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Abstract

This paper proposes a unified theoretical model to identify and test a com-

prehensive set of probabilistic updating biases within a single framework. The

model achieves separate identification by focusing on the updating of belief dis-

tributions, rather than classic point-belief measurements. Testing the model

in a laboratory experiment reveals significant heterogeneity at the individual

level: All tested biases are present, and each participant exhibits at least one

identifiable bias. Notably, motivated-belief biases (optimism and pessimism)

and sequence-related biases (gambler’s fallacy and hot hand fallacy) are identi-

fied as key drivers of biased inference. Moreover, at the population level, base

rate neglect emerges as a persistent influence. This study contributes to the

belief-updating literature by providing a methodological toolkit for researchers

examining links between different conflicting biases, or exploring connections

between updating biases and other behavioural phenomena.
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1 Introduction

Over the last decades, there have been substantial efforts to identify and categorize

belief-updating biases, both within Economics and Psychology (Edwards, 1968; Tver-

sky and Kahneman, 1974; Grether, 1980). Scholars have typically studied these biases

separately. This has made it more challenging to tell if someone’s updating behaviour

can be attributed to one bias or another. Despite recent shifts towards a more com-

prehensive structure of these biases (Benjamin, 2019; Bordalo et al., 2023a,b), there

is still a lack of a unifying testable model that can tell multiple conflicting biases

apart.

The essential reason why such a model would be desirable is that the identification

of belief-updating biases can be confounded when some potential biases are not taken

into consideration. For example, imagine a person who consistently updates her

beliefs “too much” in the face of new information. Traditional models are able to tell

whether this behaviour is due to this person neglecting her prior beliefs (base rate

neglect), or interpreting too much out of the information she receives (overinference).

However, other potential biases could also explain her updating behaviour. If she

has preferences over different outcomes, is she updating her beliefs too much because

she generally overinterprets information, or because she cares about the outcome

(optimism/pessimism)? Or may she instead be jumping to conclusions because the

information she receives is confirming her previous beliefs (confirmation bias)? Could

it also be that she has very little doubt about the outcome that she believes to be

more likely to happen (overconfidence)? By excluding some of these biases from the

model, we may wrongly attribute her behaviour to a different bias than the one(s)

she is actually exhibiting. This implies that some of the biases which happen to be

present in the literature may only seem to be relevant because we lack a more complete

model. For instance, base-rate neglect might appear to be driving behaviour because,

say, confirmation bias and overconfidence are unaccounted for.

Addressing confounded belief-updating biases is important for two related pur-

poses. First, identifying these biases separately is relevant because the actions that

people may take under different updating biases could be completely different even

if they lead to the same posterior. For example, someone suffering from confirma-
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tion bias may keep voting for the same political party after receiving social media

information that aligns with her previous beliefs, while someone who simply neglects

prior information might be more likely to change her mind if reminded of the actual

base rate. Secondly, once confoundedness is taken care of, such a model would be

able to shed light onto which specific biases are more common and which biases drive

inference the most.

Integrating multiple belief biases into one testable model poses one important

methodological challenge. Namely, that the way we usually measure beliefs may not

suffice to separably identify a full range of potentially confounded biases. The vast

majority of the literature measures point beliefs to study biased updating (Benjamin,

2019). This approach is simple and might be enough when the number of biases to

take into consideration is small. But with the inclusion of more biases, the amount

of flexibility we have to distinguish one updating pattern from another is reduced.

This paper constructs a theoretical model that allows to separably identify multi-

ple conflicting belief-updating biases, using belief distributions1 to measure prior and

posterior beliefs. One can understand belief distributions as an individual holding

beliefs over multiple outcomes, or being uncertain about her own beliefs when there

are only two states (in a similar sense to cognitive uncertainty (Enke and Graeber,

2023)). Either way, the central idea is that belief distributions give us more leeway

to better distinguish updating biases.

The theoretical framework I propose adopts an approach where an agent observes

a series of Bernoulli trials. The agent’s prior beliefs are assumed to follow a beta

distribution and are updated via Bayesian inference. Since the beta distribution is

conjugate to the binomial distribution, the posterior of the Bayesian agent will also

result in a beta distribution2. To integrate different biases, the model accounts for

deviations from Bayesian updating, utilizing distorted likelihoods and priors. These

distortions yield non-Bayesian posterior beta distributions, allowing for the identifica-

tion of core biases such as over/under inference (Khaw et al., 2021; Augenblick et al.,

1While Jiao et al. (2020) utilize the idea of using belief distributions to simultaneously incorporate
belief biases their model is unsuitable for probabilistic biases (relies on normally distributed beliefs),
incorporates a reduced range of biases and is not tested in an experimental setting.

2This updating setting is comparable to the one employed in the ambiguity aversion literature
(see Abdellaoui et al. (2021) as an example) or cognitive uncertainty (Enke and Graeber, 2023).
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2021; Ba et al., 2022) or base rate neglect/over use (Benjamin et al., 2019; Bucher

and Glimcher, 2022; Enke et al., 2023a). It also explores asymmetries in reacting to

good and bad news in the observed data generating process, alongside preference-

related biases (Eil and Rao, 2011; Zimmermann, 2020; Möbius et al., 2022). Further,

it incorporates confirmation bias (Rabin and Schrag, 1999; Charness and Dave, 2017;

Zhenxun, 2023b), sequence-related biases like the hot hand fallacy and gambler’s fal-

lacy (Rabin, 2002; Rabin and Vayanos, 2010), and confidence biases (Serra-Garcia

and Gneezy, 2021; Huffman et al., 2022; Enke et al., 2023b) that affect the variance

of the agent’s posterior distribution, all within the same framework.

The model is tested with help of a novel laboratory experiment. Participants

solved a series of tasks where they had to guess the percentage of red balls in a

selected urn from a pool of 99 urns, each containing varying proportions of red and

blue balls. Participants received information signals via ball draws from the selected

urn, forming and reporting their belief beta distributions twice. Then they reported

their updated beliefs after observing another sequence of independently drawn signals

from the same urn.

The results of the study support the idea that the inclusion of a more complete

set of biases mitigates the artificial presence of some biases in more reduced mod-

els. At the population level, both overinference and base rate neglect significantly

affect updating behavior, when these are the only biases that the model accounts for.

However, when the model encompasses a broader spectrum of biases, the impact of

overinference vanishes, leaving base rate neglect as the sole remaining persistent bias.

Nonetheless, if people exhibit different biases, findings at the aggregate level might

not be able to capture the importance of each bias, as many of them will be averaged

out across individuals. In other words, due to the presence of individual heterogene-

ity3, the experiment arguably offers even more insightful findings when applied at the

individual level. First, when only a reduced amount of biases is accounted for, the

model is unable to identify biased inference in some subjects who would otherwise ex-

hibit a clear bias. In fact, when the full array of biases is factored in, the model shows

3The idea of individual heterogeneity being a key determinant of biased belief updating has been
recently discussed by Khaw et al. (2021) and Alós-Ferrer and Garagnani (2023); supporting the idea
that while average reports might look almost Bayesian or noisy at the population level, an individual
analysis reveals that there are different but systematic deviations among individuals.
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that all individuals exhibit at least one specific bias; and more importantly, all tested

biases are present to a certain extent. Finally, despite the presence of individual het-

erogeneity, motivated-belief biases (optimism and pessimism) and sequence-related

biases (gambler’s fallacy and hot hand fallacy) appear to be the main drivers of bi-

ased inference. On the other end, the presence of confirmatory biases (confirmation

and disconfirmation bias) is scarce.

This paper does not only contribute to the literature of belief updating as a

compass to gauge the intensity of various belief biases, but also aims to be a toolkit

for researchers who identify belief-updating biases in settings where these could be

potentially confounded. In this direction, there are three ways in which this paper

contributes to the existing literature.

First, there has been quite some recent work trying to trace links between different

updating biases. For example, Heger and Papageorge (2018) and Gneezy et al. (2023)

study how wishful thinking (optimism) can affect overconfidence; while Charness

and Dave (2017) and Zhenxun (2023b,a) try to separate behaviour stemming from

motivated beliefs and unmotivated confirmation bias. In the absence of an overarching

model that encompasses a wide array of biases, findings can be confounded and results

about such links could therefore be biased. For example, bias A may appear to be

linked to bias B, only because a third bias C is missing.

Second, many researchers search for belief-based explanations of behavioural phe-

nomena, when conflicting biases come into play. For example, political polarization

has been separately explained from the standpoint of overconfidence (Ortoleva and

Snowberg, 2015), and confirmation bias (Del Vicario et al., 2017). In the financial

literature, there is some debate as to whether the disposition effect could be caused

by discrepant biases, such as motivated beliefs (Heinke et al., 2023), the gambler’s fal-

lacy (Jiao, 2017) or general underinference (Pitkäjärvi, 2022). More examples range

from linking confirmation bias to several stylised facts in financial markets (Pouget

et al., 2017); or confidence biases to poor investment performance (Ahmad and Shah,

2020) and biased memory (Huffman et al., 2022). As previously mentioned, utilizing

an approach that is able to tell conflicting biases apart has the advantage to better

pinpoint what biases are precisely underpinning certain behavioural regularities; or

even let us know if some biases are simply an artifact of using a less complete model.
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Third, the problem of conflicting biases also arises in the field of behavioural

interventions. Boosting is a psychological technique aimed at de-biasing individuals

when they suffer some kind of cognitive bias. One of the challenges mentioned in

this area of research is the fact that these interventions normally target one bias at a

time, when indeed multiple biases could be at stake (Kahneman et al., 2021). Once

again, having a method to distinguish between different conflicting biases could come

in handy in order to focus the intervention on those biases which end up being more

common, or drive inference the most.

The paper continues as follows: Section 2 explains the theoretical framework, the

updating setting and progressively introduces different biases into the model. Section

3 deals with the experimental design and presents the belief-measuring tool. In section

4, I bring the experimental data and the theory together and compare two regression

models, which differ in the amount of biases they incorporate. Section 5 discusses the

results of the experiment, and section 6 concludes with some final remarks.

2 A model of multiple belief biases

2.1 Theoretical framework

Let an agent observe a signal S = {s1, ..., sn} consisting of the realization of n inde-

pendent and identically distributed Bernoulli trials. Let p denote the probability of

success of each trial (si = 1) and 1− p denote the probability of each failure (si = 0).

For such data generating process (DGP), the likelihood function is the probability

mass function of a binomial distribution with parameters (n, p):

L(p|s1...sn) =
(
n

k

)
pk(1− p)n−k (1)

where k =
∑n

i=1 si and (n− k) are the number of successes and failures in the DGP

respectively.

Let Ω = (0, 1) be the set of possible values that p may take4, and let a prior belief

4The state-space set Ω can have two different interpretations. One could either consider an agent
who is not uncertain about her own beliefs, or one who is indeed uncertain about her own beliefs (à
la cognitive uncertainty (Enke and Graeber, 2023)). In the former case, the set Ω would specify the
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π(p) be beta distributed with prior parameters (a0, b0). Namely,

π(p|a0, b0) =
1

B(a0, b0)
pa0−1(1− p)b0−1 (2)

where a0, b0 > 0, and B(.) is the beta function.

Given a prior π(p) and a likelihood L(p|s1...sn) the agent forms a posterior. As

the beta distribution is a conjugate prior of the binomial distribution, a Bayesian

agent updates her beliefs such that her posterior distribution of p, π(p|an, bn), is also
beta distributed with parameters an, bn. This means that5:

an = k + a0 bn = n− k + b0 (3)

In order to incorporate updating biases, let a non-Bayesian agent use a distorted

likelihood and prior when she updates6. These distortions can be expressed as expo-

nential deviations of the likelihood and prior. Namely, L̃(p|s1...sn) = (L(p|s1...sn))γ

would represent the distorted likelihood and π̃(p) = (π(p))δ would represent a dis-

torted prior of the non-Bayesian agent (γ, δ > 0). The parameters γ ̸= 1 and δ ̸= 1

indicate deviations from Bayesian updating due to distortions of the likelihood and

prior respectively. With these modified functions such a non-Bayesian agent has a

posterior beta distribution with parameters ãn, b̃n such that:

ãn = γk + δ(a0 − 1) + 1 (4)

b̃n = γ(n− k) + δ(b0 − 1) + 1 (5)

state-space of an agent who forms beliefs over every possible realisation of the objective parameter
p ∈ (0, 1). In the latter case, the agent would form beliefs over a binary state-space (whether the
signal si takes value 1 or 0), and the set Ω would, in this case, represent the subjective state-space
(p), which describes the set of possible states where the agent expresses uncertainty about her own
beliefs. Both alternatives are contemplated in this model.

5See section A in the appendix for a proof; as well as a proof to derive eq.(4) and (5), which
suffice to derive all other equations of posterior parameters in section 2.

6These distortions are often seen (Benjamin, 2019) as part of an “as-if model.” This means that
the model does not take the stand that biased agents actually follow Bayes’ Theorem with different
likelihood and prior functions, but instead, that these distortions imply equivalent behaviour to
agents interpreting too little, or too much, from information signals (or prior beliefs) when they
update.
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In particular γ > 1 indicates “overinference” while γ < 1 shows “underinference”; that

is, believing that the information signal S is more/less informative than it actually

is. Similarly, parameter δ > 1 indicates “base rate overuse” and δ < 1, “base rate

neglect”; which implies that the prior is more/less informative than a Bayesian agent

perceives it to be. This bias structure conceptually resembles Grether-regressions7,

as the same type of biases can be identified. The next section shows how equations

(4) and (5) can be extended to incorporate more biases.

2.2 Introducing multiple belief biases

This section shows how an extended set of biases can be introduced into the model.

2.2.1 Asymmetries between successes and failures & Preference-related

biases

Equations (4) and (5) assume that deviations from the Bayesian agent in the likeli-

hood are symmetric for successes and failures. That is, the agent over or under-reacts

to “positive information” the same way she over or under-reacts to “negative” infor-

mation. For a non-Bayesian agent this need not be the case. Consider instead that

the agent weights successes and failures of the data generating process differently.

Then her likelihood function would be L̃(p|s1...sn) =
(
n
k

)
pαk(1−p)β(n−k). In turn, her

posterior would be beta distributed with shape parameters ãn, b̃n such that:

ãn = αk + δ(a0 − 1) + 1 (6)

b̃n = β(n− k) + δ(b0 − 1) + 1 (7)

where α, β > 0. And α ̸= β indicates asymmetric reactions to successes and failures in

the DGP. Equations (6) and (7) are especially interesting if the agent has preferences

over the state-space. Suppose this is the case; and suppose further that preferences are

expressed by a utility function, which is continuous and monotonically increasing over

p. Then, every success k would be informative of a higher realisation of p ∈ (0, 1), i.e.

7That is, binary-state regressions where inference biases and base-rate biases are identified.
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a preferred state. Conversely, every failure (n−k) is informative of a lower realisation

of p. Therefore, successes and failures, can be interpreted as pieces of good and bad

news respectively. This means that α > 1 (overreacting to positive information) or

β < 1 (underreacting to negative information) can be interpreted as optimism bias;

while α < 1 or β > 1 would indicate pessimism. Furthermore, α > β represents the

good news effect, while α < β implies there is bad news effect.8

2.2.2 Confirmation Bias

Confirmation bias is modeled as a positive correlation between overreaction to infor-

mation signal S, and how confirming the signal is. The degree of confirmation of the

signal is unrelated to the agent holding preferences9 over the state-space. In partic-

ular, the degree of confirmation c is expressed as the area, in the density function of

the prior, comprised between the expected value of the prior E(π(p)) and the mean

of the information signal k/n. Formally:

c =

∣∣∣∣ ∫ E(π(p))

(k±ε)/n

π(p|a0, b0) dp
∣∣∣∣ (8)

Equation (8) specifies a relative measure of confirmation10 (see Figure 1 for an exam-

ple). The higher the value of c, the less confirming a signal will be. To incorporate

over or under reaction to confirmation a separate term ρc is added to the distorted

likelihood function. Equations (6) and (7) are modified as follows:

ãn = αk + ρc+ δ(a0 − 1) + 1 (9)

b̃n = β(n− k) + ρc+ δ(b0 − 1) + 1 (10)

8Asymmetries between successes and failures can also be present at the level of the prior. These
distinctions are introduced in section 4, but left out of the main theoretical discussion. This is
without loss of generality as the resulting equations are identical to equations (9) and (10) except
for having separate ρ and δ parameters for successes and failures. (see section 4.2)

9A discussion about the distinction between motivated and unmotivated confirmation bias can
be found in Zhenxun (2023a)

10In equation (8), the signal mean k/n is replaced by (k ± ε)/n. This is because p is not strictly
defined at p = 0 and p = 1. Thus, one must take (k+ε)/n as the inferior limit if k = 0; and (k−ε)/n
if k = n.
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where ρ < 0 indicates confirmation bias (as c becomes smaller the perception of the

number of successes or failures grows); and ρ > 0 indicates disconfirmation bias.

Figure 1: Example of confirmation measure for an updating problem with prior mean
E(π(p)) = 0.5 and information signal of 8 successes and 2 failures (k/n = 8/10)

2.2.3 Sequence-related biases and unrelated inference biases

Over(under)-reaction to information signals can also be driven by other reasons than

the presence of preferences over the state-space. We consider two kind of alternative

deviations: Sequence-related biases (i.e. hot hand fallacy and gambler’s fallacy) and

over(under)-inference to information signals when preference over the state-space are

not at stake.

Sequence-related biases: Consider a partition of the signal space S. Namely,

S1 = {s1...sm} and S2 = {sm+1...sn} where n > m. Suppose all of the si ∈ S2 are

either successes (i.e.
∑n

n−(m+1) si = n−m+1, si ∈ S) or failures (i.e.
∑n

n−(m+1) si = 0,

si ∈ S). In this context, the hot-hand fallacy is defined as inferring too much from
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information signals after observing a the last n − m + 1 consecutive successes (i.e.

α > 1) or failures (i.e. β > 1). Conversely, gambler’s fallacy is defined as inference

against the information signal after observing a the last n−m+1 consecutive successes

(i.e. α < 0) or failures (i.e. β < 0).

Inference biases: Consider an almost equivalent state-space set, ΩNP = (0, 1)

over which the agent form beliefs but where, contrary to Ω, the agent does not hold

any preference. So any element p̂ of the set ΩNP , will have the characteristic that

u(p̂) = 0. Because this is the only difference between sets, only α and β coefficients

in equations (9) and (10) differ between forming beliefs over Ω or ΩNP . Therefore,

when the agent forms beliefs over ΩNP , α and β coefficients can be interpreted as

over(under) inference for successes and failures, independent of preferences over the

state-space.

The biases in this subsection are only separably identified from one another when

the agent faces multiple belief-elicitation decisions and observes different data gener-

ating processes coming from both Ω and ΩNP .

2.2.4 Under and overconfidence

Confidence biases (overconfidence and underconfidence) are those which are strictly

related to the variance of the agent’s posterior distribution in relation to the Bayesian

variance. Overconfidence implies that the agent’s overall distribution of posterior

beliefs is more dispersed than that of a Bayesian agent. Conversely, underconfidence

yields a posterior distribution which is more dispersed over the values of p than the

distribution a Bayesian agent would have. Formally:

˜V arn = ν × V arn (11)

where ˜V arn is the variance of the agent’s posterior beta distribution, and V arn is

the Bayesian variance. In equation (11), ν > 1 indicates overconfidence, while ν < 1

indicates underconfidence.
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3 Experimental Design

The experiment tests the theoretical framework of section 2 both at the individual

and population level. The experiment was conducted at the Behavioural and Exper-

imental Economics Laboratory (BEELab) at Maastricht University. 88 participants

were recruited and, each of them had to make 30 belief-elicitation tasks. For each

task, participants report their belief beta distributions twice, after observing two

consecutive information signals. The average payment per participant was 15.9 eu-

ros. The experiment was pre-registered in October, 2023 at aspredicted.org. The full

instructions of the experiment can be found in section D of the appendix.

3.1 The belief-elicitation task

In each of the 30 tasks, participants observe a pool of 99 urns; each urn containing 100

balls. Each one of these urns contains a different distribution of red and blue balls.

That is, Urn 1 has only one red ball and 99 blue, in Urn 2 there are only two red balls

and 98 blue. This continues until Urn 99 where 99 balls are red and one is blue. Then,

one of these urns is selected at random (i.e. selected from a uniform distribution),

but the content of the urn is not revealed to the participants. Participants’ task is to

guess the percentage of red balls in the selected urn (see Figure 2).

Figure 2: Urn selection

In order to make their guesses, participants receive information signals by observ-

ing two sequences of balls, drawn with replacement. In the first sequence of draws,
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either one, two or three balls are extracted at random from the selected urn. After

seeing this sequence participants are asked to report their belief distribution 11 (Fig-

ure 3a) about the percentage of red balls in the selected urn. This first report, is

taken as a prior. Once this prior distribution is elicited, a second sequence of draws

is drawn from the same selected urn and shown to the subjects. In this case, either

three, five or seven balls are extracted at random from the urn. After observing this

second information signal, participants are asked to report their (posterior) belief

distribution12 (Figure 3b). Once this is done, a new urn from the pool of 99 urns

is selected, with replacement, and this process is repeated thirty times. All of the

subjects had an identical selection of urns and sequences of draws, but the order of

the tasks was randomised between participants. All of the belief-elicitation tasks were

incentiviced with a binarised scoring rule (more details in section 3.2 and appendix

B)

To assess the role of motivated beliefs, fifteen of the thirty urns (placed at a

random spots of the experiment) had an extra payment attached to it. I henceforth

refer to these urns as dollar urns. In particular, when participants reported beliefs

about these urns they receive a payment, in cents, equal to the (unknown) number of

red balls in the selected urn. This means that participants should have a preference

over the content of dollar urns.

3.2 Eliciting beta distributions

I use a novel way of eliciting belief distributions, which is especially convenient if the

elicited belief distribution follows a specific functional form, as opposed to already

existing methods (Crosetto and de Haan, 2022; Harrison et al., 2017).

In order to report their beliefs, participants were presented with a dynamic graph-

ical interface that allows them to select their preferred beta distribution (See figures

3a and 3b). By moving two sliders, each associated with a different question, partic-

ipants were able to select a specific beta distribution. Those questions were:

11see section 3.2 for details about the elicitation of beta distributions
12Both in the prior and posterior elicitations, participants need to update from a given default

beta distribution. Before eliciting their prior, the default beta distribution they see is a uniform
distribution (as this is the exogenously implemented “prior of the prior”). Accordingly, the default
beta distribution they update before eliciting their posterior is their own prior report.
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1. What percentage of red balls do you expect the selected urn to have?

2. What is your uncertainty level about this percentage?

The first slider in figure, associated with question (1.), allows the subjects to ma-

nipulate the expected value of a beta distribution, while the second slider, associated

with question (2.), allows the subjects to manipulate the standard deviation of such

beta distribution 13. Participants were shown a five-minute explanatory video on

how to interpret the graph they selected and how to manipulate it. Subjects were

specifically instructed to solve the task graphically, and they were also shown that

the scale of the graph updates dynamically in order for the plot to be informative.

Participants also had the option to enable the graph to update on a fixed scale if they

desired to do so. Additionally, they answered related comprehension questions 14 and

could test the software before starting to answer the relevant belief-elicitation tasks.

In order to avoid the possibility that participants reported bimodal beta distribu-

tions, the maximum range of the second slider (standard deviation) depends on the

value of the first slider (expected value). The possibility of reporting bimodal beliefs

was excluded for a number of reasons: First, it is challenging to interpret what a bi-

modal beta distribution means in the context of this experiment, secondly introducing

a bimodal distribution could impair the understanding of the graphical interface by

the subjects; and thirdly, a bimodal distribution could never be the Bayesian answer

to the task, so reporting a Bayesian distribution is an option which is never disallowed

to the participants.

13The probability density function of any beta distribution can also be parameterised by its
expected value and variance.

14In order to participate in the experiment subjects must have answered 3 out of 5 comprehension
questions correctly. If any comprehension question was answered incorrectly, participants had a
second chance to answer every question correctly

14



(a) Figure 3a: Example of prior belief elicita-
tion after observing a first sequence of draws
from a random urn showing “red, red”. This
example shows a specific selection of a scaled
beta distribution with an expected value of
56 and a standard deviation of 18.47

(b) Figure 3b: Example of posterior belief
elicitation after observing a second sequence
of draws showing “blue, red, blue, red, blue”.
The updated beta distribution is selected in
this example shows an expected value of 51
and a standard deviation of 7.44

To incentivise truthful reporting, a binarised scoring rule was implemented in

every task. Specifically, I follow a similar method to the one suggested by Schlag

et al. (2015), who propose different scoring rules to incentivise every moment of a

probability distribution (see appendix B to understand the specific scoring rule). At

the same time, I closely follow Danz et al. (2022) in not explicitly disclosing the

exact scoring rule that is implemented. Instead, participants were told that they

should always truthfully report their guess for the percentage red of balls, and their

uncertainty level in the selected urn (i.e. the mean and standard deviation of the

beta distribution) so as to maximise their expected payoff.
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4 Baseline and Complete model regressions

This section presents the main analyses derived directly from the theoretical frame-

work of section 2. In Section 4.1, the baseline model regression is outlined, introducing

only a limited set of biases. Following that, Section 4.2 details the complete model

(equations (14),(15) and (16)), encompassing all biases of the model. The decision

to present these two models separately aims to facilitate comparison, investigating

whether significant biases in the baseline model persist when accounting for multi-

ple belief biases. Both models are executed and compared at both population and

individual levels. In Section 4.3, a method is introduced to compare the relative

importance of biases proven significant at the individual level.

4.1 Baseline model regressions

The baseline model, closely resembles equations (4) and (5). It tests for under(over)-

inference and base rate neglect(overuse):

ãn − 1 = γsk + δs(a0 − 1) + εa (12)

b̃n − 1 = γf (n− k) + δf (b0 − 1) + εb (13)

In equations (12) and (13), successes and failures (variables k and (n− k)), represent

the number of red and blue balls observed in the second sequence of draws provided to

participants. Variables a0 and b0 are the parameters of the beta distribution elicited

by subjects after the first sequence of draws, while ãn and b̃n are the parameters of the

beta distribution elicited by subjects after observing the second sequence of draws.

εa and εb are the error terms.

The parameter interpretation of equations (12) and (13) is akin to equations (9)

and (10). Parameters γ and δ similarly indicate under/over inference and base rate

neglect/overuse respectively. However, equations (12) and (13) differ by acknowledg-

ing that these biases (γs,γf ) and (δs,δf ) may vary between successes and failures (i.e.

realisations of red and blue balls). The presence of those biases is tested by compar-

ing whether the estimated γ and δ parameters are significantly different from their
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Bayesian values (i.e. γs = γf = 1 and δs = δf = 1).

Note that equations (12) and (13) do not have an intercept. This has a very

straightforward theoretical justification. If all the independent variables in those

equations take value 0 (i.e. k = 0, n = 0, a0 = 1, b0 = 1), both ãn and b̃n take a value

of 1. This means that when one starts updating from a uniform prior distribution

(a0 = 1, b0 = 1), and observes no information signals whatsoever (k = 0, n = 0), one

must not update, i.e. remain at such uniform prior after updating (ãn = 1, b̃n = 1).

Having an intercept different than zero would imply that agents update in the absence

of any kind of information.

4.2 Complete model regressions

In order to test for the presence of all the biases described in section 2.2, I run a

slightly modified version of equations (9), (10) and (11). Namely:

ãn − 1 = (α0 + αPrefIPref + αSeqISeqs)k + ρsc+ δs(a0 − 1) + εa (14)

b̃n − 1 = (β0 + βPrefIPref + βSeqISeqf )(n− k) + ρfc+ δf (b0 − 1) + εb (15)

˜V arn = η + ν × V arn + εv (16)

Variables in equations (14) and (15) are identical to the baseline model with the only

exception of variable c, the relative measure of confirmation, as described in section

2.2.2. Equation (16) is almost identical to equation (11) in the interpretation of its

variables and the ν parameter indicating over or underconfidence (ν > 1 vs ν < 1).

The inclusion of an intercept η and an error term εv are the only differences15.

Parameters ρ and δ in equations (14) and (15) indicate confirmation/disconfirmation

bias, and base rate neglect/overuse respectively. As in the baseline case, equations

(14) and (15) differ by acknowledging that these parameters may differ between suc-

cesses and failures (ρs vs ρf ) and (δs vs δf ). However, the notable difference between

15Similarly to the baseline model, equations (14) and (15) do not have an intercept for the very
same reason as outlined in section 4.1.
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equations (14), (15) and (9),(10) lies in accommodating the biases of section 2.2.3.

This involves the inclusion of three dummy variables – IPref , ISeqs, and ISeqf –

interacting with the number of successes (in (14)) or failures (in (15)). IPref equals 1

when the subject faces a decision with preferences over the state-space (that is, when

beliefs about a dollar urn where reported) and 0 otherwise. ISeqs (ISeqf ) equals 1

when the last three balls observed in the second sequence are red (blue). By doing

so, one can distinguish motivated beliefs (optimism and pessimism), sequence-related

biases (gambler’s fallacy and hot hand fallacy) and unrelated over/under inference.

The presence of those biases is tested by comparing whether the estimated parameters

are significantly different from their Bayesian values. Table 1 summarizes the base-

line and complete models, and specifically shows the ranges of values of the different

parameters, which correspond to each bias.

Baseline Model Complete Model
Eq (12) (13) Eq (14) (15) (16)

γs or γf > 1 Overinference
γs or γf < 1 Underinference
δs or δf > 1 Base Rate Overuse
δs or δf < 1 Base Rate Neglect

α0 or β0 > 1 Overinference
α0 or β0 < 1 Underinference
α0 + αPref > 1 or β0 + βPref < 1 Optimism
α0 + αPref < 1 or β0 + βPref > 1 Pessimism
αPref > βPref Good News Effect
αPref < βPref Bad News Effect
α0 + αSeq > 1 or β0 + βSeq > 1 Hot Hand Fallacy
α0 + αSeq < 0 or β0 + βSeq < 0 Gambler’s Fallacy

ρs or ρf < 0 Confirmation Bias
ρs or ρf > 0 Disconfirmation Bias
δs or δf > 1 Base Rate Overuse
δs or δf < 1 Base Rate Neglect
ν > 1 Overconfidence
ν < 1 Underconfidence

Table 1: Summary of biases for Baseline and Complete Model
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4.3 The effect of each individual bias

In order to facilitate the comprehension and enhance the comparability of biases in

Table 1 for the individual analysis, I construct a measure that is informative of the

relative importance of each bias. This measure identifies the specific effect of each

bias in the relative changes of mean and variance for each subject. In order to achieve

this, I analyze the distortions to the Bayesian expected value and Bayesian variance

caused by exhibiting a particular kind of bias. The idea is to compare these Bayesian

values with a bias-specific measure of how the expected value and variance would

look like if the subject exhibited only the specific bias we are interested in. I call

these measures Bias-specific expected value and Bias-specific variance. The Bayesian

expected value and variance of the posterior beta distribution are given by:

En ≡ E(p|an, bn) =
an

an + bn
(17)

V arn ≡ V ar(p|an, bn) =
anbn

(an + bn)2(an + bn + 1)
(18)

The bias-specific expected value EBias and bias-specific variance V arBias
16 are given

by:

EBias =
abias

abias + bbias
(19)

V arBias =
abiasbbias

(abias + bbias)2(abias + bbias + 1)
(20)

where abias and bbias are the hypothetical parameters of a posterior beta distribution

if they were distorted by only one specific bias17. For example, suppose we want to

16In the case of confidence biases, V arBias is already given by ˜V arn, and EBias would be unaf-
fected.

17Because we are looking at the effect of specific biases for each subject, it is theoretically possible
that the effect of the bias in isolation is so strong that it makes abias or bbias negative. This would
make EBias and V arBias uninterpretable. Therefore, it is assumed that the maximum effect that a
bias in isolation can have, is such that the associated parameter abias or bbias is equal to 0 + ε. It
is worth nothing that these cases were very rare, as it would require strongly updating against the
information signal.
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evaluate the impact of overinference. Suppose a particular subject exhibits overin-

ference only in successes: That is α0 > 1. Then, abias = aOverinfernce = α0k + a0 and

bbias = bn. Equations (19) and (20) for every other bias are calculated analogously.

To capture the relative importance of each bias in inference, I compare the distance

between the Bayesian and distorted expected value and variance. Namely:

∆EBias = |En − EBias| (21)

∆V arBias = |V arn − VBias| (22)

Equations (21) and (22) allow us to quantify the discrepancy between the Bayesian

expected value and variance, and the bias-specific measures. These discrepancies serve

as indicative measures of the influence of each bias on the overall inference process.

Subsequently, by assessing these differences across subjects, we can assess the relative

impact of each individual bias.

5 Results

5.1 Population-level analysis

Table (2) compares the baseline model (equations (12) and (13)) with the complete

model (equations (14) (15) (16)) at the population level. Columns (1) and (2) of the

table refer to the baseline model, while columns (3), (4) and (5) correspond to the

complete model. All regressions in table (2) are run with clustered standard errors by

participant. Importantly, the significance of each coefficient does not necessarily show

whether an estimate is significantly different from 0, but whether it is significantly

different from the corresponding Bayesian value for a given coefficient (see Table 1).
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Table 2: Baseline and Complete models at the population level. Significance is with
respect to Bayesian values. Clustered standard errors

Dependent variable:

a posterior b post a post b post V ariance post

(1) (2) (3) (4) (5)

Successes 37.339∗∗ 43.678
(11.66) (36.34)

a prior 0.017∗∗∗ 0.016∗∗∗

(0.02) (0.057)

Failures 76.199∗∗ 67.102
(31.96) (40.072)

b prior −0.0002∗∗∗ −0.001∗∗∗

(0.01) (0.019)

Success : preference −30.889
(27.86)

Success : Seqpos 14.726
(32.75)

Failures : preference −27.602
(71.12)

Failures : Seqneg 102.488
(99.13)

Confirmation 0.001 −0.096
(0.001) (0.09)

Bayesian variance 0.983
(0.076)

Constant 0.002∗∗

(0.001)

Observations 2,640 2,640 2,636 2,636 2,640
R2 0.002 0.003 0.002 0.004 0.289
Adjusted R2 0.001 0.002 0.00000 0.002 0.288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 from the Bayesian estimate
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In the baseline model, there are two significant biases at the population level:

Overinference and base rate neglect. We see overinference both in successes (γ̂s > 1;

γ̂s = 37.339 ) and failures (γ̂f > 1; γ̂f = 76.119). This can be interpreted as subjects,

on average, interpreting each red ball they observe as 37 red balls; and each blue ball

they see as 76 blue balls, when they form their beliefs. And we see base rate neglect

(also in successes (δ̂s < 1; δ̂s = 0.017) and failures δ̂f < 1; δ̂f = −0.0002)). This

can be interpreted as subjects ignoring their priors (number of red/blue balls they

expected to see) when they form their beliefs.

Despite the significance of overinference and base rate neglect at the population

level in the baseline model, the effect of overinference seems to vanish when all of

the biases of the model are controlled for (Columns (3), (4) and (5)), and base rate

neglect is the only remaining significant bias. The complete model also minimizes the

AIC and BIC as show in Table 3 (Appendix C). This precisely shows that the lack of

inclusion of a wider array of biases within the same model, makes some biases look

artificially significant18.

However, neither the baseline nor the complete model seem to be explanatory of

subject’s posterior belief formation at the population level. This can be seen by the

extremely low goodness of fit (R2) of Columns (1) to (4) in Table 2. Yet, this is not

the result of subjects being completely noisy, but rather a consequence of individual

heterogeneity. That is, subjects are distinctly biased, but they exhibit widely different

biases. These distinct biases average out at the population level, but clearly present

at the individual level. Table 4 (Appendix C) compares the R2 of all the equations

at the population with the mean of all R2s in these same equations after running

the model at the individual level. As one can see in the first and second column of

the table, the goodness of fit from the population to the individual model shows a

substantial improvement19. This is also the case for both the AIC and BIC criteria

(columns (3) and (4) of table 3), which tremendously diminish when compared to

running the models at the population level, with the only exception of the variance

equation (equation (16)), which performs better at the population level. This is

18Additionally, comparing the adjusted R2 column for the individual baseline and complete mod-
els in Table 4 further emphasises this point.

19With the only exception of the variance equation (Eq. (16)).
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evidence pointing to the fact that there is considerable individual heterogeneity in

the data, and therefore, the model would benefit from an individual analysis.

5.2 Individual-level analysis

Figures 4a and 4b provide an overview of the biases detected at the individual level

within the context of the two models: the baseline and the complete model. In

Figure 4a, the bar chart depicts the occurrences of statistically significant biases at

the 5% level within the baseline model. The color-coded representation distinguishes

biases: red means significance solely for successes, blue for failures, and green for

significance in both successes and failures20. Notably, overinference and base rate

overuse emerge prominently. However, Figure 4b, illustrating individual biases in the

complete model, shows a more complete picture. Here, a broader array of biases is

accounted for, with the hot hand effect emerging as the most commonly exhibited

bias among the subjects. Further comparing these models yields intriguing insights.

First, at the descriptive level, it becomes evident that individual heterogeneity persists

across both models. This observation underscores the varying proportions with which

biases manifest among individuals: All tested biases were present among subjects to

a certain extent. That is, there is no bias which fully vanishes after incorporating

the complete set of biases. Notably, the prevalence of the hot hand fallacy contrasts

sharply with the sparsity of confirmatory biases or overconfidence among subjects.

But secondly, the complete model makes another important revelation: every subject

exhibits at least one form of bias when the full spectrum of biases is considered.

While the “No Bias” column in Figure 4a shows that 15 individuals (17% of the

sample) could not be categorised, this column is empty in Figure 4b. This implies

that the shift from the baseline to the complete model is able to identify biased

individuals, who would otherwise be categorised as either Bayesian or “too noisy”21.

20The column “against” classifies those individuals who update against the information signals.
21Because the individual-level analysis tests many null hypotheses (eleven per subject), one may

wonder whether some of these results are driven by a high rate of false positives. To address this
concern, section C.2 of the appendix replicates Figures 4a and 4b for a 1% significance level.
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(a) Figure 4a: Number of times a specific bias
is found to be significant (p < 0.05) in the
baseline model at the individual level. Over-
inference and base rate overuse are the most
common biases. 15 individuals (17%) exhibit
no bias or are too noisy to be distinguished
from a Bayesian agent.

(b) Figure 4b: Number of times a specific
bias is found to be significant (p < 0.05) in
the complete model at the individual level.
There is significant individual heterogeneity.
All subjects exhibit at least one type of bias.
The hot hand fallacy is found to be the most
common bias.

Despite these analyses showing the prevalence of different biases at the individual

level, it is also paramount to also consider how much each of these biases drives

inference in more tangible and common units. Thus, I apply the methodology outlined

in section 4.3, to asses the relative importance of each bias.

Figures 5a and 5b provide an examination of biases within the complete model,

focusing on the expected value deviations from the Bayesian framework for each

specific bias. While both figures provide insights into how important these deviations

are, they take different approaches. Figure 5a presents the expected value deviations

for each bias, irrespective of their frequency of occurrence. On the other hand, Figure

5b adjusts for frequency by weighting these deviations with the number of times a

bias was found to be statistically significant.
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Effects on Expected Value and Variance

(a) Figure 5a: Average expected-value devi-
ations from each individual bias.

(b) Figure 5b: Expected-value deviations ad-
justed by the amount of times a bias was
found to be significant.

In Figure 5a, two biases, gambler’s fallacy and optimism, stand out with prominent

expected value deviations, emphasizing their substantial impact on inference. In

contrast, confirmation and disconfirmation bias exhibit less pronounced deviations.

Remarkably, even after correcting for frequency in Figure 5b, gambler’s fallacy and

optimism retain their prominence, suggesting their enduring influence on biased in-

ference.

Beyond these observations, Figure 5a and 5b also reveal interesting patterns. The

biases exerting the most substantial influence on expected value deviations cluster

into two distinct categories: Motivated beliefs (optimism and pessimism), and biases

associated with updating against the information signal, including gambler’s fallacy.

Additionally, there is a notable observation regarding the hot hand fallacy: While

identified as the most common bias in Figure 4b, its impact on expected value devi-
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ations appears relatively modest in Figure 5a. However, when it comes to its effect

on variance, the hot hand fallacy demonstrates a notably strong influence, as can be

seen in Figures 6a and 6b.

Figure 6a and 6b are analogous to 5a and 5b, but represent variance deviations

with respect to the Bayesian framework instead. While the relative contribution

of each bias appears to be quite homogeneous (Figure 6a), once we correct for the

frequency such biases (figure 6b), the hot hand fallacy shows its prominence, while

optimism and pessimism come second and third respectively. This underlines the

importance of motivated-belief biases in overall inference: Both in expected-value

and variance deviations.

(a) Figure 6a: Average variance deviations
from each individual bias.

(b) Figure 6b: Variance deviations adjusted
by the amount of times a bias was found to
be significant.

Putting it all together, this subsection emphasises the importance of incorporating

a more complete spectrum of biases into account. When doing so, all biases are present

at the individual level and there is no single subject who does not exhibit some kind of

bias. It also showcases a key interplay between bias frequency and inference. While,
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the hot hand fallacy is the most common bias, it is mainly so through its effect on

variance. That is, overreaction to a consecutive set of signals in the same direction

does not seem to distort the perception of how likely the outcome is as much as

distorting how certain individuals are. However, optimism and pessimism seem to be

driving inference in both dimensions. Overall, in spite of the presence of individual

heterogeneity, two categories of biases (sequence-related biases and motivated-belief

biases) clearly stand out above the rest.

6 Concluding remarks

In conclusion, this paper addresses the challenges in identifying and testing multiple

belief-updating biases simultaneously. This is important because in the absence of

such a model, many of these biases could be potentially confounded. The theoretical

model introduces a novel approach by considering belief distributions over a contin-

uous state space, allowing for a complete identification of multiple conflicting belief

biases. The corresponding laboratory experiment applies this model, using a novel

technique to elicit belief distributions.

The population-level analysis shows that, despite the prevalence of overinference

and base rate neglect in the baseline model, only base rate neglect remains signifi-

cant in the complete model, emphasizing the importance of accounting for a broader

spectrum of biases. Individual-level analysis uncovers significant heterogeneity, with

every participant exhibiting at least one identifiable bias. Further exploration into

biases’ impact on expected value and variance exposes motivated-belief biases (opti-

mism and pessimism) and sequence-related biases (gambler’s and hot hand fallacies)

as key drivers of biased inference. Thus, capturing a wide array of biases provides

a much more subtle understanding of belief updating dynamics. Overall, addressing

confoundedness in belief-updating biases is key to researchers interested in under-

standing links between different biases, or delving deeper into the causes of various

behavioural phenomena (political polarization, investing performance, disposition ef-

fect...) when conflicting updating biases are at stake.

I would like to conclude by pointing to some related future research avenues.

While this paper takes detailed care in separating behaviour stemming from different
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biases, it is important to note that it approaches biases as systematic departures

from rational behaviour. That is, it does not dig into the cognitive mechanisms or

channels by which a certain bias might be exhibited. In this direction Bordalo et al.

(2023a), look at how some biases become more prominent when salient features of

the information become more relevant. At the same time, Bordalo et al. (2023b)

also emphasise the importance of memory and recall to explain well-known cognitive

biases. Further exploring more of these cognitive mechanisms in a setting where biases

can be de-confounded, could deliver a complete picture of what updating biases matter

the most, and pinpoint the primitive traits that underlie biased behaviour.
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Möbius, M. M., Niederle, M., Niehaus, P., and Rosenblat, T. S. (2022). Managing self-

confidence: Theory and experimental evidence. Management Science, 68(11):7793–

7817.

Ortoleva, P. and Snowberg, E. (2015). Overconfidence in political behavior. American

Economic Review, 105(2):504–535.
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Appendix to Belief Bias Identification

A Conjugate analyses of the binomial distribution

This section shows the derivation of equations of posterior parameters in section 2.

I present two cases: The Bayesian case (eq. (3)), and introducing the biases of the

baseline model (eq.(4) and (5)). The rest of the proofs for the remaining biases are

analogous to these cases. Once the distorted likelihood and prior are given, the proof

follows the exact same steps.

A.1 The Bayesian case

Statement 1. Given likelihood equation (1) and prior equation (2) of section 2.1., a

Bayesian agent updates her beliefs such that her posterior distribution of p: π(p|an, an)
is beta distributed with parameters an, bn such that:

an = k + a0 bn = n− k + b0

Proof. Let us apply Bayes’ Theorem given likelihood eq.(1) and prior eq.(2). This

yields:

π(p|s1...sn, a0, b0) =
L(p|s1...sn)π(p|a0, b0)∫ 1

p=0

(
L(p|s1...sn)π(p|a0, b0)

)
dp

=

(
n
k

)
pk+a0−1(1− p)n−k+b0−1/B(a0, b0)∫ 1

p=0

((
n
k

)
pk+a0−1(1− p)n−k+b0−1/B(a0, b0)

)
dp

=
pk+a0−1(1− p)n−k+b0−1

B(a0 + k, b0 + n− k)

Which is itself the probability density function of a beta distribution with pa-

rameters (a0 + k, b0 + n − k). Therefore, the posterior Bayesian distribution is beta

distributed with parameters (an, bn) as defined in Statement 1.
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A.2 Biases of the baseline model: Inference and base-rate

biases

Statement 2. Given likelihood L̃(p|s1...sn) = (L(p|s1...sn))γ and prior π̃(p) = (π(p))δ

of section 2.1., where γ, δ indicate deviations from Bayesian updating, a non-Bayesian

agent follows a posterior beta distribution with parameters ãn, b̃n such that:

ãn = γk + δ(a0 − 1) + 1

b̃n = γ(n− k) + δ(b0 − 1) + 1

Proof. Applying Bayes theorem yields:

π̃(p|s1...sn, a0, b0) =
(L(p|s1...sn))γ(π(p))δ∫ 1

p=0

(
(L(p|s1...sn))γ(π(p))δ

)
dp

=

[(
n
k

)]γ
pγk(1− p)γ(n−k)

(
1/B(a0, b0)

)δ
pδ(a0−1(1− p)δ(b0−1)∫ 1

p=0

([(
n
k

)]γ
pγk(1− p)γ(n−k)

(
1/B(a0, b0)

)δ
pδ(a0−1(1− p)δ(b0−1)

)
dp

=
pγk+δ(a0−1)(1− p)γ(n−k)+δ(b0−1)∫ 1

p=0

(
pγk+δ(a0−1)(1− p)γ(n−k)+δ(b0−1)

)
dp

=
pγk+δ(a0−1)(1− p)γ(n−k)+δ(b0−1)

B
(
γk + δ(a0 − 1) + 1, γ(n− k) + δ(b0 − 1) + 1

)
This is the probability density function of a beta distribution with parameters(

γk + δ(a0 − 1) + 1, γ(n− k) + δ(b0 − 1) + 1
)
. Therefore, the posterior distribution

of an agent that exhibits inference bias γ, and base-rate bias (δ) is beta distributed

with parameters (ãn, b̃n) as defined in Statement 2.
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B Incentivising mean and variance of beta distri-

butions

The scoring rules follow Schlag et al. (2015) with a slight modification. In particular,

random realisations of the Bayesian posterior distributions are taken as the random

draws.

B.1 Incentivising the mean

Let m̃ be the reported mean of the agent’s posterior beta distribution π(p|ãn, b̃n), and
let d be a random draw of the Bayesian posterior beta distribution π(p|an, bn). Then
the Quadratic Scoring Rule is given by gQSR(m̃, d) = −(m̃ − d)2. Let A,B be the

boundaries of the state-space Ω, and M be any arbitrary amount of money22. Then,

the randomised quadratic scoring rule is given by the following lottery:

g̃QSR(m̃, d) = l

(
M, 0; 1 +

gQSR(m̃, d)

(B − A)2

)

B.2 Incentivising the variance

Let ṽ be the the reported variance of the agent’s posterior beta distribution. In

order to elicit the variance consider two random draws of the agent’s posterior beta

distribution π(p|ãn, b̃n). Namely, d1 and d2. Then the variance scoring rule is given

by gv(ṽ, d1, d2) = −
(
ṽ − 1

2
(d1 − d2)

2
)2
. Applying randomisation, the randomised

variance scoring rule yields:

g̃v(ṽ, d1, d2) = l

(
M, 0;

gv +
1
4
(B − A)4

1
4
(B − A)4

)

22In the experiment A = 1, B = 99 and M = 25/3 cents for each report (that is a total maximum
of 10 euros)
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C Extra tables and figures

C.1 Information criteria and R2 comparisons

Model AIC(pop.) BIC(pop.) AIC(ind.) BIC(ind.)

Baseline model
Eq. (12) 42454.31 42466.07 270.41 274.61
Eq. (13) 43636.76 43648.52 265.84 270.05

Complete model
Eq. (14) 42398.72 42428.1 267.99 276.39
Eq. (15) 43577.64 43607.03 254.45 262.84
Eq. (16) -22181.66 -22169.9 -187.21 -183.01

Table 3: Information Criteria Comparison at population and individual level

Model R2 Population Mean R2 Ind. Mean adj.R2 Ind.

Baseline model
Eq. (12) 0.002 0.564 0.533
Eq. (13) 0.003 0.533 0.501

Complete model
Eq. (14) 0.002 0.761 0.713
Eq. (15) 0.003 0.812 0.774
Eq. (16) 0.289 0.139 0.108

Table 4: R2 Comparison for Baseline and Complete model at population vs individual
level
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C.2 Individual bias frequency at a 1% significance level

As the individual-level analysis in section 5.2 tests a considerable number of null

hypotheses (eleven per subject), one may wonder whether some of these results are

driven by a high rate of false positives. To address this concern, this section replicates

Figures 4a and 4b for a 1% significance level, lowering the rate of potential false

positives.

(a) Figure 7a: Number of times a specific
bias is found to be significant (p < 0.01) in
the baseline model at the individual level.

(b) Figure 7b: Number of times a specific
bias is found to be significant (p < 0.01) in
the complete model at the individual level.

As one can see from figures 7a and 7b, the three main results from section 5.2 still

hold. Namely, i) all biases are exhibited to a certain extent in the complete model, ii)

transitioning from the baseline to the complete model shows that all subjects exhibit

some kind of bias (empty “No Bias” column), and iii) the hot hand effect stands out

as the most-frequently exhibited bias.

In fact, the second result seems to be stronger in this condition, with the vast

majority of subjects appearing to be “too noisy” in the baseline model, but showing

some type of bias in the complete model. However, the frequency of significant

motivated-belief biases (optimism/pessimism) does diminish under p < 0.01.
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D Experiment instructions

In this study, you will be asked to complete 30 guessing tasks. For each guessing

task you have to make 2 related guesses. At the beginning of each guessing task,

there is always a pool of 99 URNS, each containing 100 BALLS. Some balls in

the urns are red, and some are blue. Each one of these urns contains a different

percentage of red balls. For example, in Urn 1 there is only one red ball and 99

blue (1% of the balls are red), in Urn 2 there are only two red balls and 98 blue (2%

of the balls are red). This continues until Urn 99 where 99 balls are red and one is

blue. (See picture below).

For each guessing task, out of these 99 urns, one of them (say Urn X) has been

selected at random. Each urn has the same chances of being selected from the

pool. That is, you do not know how many of the balls are red and how many of them

are blue in the selected urn. All combinations are possible. (See picture below).
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Your task is to guess what the percentage of red balls in the selected urn is. In

each one of the 30 guessing tasks, this process will be repeated with a new urn.

Bear in mind: Whenever a new urn is selected, it is always drawn from the same

pool of 99 urns (WITH REPLACEMENT). This means that the same urn can be

chosen either once or multiple times. The urns have letters (or combinations of

letters) on top of them. This is just to highlight the fact that when a new letter(or

combination of letters) is on top of the urn, it means that a new urn has been drawn.

The guessing task

This section will explain how each one of the 30 guessing tasks works. Initially, as

explained above, the computer has randomly selected, with equal probability, ONE

out of the 99 urns. Remember that initially, you know nothing about the content of

this urn. Once a given urn is selected, you will be given some information about the

urn to help you make your guess. First, you will see a sequence of balls which have

been randomly drawn from the urn. Each ball in the selected urn has the same

chances of being drawn, and each of these draws is doneWITH REPLACEMENT.

This means that after a ball has been drawn and taken out of the urn, it is immediately

replaced with one of the same colour. The urn will always have the same 100

balls. In order to help you make your guesses, two sequences of draws will be

made from each urn.

• 1st sequence of draws: Either one, two or three balls from the urn are

selected at first. After this selection, you will have to make your first guess.

For your first guess you will answer two questions:

1. What percentage of red balls do you expect the selected urn to

have?

2. What is your uncertainty level about this percentage?
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Example: Guessing Task A

• 2nd sequence of draws: The second draw follows very similar rules to the

first one. In this case three, five or seven balls from THE SAME URN

are selected with replacement. After this selection, you will have to make your

second guess. Once again, for your second guess you will answer the same

two questions:

1. What percentage of red balls do you expect the selected urn to

have?

2. What is your uncertainty level about this percentage?

In order to further help you with your guesses a dynamic graph of your choice will

be provided. Please watch the following video (next screen) to understand how this

works.

——————————————[Page Break]—————————————

Click here to see the explanatory video

——————————————[Page Break]—————————————

Your Payment

You can earn up to €29,70 in this experiment. In particular, your payment is

broken down as follows:

• You will receive €5 for taking the time to complete this experiment.
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• You will receive up to €10 for your responses related to the guessing tasks.

How much of this amount (€10) you receive depends on the actual percentage

of red balls in the selected urn. You can get money for EVERY SINGLE

ONE of your guesses.

The payment rule we use, is optimized so that in order to maximize your

expected payoff, you should ALWAYS give your best estimate of the

percentage of red balls in the selected urn. In the same manner, the payment

rule we use, is also optimized so that in order to maximize your expected

payoff, you should ALWAYS give your best estimate of your uncertainty

level.

• You can receive up to €14,70 as extra payment.

This extra payment is divided across the 30 guessing tasks. Whether or not

a guessing task has an extra payment attached depends on whether a dollar

urn has come up. (See picture below. Urn A is in this example, a dollar urn).

In particular, a dollar urn will come up randomly in 15 of the 30 guessing

tasks.

If a dollar urn comes up, you will receive as many cents as red balls the

selected dollar urn has. For example, if the selected dollar urn has 50 red balls

you will get 50 cents.

At the end of the experiment, you will be informed about the number of red balls

in each urn and your total payment. If you want to know more about the details

of the payment rule, you can let me know after the experiment or write an email to

p.gonzalezfernandez@maastrichtuniversity.nl

——————————————[Page Break]—————————————
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Get Familiar with the Tools
Before you answer the comprehension questions you have the chance to get familiar

with the guesses, the payment and the sliders with a trial guessing task.

——————————————[Page Break]—————————————
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