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Abstract. We study the asymptotic behavior of the Bergman orthogonal

polynomials (pn)
∞
n=0 for a class of bounded simply connected domains D. The

class is defined by the requirement that conformal maps φ of D onto the unit

disk extend analytically across the boundary L of D, and that φ′ has a finite

number of zeros z1, . . . , zq on L. The boundary L is then piecewise analytic

with corners at the zeros of φ′. A result of Stylianopoulos implies that a

Carleman-type strong asymptotic formula for pn holds on the exterior domain

C \D. We prove that the same formula remains valid across L \ {z1, . . . , zq}
and on a maximal open subset of D. As a consequence, the only boundary

points that attract zeros of pn are the corners. This is in stark contrast to

the case when φ fails to admit an analytic extension past L, since when this

happens the zero counting measure of pn is known to approach the equilibrium

measure for L along suitable subsequences.

1 INTRODUCTION.

1.1 Zeros of Bergman polynomials for domains with corners.

For a domain D in the complex plane C, we write A2(D) for the Bergman space

of holomorphic functions f on D with finite norm

∥f∥L2(D) :=

(ˆ
D

|f(z)|2dA(z)
)1/2

<∞,

where dA(z) = π−1dxdy denotes the standard area measure normalized by π.

In this work, D will always stand for the interior domain of a Jordan curve L.

That is, D is the bounded component of C \ L. We will denote by D(z, r) the

open disk of radius r centered at z, by T(z, r) its boundary, and by ∆(z, r) the

exterior disk ∆(z, r) = C \ D(z, r).
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2 ERWIN MIÑA-DÍAZ AND ARON WENNMAN

The space of polynomials forms a linear subspace of A2(D). By applying

the Gram-Schmidt orthonormalization procedure to the standard monomial se-

quence, we obtain a unique sequence of polynomials (pn)
∞
n=0 such that pn has

degree n and positive leading coefficient, and the following planar orthonormal-

ity conditions are satisfied:

ˆ
D

pn(z)pm(z) dA(z) =

0, m ̸= n,

1, n = m.

These polynomials are often called the Bergman polynomials for the domain D.

Their study dates back at least to Carleman’s 1922 paper [2], and the name

Carleman polynomials also occurs in the literature.

For a positive integerN ≥ 3, we denote by RN the regularN -gon with vertices

at the N -th roots of unity. The zeros of the associated Bergman polynomials are

known to exhibit a curious dichotomy depending on the value of N . In numerical

experiments carried out in [7], it was observed that for N ∈ {3, 4}, the zeros of pn
appear to lie on the set ΓN formed by joining the N vertices of RN to its center,

and indeed this observation was later confirmed to be a fact in [9]. However,

for D = RN with N ≥ 5, the experiments in [7] strongly indicate that the zeros

of pn move away from ΓN as n increases. The reason behind this dichotomy

was partially explained in the work [8], and as we describe in what follows, it is

related to the analytic continuation properties of the interior conformal maps of

D onto the unit disk.

Denote by νn, n ≥ 1, the normalized counting measure for the zeros set of

pn. That is, if ζ1,n, . . . , ζn,n denote the zeros of pn (counted with multiplicity),

we put

νn :=
1

n

n∑
j=1

δζj,n .

For a measure ν, we write νn
*→ ν as n→ ∞ to mean that

lim
n→∞

ˆ
fdνn =

ˆ
fdν

for every compactly supported continuous function f on C. We denote by Z the

set of points z0 ∈ C with the property that for every open neighborhood U of

z0, one can find infinitely many polynomials in the sequence (pn) that have a

zero in U . It is easy to see that if νn
*→ ν, then every point in the support of ν

belongs to Z. The following result was proven in [8] (see Theorem 2.1 and Fact

B therein).
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Theorem 1.1 (Levin, Saff, Stylianopoulos [8]). Let D be the interior domain

of a Jordan curve L, and let σL be the equilibrium measure of L. The following

statements are equivalent:

(i) No conformal map of D onto D(0, 1) can be analytically continued to a

domain containing D.

(ii) There exists a subsequence (νnk
) with

νnk

*→σL as k → ∞.(1.1)

(iii) For every z ∈ D,

lim sup
n→∞

|pn(z)|1/n = 1.

Note that (i) is equivalent to the existence of one conformal map φ which

cannot be analytically continued past L.

We remark that there are classes of domains for which the convergence in

(1.1) is known to hold for the full sequence (νn), see [14, Cor. 3.1].

Since the support of σL is all of L, the convergence (1.1) implies that if φ

has a singularity on L, then L ⊂ Z. When D = RN with N ≥ 5, the conformal

map φ has singularities at the vertices of D, so that every point of L attracts

zeros of the polynomials pn. As a consequence, it is not possible for the zeros to

stay on the set ΓN , as it otherwise happens when D is the equilateral triangle

(D = R3) or the square (D = R4). We note that when N ∈ {3, 4}, not only are

the zeros of every pn located on the set ΓN , but we also have that ΓN ⊂ Z. This

is a consequence of Theorem 9 of [9].

Definition 1.2. We let A1 denote the collection of bounded Jordan domains

D with the property that a conformal map φ of D onto D(0, 1) has an analytic

continuation to an open set containing D, and the derivative φ′ has at least one

zero on the boundary L of D.

A domain D ∈ A1 is said to have reflection-invariant corners. For an expla-

nation of this terminology, see the last paragraph of this section.

If D ∈ A1, then L is a piecewise analytic curve with corners at each of the

zeros of φ′ on L. We denote this set of corners by C(L) = {z1, . . . , zq} (see Figure

1). The interior angle formed by the two arcs of L that meet at a given corner zj

is equal to π/mj, where mj ≥ 2 is the order of φ at zj. The equilateral triangle

and the square both belong to the class A1. We might also mention the example

of the lens-shaped domain D bounded by two circular arcs that are symmetric

about the imaginary axis and that meet at −i and i, forming two corners with
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z1

z2

z3

Ω

L

D

z1

z2

z3

Ω∗

∂Ω∗

Figure 1. Illustration of the curve L = ∂D and sets Ω and Ω∗,

for a domain D ∈ A1 with three corners z1, z2, and z3.

interior angles π/2. This domain is also in A1, and it was proven in [8, Cor. 3.2]

that the zeros of each pn lie on the segment (−i, i), and that [−i, i] ⊂ Z.

These examples suggest the hypothesis that for every D ∈ A1, the set L ∩ Z
contains every corner of L but no other boundary point (i.e. L ∩ Z = C(L)).

That this is indeed the case will follow from the main result of this paper, namely,

that the strong asymptotic formula known to describe the asymptotic behavior

of pn as n → ∞ on the exterior of L in fact extends across the analytic arcs of

L to a portion of the domain D. We state this result in more precise terms in

what follows.

1.2 Strong asymptotics on a maximal open set.

Denote by Ω the unbounded component of C \L, so that Ω = C \D (see Figure

1, left side). We let ϕ : Ω → ∆(0, 1) be the conformal map of Ω onto the exterior

disk ∆(0, 1), such that ϕ(∞) = ∞ and γ := ϕ′(∞) > 0. By Carathéodory’s

theorem, the map ϕ extends to a homeomorphism of Ω onto ∆(0, 1).

In [15], Stylianopoulos proved that if the orthogonality domain D is bounded

by a piecewise analytic curve without cusps, then pn satisfies a Carleman-type

strong asymptotic formula on the exterior domain Ω. The error term was later

improved in [1], and the (sharp) asymptotic formula reads

pn(z) =
√
n+ 1ϕ′(z)ϕ(z)n

(
1 + O(n−1)

)
, z ∈ Ω,(1.2)
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as n→ ∞, with the implicit constant being uniformly bounded on closed subsets

of Ω. In particular, (1.2) applies whenever D ∈ A1. Note that if the piecewise

analytic curve L is such that an interior conformal map φ : D → D(0, 1) has a
singularity on L (for instance, if the interior angle α formed at a corner is such

that π/α ̸∈ N), then the asymptotic formula (1.2) cannot possibly hold on an

open set larger than Ω. Indeed, by Theorem 1.1 every point of L attracts zeros of

the polynomials pn, and furthermore, the lim supn→∞
n
√

|pn(z)| remains constant

(equal to 1) throughout D. However, the opposite turns out to be true when

D ∈ A1. This is a direct consequence of the following theorem, which is the main

result of this paper.

Theorem 1.3. Assume D ∈ A1. There exists an open set Ω∗ ⊃ Ω \C(L) and a

univalent function Φ : Ω∗ → C with Φ|Ω = ϕ, such that the asymptotic formula

pn(z) =
√
n+ 1Φ′(z)Φ(z)n

(
1 + O

(
log n

n

))
, z ∈ Ω∗,(1.3)

holds uniformly on closed subsets of Ω∗ as n→ ∞.

The set Ω∗ is illustrated in Figure 1 (right side), and will be precisely defined

in Section 2. This set is maximal in the sense that no formula such as (1.3) can

hold on an open set larger than Ω∗, since lim supn→∞
n
√
|pn(z)| will be shown to

remain constant on the interior of C \ Ω∗.

In the examples where D = RN with N ∈ {3, 4}, we have Ω∗ = C \ΓN and Φ

is the analytic continuation to Ω∗ of the exterior conformal map ϕ. However, we

do not know whether Ω∗ is always a connected set, and so we can only say that

Φ coincides with the analytic continuation of ϕ on the unbounded component of

Ω∗.

Prior to [15], asymptotic formulas like (1.2) (but with different estimates

of the error terms) had been established for orthogonality domains D that are

bounded either by an analytic Jordan curve [2], or by a curve with some degree of

smoothness [16]. For the class A2 of domains with analytic boundary, Carleman

found already in 1922 [2] that (1.2) indeed holds on the largest domain Ωρ ⊃ Ω

that admits a univalent continuation of ϕ with ϕ(Ωρ) = ∆(0, ρ), 0 ≤ ρ < 1.

More recently in [4] (see also [5, 6, 10]), it was found that when L is analytic,

it is possible to characterize the largest open set Ω∗ ⊃ Ωρ on which a formula of

the form (1.3) is valid.

Notice that a domain D is in the union A = A1 ∪ A2 precisely when a

conformal map of D onto D(0, 1) is analytic in D (i.e., if the first statement of
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Theorem 1.1 does not hold). For D ∈ A, it turns out that the dominant behavior

of pn(z) on D as n→ ∞ is given by the integral formula

pn(z) ∼
√
n+ 1φ′(z)

2πi

ˆ
|w|=1

wn

h(w)− φ(z)
dw, z ∈ D,(1.4)

where h is the homeomorphism h : T(0, 1) → T(0, 1) given by

h(w) := φ(ψ(w))

and ψ is the inverse of the exterior map ϕ. Since the right-hand side of (1.4)

makes sense for every Jordan domain, it may well be that this representation of pn

is valid also for other domains outside the class A. However, there is one feature

which accounts for the distinguished behavior of the Bergman polynomials for

domains in the class A. Namely, the fact that D ∈ A if and only if the function

h(w) appearing in the denominator of (1.4) is analytic in a neighborhood of the

unit circle T(0, 1). This is the key feature that makes possible to extend the

asymptotic formula (1.2) beyond Ω to a maximal subset of the orthogonality

domain.

Theorem 1.3 has several implications for the limiting zero distribution of the

Bergman polynomial pn for a domain D ∈ A1. The most immediate is that

for any closed subset E of Ω∗, there is an index nE such that no polynomial pn

of degree n > nE has a zero on E. As a consequence, the zero limit set Z is

contained in C \ Ω∗, and the only points of L that attract zeros of the pn’s are

the corners of L.

The fact that every corner point of L is in Z can easily be seen by applying

standard arguments from potential theory. Indeed, the support supp(ν) of any

measure ν that is a weak ∗-limit of the sequence of zero counting measures

(νn) is contained in Z, and ν is an inverse Balayage measure of the equilibrium

measure σL of L. This means that the logarithmic potential Uν(z) of ν equals the

logarithmic potential UσL(z) of σL for all z ∈ Ω. The potential Uν is harmonic

outside supp(ν), and UσL(z) = log ϕ′(∞)− log |ϕ(z)| for z ∈ Ω. Since log |ϕ(z)|
cannot be harmonically extended past a corner of L, every corner has to be an

element of supp(ν).

In a forthcoming work, we will carry out a more comprehensive analysis on

the distribution of the zeros of pn and on the structure of C \ Ω∗. Some of the

results are similar to those obtained in [4] for domains with analytic boundary,

but others are more specific to the class A1 and a manifestation of the presence

of corners on ∂D.
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To conclude this section, we briefly mention that the class A1 can be char-

acterized purely in geometric terms. Suppose that D is a domain bounded by a

piecewise analytic curve L, and that for every corner z of L, two small sub-arcs

L0
z and L1

z of L that meet at z form an interior angle of the form π/m, with

m ≥ 2 an integer. Applying a Schwarz reflection across L1
z, we obtain a local

holomorphic extension of φ to a wedge-shaped region between L0
z and a new arc

L2
z (the conformal reflection of L0

z about L1
z). Iterating this, reflecting each time

Lj
z about Lj+1

z , we obtain after 2m− 1 steps an arc L2m
z which is tangent to L0

z.

The domain D belongs to A1 if and only if each point of L0
z is mapped to itself

by this (2m− 1)-step reflection procedure, so that in particular L0
z = L2m

z . This

is the reflection invariance alluded to in the title.

2 STRONG ASYMPTOTICS ACROSS L.

2.1 Asymptotic behavior of pn on Ω.

Let An(z) be the analytic function on Ω defined implicitly by the relation

pn(z) =
√
n+ 1ϕ′(z)ϕ(z)n

(
1 + An(z)

)
, z ∈ Ω.

As mentioned in the introduction, it was proven in [15] that if D is bounded

by a piecewise analytic curve without cusps, then limn→∞An(z) = 0 and the

convergence is uniform on closed subsets of Ω. This is a consequence of the

inequality (1.9) of [15], which asserts that for some constant C,

|An(z)| ≤
C√

n(|ϕ(z)| − 1)
+
C

n
, z ∈ Ω, n ≥ 1.

We will make use of a different inequality which provides a better estimate on

the rate of decay of An(z) for z in Ω and away from the corners of L. We use

dC(E,F ) to denote the Euclidean distance between two closed sets E and F , and

when E = {z} is a singleton, we simply write dC(z, F ).

Proposition 2.1. Suppose that the boundary L of D is a piecewise analytic curve

without cusps whose set of corners is denoted by C(L). For every ϵ > 0, there

exists a constant cϵ such that

|An(z)| ≤
cϵ|ϕ(z)|

n(|ϕ(z)| − 1)
, z ∈ Eϵ, n > 1,(2.1)

where Eϵ := {z ∈ Ω : dC(z, C(L)) > ϵ}. In particular, An(z) = O(1/n) uniformly

on closed subsets of Ω as n→ ∞.
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Though not explicitly stated, the inequality (2.1) is to a large extent contained

in the proof of Theorem 1.1 in [1]. We will briefly go over the details at the start

of Section 4.

2.2 Asymptotic behavior of pn on D.

Among the conformal maps of D onto the unit disk D(0, 1), we fix any one of

them and call it φ.

If D ∈ A1, then L is a piecewise analytic curve with corners at the zeros of φ′

on L. This set of corners is denoted by C(L). In this case, the map ϕ (and thus

its derivative ϕ′ as well) extends analytically to an open set containing Ω\C(L).
The derivative ϕ′ is integrable over L, sinceˆ

L

|ϕ′(z)| |dz| =
ˆ
T(0,1)

|dw| = 2π.

This allows us to define the functions

Qn(z) :=
(n+ 1)φ′(z)

2πi

ˆ
L

ϕ′(ζ)ϕ(ζ)n

φ(ζ)− φ(z)
dζ, z ∈ D, n ≥ 0.(2.2)

We denote by λn the leading coefficient of pn, which is a positive number.

Recall also the notation γ := ϕ′(∞). The first step towards extending the exterior

strong asymptotics is the following series representation of pn on D.

Theorem 2.2. The Bergman polynomials pn for a domain D ∈ A1 admit the

series representation

λn
γn+1

pn(z) =
∞∑
j=0

h(n, j)Qn+j(z), z ∈ D, n ≥ 0,(2.3)

where the coefficients h(n, j) are numbers such that h(n, 0) = 1 and

|h(n, j)| ≤ B

n+ j + 1

(
1 +

j − 1

n+ 1

)B

, j ≥ 1,(2.4)

for a certain constant B > 0 that is independent of n and j.

Formula (2.3) will be deduced from a well-known connection between the

Bergman polynomials and the reproducing kernel of the space A2(D), that is,

from the equality

φ′(z)φ′(ζ)

(1− φ(z)φ(ζ))2
=

∞∑
k=0

pk(ζ)pk(z), z, ζ ∈ D,

see Subsection 4.2 for details. In doing so, we make use of some inequalities

previously obtained in [15].
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The dominant term of the series in (2.3) happens to be the first one, and the

behavior of the leading coefficient λn is known from [15]:

λn =
√
n+ 1γn+1(1 + O(1/n)), n→ ∞.

With proper control over the error terms, this will lead us to conclude that for

z ∈ D, pn(z) ∼ (n + 1)−1/2Qn(z) as n → ∞, which is the same as the integral

formula (1.4). This can be seen by making the change of variables ζ = ψ(w) in

(2.2).

By analyzing the large n behavior of the integral in (1.4), we will extend

the exterior asymptotics (1.2) to a certain maximal open set D1 of D. The

construction of D1 is carried out in what follows and applies more generally to

any domain D ∈ A. Let us set

Lr := {z ∈ Ω : |ϕ(z)| = r}, r ∈ [1,∞].

Each Lr with 1 < r < ∞ is an analytic Jordan curve contained in Ω, L1 = L,

and L∞ = {∞}. We denote by Dr the component of C\Lr that does not contain

∞. Then, D1 = D and D∞ = C.
Let µ ∈ [0, 1] be the smallest positive number with the property that φ

extends meromorphically to D1/µ. Since, by assumption, φ extends analytically

across L, we have µ < 1. Recall that

ψ : ∆(0, 1) → Ω

denotes the inverse of ϕ, which extends continuously to ∆(0, 1). The composite

h(w) := φ(ψ(w))

is well-defined and meromorphic in the annulus 1 < |w| < 1/µ, extending contin-

uously to 1 ≤ |w| < 1/µ and mapping the unit circle |w| = 1 onto itself. By the

reflection principle (see e.g. [3, Ch. 8]), h(w) can be extended as a meromorphic

function to the bigger annulus µ < |w| < 1/µ, the extension being given by

h(w) :=
1

φ(ψ(1/w))
, µ < |w| < 1.

Moreover, it is not difficult to see that µ < |w| < 1/µ is the largest annulus

about the origin that supports a meromorphic extension of h.

We next split D into subregions, determined by the zeros of the function

fz(w) := h(w)− φ(z) .

First, we letD0 denote the set of points z ∈ D for which the function fz(w) has no

zeros in the annulus µ < |w| < 1. Then, consider a point z ∈ D\D0. Among the
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zeros of fz(w) in the region µ < |w| < 1, only finitely many, say wz,1, wz,2, . . . , wz,s

(s ≥ 1), will have largest modulus. Let mz,k denote the multiplicity of fz(w) at

wz,k. For every integer p ≥ 1, we define Dp as the set of points z ∈ D \D0 such

that

mz,1 +mz,2 + · · ·+mz,s = p.

Thus, Dp consists of those z ∈ D for which fz(w) has exactly p zeros in µ <

|w| < 1 of largest modulus, counted according to multiplicity.

Define next the function r : D → [µ, 1) by

(2.5) r(z) :=

{
|wz,1|, z ∈ D \D0,

µ, z ∈ D0.

If z ∈ D1, then fz(w) has exactly one zero in µ < |w| < 1 of largest modulus,

say wz,1, and this zero is simple. Let us set

ϕ1(z) := wz,1, z ∈ D1,

so that |ϕ1(z)| > µ.

One can easily verify by using Lemma 4.1 (see also Corollary 12 in [4]) that

D1 and D \D0 are open, that the map ϕ1 is a univalent function, and that the

function r(z) is continuous.

Theorem 2.3. Assume D ∈ A1. The analytic function An : D1 → D(0, 1)
implicitly defined by

pn(z) =
√
n+ 1ϕ′

1(z)ϕ1(z)
n (1 + An(z)) , z ∈ D1,(2.6)

satisfies that An(z) = O(n−1) as n → ∞, uniformly on compact subsets of D1.

Moreover,

lim sup
n→∞

|pn(z)|1/n = r(z), z ∈ D.(2.7)

It will be important to provide a more precise interior bound for |An(z)| near
L, similar to the exterior bound (2.1). We will obtain an inequality of the form

|An(z)| ≤
M1

n(1− |ϕ1(z)|)
+

M1

nB1(1− |ϕ1(z)|)B1
,(2.8)

valid for all z ∈ D sufficiently close to L but away from the corners, see Section 4.4

below. Here, M1 and B1 > 1 are some constants that do not depend on n.
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2.3 Gluing interior and exterior asymptotics.

As a consequence of Proposition 4.2 (the statement and proof of which we defer

to Section 4.4), we have that the set

Ω∗ := D1 ∪ Ω \ C(L)

is open, and the function Φ : Ω∗ → ∆(0, µ) defined by

Φ(z) :=

ϕ(z), z ∈ Ω,

ϕ1(z), z ∈ D1,

is univalent. Hence

An(z) :=
pn(z)√

n+ 1Φ′(z)Φ(z)n
− 1, z ∈ Ω∗,

is analytic in Ω∗. The main goal is to show that An(z) → 0 on Ω∗. To prove

this, we start from the two bounds (2.1) and (2.8), which both degenerate as z

approaches L. These bounds show that An(z) is small, except for possibly near

L. More concretely, we have that An(z) = O(n−1 log n) on the portion of Ω∗

outside the shrinking band{
z ∈ C : dC(z, L) ≤

1

log n

}
around L. Applying a Phragmén–Lindelöf-type argument in this narrow band

but away from the corners, we are able to deduce the following key lemma, which

immediately implies Theorem 1.3.

Lemma 2.4. Assume D ∈ A1, and fix any z0 ∈ L \ C(L). There exists a

neighborhood Uz0 ⊂ Ω∗ of z0 and a corresponding constant Cz0 such that

|An(z)| ≤
Cz0 log n

n
z ∈ Uz0 , n > 1.

Remark 2.5. Our extension of the strong asymptotics across L comes at the

expense of a factor log n in the estimate of the rate of decay. Without too much

effort it is possible to improve Lemma 2.4 to give An(z) = O(n−1 logℓ(n)) for any

fixed ℓ ≥ 1, where logℓ(n) denotes the iterated logarithm

logℓ(n) := log log . . . log n︸ ︷︷ ︸
ℓ times

.

However, we will not present the details here, since most likely the loss in preci-

sion is artificial.
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The asymptotic results presented in this section as well as Theorem 1.3 will

be proven in Section 4. The proofs will rely on several auxiliary estimates that

will be convenient to have established beforehand.

3 AUXILIARY ESTIMATES.

In this section, we make use of some key estimates obtained in [15], and so for

the most part we try to follow the notation employed therein.

Let n ≥ 0 be an integer. The Faber polynomial Fn associated to the map

ϕ is the polynomial part of the Laurent expansion of ϕ(z)n at infinity. Thus,

Fn(z) = γnzn + · · · is a polynomial of degree n whose leading coefficient is γn.

Let En(z) be defined by the equation

ϕ(z)n = Fn(z) + En(z), z ∈ Ω,

so that for every r such that ∆(0, r) ⊂ Ω, we have the Laurent expansion

En(z) =
cn,1
z

+
cn,2
z2

+
cn,3
z3

+ · · · , z ∈ ∆(0, r).(3.1)

Note that since the map ϕ is continuous on Ω, so is En. If we differentiate the

identity

ϕ(z)n+1 = Fn+1(z) + En+1(z)

we get

ϕ′(z)ϕ(z)n = Gn(z) +Hn(z), z ∈ Ω,(3.2)

with

Gn(z) :=
F ′
n+1(z)

n+ 1
= γn+1zn + · · · , n ≥ 0,(3.3)

Hn(z) :=
E ′

n+1(z)

n+ 1
=
a2,n
z2

+
a3,n
z3

+ · · · , n ≥ 0.

One can verify, see e.g. [15, Lemma 2.1], that

Hn ∈ A2(Ω), n ≥ 0.

Lemma 3.1. Suppose that L is rectifiable. For integers n ≥ 0 and m ≥ −1, we

have ˆ
L

ϕm(z)ϕ′(z)En(z) dz = 0.(3.4)
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This is one of three identities stated in Lemma 2.2 of [15]. We quickly verify

its validity.

By (3.1), we have limz→∞ ϕ(z)En(z) = γcn,1 ∈ C, so that we can write

En(z) = ϕ(z)−1E∗
n(z), with E∗

n(z) analytic in Ω and continuous on Ω. Making

the change of variables z = ψ(w) (recall that ψ is the inverse of ϕ) and using

that w = 1/w for w on the unit circle, we getˆ
L

ϕ(z)mϕ′(z)En(z) dz =

ˆ
|w|=1

wm+1E∗
n(ψ(1/w)) dw.

The function E∗
n(ψ(1/w)) is analytic in the unit disk D(0, 1) and continuous on

D(0, 1). It follows from Cauchy’s theorem that the latter integral equals zero,

completing the proof of (3.4).

Let us now define the polynomial

qn−1(z) := Gn(z)−
γn+1

λn
pn(z), n ≥ 0.

Note that q−1 ≡ 0 and that qn−1 is a polynomial of degree ≤ n− 1 for all n ≥ 1.

We also define, for a rectifiable L, the quantities

βk,n := − 1

2πi

ˆ
L

qk−1(z)En+1(z) dz, k ≥ n ≥ 0,(3.5)

and

εk,n := − 1

2πi

ˆ
L

Hk(z)En+1(z) dz, k ≥ n ≥ 0.(3.6)

Using the complex version of Green’s formula in the domain Ω (see the proof of

Lemma 2.3 of [15]), one finds the alternative expression

εk,n = (n+ 1)

ˆ
Ω

Hk(z)Hn(z) dA(z).(3.7)

In particular,

εn,n = (n+ 1)∥Hn∥2L2(Ω).(3.8)

One can also verify without much difficulty that

εn,n = 1− (n+ 1)∥Gn∥2L2(D).(3.9)

It was also proved in [15, Eq. (2.22 )] that

βn,n = (n+ 1)∥qn−1∥2L2(D).(3.10)

Let us now define, for integers n, k ≥ 0, the quantities

αn,k := − 1

2πi

ˆ
L

pk(ζ)ϕ(ζ)−n−1dζ.(3.11)
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By an application of Cauchy’s theorem, it readily follows that

αn,k =

0, 0 ≤ k < n,

λn/γ
n+1, k = n.

(3.12)

Lemma 3.2. If L is rectifiable, then we have

γn+1

λn
αn,n = (n+ 1)

γ2(n+1)

γ2n
+ βn,n + εn,n, n ≥ 0,(3.13)

γk+1

λk
αn,k = βk,n + εk,n, k > n ≥ 0.(3.14)

Proof. We assume throughout the proof that k ≥ n ≥ 0. We have

αn,k =
1

2πi

ˆ
L

pk(ζ)Fn+1(ζ) dζ +
1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ

=

ˆ
D

pk(z)F ′
n+1(z) dA(z) +

1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ

= (n+ 1)

ˆ
D

pk(z)Gn(z) dA(z) +
1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ.

(3.15)

By the orthonormality property of the polynomials pn, we have

ˆ
D

pk(z)Gn(z) dA(z) =

γn+1/λn, k = n,

0, k > n.

It follows from the latter equality and (3.15) that

γk+1

λk
αn,k =

γk+1

λk
· 1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ +

γ2(n+1)/λ2n, k = n,

0, k > n.

Thus, the proof of Lemma 3.2 will be complete once we show that

γk+1

λk
· 1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ = βk,n + εk,n, k ≥ n ≥ 0.(3.16)

Making the substitution

γk+1

λk
pk(z) = Gk(z)− qk−1(z)

in (3.16) yields

γk+1

λk
· 1

2πi

ˆ
L

pk(ζ)En+1(ζ) dζ =
1

2πi

ˆ
L

Gk(ζ)En+1(ζ) dζ + βk,n.(3.17)
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We can now use (3.2) and (3.4) to compute

1

2πi

ˆ
L

Gk(ζ)En+1(ζ) dζ =
1

2πi

ˆ
L

ϕ(ζ)kϕ′(ζ)En+1(ζ) dζ

− 1

2πi

ˆ
L

Hk(ζ)En+1(ζ) dζ

= − 1

2πi

ˆ
L

Hk(ζ)En+1(ζ) dζ = εk,n,

which together with (3.17) yields (3.16), proving Lemma 3.2. □

Since αn,n = λn/γ
n+1, we get from (3.13) that

(n+ 1)
γ2(n+1)

λ2n
= 1− (βn,n + εn,n), n ≥ 0.(3.18)

This important identity was established in [15, Lemma 2.4]. It shows that for L

rectifiable,

γn+1

λn
=

1

αn,n

≤ 1√
n+ 1

, n ≥ 0,(3.19)

and that

lim
n→∞

(n+ 1)
γ2(n+1)

λ2n
= 1

if and only if limn→∞ βn,n = limn→∞ εn,n = 0.

The quantity εn,n only depends on the geometry of the curve L via the exterior

map ϕ, while εn,n still depends on the polynomial pn. It turns out that if L is

also a quasiconformal curve, then βn,n can be uniformly bounded by εn,n. This

observation, made precise in our next proposition, was first realized in [15, Thm.

2.1].

A Jordan curve L is quasiconformal provided that there is a constant M

such that diamL(z, ζ) ≤ M |z − ζ| for all z, ζ ∈ L, where L(z, ζ) is the arc of

L between z and ζ of smallest diameter. In particular, every piecewise analytic

curve without cusps is quasiconformal. For the definition of the reflection factor

κ of a quasiconformal curve and other details, see [15].

Proposition 3.3. If L is a rectifiable quasiconformal curve, with a reflection

factor of κ, then

0 ≤ βn,n ≤ κ2

1− κ2
εn,n, n ≥ 0.(3.20)

The proof of (3.20) (take k = n in (3.25) below) is based on the following

inequality taken from [15, Lemma 2.5].
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Proposition 3.4. Suppose L is quasiconformal and rectifiable, and let κ denote

the reflection factor of L. For every f analytic in D and continuous on D, and

for every g analytic in Ω and continuous on Ω, with g′ ∈ A2(Ω), we have∣∣∣∣ 1

2iπ

ˆ
L

f(z)g(z) dz

∣∣∣∣ ≤ κ√
1− κ2

∥f∥L2(D)∥g′∥L2(Ω) .(3.21)

We will moreover find use for the following result.

Proposition 3.5. Suppose L is quasiconformal and rectifiable, and let κ denote

the reflection factor of L. The following inequalities hold true:

0 ≤ 1− (n+ 1)
γ2(n+1)

λ2n
≤ 1

1− κ2
εn,n, n ≥ 0,(3.22)

γk+1

λk
|αn,k| ≤

1

1− κ2

√
εk,k
k + 1

√
(n+ 1)εn,n, k > n ≥ 0.(3.23)

Proof. The inequality (3.22) is a clear consequence of (3.18) and (3.20).

To prove (3.23), we apply the triangle inequality to (3.14) to get

γk+1

λk
|αn,k| ≤ |βk,n|+ |εk,n|, k > n ≥ 0,(3.24)

and proceed to estimate the right-hand side of (3.24). First, we apply the in-

equality (3.21) to the integral that defines βk,n in (3.5) to deduce that (recall

(3.8) and (3.10))

|βk,n| =
∣∣∣∣ 1

2πi

ˆ
L

qk−1(ζ)En+1(ζ) dζ

∣∣∣∣
≤ κ√

1− κ2
∥qk−1∥L2(Ω)(n+ 1)∥Hn+1∥L2(D)

≤ κ√
1− κ2

√
βk,k
k + 1

√
(n+ 1)εn,n,

which in view of (3.20) yields

|βk,n| ≤
κ2

1− κ2

√
εk,k
k + 1

√
(n+ 1)εn,n.(3.25)

Next, we take absolute values in (3.7) and apply the Cauchy-Schwarz inequality

to obtain

|εk,n| = (n+ 1)

∣∣∣∣ˆ
Ω

Hk(z)Hn(z) dA(z)

∣∣∣∣
≤ (n+ 1)∥Hk∥L2(Ω)∥Hn+1∥L2(Ω)

≤
√

εk,k
k + 1

√
(n+ 1)εn,n.

(3.26)
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The inequality (3.23) now follows by replacing |βk,n| and |εk,n| in (3.24) by their

upper bounds found in (3.25) and (3.26). □

Having established (3.23), we then look for a good estimate for εn,n. This is

provided by the following result proven in [15, Thm. 2.4].

Proposition 3.6. If L is piecewise analytic without cusps, then there exists a

constant c1, that depends only on L, such that

εn,n ≤ c1
n+ 1

, n ≥ 0.

As a consequence of Proposition 3.6, one obtains from (3.22) that

αn,n =
λn
γn+1

=
√
n+ 1

(
1 + O(1/n)

)
.(3.27)

as n→ ∞.

Corollary 3.7. If L is piecewise analytic without cusps, then there exists a

constant C, that depends only on L, such that

|αn,k| ≤
C√
k + 1

, k > n ≥ 0.(3.28)

Proof. Using the estimate afforded by Proposition 3.6 on the right-hand side of

(3.23), we can find a constant c2, depending only on L, such that

γk+1

λk
|αn,k| ≤

c2
k + 1

, k > n ≥ 0.

This and (3.27) yield (3.28). □

We finish this section with a lemma about the asymptotic behavior of the

polynomials Gn that were introduced in (3.3). The result is a direct corollary of

the asymptotic analysis carried out in [12] for the Faber polynomials associated

to a domain Ω with piecewise analytic boundary.

Lemma 3.8. Suppose that L is a piecewise analytic Jordan curve without cusps,

and let C(L) denote the corners of L. For every ϵ > 0, there exists a constant

mϵ such that ∣∣∣∣ Gn(z)

ϕ′(z)ϕ(z)n
− 1

∣∣∣∣ ≤ mϵ

n+ 1
, z ∈ Eϵ, n ≥ 0,

where Eϵ := {z ∈ Ω : dC(z, C(L)) > ϵ}.
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Proof. In [12], fine asymptotic formulas were derived for the Faber polynomials

Fn associated to a domain Ω whose boundary L is a piecewise analytic curve

without inner cusps (L not necessarily a Jordan curve). This is a more general

assumption than the one we make in Lemma 3.8. Let λπ ∈ (0, 2π) be the smallest

of the exterior angles formed at the corners of L. Since Eϵ is a closed subset of

Ω \C(L), Theorem 2.4 of [12] implies that there exists an open set U ⊃ Eϵ such

that ϕ extends as a univalent function to U , and

Fn+1(z) = ϕ(z)n+1 +O(n−λ), z ∈ U, n ≥ 1,

uniformly on closed subsets of U . By differentiating this relation, we find that

Gn(z)

ϕ′(z)ϕ(z)n
=

F ′
n+1(z)

(n+ 1)ϕ′(z)ϕ(z)n
= 1 + O(n−λ−1|ϕ(z)|−n), n ≥ 1,

uniformly on closed subsets of U , and the lemma follows since |ϕ(z)| > 1 for

z ∈ Eϵ. □

4 PROOF OF THE ASYMPTOTIC RESULTS.

4.1 Proof of Proposition 2.1.

The inequality (2.1) is essentially contained in the proof of Theorem 1.1 of [1],

but the authors restrict attention to the exterior asymptotics away from the

boundary. To obtain Proposition 2.1 we only need to go through their proof,

paying attention to precisely how their bounds degenerate as we approach ∂Ω.

In terms of the polynomials Gn introduced in (3.3), the function An(z) can

be expressed as

An(z) =

(
Gn(z)

ϕ′(z)ϕ(z)n
− 1

)
+
pn(z)−

√
n+ 1Gn(z)√

n+ 1ϕ′(z)ϕ(z)n

=: A1
n(z) + A2

n(z).

This is the same as [1, Eq. (4.1)], if we take into account that we are using a

different normalization of the area measure, and that the functions fn in [1] are

precisely defined as

fn(z) :=
F ′
n+1(z)√
π(n+ 1)

=

√
n+ 1

π
Gn(z).

Let us fix ϵ > 0 and let Eϵ = {z ∈ Ω : dC(z, C(L)) > ϵ}. By Lemma 3.8,

there exists a constant mϵ such that

|A1
n(z)| ≤

mϵ

n+ 1
, z ∈ Eϵ, n ≥ 0.(4.1)
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In particular, this implies that∣∣∣∣ Gn(z)

ϕ′(z)ϕ(z)n

∣∣∣∣ ≤ 1 +mϵ, z ∈ Eϵ, n ≥ 0.(4.2)

In view of the inequality (2.14) of [1] and the one preceding (4.3) therein, we

have the bound

|A2
n(z)| ≤ c2

√
εn,n√
n+ 1

n∑
j=0

√
εj,j
√
j + 1|ϕ(z)|j−n

∣∣∣∣ Gj(z)

ϕ′(z)ϕ(z)j

∣∣∣∣ , z ∈ Ω,(4.3)

where c2 is a certain constant, and the numbers εn,n are those previously intro-

duced in (3.6) (εn,n is called εn in [1] and defined by the alternative expression

(3.9)).

Since L is piecewise analytic without cusps, we have in view of Proposition 3.6

(see also [1, Eq. (1.12)]) that εn,n ≤ c1(n+1)−1 for some constant c1 independent

of n. Incorporating this and (4.2) into (4.3), we find

|A2
n(z)| ≤

c1c2(1 +mϵ)

n+ 1

n∑
j=0

|ϕ(z)|j−n, z ∈ Eϵ, n ≥ 0,

which together with (4.1) yields

|A1
n(z)|+ |A2

n(z)| ≤
(mϵ + c1c2(1 +mϵ)) |ϕ(z)|

(n+ 1)(|ϕ(z)| − 1)
, z ∈ Eϵ, n ≥ 0,

completing the proof of Proposition 2.1.

4.2 Proof of Theorem 2.2.

The Bergman kernel of A2(D) is the function K(z, ζ) on D×D which is analytic

in z and conjugate-analytic in ζ, with finite normˆ
D

|K(z, ζ)|2dA(ζ) <∞, z ∈ D,

and such that for any f ∈ A2(D), the reproducing property holds:

f(z) =

ˆ
D

f(ζ)K(z, ζ) dA(ζ).

This kernel can be expressed in terms of the conformal map φ of D onto D(0, 1)
by the formula

K(z, ζ) =
φ′(z)φ′(ζ)

(1− φ(z)φ(ζ))2
.

It is well-known that the polynomials are dense in A2(D), and therefore

φ′(z)φ′(ζ)

(1− φ(z)φ(ζ))2
=

∞∑
k=0

pk(ζ)pk(z), z, ζ ∈ D.(4.4)
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Here it is important to know that this equality actually holds in a bigger domain.

Indeed, for ζ ∈ D fixed, we can easily see that K(z, ζ) is analytic in the variable

z in some open set that contains D. Let τ(ζ) < 1 be the smallest number such

that K(·, ζ) is analytic in the domain D1/τ(ζ) (the sets Dr were previously defined

in Subsection 2.2). Then (4.4) holds for all ζ ∈ D and z ∈ D1/τ(ζ). Moreover,

for ζ ∈ D fixed, the convergence is uniform for z on compact subsets of D1/τ(ζ).

We also have

lim sup
n→∞

|pn(ζ)|1/n = τ(ζ) < 1, ζ ∈ D.(4.5)

These stronger statements follow from the overconvergence results of Walsh, see

[17, pp. 130-131] (see also [13, p. 336]).

By the Hermitian symmetry of the kernel, for z ∈ D fixed, we have uniform

convergence in (4.4) for ζ ∈ L. We then multiply (4.4) by

ϕ(ζ)n+1φ′(ζ) dζ

φ′(ζ)φ(ζ)2

and integrate with respect to ζ over L = ∂D to get (bearing in mind that when

ζ ∈ L, we have φ(ζ) = 1/φ(ζ))

φ′(z)

2πi

ˆ
L

φ′(ζ)ϕ(ζ)n+1

(φ(ζ)− φ(z))2
dζ =

∞∑
k=0

pk(z)

2πi

ˆ
L

pk(ζ)ϕ(ζ)
n+1φ′(ζ) dζ

φ′(ζ)φ(ζ)2
, z ∈ D.

(4.6)

Now we note that

dζ = − φ′(ζ) dζ

φ′(ζ)φ(ζ)2
,

meaning that for every function f continuous on L,

ˆ
L

f(ζ) dζ =

ˆ
L

f(ζ)

(
− φ′(ζ) dζ

φ′(ζ)φ(ζ)2

)
︸ ︷︷ ︸

“ dζ ”

.

We then integrate by parts on the left-hand side of (4.6) to get

φ′(z)(n+ 1)

2πi

ˆ
L

ϕ′(ζ)ϕ(ζ)n

φ(ζ)− φ(z)
dζ =

∞∑
k=0

αn,kpk(z), z ∈ D,

where

αn,k = − 1

2πi

ˆ
L

pk(ζ)ϕ(ζ)
n+1dζ = − 1

2πi

ˆ
L

pk(ζ)ϕ(ζ)−n−1dζ.
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The coefficients αn,k are the same quantities previously introduced in (3.11).

From (3.19) and (3.28), we know that

1

αn,n

≤ 1√
n+ 1

, |αn,k| ≤
C√
k + 1

, k > n ≥ 0,(4.7)

where C is a constant independent of k and n. We have also seen in (3.12) that

αn,k = 0 for 0 ≤ k < n, so that we can write

αn,npn(z) = Qn(z)−
∞∑

k=n+1

αn,kpk(z),(4.8)

with Qn(z) as defined in (2.2).

The identity (4.8) is similar to the identity (6.5) obtained in [11] for polyno-

mials orthogonal with weights on the unit disk. The remaining part of the proof

is essentially a repetition of the steps carried out in the proofs of Lemmas 6.1

and 6.2 of [11], but we will quickly summarize them for the sake of keeping the

presentation self-contained.

The idea is to iterate (4.8) to eliminate the polynomials pk for all k ≥ n+ 1,

and end up with the right-hand side of (4.8) written as a series in the Qn’s. The

identity (4.8) for n+ 1 in place of n reads

pn+1(z) =
1

αn+1,n+1

Qn+1(z)−
1

αn+1,n+1

∞∑
k=n+2

αn+1,kpk(z).(4.9)

If we now substitute the right-hand side of (4.9) for pn+1 in the series of (4.8), we

get a new series where the only polynomials pk that remain are those of degree

k ≥ n+ 2. Repeating this process m times, we obtain (cf. Lemma 6.1 of [11])

αn,npn(z) =
m∑
j=0

h(n, j)Qn+j(z) +
∞∑

k=n+m+1

g(n,m, k)pk(z),(4.10)

where the coefficients h(n, j) and g(n,m, k) are recursively defined by the rela-

tions

h(n, 0) = 1, g(n, 0, k) = −αn,k, k > n ≥ 0,(4.11)

h(n,m+ 1) =
g(n,m, n+m+ 1)

αn+m+1,n+m+1

,(4.12)

and

g(n,m+ 1, k) = g(n,m, k)− h(n,m+ 1)αn+m+1,k, k ≥ n+m+ 2.(4.13)
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Combining (4.11), (4.12), and (4.13) with (4.7) we find

h(n, 0) = 1, |g(n, 0, k)| ≤ C√
k + 1

, k ≥ n+ 1,(4.14)

|h(n,m+ 1)| ≤ |g(n,m, n+m+ 1)|√
n+m+ 2

,(4.15)

|g(n,m+ 1, k)| ≤ |g(n,m, k)|+ C√
k + 1

|h(n,m+ 1)|,(4.16)

with the inequality (4.16) being valid for k ≥ n+m+ 2.

By induction in the second variable m, we get from (4.14), (4.15) and (4.16)

that (c.f. Lemma 6.2 of [11] and its proof)

|h(n, j)| ≤ C

n+ j + 1

j−1∏
ℓ=1

(
1 +

C

n+ ℓ

)
, j ≥ 1,(4.17)

|g(n,m, k)| ≤ C√
k + 1

m∏
ℓ=1

(
1 +

C

n+ ℓ

)
, m ≥ 0, k ≥ n+m+ 1.(4.18)

We now write
m∏
ℓ=1

(
1 +

C

n+ ℓ

)
= exp

(
m∑
ℓ=1

log

(
1 +

C

n+ ℓ

))

≤ exp

(
m∑
ℓ=1

C

n+ ℓ

)
=

(
1 +

m

n+ 1

)C

exp(Cϱn,m)

< eC
(
1 +

m

n+ 1

)C

,(4.19)

where

ϱn,m =

(
n+m∑
k=1

1

k
− log(n+m+ 1)

)
−

(
n∑

k=1

1

k
− log(n+ 1)

)
< 1.

Replacing the product in (4.17) by the estimate (4.19) (with m = j − 1) readily

yields (2.4) with the choice of B = CeC . Similarly, applying (4.19) to (4.18) we

obtain

|g(n,m, k)| ≤ B√
k

(
1 +

m

n

)B
, m ≥ 0, k ≥ n+m+ 1.(4.20)

To finish the proof of Lemma 2.3 we just need to show that the second series

in (4.10) converges to zero as m → ∞ for z ∈ D. Let us then think of z ∈ D as

being fixed. Since

τ(z) = lim sup
k→∞

|pk(z)|1/k < 1,
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we can find ϵ > 0 and a constant Mϵ such that τ(z) + ϵ < 1 and |pk(z)| ≤
Mϵ(τ(z) + ϵ)k for all k ≥ 0. This together with (4.20) imply that

∞∑
k=n+m+1

|g(n,m, k)pk(z)|

≤MϵB
(
1 +

m

n

)B ∞∑
k=n+m+1

(τ(z) + ϵ)k√
k

≤ MϵB(τ(z) + ϵ)n+1

√
n+m+ 1(1− (τ(z) + ϵ))

(
1 +

m

n

)B
(τ(z) + ϵ)m.

In view of the convergence

lim
m→∞

(
1 +

m

n

)B
(τ(z) + ϵ)m = 0,

we conclude that for z ∈ D, we have

lim
m→∞

∞∑
k=n+m+1

g(n,m, k)pk(z) = 0,

as desired.

4.3 Proof of Theorem 2.3.

We begin by making the change of variable ζ = ψ(w) in the integral on the

right-hand side of (2.2). This yields

Qn(z) =
(n+ 1)φ′(z)

2πi

ˆ
|w|=1

wn

fz(w)
dw, z ∈ D.(4.21)

We will use (2.3) to derive the behavior of pn as n→ ∞ from that of Qn. Broadly

speaking, the dominant behavior of the integral in (4.21) is found by computing

the residues of its integrand at the zeros of fz(w) of largest modulus.

We recall that z ∈ Dp means that among the zeros of the meromorphic

function

fz(w) := h(w)− φ(z)

in µ < |w| < 1, those of largest modulus, say wz,1, . . . , wz,s, have a total multiplic-

ity of p. That is, ifmz,k denotes the multiplicity of h at wz,k, then
∑s

k=1mz,k = p.

The following lemma is proven by a standard application of Rouché’s theorem.

It is practically a repetition of Lemma 11 of [4].

Lemma 4.1. Let z0 ∈ Dp be fixed, and let µ0 be chosen in the range µ < µ0 <

r(z0) such that the only zeros of fz0(w) in the region µ0 ≤ |w| < 1 are precisely

those of largest modulus wz0,1, . . . , wz0,s, 1 ≤ s ≤ p. Let δ > 0 be small enough
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that the closed disks D(wz0,k, δ), 1 ≤ k ≤ s, are pairwise disjoint, contained in

the annulus µ0 < |w| < 1, and such that h′(w) ̸= 0 whenever 0 < |w−wz0,k| ≤ δ

for some 1 ≤ k ≤ s. Then there exists ϵ > 0 such that D(z0, ϵ) ⊂ D and for

every z ∈ D(z0, ϵ), the zeros of fz(w) that lie in µ0 < |w| < 1 are all simple

and contained in ∪s
k=1D(wz0,k, δ), with each disk D(wz0,k, δ) containing a number

mz0,k of them.

It is easy to conclude from Lemma 4.1 (c.f. Corollary 12 in [11]) that D1

and D \ D0 are open, that ϕ1(z) := wz,1 is univalent on D1, and that r(z) is

continuous on D.

In order to prove Theorem 2.3, it suffices to show that every z0 ∈ D1 has a

neighborhood D(z0, ϵ) such that An(z) = O(n−1) uniformly for z ∈ D(z0, ϵ) as

n → ∞. We then fix z0 ∈ D1 and pick δ and ϵ as specified in Lemma 4.1 with

the choice p = 1. In particular, we have

µ0 < |ϕ1(z0)| − δ < |ϕ1(z)| < |ϕ1(z0)|+ δ < 1, z ∈ D(z0, ϵ).(4.22)

For every z ∈ D(z0, ϵ), the function fz(w) has a single zero in µ0 ≤ |w| ≤ 1,

say wz,1 = ϕ1(z), which is simple and contained in D(wz0,1, δ). It follows that the

integrand in (4.21) has a simple pole at wz,1 and is analytic at any other point

of the annulus µ0 ≤ |w| ≤ 1. We can then apply the residue theorem to deduce

that for all z ∈ D(z0, ϵ),

Qn(z) = (n+ 1)φ′(z)
ϕ1(z)

n

f ′
z(ϕ1(z))

+
(n+ 1)φ′(z)

2πi

ˆ
|w|=µ0

wn

fz(w)
dw.(4.23)

The fact that ϕ1(z) is a zero of fz(w) means that h(ϕ1(z)) = φ(z). By

differentiating this identity we obtain

f ′
z(ϕ1(z)) = h′(ϕ1(z)) =

φ′(z)

ϕ′
1(z)

, z ∈ D(z0, ϵ).(4.24)

Since |h(w)− φ(z)| : T(0, µ0)× D(z0, ϵ) → (0,∞] is continuous in (w, z) and

never vanishes, and since |φ′| is bounded on D(z0, ϵ), we deduce from (4.23) and

(4.24) that

Qn(z) = (n+ 1)ϕ′
1(z)ϕ1(z)

n +O((n+ 1)µn
0 ), z ∈ D(z0, ϵ),(4.25)
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with the constant involved in the O-term being independent of n and z. We now

combine (4.25) with (2.3) and (3.27) to find

An(z) =
1 + O(1/n)

n+ 1

∞∑
j=1

h(n, j)(n+ j + 1)ϕ1(z)
j

+O

(
τn0

∞∑
j=0

h(n, j)(n+ j + 1)

n+ 1
µj
0

)
+O(1/n)

(4.26)

uniformly for z ∈ D(z0, ϵ) as n→ ∞, where τ0 = µ0/(|ϕ1(z0)| − δ) < 1.

By (2.4), we have that if |ζ| < 1, then

∞∑
j=1

|h(n, j)|(n+ j + 1)|ζ|j ≤ B

∞∑
j=1

(
1 +

j − 1

n

)B

|ζ|j

≤ B2B

(
∞∑
j=1

|ζ|j +
∞∑
j=1

(
j − 1

n

)B

|ζ|j
)

≤ B2B

1− |ζ|
+
B2B

nB

∞∑
k=0

kB|ζ|k.

By increasing B if necessary, we may assume that B is a positive integer. Making

use of the identity

∞∑
k=0

(k + 1) · · · (k +B)ζj =

(
ζB

1− ζ

)(B)

,

one easily verifies that
∞∑
k=0

(k + 1) · · · (k +B)|ζ|k ≤ E

(1− |ζ|)B+1
, |ζ| < 1,

for some constant E that only depends on B. Therefore,
∞∑
j=1

|h(n, j)|(n+ j + 1)

n+ 1
|ζ|j ≤ E1

n(1− |ζ|)
+

E1

nB1(1− |ζ|)B1
,(4.27)

with E1 = B2BE and B1 = B + 1. Since µ0 < 1 and |ϕ1(z)| < 1 for ζ ∈ D1, we

can use (4.22) and (4.27) to estimate the right-hand side of (4.26) and conclude

that An(z) = O(n−1) uniformly for z ∈ D(z0, ϵ) as n→ ∞.

It remains to prove (2.7). Fix z ∈ D. By the very definition of r(z) in (2.5),

the function 1/fz(w) is analytic in the annulus r(z) < |w| < 1, with a singularity

on the circle |w| = r(z) in case r(z) > 0. We then look at its Laurent expansion

1

fz(w)
=

∞∑
k=−∞

ak(z)w
k, r(z) < |w| < 1,
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whose coefficients

a−n(z) =
1

2πi

ˆ
|w|=1

wn−1

fz(w)
dw, n ≥ 0,

satisfy

lim sup
n→∞

|a−n(z)|1/n = r(z).

By (4.21), we have

lim sup
n→∞

|Qn(z)|1/n = r(z).

Let τ(z) = lim supn→∞ |pn(z)|1/n < 1 (recall (4.5)). We need to show that

τ(z) = r(z), or equivalently, that for every ϵ > 0,

r(z)− ϵ ≤ τ(z) ≤ r(z) + ϵ.(4.28)

Let Nϵ be an index such that

|Qn(z)|1/n ≤ r(z) + ϵ < 1, |pn(z)|1/n < τ(z) + ϵ < 1,

for all n > Nϵ. Combining (2.3), (3.19), and (4.27), we find that for all n > Nϵ,

|pn(z)| ≤
1√
n+ 1

∞∑
j=0

|h(n, j)||Qn+j(z)|

≤ (r(z) + ϵ)n√
n+ 1

(1 + O(1/n)) ,

which yields the second inequality in (4.28). Similarly, we use (4.8), (4.7), and

(3.27) to find that for all n > Nϵ,

|Qn(z)| ≤ αn,n|pn(z)|+
∞∑

k=n+1

|αn,k||pk(z)|

≤
√
n+ 1(τ(z) + ϵ)n (1 + O(1/n)) ,

which yields the first inequality in (4.28).

4.4 Interior asymptotic estimates near L.

Let us denote the corners of L by z1, . . . , zq. Since ϕ takes L onto the unit circle,

we can write ϕ(zk) = eiθk , with θk ∈ [0, 2π), 1 ≤ k ≤ q. For ϵ > 0 small enough

to ensure that, for all 1 ≤ k ≤ q,

{eiθ : θk − ϵ ≤ θ ≤ θk + ϵ} ∩ {eiθ1 , . . . , eiθq} = {eiθk},(4.29)
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z1

z2

z3

eiθ2
eiθ1

eiθ3

U(r, ϵ)

V (r, ϵ)

Figure 2. Illustration of the open sets V (r, ϵ) and U(r, ϵ).

and for every 0 < r < 1, we define

V (r, ϵ) :=

q⋂
k=1

{
teiθ : r < t <

1

r
, θk + ϵ < θ < θk − ϵ+ 2π

}
,(4.30)

V−(r, ϵ) := V (r, ϵ) ∩ D(0, 1), V+(r, ϵ) := V (r, ϵ) ∩∆(0, 1).(4.31)

Note that V (r, ϵ) is its own reflection about the unit circle. Because L is

piecewise analytic, the reflection principle (see e.g. [3, Ch. 8]) allows us to find

0 < rϵ < 1 such that the map ψ has a conformal extension to ∆(0, 1) ∪ V (rϵ, ϵ),

which we also denote by ψ. Then for all rϵ ≤ r < 1, we set

U(r, ϵ) := ψ(V (r, ϵ)), U±(r, ϵ) := ψ(V±(r, ϵ)),(4.32)

see Figures 2 and 3. The inverse of ψ is the conformal extension of ϕ to Ω ∪
U(rϵ, ϵ), which we also denote by ϕ.

Proposition 4.2. For every ϵ > 0 satisfying (4.29), there exists rϵ < r0 < 1

such that:

(1) U−(r0, ϵ) ⊂ D1 and ϕ1(z) = ϕ(z) for all z ∈ U−(r0, ϵ).
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z1

z2

z3

eiθ2
eiθ1

eiθ3

U−(r, ϵ)

V−(r, ϵ)

Figure 3. Illustration of the open sets V−(r, ϵ) and U−(r, ϵ).

(2) There exists positive constants M1 > 0 and B1 > 1, with B1 independent of

ϵ and r0, such that

|An(z)| ≤
M1

n(1− |ϕ1(z)|)
+

M1

nB1(1− |ϕ1(z)|)B1
(4.33)

for all z ∈ U−(r0, ϵ) and n ≥ 1.

Proof. Recall that the function h(w) is the meromorphic extension to the annulus

µ < |w| < 1/µ of the homeomorphism of the unit disk φ ◦ ψ : T(0, 1) → T(0, 1).
Since φ is analytic on D, we can choose 0 < ρ < 1 sufficiently close to 1 so that

φ extends analytically to the interior domain of the level curve L1/ρ = {z ∈ C :

|ϕ(z)| = 1/ρ} without ever attaining the value 0 in said domain. Then

h(w) = φ(ψ(w)), 1 ≤ |w| < 1/ρ,

and by the reflection principle, h(w) is also analytic in ρ < |z| < 1/ρ. Let us fix

ϵ > 0 satisfying (4.29), and let ϵ′ := ϵ/2. We choose rϵ′ < r′ < 1 such that r′ > ρ.

By the reflection principle, the map φ is conformal on D ∪ U(r′, ϵ′), so that the

composite φ(ψ(w)) (which then coincides with h(w)) is univalent on V (r′, ϵ′).

We now pick r0 such that r′ < 2r0 − 1 < 1, and observe that for any such

choice, we have U(r0, ϵ) ⊂ U(r′, ϵ′), and since ϕ and φ are conformal on U(r′, ϵ′),
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then

β0 := max
{
|φ′(z)|/|ϕ′(z)| : z ∈ U−(r0, ϵ)

}
<∞.(4.34)

We claim that if r0 is sufficiently close to 1, then for all z ∈ U−(r0, ϵ), the equation

h(w) − φ(z) = 0 has at most one solution in 2r0 − 1 ≤ |w| ≤ 1. For otherwise,

we are able to find a sequence rn ↗ 1 and a corresponding sequence of points

zn ∈ U−(rn, ϵ), such that zn = h(wn,1) = h(wn,2), where wn,1 and wn,2 are two

distinct points of the annulus 2rn − 1 ≤ |w| ≤ 1.

Since h(w) = φ(ψ(w)) on V (r′, ϵ′), and since U−(rn, ϵ) ⊂ U(r′, ϵ′), we may

assume that one of these solutions, say wn,1, is ϕ(zn), which lies in V−(rn, ϵ).

Therefore, there exists n0 such that

wn,1 ∈ V−((1 + r′)/2, ϵ) ⊂ V (r′, ϵ′), n > n0.

Note that this ∈ relation is also satisfied by any limit point of the sequence (wn,1).

By taking subsequences if necessary, we can assume that wn,k → wk, k = 1, 2,

as n → ∞. By continuity, h(w1) = h(w2), and since |w1| = |w2| = 1 and h

is injective on |w| = 1, this can only happen if w1 = w2. Because V (r′, ϵ′) is

an open set containing w1, the points wn,1 and wn,2 belong to V (r′, ϵ′) for all n

sufficiently large, which in view of the equality h(wn,1) = h(wn,2) contradicts the

fact that h is univalent on V (r′, ϵ′).

We have just proved the existence of a number r0 in the range (1 + r′)/2 <

r0 < 1 such that for all z ∈ U−(r0, ϵ), the function fz(w) = h(w) − φ(z) has

exactly one zero in 2r0 − 1 ≤ |w| ≤ 1, which is given by ϕ(z) ∈ V−(r0, ϵ). In

particular, |ϕ(z)| ≥ r0, and so

β1 := min
{
|h(w)− φ(z)| : |w| = 2r0 − 1, z ∈ U−(r0, ϵ)

}
> 0.(4.35)

Note also that for all z ∈ U−(r0, ϵ), ϕ(z) is a simple zero of fz(w) because h(w)

is conformal on V (r′, ϵ′) ⊃ V−(r0, ϵ). Thus, U−(r0, ϵ) ⊂ D1 and ϕ(z) = ϕ1(z) for

z ∈ U−(r0, ϵ).

Moreover, just as in the proof of Theorem 2.3, we can use the residue theorem

to get from (4.21) that for all z ∈ U−(r0, ϵ),

Qn(z) = (n+ 1)ϕ′(z)ϕ(z)n +
(n+ 1)φ′(z)

2πi

ˆ
|w|=2r0−1

wn

fz(w)
dw.
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Combining this with (2.3), (3.19), (4.34) and (4.35), we obtain the inequality

|An(z)| ≤
∣∣∣∣√n+ 1

αn,n

− 1

∣∣∣∣+ ∞∑
j=1

|h(n, j)|(n+ j + 1)|
n+ 1

|ϕ(z)|j

+ β0β1τ
n
0

∞∑
j=1

|h(n, j)|(n+ j + 1)|
n+ 1

(2r0 − 1)j+1,

(4.36)

which is valid for z ∈ U−(r0, ϵ), where τ0 = (2r0 − 1)/r0 < 1.

On U−(r0, ϵ), we have |ϕ(z)| ≥ r0, and by (3.27), there exists a constant β

independent of n such that∣∣∣∣√n+ 1

αn,n

− 1

∣∣∣∣ ≤ β2
n
, n ≥ 1.

This and (4.27) allow us to deduce from (4.36) that for z ∈ U−(r0, ϵ) and some

constant β3,

|An(z)| ≤
β2
n

+
E1

n(1− |ϕ(z)|)
+

E1

nB1(1− |ϕ(z)|)B1
+
β3τ

n
0

n

≤ β2 + E1 + β3
n(1− |ϕ(z)|)

+
E1

nB1(1− |ϕ(z)|)B1
,

whence (4.33) follows. □

4.5 Proof of Lemma 2.4.

As in the previous subsection, we use z1, . . . , zq to denote the corners of L. We

need to show that for every z0 ∈ L \ {z1, . . . , zq}, there exists a neighborhood

Uz0 of z0 and a constant Cz0 such that Uz0 ⊂ Ω∗ and

|An(z)| ≤
Cz0 log n

n
, z ∈ Uz0 .(4.37)

We use the notation introduced in (4.30), (4.31), and (4.32). Let ϵ > 0 be chosen

so small that (4.29) is satisfied and

w0 := ϕ(z0) ̸∈
q⋃

k=1

{eiθ : θk − ϵ ≤ θ ≤ θk + ϵ}.

By Proposition 4.2, for such a ϵ we can find 0 < r < 1 such that

|An(z)| ≤
M1

n(1− |ϕ(z)|)
+

M1

nB1(1− |ϕ(z)|)B1
, z ∈ U−(r, ϵ), n ≥ 1,(4.38)

where M1 and B1 are independent of n and z. By increasing r if necessary, we

can guarantee that U(r, ϵ) ⊂ Ω∗, so that

inf{|ϕ′(z)| : z ∈ U(r, ϵ)} > 0.(4.39)
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The estimate (2.1) holds on U+(r, ϵ), and |ϕ(z)| < 1/(1−r) for all z ∈ U+(r, ϵ).

In combination with (4.38), this yields an inequality of the form

|An(z)| ≤
M2

n(1− |ϕ(z)|)
+

M2

nB1(1− |ϕ(z)|)B1
,(4.40)

which is valid for z ∈ U−(r, ϵ) ∪ U+(r, ϵ) and n ≥ 1, with M2 some constant.

By (2.1), on the level curve

L1/(1−r) := {z ∈ C : |ϕ(z)| = 1/(1− r)},

we have the bound

|pn(z)| ≤
M3

√
n+ 1

(1− r)n
, z ∈ L1/(1−r), n ≥ 0,

where the constant M3 only depends on r. By the maximum principle, the same

bound holds inside L1/(1−r), and in particular, on the set U(r, ϵ). This and (4.39)

imply that for all n ≥ 0,

|An(z)| =
∣∣∣∣ pn(z)√
n+ 1ϕ′(z)ϕ(z)n

− 1

∣∣∣∣ ≤ M4

(1− r)2n
, z ∈ U(r, ϵ),(4.41)

where M4 is some constant.

For η > 0, the Möbius transformation

J(ζ) = w0
i− ηζ

i+ ηζ
,

maps the real line onto the unit circle, while it takes the lower-half plane H− :=

{ζ : Im(ζ) < 0} onto the unit disk D(0, 1), and the upper half-plane H+ := {ζ :

Im(ζ) > 0} onto ∆(0, 1). Since J(0) = w0, by choosing η sufficiently small we

can guarantee that J(Σ1) ⊂ V (r, ϵ), where Σ1 is the open unit square, that is,

the set corresponding to δ = 1 in the definition

Σδ := {ζ ∈ C : |Re(ζ)| < δ, | Im(ζ)| < δ} .

The set ψ(J(Σ1)) is open, contains z0, and we have the inclusions

ψ(J(Σ1 ∩H+)) ⊂ U+(r, ϵ), ψ(J(Σ1 ∩H−)) ⊂ U−(r, ϵ).

Combining (4.40) and (4.41) with the equality

|1− |J(ζ)|| = 4η| Im(ζ)|
|i+ ηζ|2(1 + |J(ζ)|)

,

we find that the functions

un(t) := An(ψ(J(ζ))), ζ ∈ Σ1,
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satisfy the following properties, where M5 is a certain constant independent of

the index n:

(i) un(ζ) is analytic in Σ1;

(ii) |un(ζ)| ≤
M5

n| Im(ζ)|
+

M5

nB1 | Im(ζ)|B1
, ζ ∈ Σ1 \ (−1, 1);

(iii) |un(ζ)| ≤M5a
n, a = (1− r)−2, ζ ∈ Σ1.

If we prove that for every 0 < δ < 1, there is a constant Cδ such that

|un(ζ)| = Cδ
log n

n
, ζ ∈ Σδ, n > 1,(4.42)

then (4.37) would hold with the choice of neighborhood Uz0 = ψ(J(Σδ)), δ < 1.

The assertion (4.42) is an immediate consequence of the following proposition.

Proposition 4.3. Let {un}n≥1 be a sequence of holomorphic functions on Σ1,

such that for some numbers 1 = b1 ≤ b2 ≤ · · · ≤ bm, it holds that

(4.43) |un(z)| ≤
m∑
j=1

1

nbj | Im(z)|bj
, z ∈ Σ1 \ (−1, 1).

Assume, in addition, that for some real number a ≥ 1, we have the uniform

bound

(4.44) |un(z)| ≤ an, z ∈ Σ1.

Then for any 0 < δ < 1, there exists a constant Cδ such that

|un(z)| ≤
Cδ log n

n
, z ∈ Σδ, n > 1.

In particular, un(z) converges to 0 locally uniformly on Σ1.

Proof. Fix 0 < δ < 1, and put

σ :=
4(1 + ϵ)

π(1− δ)
> 1,(4.45)

where ϵ > 0 is some arbitrary positive number. For n > 1, we denote by Sn the

thin rectangle

Sn =

{
z ∈ Σ1 : | Im(z)| ≤ 1

σ log n

}
.

For z ∈ Σ1 \ Sn, we have | Im(z)| ≥ (σ log n)−1, so the bound (4.43) gives

|un(z)| ≤
m∑
j=1

σj(log n)bj

nbj
≤ mσbm

log n

n
, z ∈ Σ1 \ Sn.
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It remains to establish a similar bound on the set Σδ ∩ Sn. For this, it is in turn

sufficient to prove that for any fixed x0 ∈ (−δ, δ), we have∣∣un(x0 + iy)
∣∣ ≤ Cδ log n

n
, |y| ≤ 1

σ log n
,

where Cδ is a constant independent of x0.

The proof will be based on rescaling

{z ∈ Sn : |Re(z)− x0| < δ′}, δ′ := 1− δ,

to a rectangle of fixed (unit) height and growing width, and then apply a quan-

titative analogue of the Phragmén-Lindelöf principle in a strip. To that end, we

denote by Tn the rescaled rectangle

Tn := {(σ log n)(z − x0) : z ∈ Sn, |Re(z)− x0| ≤ δ′}

= {ζ ∈ C : | Im(ζ)| ≤ 1, |Re(ζ)| ≤ δ′σ log n} ,

and consider the sequence {gn}n≥0 of holomorphic functions on Tn defined by

gn(ζ) := un
(
x0 + ζ(σ log n)−1

)
, ζ ∈ Tn.

On the horizontal parts of the boundary ∂Tn, the bound (4.43) implies that

|gn (x± i)| =
∣∣∣∣un(x0 + x

σ log n
± i

σ log n

)∣∣∣∣
≤ mσbm

log n

n
, |x| ≤ δ′σ log n.

(4.46)

In addition, the uniform bound (4.44) translates to

(4.47) |gn(ζ)| ≤ an, ζ ∈ Tn.

We next introduce the auxiliary function

h(ζ) := exp
(
−
√
2
(
eπζ/4 + e−πζ/4

))
.

The function h is entire and |h(x + iy)| tends to zero rapidly as |x| → ∞. In

analogy with standard proofs of the Phragmén-Lindelöf principle in a strip, we

will use h to subdue any growth of |gn(ζ)| in the horizontal direction, allowing

us to apply the maximum principle to |gn h| in Tn. More specifically, for ζ =

x+ iy ∈ Tn, we have

|h(ζ)| = exp
(
−

√
2 cos(πy/4)

(
eπx/4 + e−πx/4

))
≤ exp

(
− exp

(
π|x|/4

))
,

(4.48)
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where the inequality follows from the fact that cos(πy/4) ≥ 1√
2
for |y| ≤ 1

together with the elementary bound et + e−t ≥ e|t|.

We have |h(ζ)| ≤ 1 throughout the strip {ζ : | Im(ζ)| ≤ 1}, so (4.46) implies

that

|h(ζ)gn(ζ)| ≤ mσbm
log n

n
, ζ = x± i ∈ ∂Tn.(4.49)

On the vertical parts of the boundary, (4.48) and (4.45) instead give

|h (±δ′σ log n+ iy)| ≤ exp

(
−e

πδ′σ logn
4

)
≤ exp

(
−n1+ϵ

)
, |y| ≤ 1.

Combining this with the uniform bound (4.47), we see that the product satisfies

(4.50) |(gn · h) (±δ′σ log n+ iy)| ≤ an exp
(
−n1+ϵ

)
, |y| ≤ 1

on the vertical parts of ∂Tn. Since the right-hand side of (4.50) tends to 0 faster

than (log n)/n, there exists some constant Cδ > mσbm such that

|(gn · h) (±δ′σ log n+ iy)| ≤ Cδ log n

n
, |y| ≤ 1, n ≥ 1.

When combined with (4.49), (4.50) gives

|gn(ζ)h(ζ)| ≤
Cδ log n

n
, ζ ∈ ∂Tn,

which, by the standard maximum principle, also holds for all ζ ∈ Tn. In other

words, for ζ = x+ iy ∈ Tn, we have

(4.51) |gn(ζ)| ≤
Cδ log n

n|h(ζ)|
=
Cδ log n

n
exp

(√
2 cos(πy/4)

(
eπx/4 + e−πx/4

))
.

Recall that we want to analyze the size of un(z) on the line Re(z) = x0, which

corresponds to evaluating gn(ζ) along the imaginary axis. Invoking the bound

(4.51) for ζ = iy and |y| ≤ 1, we obtain

∣∣un (x0 + iy(σ log n)−1
)∣∣ = ∣∣gn(iy)∣∣ ≤ Cδ log n

n
exp

(
2
√
2 cos (πy/4)

)
≤ Cδe

2
√
2 log n

n
.

This completes the proof. □
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4.6 Proof of Theorem 1.3.

We know from (2.1) and (2.6) that |An(z)| = O(1/n) uniformly as n → ∞
on closed subsets of Ω ∪ D1. Hence, it is sufficient to show that the bound

An(z) = O(log n/n) holds near any z0 ∈ L away from the set of corners C(L),

which is precisely the assertion of Lemma 2.4.
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