been limited to heteronuclear mix-
tures due to restrictions imposed by quantum statistics.
In contrast to the repulsive s-wave interspecies interac-
tion (a12 > 0) which always results in energy penalty to
the M phase and favors the IM phase, positive p-wave in-
terspecies interaction has more intricate effects. Depen-
dent on the specific overlapping configuration of the two
condensates, the p-wave interaction can contribute either
positive or negative mean-field energy to the mixture,
thus favor either separation or mixing of the condensates.
Such complexity introduces novel characteristics to BEC
miscibility compared to the conventional s-wave scenario,
offering the intriguing possibility of manipulating misci-
bility through higher partial-wave interactions. We in-
vestigate these novel aspects via numerical solution of
the Gross-Pitaevskii equation (GPE), incorporating the
p-wave interaction, and consolidate it with Gaussian vari-
ational analysis. As a concrete application of our theory,
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we study the miscibility phase diagram of an optically
trapped ultracold mixture of 87Rb-23Na atoms near a rel-
atively broad p-wave FR around 284 Gauss [50]. Such a
condensate mixture has a long lifetime due to its positive
intra- and inter-species s-wave scattering lengths [51, 52].
We assume these background s-wave interactions remain
constant in the vicinity of the p-wave resonance under
consideration, a reasonable approximation for the broad
resonance and dilute limits considered here.

The rest of the manuscript is structured as follows.
Section II outlines the theoretical model, starting with
the derivation of the p-wave interaction model for a bi-
nary BEC mixture in Sec. II A, followed by the establish-
ment of an extended mean-field GP equation in Sec. II B.
To gain insight into the ground-state phases, we employ
a simple Gaussian variational ansatz in Sec. III for one-
dimensional (1D) condensates. In Sec. IV, we present
the phase diagrams for two-dimensional (2D) and three-
dimensional (3D) regimes. Lastly, in Sec. V we conclude
with discussions.

II. THEORETICAL MODEL

A. p-wave interaction model

Modeling two-body interactions constitutes a funda-
mental step in developing theories for many-body sys-
tems. In the ultracold regime, atomic collisions domi-
nated by s-wave scattering, which can be modeled accu-
rately with a Fermi-Huang pseudopotential [53, 54]. The
presence of non-s-wave scattering resonances transforms
this scenario and requires tailoring pseudopotentials to
these higher partial waves. Here, we employ a concise
single-channel p-wave pseudopotential model derived by
Idziaszek and Calarco [55, 56],

Vp(r) =
πℏ2a3p
mr

∇⃗δ(r) · ∂
3

∂r3
r3∇⃗, (1)

where ∇⃗ (∇⃗) denotes the gradient operator acting on
the left (right) of the pseudopotential, ap is the energy-
dependent scattering length for p-wave interaction, sat-
isfying a3p(k) = − tan δ1(k)/k

3 with δ1 the p-wave scat-
tering phase shift, and k is the wave vector associated
with the collision energy E. Such a single-channel pseu-
dopotential model is applicable if the splitting of the
p-wave FR peak due to magnetic dipole interactions is
small such that the angular anisotropy of the interac-
tion can be neglected. It has been successfully applied,
e.g., in confirming geometric resonances [57, 58], fermion
scattering within quasi-2D systems [55] and investigating
trap-induced shape resonances in p-wave interactions of
ultracold atoms [59].

Denoting the atomic fields of the condensate mixture

as ψ̂(r) = [ψ̂1(r), ψ̂2(r)]
T . The second-quantized form of

the pseudopotential Eq. (1) can be written as

V̂p =
πℏ2νp
mr

∫
d3r(ψ̂†

2∇ψ̂
†
1 − ψ̂†

1∇ψ̂
†
2)(ψ̂2∇ψ̂1 − ψ̂1∇ψ̂2),

(2)
where νp = a3p(k) is the p-wave scattering volume and
mr denotes the reduced mass of the two atom species.
We note that Eq. (2) can also be derived based on p-
wave interaction model that involves p-wave molecular
degrees of freedom (DOFs) via adiabatic elimination of
the molecular fields [13].

B. Extended Gross-Pitaevskii equation with
interspecies p-wave interaction

To describe the ground state property of the BEC mix-
ture, we use a mean-field Gross-Pitaevskii equation that
incorporates the interspecies p-wave interaction. The
mean-field energy functional governing a 3D BEC mix-
ture is given by [60]:

E [ψ∗,ψ] =

∫
d3r

2∑
i=1

(
ℏ2

2mi
|∇ψi|2 + V i

T |ψi|2
)

+

∫
d3r

(
2∑

i=1

gi
2
|ψi|4 + g12|ψ1|2|ψ2|2

)

+

∫
d3r

πℏ2νp
mr

|ψ2∇ψ1 − ψ1∇ψ2|2, (3)

where the wavefunction is normalized as
∫
d3r|ψi|2 = Ni

for the two species i = 1, 2. The ground-state wave-
functions can be obtained via the variational extremum
condition

δ [E − µiNi] /δψ
∗
i = 0, (4)

where µi is the chemical potential of species i. The
first line of Eq. (3) describes the kinetic energy and
harmonic trapping potential of the two species, with
V i
T = mi(ω

2
ixx

2 + ω2
iyy

2 + ω2
izz

2)/2, and mi and ωi be-
ing the mass and trapping frequency of the species i. In
the second line, gi = 4πℏ2ai/mi denotes the s-wave in-
traspecies interaction strength, and g12 = 2πℏ2a12/mr

represents the interspecies interaction strength, where
ai(a12) denotes the s-wave intra-(inter-)species scatter-
ing length, and mr = m1m2/(m1 + m2) is the reduced
mass.

Introducing the characteristic length scale l0 =√
ℏ/m1ω1x and energy scale ε0 = ℏω1x, and redefin-

ing the normalized mean-field wave function ϕi =

l
3/2
0 N

−1/2
i ψi (i = 1, 2), the GP equations derived from
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Eqs. (3) and (4) read

µ1ϕ1 =

[
−∇2

2
+
∑
σ

ξ21σσ
2

2
+ β1|ϕ1|2 + β12|ϕ2|2

]
ϕ1

−βp|ϕ2∇ϕ1 − ϕ1∇ϕ2|2, (5)

µ2ϕ2 =

[
−αm∇2

2
+
∑
σ

ξ22σσ
2

2αm
+ β2|ϕ2|2 + γβ12|ϕ1|2

]
ϕ2

−γβp|ϕ1∇ϕ2 − ϕ2∇ϕ1|2, (6)

where αm = m1/m2, γ = N1/N2, and ξiσ = ωiσ/ω1x

with σ = x, y, z. The parameters βi = 4πaiαmNi/l0
and β12 = 2π (1 + αm) a12N2/l0 are rescaled s-wave in-
teraction strengths, and βp = π (1 + αm) νpN2/l

3
0 is the

rescaled p-wave interaction strength.
Defining the dimensionless energy functional E =

E/(N1ε0), Eq. (3) can be recast as

E =

∫
d3r′

∑
j=1,2

γ1−j [
1

2
αj−1
m |∇′ϕj |

2
+ α1−j

m Vj(r
′)|ϕj |2]

+

∫
d3r′[

β1
2
|ϕ1|4 +

β2
2γ

|ϕ2|4 + β12|ϕ1|2|ϕ2|2]

+βp

∫
d3r′ |ϕ2∇ϕ1 − ϕ1∇ϕ2|2, (7)

with the rescaled potential Vj(r) =
∑

σ=x,y,z ξ
2
jσσ

2/2.
To explore the interplay between s- and p-wave inter-

actions, we employ the imaginary-time evolution method
[61] to analyze the ground-state phase diagram of the
BEC mixture. Notably, this method is not a global op-
timization strategy; it converges to local energy minima
dependent on the initial trial wavefunction. Successful
application necessitates an initial trial wavefunction en-
compassing all possible symmetries to ensure convergence
to the genuine ground state. This consideration is crucial
in our study, given that p-wave interactions may intro-
duce excess metastable states (see Sec. III B). We ter-
minate the evolution upon reaching energy convergence
criteria, specifically |E (τn+1)− E(τn)| /E(τn) < 10−7,
where τn denotes discretized imaginary time. This cri-
teria proves sufficient for attaining the genuine ground
state in our investigation below.

C. Order parameters

We adopted the following pair of order parameters
to identify distinct ground-state configurations, as intro-
duced in previous studies [25, 62, 63]:

η =

∫
d3r |ϕ1||ϕ2|, (8)

d =

∣∣∣∣∫ d3r
(
|ϕ1|2 − |ϕ2|2

)
r

∣∣∣∣ . (9)

Here, η represents the density overlap between two BEC
species, and the wave functions of the two species (ϕi=1,2)

are normalized to unit. Thus, the value is close to 1 when
the two BECs overlap almost completely, and less than 1
otherwise, distinguishing between the miscible (M) and
immiscible (IM) phases. The parameter d measures the
center of mass displacement between the two conden-
sates. Hence, the ground state resides in a symmetric
immiscible (SIM) phase for (η < 1, d = 0), typically
exhibiting a ball-and-shell structure where one species
forms a shell around the other. In contrast, the ground
state resides in an asymmetric immiscible (AIM) phase
for (η < 1, d > 0), where the two condensates coexist side
by side.
Before numerical calculations, let us qualitatively ana-

lyze the role of each term in Eq. (7): (i) Both kinetic and
potential energy favors the mixing of the two BECs, and
they dominate the miscibility of the mixture for small s-
and p-wave interactions. (ii) The intraspecies s-wave in-
teraction energy monotonically decreases with the exten-
sion of the condensates’ wavefunction, thereby favoring
mixing. (iii) The repulsive s-wave interspecies interaction
between the BECs favors the IM phase [12, 19, 21, 22, 28].
In the limit a12 ≫ a11, a22, the condensates cease to over-
lap, resulting in complete phase separation. (iv) The p-
wave interspecies interaction is intricate, depending not
just on the wave function but also its gradient. In the M
phase, similar density profiles result in a small interac-
tion energy |ϕ2∇ϕ1 − ϕ1∇ϕ2|2 [cf. last line of Eq. (7)].
As condensates move apart in space, this term gradually
increases. Conversely, with minimal spatial overlap be-
tween the condensates, this term approaches zero. Thus,
for νp > 0, p-wave interaction tends to either mix or en-
tirely separate BECs. Conversely, for νp < 0, partially
mixed configurations lowers the p-wave interaction en-
ergy.

III. MISCIBILITY PHASE DIAGRAM OF
QUASI-ONE-DIMENTIONAL BEC MIXTURE

A. Numerical phase diagram

We investigate the miscibility phase diagram of binary
BEC mixture in a quasi-1D geometry via imaginary time
evolution. To illustrate the essential physics, we make the
simplification assumption of equal masses (m1 = m2 = 1)
and trapping frequencies (ω1 = ω2 = 1) for the two con-
densates. We initialize the condensates in two Gaussian
wavefunctions of the same standard deviation σ, whose
center is displaced by a distance δr. We make diverse
choices of (σ, δr) to guarantee that imaginary time evo-
lution converges to the genuine ground state.

The resulting numerical phase diagram is shown in
Fig. 1 against the effective s- and p-wave interspecies in-
teractions β12 and βp. The mixture has two phases, the
M phase and the AIM phase, with the black dashed line
representing the phase boundary. In the AIM phase, the
two BECs symmetrically separate in opposite directions,
with η < 1 and d > 0. We show the order parameter
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(a) (b)

(c) (d)

M M

AIM AIM

FIG. 1. (a-b) Ground-state phase diagram of a binary mixture
of BECs in 1D, as a function of the dimensionless interspecies
s-wave interaction β12 and p-wave interaction βp. The dia-
gram is calculated via numerical imaginary-time evolution of
the GP equation. The schematic filled with red and green
represent the density distributions of the BECs in the mis-
cible (M) and immiscible (IM) phases. We consider in (a)
β1 = β2 = 0, i.e., without intraspecies interactions; in (b)
β1 = β2 = 2. Since the boundaries of order parameters d
and η are identical, only the diagrams of η are shown. (c-d)
Dependence of the order parameter η on the interspecies in-
teraction β12 for different βp. We consider in (c) β1 = β2 = 0
and in (d) β1 = β2 = 2.

η only, as the phase boundary of d perfectly aligns with
that of η. Figs. 1(a) and 1(b) show the ground-state
phase diagram with and without s-wave intraspecies in-
teractions (β1, β2) respectively, which are qualitatively
similar.

When both β12 and βp are small, i.e., (β12, βp) ≲
(6.0, 4.0) in Fig. 1(a) and (β12, βp) ≲ (10.0, 6.0) in
Fig. 1(b), the order parameters η and d various continu-
ously across the phase boundary, cf., the solid blue and
red lines in Figs. 1(c) and (d). However, upon surpassing
a threshold of the interaction strengths, the order param-
eter exhibits discontinuity across the phase boundary, cf.,
the purple and green curves in Figs. 1(c) and (d). This
novel feature does not appear in the conventional s-wave
miscibility phase diagram, thus is a direct result from
the p-wave interspecies interaction. Its physical origin
is investigated in the subsequent Sec. III B via Gaussian
variational analysis.

Comparing Figs. 1(c) and (d), we observe that nonzero
intraspecies interactions β1,2 does not modify the qualita-
tive features of the phase diagram—it only causes a slight
expansion of the phase boundary towards the AIM phase
region. For instance, when βp = 0, the threshold for η
to drop from 1 shifts from β12 ≈ 2.0 to β12 ≈ 4.0. This
result aligns with the physical intuition that intraspecies
interactions favor mixing of the condensates, necessitat-

ing a stronger β12 for phase separation.

B. Gaussian variational analysis

We employ a Gaussian variational method to investi-
gate further the ground-state phase diagram of the quasi-
1D BEC mixture. This method is suitable for weak in-
teractions and provides insights into single-component
BECs and BEC mixtures [64–66]. Without loss of gen-
erality, we set the intraspecies interaction (β1,2 = 0),
and assume equal masses (m1 = m2 = 1) and trap-
ping frequencies (ω1 = ω2 = 1) of the two condensates
as in Sec. IIIA. Under these assumptions, the numer-
ical results in Sec. IIIA indicate that the two BECs
displace symmetrically along opposite directions in IM
phase. Hence, we define the following two Gaussian vari-
ational wavefunctions for the condensates,

ϕ1(x) =
1

π1/4σ1/2
e−(x−d)2/2σ2

, (10)

ϕ2(x) =
1

π1/4σ1/2
e−(x+d)2/2σ2

, (11)

which suffice to capture the characteristics of both M
and AIM phases. This allows us to express the order pa-
rameter η = exp

(
−d2/σ2

)
and the dimensionless energy

functional in Eq. (7) as

E/N =
1

2σ2
+

1

2
(σ2 + 2d2)

+
β12√
2π
e−2d2/σ2

+
4βpd

2

√
2πσ5

e−2d2/σ2

. (12)

The ground-state phase diagram from numerical mini-
mization of Eq. (12) is shown in Fig. 2(a), which aligns
excellently with Fig. 1(a). Notably, when βp = 0,
both results indicate an AIM phase entry threshold at
β12 ≈ 2.0.
Next, we analyze the discontinuity of the order pa-

rameter η using the Gaussian variational approach.
Figs. 2(b) and (c) display the behavior of average energy
E/N in the vicinity of the phase boundary as a func-
tion of the order parameters d and η. The discontinu-
ity of η across the phase boundary stems from the ex-
istence of two metastable states, as indicated by arrows
in Figs. 2(b) and (c) (with order parameters d ≈ ±1.0
and η ≈ 0.2). To further illustrate this, we consider
two points P1 = (4.4, 1.5) and P3 = (4.6, 1.5), lying in
the M and AIM phase respectively, in the vicinity of the
phase transition point P2 = (4.52, 1.5), as shown in the
phase diagram Fig. 2(a). The blue dot-dashed line in
Fig. 2(b) corresponds to the point P1 in the M phase,
which indicates that the energy of the two metastable
states is higher than the ground state (order parame-
ter d = 0, η = 1). However, the energy of the two
metastable states decreases as we move from P1 to P3

by increasing β12. When β12 = 4.6, corresponding to
point P3 in Fig. 2(a), the energy of the two metastable
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FIG. 2. (a) Ground-state phase diagram of a binary mixture of BECs in 1D, obtained via Gaussian variational analysis (cf.
Sec. III B). Several points (β12, βp) near the phase transition point P2 = (4.52, 1.5), including P1 = (4.4, 1.5), P3 = (4.6, 1.5),
and P4 = (4.6, 1.7), are marked. These points are used to illustrate the physical mechanism underlying the abrupt jumps of
the order parameter across the phase boundary, cf. Sec. III B. Dashed line corresponds to βp = 1.5. (b-c) Gaussian variational
energy of the BEC mixture, E/N , at as a function of the order parameter d [panel (b)] and η [panel (c)], at points P1 (blue
dashed line), P3 (orange solid line) and P4 (purple dotted line). Light gray arrows indicate two possible metastable states with
non-vanishing order parameter.

states becomes lowest, as shown by the yellow-dashed
line in Fig. 2 (b-c). Hence, the order parameters d jumps
abruptly from 0 to ±1 and η from 1 to 0.2 when crossing
the transition point P2.
Moreover, the p-wave interspecies interaction enhances

mixing of the condensates. In Fig. 2(b), as βp increases
from 1.5 to 1.7, the ground state undergoes a phase tran-
sition from the AIM phase at position P3 (yellow-dashed
curve) to the M phase at position P4 (purple-dotted
curve). These two curves shows that the p-wave inter-
action introduces an energy penalty to the metastable
states, thereby enhancing mixing. Consequently, to en-
ter the AIM phase necessitates a larger β12.
Next, we apply Landau’s theory to elucidate the

characteristics of the phase transition. To account for
the metastable states, we construct a Landau free en-
ergy functional [67] by expanding the energy functional
Eq. (12) in power series of the order parameter d up to
the sixth order, assuming βp ≤ 1. We hence arrive at

ε(d, σ) = E/N = A+Bd2 + Cd4 +Dd6, (13)

where we define

A =
1

2σ2
+

1

2
σ2 +

β12√
2πσ

, (14)

B = 1− 2β12√
2πσ3

+
4βp√
2πσ5

, (15)

C =
2√
2πσ7

(
β12σ

2 − 4βp
)
, (16)

D =
4√
2πσ9

(
2βp −

1

3
β12σ

2

)
. (17)

We minimize the Landau free energy functional
Eq. (13) with respect to d and σ, in order to identify
the ground and metastable states of the mixture. We
assume that near the phase transition, ε(d, σ) gradually

changes with σ near the phase transition point, whereas
d can jump abruptly from zero to nonzero values in the
regime η < 1. As a result, σ can be treated as a constant
determined solely by β12 and βp, that is, σ ≃ σ(β12, βp).
ε(d, σ) can then be expressed as a standard Landau’s free
energy functional that depends on d. Notably, the inclu-
sion of terms ∝ d6 in ε(d, σ) allows it to account for three
metastable states (cf. Fig. 2). To ensure that the energy
has a lower bound, the condition D > 0 must be satis-
fied. Utilizing ∂ε/∂d = 0 and ∂2ε/∂2d > 0, we find the
metastable states of the mixture,

d0 = 0, d2± =
−C +

√
C2 − 3BD

3D
. (18)

It is clear that the presence of the metastable states re-
quires C2 − 3BD > 0 and C < 0, otherwise only one
stable state with d0 = 0 exists, which is the ground state
of the mixture.

In the presence of metastable states, the phase transi-
tion is of first order. The system’s ground state is the M
phase (d = d0 = 0) when ε(d0) < ε(d±); otherwise, it is
in AIM phase (d = d±). Thus, the first-order phase tran-
sition point satisfies the equation ε(d0) = ε(d±), which
simplifies to C2 = 4BD.

Summarizing the above analysis, we have approxi-
mately determined the phase transition characteristics
of the binary BEC mixture. When C < 0 and D > 0,
the ground state is in the M phase if the condition
3BD < C2 < 4BD is met. In contrast, if C2 > 4BD, the
ground state is in the IM phase and the mixing configu-
ration becomes metastable. The phase boundary corre-
sponds to the equation C2 = 4BD. By expressing pa-
rameters B,C,D in terms of β12, βp, and σ(β12, βp), we
can derive an approximate formula for the phase bound-
ary. In the regime that β12 and βp are small (σ ≃ 1), the
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phase boundary formula reduces to

5β2
12 − 4(10βp +

√
2π)β12 + 24βp(2βp +

√
2π) = 0. (19)

Notably, when βp = 0, this equation yields β12 =
4
5

√
2π ≈ 2, which closely matches the numerical results

in Fig. 1(a) and Fig. 2(a).

IV. MISCIBILITY PHASE DIAGRAM IN TWO-
AND THREE-DIMENSION

A. Ground-state phase diagram without
intraspecies interactions

Extending our previous analysis, we explore below the
ground-state phase diagram of a binary mixture of BECs
in 2D and 3D geometry. In higher spatial dimensions,
metastable states become more prevalent, posing chal-
lenges to the use of imaginary time propagation meth-
ods for obtaining the true ground state. To address
this, we exploit two trial wavefunctions, one with spher-
ical symmetry (δr = 0) and the other with asymmetry
(δr = 3σ), encompassing all possible symmetry-broken
configurations. Moreover, we temporarily exclude the
s-wave intraspecies interactions to highlight the effect
of interspecies interactions in this section. We denote
87Rb as species 1 and 23Na as species 2, utilizing an
isotropic harmonic trap. For species 1 (Rb atoms), we
set ω1 = (2π)160 Hz, while for species 2 (Na atoms),

we set ω2 = ω1

√
m1/m2 ≈ 2ω1. This choice ensures

equal effective trap potentials despite the differing atomic
masses [20].

Figs. 3(b) and (c) present the numerical phase dia-
grams for a 2D and 3D mixture, and Fig. 3(a) shows
the extended phase diagram for a quasi-1D mixture. All
panels exhibit transitions between M and AIM phases
as β12 and βp vary. The M phase expands significantly
with increasing the spatial dimension, which can be in-
tuitively understood as follows. For a quasi-1D BEC
mixture in the M phase and near the phase boundary,
reducing the transverse confinement allows it to expand
along the transverse direction, eventually forming a 2D
mixture. Such transverse expansion further reduces the
repulsive interspecies s-wave interaction, favoring the M
phase. The 3D phase diagram resembles the 2D one, but
with an even larger M phase region. For a specific β12,
the mixture undergoes a transition from the AIM to the
M phase with increasing βp. Therefore, (positive) p-wave
interaction enhances the miscibility of the BEC mixture.

It is interesting to compare Fig. 3(a) with Fig. 1(a),
both for the quasi-1D mixture. For small β12 and βp,
Fig. 3(a) aligns with Fig. 1(a), noting the differing ver-
tical axis scaling in Fig. 3. Notably, for β12 surpassing a
threshold (β12 ≥ β0

12 = 6.0 in 1D), the M phase disap-
pears, and the ground state remains in the AIM phase
regardless of βp. Similar thresholds, β0

12 values of 18.0
(2D) and 48.0 (3D), are observed [cf. Fig. 3(b) and

(c)]. This phenomenon arises because neither the com-
pletely AIM phase (η = 0, d > 0) nor the completely M
phase (η = 1.0, d = 0) receives energy contributions from
p-wave interactions. Beyond the threshold of β12, the
energy reduction in the AIM phase due to β12 surpasses
the kinetic and potential energy reductions achieved by
mixing. Therefore, the mixture enters the AIM phase
consistently for sufficiently large β12. For a fixed value
of βp, we examine the depedence of the order parame-
ters on β12, as depicted in Fig. 4. As βp approaches zero
(e.g., βp = 0.1), the order parameters η and d evolve con-
tinuously with β12 in 1D (blue solid line), 2D (red solid
lines), and 3D (yellow solid lines). However, at βp = 1.0,
only in 3D do the order parameters vary smoothly with
β12 (yellow dashed line), while in 1D and 2D, they ex-
hibit discontinuous jumps. Increasing βp to 10.0 results
in a similar discontinuous transition in 3D (purple dotted
line). Thus, in all spatial dimensions, the phase transi-
tion is continuous for weak p-wave interaction and be-
comes first order for strong p-wave interaction.

This transition results from the presence of metastable
states, as extensively explored via the 1D Gaussian vari-
ational analysis in Sec. III B. In the presence of βp, the
system features two metastable states with low symmetry
(AIM phase). Their energy is associated with βp, with
larger βp corresponding to higher energy. In the M phase,
the energy of these metastable states is higher than the
completely mixed state. As β12 increases, the energy of
these states decreases, eventually becoming lower than
that of the higher-symmetry mixed state. This results
in a phase transition accompanied by a sudden change
in the order parameter and a phase transition. Larger
βp requires a higher β12 for this transition due to the
increased energy of metastable states.

Interestingly, the phase boundary in 3D becomes more
intricate at the transition point between continuity and
discontinuity. This complexity is evident in the inset of
Fig. 3(c), revealing a distinct peninsula pattern around
the transition point due to the dual effect of p-wave in-
teractions. In contrast, while present in the 1D and
2D cases, this feature is less pronounced. The energy
changes at points P5-P10 [marked in Fig. 3(c)] in Ta-
ble I reveal that, for β12 = 43, variations in βp induce
changes in the individual component energies of the bi-
nary BEC mixture. Regardless of βp, the energy con-
tribution from p-wave interactions consistently remains
zero in the completely M phase, maintaining the total
energy constant (εtot = 4.552 in Table I). Thus, if the
energy of the AIM phase is lower than this value, the
true ground state should be in the AIM phase. Although
the AIM configuration reduces the energy associated with
β12, it simultaneously increases the kinetic and potential
energies of both BEC components, as well as the p-wave
interaction energy introduced by incomplete separation
of two BECs.

At P10 (βp ≳ 0) with a sufficiently large β12 (> β0
12),

the ground state resides in the AIM phase, significantly
reducing the energy introduced by β12. As βp increases
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FIG. 3. Ground-state phase diagram of a binary mixture of BECs in (a) 1D, (b) 2D and (c) 3D, as a function of the dimensionless
interspecies s-wave interaction β12 and p-wave interaction βp. As the boundaries of order parameters d and η are identical, only
the distribution of η is ploted. In the pure yellow region, the system in a completely M phase (η = 1 and d = 0), while in other
regions, it is in an AIM phase(η < 1 and d > 0). In (c), along the line β12 = 43, several points from P5 = (43, 103)-P10 = (43, 0)
are marked. They offer insights into the dual effects of p−wave interaction for phase separation, as analyzed in Sec. IVA. Insert
of panel (c) zooms in the region inside the red dashed circle of panel (c).

TABLE I. Characterization of the ground-state phase and energy of the BEC mixture at location 5-10 along the vertical dashed
line β12 = 43 in Fig. 3(c). M(AIM) corresponds to the miscible(asymmetric immiscible) phase. εtot is the total energy of the
mixture, εki and εpi are the kinetic and potential energies of the component i = 1, 2. εβ12 and εβp are the s- and p-wave
interspecies interaction energies. All energies are dimensionless.

Location Phase εtot η d εk1 εk2 εp1 εp2 εβ12 εβp Real Phase

P = (43,−) M 4.552 1.000 0.000 0.464 0.464 1.230 1.230 1.164 0.000

P5 = (43, 103) AIM 4.720 0.026 2.226 1.115 1.115 1.230 1.230 0.001 0.029 M
P6 = (43, 35) AIM 4.564 0.283 1.997 0.871 0.871 1.241 1.241 0.098 0.242 M
P7 = (43, 27) AIM 4.537 0.356 1.917 0.805 0.805 1.249 1.249 0.153 0.276 AIM
P8 = (43, 20) AIM 4.578 0.823 1.079 0.523 0.523 1.270 1.270 0.786 0.206 M
P9 = (43, 10) AIM 4.341 0.325 0.236 0.696 0.696 1.194 1.194 0.325 0.236 AIM
P10 = (43, 0) AIM 3.976 0.391 1.537 0.807 0.807 1.032 1.032 0.298 0.000 AIM

to 103 at P5, a transition to the completely M phase be-
comes accessible, nullifying dominant p-wave interaction
energy and decreasing kinetic energy compared to the
AIM configuration. However, this transition raises the
s-wave interspecies interaction energy εβ12

from 0.001 to
1.164 due to wave function overlap. From P10 to P8,
where βp increases from 0 to 20, the ground state under-
goes a transition from the AIM to the M phase, with the
order parameter η rising from 0.391 to 1.00. Here, p-wave
interaction lowers εtot and enhances mixing. Reaching
βp = 27 at P7, the mixture reverts to the AIM phase to
reduce the total energy εtot, with a reduced η = 0.356
and d = 1.917. In this case, p-wave interaction enhances
phase separation. We emphasize that the energy differ-
ence of the ground and metastable states is very small at
points P6-P9 in Table I, and such intricacy results in a
more complex phase boundary.

Notably, the SIM phase, frequently reported in the lit-
erature [20, 25], is absent in Fig. 3. This is due to our
assumption that both BECs share the same intraspecies
interaction strength, have the same spherically symmet-
ric harmonic trap and an equal number of atoms. Gen-
erally speaking, the interplay between M, SIM, and AIM
phases primarily depends on the competition between in-
terspecies s-wave interactions and factors such as kinetic

energy, potential energy, and intraspecies interactions—
the former determines the miscibility, while the latter dic-
tates the spherical symmetry of the ground state. Attain-
ing an SIM phase involves investigating factors leading to
distinct intraspecies interactions, including variations in
masses, harmonic trap frequencies, diverse intraspecies
s-wave scattering lengths, and the relative atomic num-
ber ratio of the two species, as detailed in the subsequent
discussion.

B. The ground-state phase diagram with
intraspecies interactions

Until now, our focus has been on a simplified model,
neglecting intraspecies interactions (β1 and β2) and as-
suming equal masses and trapping frequencies for both
species. In practical experiments, however, intraspecies
interactions play a crucial role. Repulsive intraspecies in-
teractions (∝ βi|ϕi|4) tend to expand individual conden-
sates, thus favoring the miscible phase [25, 62, 68]. This
effect is evident in Fig. 1, where the nonzero intraspecies
interaction β1 = β2 = 2 significantly extends the bound-
ary of the M phase at β1 = β2 = 0. Intraspecies interac-
tions not only broaden density profiles for both species
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but also trigger the emergence of a SIM phase (d = 0,
η < 1) [20, 25], where the less-bound BEC encapsulates
the other, resembling a symmetric spherical shell with
lower energy and higher symmetry than the AIM phase.

Atom number plays a crucial role in determining the
ground state symmetry and phase boundary structure
of binary BEC mixtures, as demonstrated in works that
consider the only s-wave interaction [20, 25, 69, 70]. The
critical scattering length (ac12) for phase separation is
found to be atom number-dependent, as shown in the
investigation of spontaneous symmetry breaking (SSB)
in a trapped Na-Rb BEC mixture [20]. Further inves-
tigation in Ref. [25] explores how atom number ratio
(γ = N1/N2) influence miscibility-immiscibility transi-
tions. In a homonuclear BEC mixture involving two mag-
netic sublevels mF = ±1 of the hyperfine spin F = 1
state, both species share identical intraspecies s-wave
scattering lengths, as demonstrated in the 23Na-23Na
BEC mixture [63]. Phase diagrams in the γ − a12 plane

(a)

(b)

FIG. 4. Dependence of the order parameters η (a) and d
(b) on the interspecies s-wave interaction strength β12, for
various interspecies p-wave interaction strength βp and spatial
dimension. Solid line: βp = 0.1; dashed lines: βp = 1; purple
dotted line: βp = 10.0 and in 3D.

display three distinct phases: M, AIM, and the SIM. The
absence of the SIM phase at γ = 1 aligns with our earlier
numerical findings. However, in a binary BEC mixture
with differing intraspecies s-wave scattering lengths, an
SIM phase can emerge between the M and AIM phases at
γ = 1. Below, we extend these discussion to the scenario
where the interspecies p-wave interaction is present.

Our numerical simulation employs parameters close
to a broad p-wave FR at approximately 284G in the
87Rb |1,+1⟩+23Na |1,+1⟩ channel [50]. Two s-wave res-
onances at 347.8 and 478.8G have been also observed
near this p-wave resonance. Hereafter, we only consider
the case of γ = 1 and take the s-wave scattering length
a11 = 113.4 a.u. and a22 = 57.0 a.u. as constants inde-
pendent of the magnetic field [51, 52]. By minimizing the
energy functional of Eq. (7) for the 3D case, we arrive at
the phase diagram presented in Fig. 5. From Fig. 5(a) to

Fig. 5(d), the p-wave interaction strength βp/β
bg
12 is cho-

sen increasingly, as 0.0, 0.2, 0.8 and 3.6; the background

s-wave scattering length is fixed at abg12 = 67 a.u. [50].

Without the p-wave interaction [Fig. 5(a)], the critical
interspecies scattering length is ac012 = 62.5 a.u., beyond
which phase separation occurs in the TFA. However, re-
sults from Fig. 5(a1-d1) indicate a significant influence to
ac12 by of the atom number N . For small N , ac12 roughly
scales with N−1, whereas for large N , the N dependence
of ac12 remains nearly constant due to the substantial dif-
ferences in intraspecies interactions. These distinctions
give rise to a shell-filling effect for the Na atoms [20],
defining the shell as the spatial region between the mean
ield of the more tightly trapped Rb atoms and the less
confined Na atoms, manifesting as the SIM region in
Fig. 5(a2) and (b2). However, if a12 falls below the crit-
ical value of ac12 ≈ 80 a.u. [cf. the light gray solid lines
in Figs. 5(a1)-(d1)], the mixture remains in the M phase
due to the dominant intraspecies repulsive interactions.
Upon surpassing this threshold, the mixture undergoes a
configuration transition towards the SIM phase, as inter-
species interactions and other terms begin to dominate
over intraspecies interactions. Specifically, the Rb atoms
at the trap center gives rise to a spherically symmetrical
potential barrier to the Na atoms; the latter thus forms
a symmetrical shell structure. Upon increasing a12, the
wave function overlap (η) decreases. Beyond the phase
boundary (black dashed line) in Fig. 5(a2), interspecies
interaction becomes dominant. To minimize interaction
energy, the two species disperse in opposite directions
due to the strong repulsive interaction. The symmetry-
broken ground state features an approximately planar
boundary between the two hemispheres of each species
[Fig. 5(e2)], reducing both kinetic energy from bound-
ary curvature and interface volume. In this parameter
regime, the system undergoes SSB, entering the AIM
phase [20].

Furthermore, we focus on the case of a12 = 100 a.u.
in the absence of p-wave interaction. The variation of
the mixture’s ground-state phase with increasing N , la-
beled as P11-P14 in Fig. 5(a2), is depicted in Figs. 5(e1)-
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FIG. 5. Ground-state phase diagram of a mixture of 87Rb-23Na mixture in the N -a12 plane. The interspecies scattering lengths
are a11 = 113.4 a.u. and a22 = 57.0 a.u.. The p-wave interspecies interactions βp/β

bg
12 is 0 in (a), 0.2 in (b), 0.8 in (c) and 3.6 in

(d), the background scattering length abg
12 = 67 a.u. (a1)-(d1) show the distribution of the order parameter η, while (a2)-(d2)

show the distribution the order parameter d. The red and black dash lines represent the phase boundaries determined by
numerical calculation, the light gray solid lines in (a1)-(d1) represents the critical value of a12 = 80 a.u. The density profiles
of the two BEC components at locations P11 = (5 × 102, 100 a.u.), P12 = (1 × 104, 100 a.u.), P13 = (1.8 × 104, 100 a.u.) and
P14 = (3× 104, 100 a.u.) in panel (a2) are shown as (e1)-(e4) respectively.

a1

b1

a2

b2

AIMM

SIM

M

SIM

AIM

FIG. 6. Ground-state phase diagram for the 87Rb-23Na mixture with fixed a11 = 113.4 a.u. and a22 = 57.0 a.u. in the N -
(βp/β

bg
12)

1/3 plane. The value of s-wave interspecies interaction in (a) is the background scattering length a12 = 67 a.u., while
in (b), it is set to a12 = 100 a.u.. (a1) and (b1) correspond to the order parameter η, while (a2) and (b2) correspond to the
order parameter d. The red, black and yellow dashed lines represent the phase boundaries given by numerical imaginary-time
evolution of the GP equation.

(e4). At small N , the dominance of kinetic energy forms a significant barrier hindering phase separation. Conse-
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quently, the system initially adopts a symmetric M phase
[P11 with Fig. 5(e1)]. As N increases, interaction en-
ergy rises faster than kinetic energy, as a result of the
higher order scaling of interaction energies with respect
toN than kinetic energy. The energy loss associated with
phase separation, driven by the interspecies interactions
between two species, compensates for the gain in kinetic
energy, favoring a AIM phase [P12 with Fig. 5(e2)]. As
N continues to increase (while still remaining in the AIM
phase), the Na atoms wrap further around the Rb core.
The Rb core is pushed slightly off the trap center, but
the trap is so tight such that large displacements are en-
ergetically unfavorable [P13 with Fig. 5(e3)]. Eventually,
as the number of atoms grows sufficiently, the Na atoms
completely encompass the Rb core by filling the available
shell-like space. Thus, the mixture enters the SIM phase
[P14 with Fig. 5(e4)].

The p-wave interspecies interaction has dual effects:
Figs. 5(a1-c1) show that ac12 increases to about 100 a.u.

as p-wave interaction increases to βp = 0.8βbg
12. In this

regime, the p-wave interaction enhances mixing of the

two BECs. However, when βp further increases to 3.6βbg
12

in Figs. 5(d1) and (d2), ac12 decreases. In this regime,
p-wave interaction enhances phase separation. This is
similar to the phenomenon in Fig. 3 (c). Another conse-
quence of p-wave interaction is that the SIM phase region
gradually decreases as the βp increases, as shown by the
changes in the order parameter d in Figs. 5(a2) -(d2).
Considering a certain position in the SIM phase near
the AIM phase boundary in Fig. 5(b1), such as position
P14. Although the spherical shell configuration reduces
the kinetic energy and s-wave intraspecies interaction by
reducing the boundary curvature, it also increases the
interface volume of the two-component BEC. Simultane-
ously, the additional p-wave interaction tends to the re-
duction of the interface volume, resulting in a rightward
shift of the AIM phase boundary. As βp increase the AIM
phase expands until the SIM phase region is no longer vis-
ible in Figs. 5(c2)-(d2). In addition, the order parameters
become discontinuous as βp becomes sufficiently large in
Figs. 5(d1) -(d2), the underlying mechanism has been
explained in Sec. III B.

Figure 6 compares the ground-state phase diagram

in the (βp/β
bg
12)

1/3 − N plane at different abg12: abg12 =

67 a.u. and abg12 = 100 a.u. Significant differences emerge
when using p-wave interactions to modulate the miscible-

immiscible phase transition. In Figs. 6(a), where abg12 <
ac12, the system exclusively exhibits M and SIM phases.
The addition of p-wave interaction mainly facilitates the
mixing of the two BECs, driving a transition from the
SIM phase towards the M phase. As discussed above, the

AIM phase exists only if abg12 is sufficiently large. Con-

versely, when abg12 ≥ ac12, as observed in Figs. 6(b), all
three phases exist. When N ≲ 104, interspecies inter-
action (∝ β12) is weaker than kinetic energy, the latter
promotes mixing. The inclusion of p-wave interaction en-
hances mixing, driving the AIM phase at βp = 0 to the M

phase. As N increases, the M-to-AIM phase boundary
approximates a straight line, akin to the steep bound-
ary observed when β12 surpasses the critical value βc

12

in Fig. 3 . However, when N > 104, the p-wave inter-
action manifests dual effects: weak βp promotes mixing
and strong enough βp triggers phase separation. With
increasing βp, the order parameter η first increases and
then decreases, as clearly depicted in Fig. 6(b1). Upon
reaching N > 105, the mixture enters the TFA regime
(β1(2) ≫ 1). The ground state undergoes SSB around

βp/β
bg
12 ≈ 1.0, entering directly the AIM phase. Cor-

respondingly, the order parameter d exhibits an abrupt
change, increasing from 0 to d ≥ 3 [71].

Finally, we note that while we have primarily focused
on investigating the role of p-wave interaction to the
miscible-immiscible phase transition, other factors such
as particle number ratio and trap configuration may also
slightly influence the phase boundary [23, 25, 70]. The
detailed analysis of these is beyond the scope of this
study.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have derived a mean-field equation
incorporating p-wave interactions by employing a single-
channel p-wave pseudopotential model. Our exploration
of the ground-state phase diagram in a binary Bose-
Einstein condensate (BEC) with both interspecies s-wave
and p-wave interactions has revealed richer characteris-
tics than those arising from s-wave interactions alone.
Positive p-wave interactions exhibit a dual impact, ei-
ther promoting the mixing or driving the separation of
BEC components. This introduces a novel avenue for
experimentally controlling the mixing behavior of BEC
mixtures, suggesting potential directions for future stud-
ies. In practical 87Rb-23Na BEC mixture experiments,
achieving precise control over both s- and p-wave inter-
actions is challenging. However, specific magnetic field
positions present a favorable scenario where a particular
s-wave Feshbach resonance (FR) and a specific p-wave
FR are closely aligned in diverse binary mixtures [37, 40].

In the broader scope of diverse mixtures involving var-
ious atomic species, multiple factors such as the atom
number ratio, mass imbalance, and disparities in trap-
ping configurations among the constituents could poten-
tially influence miscibility[25, 70], providing avenues for
future investigation. Additionally, it’s important to high-
light that our focus has primarily centered on the ground-
state properties of BEC mixtures. The dynamics, espe-
cially the evolution of phase separation, remain unex-
plored in our present research [28, 72–74]. Given that
p-wave interactions involve gradient correlations between
wave functions of the two components, investigating the
phase separation dynamics prompted by p-wave interac-
tions holds promise for future investigation.
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