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EXTRAPOLATION VIA SAWYER-TYPE INEQUALITIES
EDUARD ROURE-PERDICES

ABSTRACT. We present a multi-variable extension of Rubio de Francia’s restricted
weak-type extrapolation theory that does not involve Rubio de Francia’s itera-
tion algorithm; instead, we rely on the following Sawyer-type inequality for the
weighted Hardy-Littlewood maximal operator M,,:

H M (fv)

v S Cuav||f||L1(uu)7 u, uv € A(X)

L1 (uw)

Our approach can be adapted to recover weak-type Az extrapolation schemes,
including an endpoint result that falls outside the classical theory.

Among the applications of our work, we highlight extending outside the Banach
range the well-known equivalence between restricted weak-type and weak-type for
characteristic functions, and obtaining mixed and restricted weak-type bounds
with AZ} weights for relevant families of multi-variable operators, addressing the
lack in the literature of these types of estimates. We also reveal several standalone
properties of the class A%

LrLuis LLACH, 1968
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1. INTRODUCTION

In the topic of weighted theory, a result that has attracted the attention of many
researchers in the field is the so-called Rubio de Francia’s extrapolation theorem (see
[76, 77]), which provides a precious shortcut when trying to prove weighted strong-
type bounds. In its simplest form, it says that if a sub-linear operator T satisfies
that

T: LP(v) — LP(v),
for some 1 < p < oo, and every Muckenhoupt weight v in A,, then
T: LY (w) — LY (w),

for every 1 < ¢ < oo, and every Muckenhoupt weight w in A, (see Section 2 for
definitions).

Many alternative proofs of this theorem are available in the literature (see |2, 28,
34, 41]), also tracking the sharp dependence of ||T|| a(w)—re(w) in terms of [w]4, (see
[33]), and off-diagonal results where the domain and target Lebesgue spaces differ
both in terms of exponents and weights (see [25, 35, 48] for strong-type results, and
[69] for weak-type ones). Moreover, it was discovered that the operator T' plays no
role in the extrapolation process, and one can simply work with families of pairs of
measurable functions (see [26, 31, 35]).

Around the beginning of the current millennium, the topic of multi-variable op-
erators started gathering interest, with the resolution of Calderén’s conjecture (see
[54, 57]) and the development of a systematic treatment of multi-linear Calderén-
Zygmund operators (see [47]), and the first results on multi-variable Rubio de Fran-
cia’s extrapolation appeared.

In [46], it was proved that if an m-variable operator T satisfies that

T:LP(vy) X -+ X LP™(v,,) — LP(Ui’/pl N 'U%me

for some exponents 1 < pq,...,p, < 00, with 110 =
v € A,,..., Uy €A, then

1 1 ]
St and all weights

o L9 () o 5 L0 (1) — LA™ wlfm),

for all exponents 1 < q1,...,¢q, < oo, with % = qil + -4 L and all weights

qm’
wy € Ay, W € Ay,
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In [35], the sharp dependence of ||T']| (1) XX L () L1 (T2 in terms of

([w] Aqi)lgigm was established, and analogous multi-variable weak-type extrapola-
tion schemes were studied in [19]. Once again, the operator T plays no role, and all
the results can be stated for (m + 1)-tuples of measurable functions.

Recently, multi-variable strong-type extrapolation theorems for Az weights have
been obtained in [61, 62, 70|, solving in the affirmative a question that had been
going around for about a decade, since the publication of [60], where such weights
were introduced.

Rubio de Francia’s extrapolation theory provides a potent set of tools in Harmonic
Analysis, but it has a weak spot; namely, it does not allow to produce estimates in
the endpoint ¢; = --- = ¢, = 1, which can be easily seen by considering m-variable
commutators (see [60]).

In the case of one-variable extrapolation, the works of M. J. Carro, L. Grafakos,
and J. Soria (see [16]), M. J. Carro and J. Soria (see [18]), and S. Baena-Miret and
M. J. Carro (see [3]) give a solution to this problem assuming a slightly stronger
extrapolation hypothesis. They showed that if a sub-linear operator T satisfies that

T : LPY(v) — LP>®(v),
for some exponent 1 < p < 0o, and every weight v in Ep, then
T: Lq’min{l’%}(w) — L9(w),

for every exponent 1 < ¢ < oo, and every weight w in A\q. Here, for r > 1, the class
A, contains all the weights of the form (Mh)"u, where h € L}, .(R") and u € A;.

loc
If r =1, then 211 = Ay, but forr > 1, A, C fAlr C AR,

In general, the classical strong and weak-type Rubio de Francia’s extrapolation
theorems rely on three fundamental ingredients: factorization of A, weights, con-
struction of A; weights via Rubio de Francia’s iteration algorithm (see [11, 76]),
and sharp weighted bounds for the Hardy-Littlewood maximal operator M. How-
ever, in the setting of restricted weak-type Rubio de Francia’s extrapolation, many
technical difficulties appear. For instance, no factorization result is known for A®
weights, which justifies the need for the class ,&,, Also, within this framework, the
Rubio de Francia’s iteration algorithm can not be defined and has to be carefully re-
placed by the Hardy-Littlewood maximal operator M in the construction of weights.
Fortunately, we do have sharp weighted restricted weak-type bounds for M.

The main purpose of this project is to build upon [3, 16, 18, 19, 75] and extend to
the multi-variable setting the restricted weak-type Rubio de Francia’s extrapolation
techniques discussed there.

The first result that we were able to deduce, presented in [75, Theorem 3.2.1],
allows us to extrapolate down to the endpoint (1,1, %) from a diagonal estimate.
Simply put, if a two-variable operator T satisfies that

T L™ (vy) x L™ (vg) — L2 (v 203/?),
for some exponent 1 < r < oo, and all weights vy, vy € Er, then
T LY (wy) x L (wy) — L3 (w!2wl/?),
for all weights wy,wy € A;. The crucial point in its proof is the endpoint bound

(1.1) M® : LY wy) x L' (wq) — L%’Oo(wimw;ﬂ),
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proved in [60] and refined in [75, Theorem 2.4.1] and |74, Theorem 3|. Here, the
operator M® is defined for locally integrable functions f; and f, by

M®(f1, f2)(x) := M fi(x) M fo(z), x€R",

where M is the Hardy-Littlewood maximal operator.

For simplicity, in |75, Chapter 3| we decided to work on two-variable extrapolation;
the extension from two variables to multiple variables is just a matter of notation.

The approach to establishing general downwards extrapolation schemes is now
evident: find some auxiliary operator 2 for which we can prove mixed and re-
stricted weak-type inequalities, and use the extrapolation hypotheses to transfer
such bounds to the generic operator T. The operator 2 plays the same role as the
Hardy-Littlewood maximal operator plays in the one-variable restricted weak-type
extrapolation theory of Rubio de Francia.

As it turns out, sometimes we can take M® to be our auxiliary operator (see
[75, Theorem 3.2.4]). Moreover, our preliminary mixed-type inequalities for M®
in [75, Theorem 2.2.10] encouraged us to develop the multi-variable mixed-type
extrapolation theory of Rubio de Francia, partially presented in [75, Section 3.3]
and completed in Section 6.

After a detailed analysis of the proof of (1.1) in [60], we concluded that the
complete solution to multi-variable mixed and restricted weak-type extrapolation,
along with the corresponding bounds for M®, relies on weighted inequalities for
operators of the form

Mf
Zf= i
on Lorentz spaces, being U some nice weight. This discovery forced us into devel-
oping our theory of Sawyer-type inequalities for Lorentz spaces, displayed in |75,
Section 2| and [74].

One of our most remarkable achievements is the following, which, unexpectedly,
keeps popping up in our calculations: if u € A, and uv € A, then there exists a
well-behaved constant C,, such that for every measurable function f,

i |tz

< Cuy z)|u(x)v(x)de.
<G [ @

Ll,oo(

By exploiting (1.2), the Sawyer-type inequality in [74, Theorem 2|, and its dual
version in Theorem 4.1, we manage to produce Theorem 6.1, the multi-variable
mixed and restricted weak-type extrapolation scheme that we were seeking, fulfilling
the original goal of our project. In general terms, we have that if an m-variable
operator T satisfies that

T o LP2 (vg) X -+ - X DP9 (vg) X LP () X - - X LP7 (0y,) — LB (oP/PY | qp/pm),

for some exponents 1 < py,...,p, < 00, with 1—1) = le + - 4 pi, and all weights
viEEPi,m,izl,...,é, and v; € A,,, i =(+1,...,m, then

¢ ) m
T: (H qu"mm{l’ii}(wi)> X (H L%min{pi»%}(wi)> — L0 (/M am),
=1

=041
for all exponents 1 < qq,...,q <00, 1 < i1y, Gm < 0O, Withézqil—l—---%—qi,

and all weights w; € fAlqijoo, t=1,...,¢, and w; € Ay, i =L+ 1,...,m. Here, for
r > 1, the class A,  is an extension of A, such that A, C A, , C AR,
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In particular, and ignoring some technicalities (see Theorem 7.1), we get that if
an m-variable operator T' satisfies that

T LPYY(0y) X -+ X LPmY(0,,) — LP(0P L o/om),
for some exponents 1 < py,...,p, < 00, with % = le + -+ pi, and all weights
V1 € ﬁpl,...,vm € ﬁpm, then

T L% (wy) X - x LI (wy,) —> LY (wd® . wf/am),
for all exponents 1 < ¢,...,¢q, < 0o, with é = q% 4+ o+ qu’ and all weights

wy € gql,oo, coy Wy € gqm,oo. For a one-weight version, see Corollary 6.6.
Following A. Cordoba’s philosophy on strong-type extrapolation, we can say that:

Thre 5 no vestsiitecd weak Lyfic. only wweghtecd (7.7 Lol

Let us point out that in the mixed-type setting, and when working with A,
weights, we can either follow the classical approach, using Rubio de Francia’s itera-
tion algorithm, or our new strategy, with (1.2) and related Sawyer-type inequalities,
to run the extrapolation procedures, with the former leading to better constants than
the latter, but in the restricted weak-type setting, the first option is not available,
and we have no choice but to use Sawyer-type inequalities.

Our techniques can be further enhanced and, when combined with recently un-
earthed structures inside AZf (see Subsection 8.1), can be used to tackle extrapolation
assuming multi-variable conditions on the tuples of measures involved (see Subsec-
tion 8.2 and Theorem 8.16), including endpoint results that are out of reach for the
classical procedures in [61, 62, 70] (see Theorem 8.21).

Inspired by [35], we derive our multi-variable extrapolation theorems from one-
variable off-diagonal extrapolation results (see Section 5 and Subsection 8.2).

For technical reasons, in all our extrapolation arguments, we require the constants
in each estimate to depend increasingly on the constants of the weights involved.
This hypothesis may seem restrictive at first, but it is not, since sharp constants are
this way (see [33, Footnote 3]).

Note that for mixed and restricted weak-type bounds for multi-variable operators,
the Lorentz spaces that we consider have first exponents 1 < rq,...,7,, < oo, and

r such that % = ﬁ + -+ TL Hence, we can identify each choice of exponents

T1,...,Tm with the point (%, ey %) in the space of parameters (0, 1]™.

A relevant region inside this m-cube is the so-called Banach range (see Figure 1),
B, ={(x1,...,2n) € (0,1 121+ + 2, < 1},

where the corresponding values of the exponent r are strictly bigger than one, and
hence, L™*(v) is a Banach space, being v a weight. In particular, duality is available
(see [43, Theorem 1.4.16.(v)]).

Duality has proved to be a powerful tool in the study of weighted inequalities for
classical operators, especially when combined with sparse domination techniques.
Thus, working with Lorentz spaces where duality is not available is a problem in
practice, and it gets worse as we increase the number of variables m, since the
Banach range shrinks fast. In fact, one can check that

1
B | = e
m!
This lack of duality can sometimes be circumvented by wisely using Kolmogorov’s
inequalities (see [74] and |75, Chapter 5]), but not always, and that’s when our
extrapolation kicks in. We can prove bounds in the Banach range by hand, and
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FIGURE 1. Pictorial representation of the Banach range for one, two,
and three variables.

then effectively extend them outside it via multi-variable mixed or restricted weak-
type extrapolation techniques.

In particular, our extrapolation schemes are handy for overcoming two funda-
mental problems of weak Lebesgue spaces L"*°(v) with 0 < r < 1, strongly related
to the absence of duality: the lack of Holder-type inequalities with the change of
measures, and Minkowski’s integral inequality.

The first problem becomes an obstacle when working with product-type opera-
tors. Nevertheless, using our Holder-type inequalities from [75, Subsection 2.2.1],
we can obtain bounds for such operators in the Banach range, and then apply an
extrapolation result to extend them past such a range of exponents. For the exact
details, see Proposition 7.6 and Theorem 7.8. These arguments also apply to some
multi-variable commutators, as shown in Corollary 7.9.

The second problem is an impediment when trying to produce bounds for av-
eraging operators. Here, the strategy is to prove estimates in the Banach range
using Minkowski’s integral inequality and then extrapolate outside it, as we see in
Theorem 7.11.

As a particular case, we started working with multi-linear multipliers of the form

Talfis . fu) (@) = /R - /R (1) Fonl€n)TET 46 e, de,.
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initially defined for Schwartz functions fi,..., f,,, and x € R. The study of such
operators was initiated by R. R. Coifman and Y. Meyer (see |21, 22]). In recent
years, the interest in them has increased, following the works by M. Lacey and C.
Thiele on the bi-linear Hilbert transform and Calderén’s conjecture (see [55, 56, 57]).
For more information and results on m-linear multipliers and related topics, see
[40, 44, 45, 47, 51, 64, 68].

Following [34], we found that for nice symbols m, it is possible to write T}, as an
averaging operator of products of modulated and translated Hilbert transforms, and
hence, in Theorem 7.13, we are able to establish mixed-type inequalities for these
operators using our multi-variable extrapolation tools, combined with bounds on
weighted Lorentz spaces for the point-wise product of Hilbert transforms.

It’s time to face the elephant in the room: mixed and restricted weak-type results
with AZ} weights are scarce in the literature and generally difficult to prove, even in
the Banach range. This means that the required estimate to start extrapolating will
not always be available. Fortunately, we can find plenty of weak-type (1,...,1, %)
operators out there, and extrapolate upwards from the endpoint p; = --- =p,, =1
with Corollary 6.3 or Theorem 7.1 to cover the full range of mixed and restricted
weak-type bounds for them. A remarkable example is the family of so-called multi-
linear bounded oscillation operators (see [13]), including Calderén-Zygmund oper-
ators, Littlewood-Paley square operators, Fourier integral operators, higher order
Calderén commutators, and maximally modulated singular integrals. See Theo-
rem 7.5 for details.

Developing (1.2) and its corollaries, Sawyer-type inequalities for Lorentz spaces
and mixed and restricted weak-type bounds for M®, and using them to deduce
multi-variable extrapolation schemes is an original idea of the author—E. R. P.—
and was first described by him in [75]. What follows is a satisfactory closure of that
piece of work.

2. PRELIMINARIES

In this section, we introduce some basic concepts that we will use throughout this
document.

2.1. Notation and conventions.

In general, we will work in R”, with 1 < n € N. Unless otherwise specified, by
a function f we mean a real or complex-valued function on R". If we say that a
function f is measurable, but we don’t specify any measure, then it is with respect
to the Lebesgue measure on R"”. The same applies to measurable sets, integrals, and
also to the expression a.e.; that is, almost everywhere.

Given a measure v, and a v-measurable set E, we use the notation

v(E) ::/Edy.

If v is the Lebesgue measure, then we simply write |E|. Given a measurable function
f, and a measurable set E, with |E| # 0, we use the notation

fr= T | #ayia

A cube Q is a subset of R™ that admits an expression as a Cartesian product
of n intervals of the same length, the side length of @), denoted by f¢q. If these
intervals are all open, then the cube is called open, and if they are all closed, then
the cube is called closed. By default, our cubes will be open, and we can find a



8 EDUARD ROURE-PERDICES

unique zg € R", called the center of @Q, such that Q = {zq + oy :y € (=1, 3)"}.
For v > 0, 7Q = {2 +vlgy :y € (—5,1)"}. With the obvious modifications,
these notions extend to arbitrary cubes.

Given non-negative quantities .o/ and %, we write &/ < A if there exists a finite
constant C' > 0, independent of &/ and %, such that & < CA. If & < B < o,
then we write @ =~ %. The constant C' is called the implicit constant. Usually, we
will denote implicit constants by «,c,¢,C, or €. In many cases, they will depend
on some parameters aq,...,ap, and if we want to point out that dependence, we
will use subscripts, e.g., & Say. a0 B, O F Ty a0y B, or Z < Cyy 0, B. We
shall use numerical subscripts and superscripts to label different implicit constants
appearing in the same argument. We write & < C(ay,..., )% when we want
to interpret C as a function of the parameters aq,...,a,. In these cases, we may
replace C' by other symbols, like ¢, p, ®, 1, or U, especially when the dependence
on the parameters is monotonically increasing.

Given real or complex vector spaces Xi,...,X,,, and Y, endowed with quasi-
norms || - ||x,,--- || - [Ix,., and || - ||y, respectively, and an operator 1" defined on
Xy x --- x X, and taking values in Y, we use the notation

T:Xix---xX,,—Y

to indicate that T is a bounded operator from X; x --- x X, to Y; that is, there
exists a finite constant C' > 0 such that for all f; € Xy,..., f., € X,,,

X;-

I fadlly < CT I
=1

Among all such constants C', we shall denote by || T'||lfpm, x,—y the smallest one.
We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero, and the empty product is equal to one.

2.2. Lorentz spaces and weights.

We include a brief exposition about Lebesgue and Lorentz spaces, containing
definitions and well-known properties. For a detailed discussion, see |9, 43].

Given 0 < p < o0, and a o-finite measure space (X, v), LP(X,v) is the set of
v-measurable functions f on X such that

1/p
1| Le ) = (/ !f!pdV) < 00,
X

and L>°(X,v) is the set of v-measurable functions f on X such that

| fll oo (x,0) = v-esssup| f(z)] < oo.
reX

The Lebesgue space LP(X,v) is a Banach space for 1 < p < oo, and a quasi-Banach
space for 0 < p < 1.
Given 0 < p,q < oo, and a v-measurable function f on X, define

0o , dy 1/q 00 . dt 1/q
laracsor = (o [ i) = ([Tergond)
0 0

and for ¢ = 0o, define

1 f1Looo () = sup yN5(y)'/? = sup t'/7 £ (¢),
y>0 t>0



EXTRAPOLATION VIA SAWYER-TYPE INEQUALITIES 9

where A} is the distribution function of f with respect to v, defined on [0,00) by
Ni(y) = v({x € X [f(x)] > y}),

and f* is the decreasing rearrangement of f with respect to v, defined on [0, 00) by
fo(t) == inf{y > 0: Nj(y) < t}.

The set of all v-measurable functions f on X with || f||zre(x) < 00 is denoted
by LP4(X,v), and it is called the Lorentz space with indices p and q. The space
L (X, v) is L>(X,v) by definition.

For 0 < p < o0, LPP(X,v) = LP(X,v), and hence, Lebesgue spaces are particular
examples of Lorentz spaces. The space LP* (X, v) is usually called weak LP(X,v).

Some Lorentz spaces that will be of great interest for us are LP1(R", v), LPP(R™, v),
and LP*(R",v), where dv(r) = w(r)dr, and w is a weight; i.e., 0 < w € Lj, (R™).
For such measures on R", we shall write LP4(v), LP4(w), or LP4(R") if w = 1.

In general, LP9(X, ) is a quasi-Banach space, but if 1 < p < 0o and 1 < ¢ < o0,
or p=gq=1, or p=q = o0, then it can be normed to become a Banach space.

Lorentz spaces are nested; that is, if 0 < p < oo, and 0 < ¢ < r < 00, then

LPYX,v) — LP"(X,v),
and for every f € LP9(X, v),

r—q
q\ "
TP (2—9) T,

Given parameters 0 < r < p < 0o, consider the quantity

L 1/r
sy = sup  w(E)S (/ !f\’"dV> ,

0<v(E)<oo

where the supremum is taken over all v-measurable sets £ C X such that 0 <
v(E) < co. We have that

1/r
D
[l < Mllmmgen < (p_ ) 1 llmee

r

This is classical (see [43, Exercise 1.1.12]), and we will refer to these inequalities as
Kolmogorov’s inequalities.

For f € L, .(R™), the Hardy-Littlewood mazimal operator M, introduced in [49)],
is defined by

Mi(@) = swp o [ 1f@)ldy, @ e R
@3z 1@ Jg

where the supremum is taken over all cubes () C R” containing z. For an exponent
p >0, we write MH*f := M(|f|*/*)*.

In [66], Muckenhoupt studied the boundedness of M on Lebesgue spaces LP(w),
obtaining that for 1 < p < o0,

M : LP(w) — LP(w)
if, and only if w € A,; that is, if

ooy () () <

Moreover, if 1 < p < oo,
M : LP(w) — LP*°(w)
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if, and only if w € A,, where a weight w € A, if
[w] 4, = sgp (]é w) (eiSEianw(lL‘))il < 00.
Buckley proved in [12] (see also [72]) that for 1 < p < oo,

1
| M| Lo ()= Lo () S [w ]A/p>

and if p > 1, then

1

||M||LP(w )—LP(w) Nn plw [ ]p .

In [32, 52|, Chung, Hunt, and Kurtz, and Kerman, and Torchinsky proved that
for 1 < p < o0,
M : LPY(w) — LP>®(w)
if, and only if w € A%, where a weight w is in A% if

1/p IxQw ™l 16" o ()

Q)

< 00,

[w]ag = Sup w(Q)
or equivalently, if
1] (w(@)""
||w||ar = sup sup < 00.
o o QI \w(E)

We have that [w]ar < [[w][ar < p[w]AR, and
[ M| o1 ()= 2o (w) ~onp [W]AR-

A remarkable subclass of AZ} is Ap, introduced in [16]. Given 1 < p < o0, a

weight w belongs to the class Ep if there exist a function h € L}, .(R™), and a weight
u € Ay such that w = (Mh)'"Pu. It is possible to associate a constant to this class
of weights, given by

1
lwllg, = inf [u]3{y
where the infimum is taken over all weights v € A; such that w = (Mh)" Pu. If
w € Ay, then [lw|[ar Spp [[wllz , and 4, € AR but it is not known if this inclusion

is strict for p > 1. Note that A = Ay, and forp > 1, A, C fAlp.
We now introduce some other classes of weights that will appear later. For more
information about them, see [27, 30, 36, 42, 43, 50, 82].

Define the class of weights
A =] A, = AF.
p>1 p>1

It is known that a weight w € A, if, and only if

/MwXQ

Given s > 1, we say that a Welght w € RH, if
Q| v
(W] gy, := sup w® < 00,
e w(@) g

Q esssup w(z) < oo.

Cin
U}(Q) z€Q

[w]a,, = SUP

and w € RH, if

(W] gy, = sup
Q
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U RH,.

We have that

1<s<oo
For a positive Borel measure v on R"
M, f(x) :=sup /|f )dv(y), xe€R",
Qaz V

where the supremum is taken over all cubes () C R™ containing x and such that
0 <v(Q) < oo. If dv(y) = w(y)dy for some weight w, we simply write M,,, and call
it the weighted Hardy-Littlewood maximal operator.

Given a positive Borel measure v on R™, we say it is locally finite if v(Q) < oo
for every cube @ C R", and doubling if there exists a constant C' > 0 such that
for every cube @ C R™, v(2Q) < Cv(Q); the smallest of such constants is the
doubling constant of v. For a measure v with these properties, and f € L} (R", v),
|f(z)] < M, f(z) v-a.e. © € R" (see [39, Theorem 7.8| and [7, Theorem 8.4.6]). A
particular case of interest is dv(y) = w(y)dy, with w € A

Given a positive, locally finite, doubling Borel measure v on R”, and 0 < w €
(R",v), we say that w € A,(v), with p > 1, if

mmwzﬁ(ﬁméwﬁ(iwéwwwf4<w

and w € A;(v) if

1 / ) . h
WA, ) :=5up | —= [ wdv | (v-essinf w(z < 00.
[ ]A() 0 (I/(Q) Q ( T€Q ( ))
Also, for p > 1, w € AZ}(I/) if

[w] A ) = sup (/ de) L T
AR(v) -— )
P U v(Q)

and w € A ( ) if there exist a function h € L .(R™ v), and u € A;(v) such that
= (M,h)'"Pu. To this class of functions we can associate the constant

Ll

loc

. 1
||w||2p(y) 1= inf [U]A/lp(y)7

where the infimum is taken over all u € A;(v) such that w = (M, h)' Pu.
As before, we define
) =AW

p>1

For w € A (v),

[w] A ) —supf wdv/ M, (wxg)dv < oo.
Q

If p > 1, then M, : L?(wdv) — LP(wdv) if, and only if w € A,(v), and if p > 1,
then M, : L' (wdv) — LP>(wdv) if, and only if w € AX(v).

In [60], the following multi-variable extension of the Hardy-Littlewood maximal
operator was introduced in connection with the theory of multi-linear Calderén-
Zygmund operators:

M —WHG%AWM%)JEM

Q37 ;5

for f=(f1,..., fm), with f; € LL_(R"),i=1,....m
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For 1 < pi,....pm < 00, P = (p1,...,m), zln = i—i— _1_1%7 and weights
Wi, .« oy Wy, With @ = (w1, ..., wy,), and vg .:w}f/p1 wﬁ{pm,

M LPY(wq) X - X LP" (wy,) — L2 (vg)
if, and only if @ € Ap; that is, if

1/p m - 1/p;
[W] 4, = sup (][ I/u-;) <][ w; ) < 00,
" e Ve H Q

=1
1-p 1p; ) 1. )
where <fQ ’) is replaced by (ess inf,cq wl(:c)) if p; = 1. Moreover, if
1 <p1,...,pm < 00, then
M LPY(wy) X -+ - x LP™(wy,) — LP(vg)

if, and only if W € Ap.
More generally, for 0 < ¢ < m, and R = (1, -+, Pe)s

M LPY (wy) X - x LPOY(wy) X LIPS (weyy) X - -+ X LP™ (wy,) — LP™ (vg)
if, and only if @ € Aigﬁ; that is, if

! m
[ZU]AS%I‘R = sup V@(Q)l/p <H HXQw |gTPi et ) ( H HXQU) Lp )) -

Q@ =1

If £ =0, then Aa 5 =Ap, and if £ = m, then Aﬂgﬁ = Ag (see [74, Theorem 9] and
[75, Remark 5.2.9]).
2.3. Types of bounds.

Let m > 1, and let T" be an m-variable operator defined for suitable measurable
functions on R". Given exponents 0 < p1,q1,. .-, Pm, Gm,P,q < 00, and weights
Wy, - .., Wy, w, suppose that

T LPrB(wy) X -+ X LI (w,,) — LPY(w);
that is, 7" is a bounded operator from LPV% (wq) X -+ X LP™%(w,,) to LV (w).
(a) We say that T is of strong type (p1,...,Pm,p) if 4 = p1,...,Gm = Pm, and

q=p.

(b) We say that T is of weak type (p1,...,pm,p) if 1 = p1,---,Gm = Pm, and
q = 0.

(c) We say that T is of restricted weak type (p1,...,pm,p) f 1 =+ =qm =1,
and ¢ = co. We may also use this terminology if 0 < ¢; < 1,2=1,...,m.

(d) We say that T is of mized type (p1,...,DPesPes1y-- - Pm, D), With 1 < 0 < m,
ifqgr <1,....q.<1and g1 =pes1,---5Gm = Pm, and ¢ = co. We may also
use this terminology if 1 < p1,...,pm < 00, and w; € A%, fori = 1,... 4,
and w; € A,,, fori =/¢+1,...,m, independently of the choice of the other
exponents. We first introduced this definition in [75].

Analogously, we will talk about strong, weak, mixed, and restricted weak-type
inequalities.

The definitions of types strong and weak are standard (see [43, Section 1.3|), but
the ones of mixed and restricted weak may vary depending on the source (see [1],
[9, Chapter 4], [16, 18, 37|, [43, Section 1.4], [81]). In the long run, referring to our
mixed type as mild type may be convenient.
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2.4. (e,d)-atomic operators.

We introduce multi-variable extensions of some topics presented in [14, 15, 16].

Definition 2.1. Given § > 0, we say that a tuple of functions (ay,...,a,,) in
[T~ LY(R") is a d-atom if

// ar(z1) ... ap(zp)de ... de, =0,

and there exist cubes Q1,...,Q,, € R" such that for i = 1,...,m, |Q;| < ¢ and
supp a; € Q;.

Recall that for a measurable function f,

1
(TP - / F+(s)ds.
0

Definition 2.2. Let 7" be a multi-sub-linear operator defined for suitable measurable
functions (see [44, Page 494)).
(a) We say that T is (e, §)-atomic if for every € > 0, there exists 6 > 0 such that
for every d-atom (ay,...,a,),

||T(a1, cee am)||L1(Rn)+L°o(Rn) < €H ||Cli||L1(Rn)-
i=1
(b) We say that T'is (e, §)-atomic approzimable if there exists a sequence {7} }ren
of (g, 0)-atomic operators such that for all measurable sets F, ..., E,, CR",
and all fi,..., f, € L'(R") such that || fi||pe@ny < 1,0=1,...,m,

—

. and |T(f)] < liminf [T (f)].
—00

|Tk(XE17 B 7XE'm)| < |T<XE17 B ’XEm)

(¢) We say that T is iterative (g,0)-atomic (resp. approximable) if for all func-
tions g1,...,0m € L*(R") with ||g||ze@n) < 1, @ = 1,...,m, the m one-
variable operators of the form T'(¢gy,...,gi-1,", gi+1,- - -, gm) are (g, 0)-atomic
(resp. approximable).

The next result will be needed later. It is a two-weight version of [16, Theorem
3.5], and the proof is the same.

Theorem 2.3. Let T' be a sub-linear operator that is (e,d)-atomic approrimable,
and fir 0 < g < oo. Given weights u € Ay and v, if there exists a constant C' > 0
such that for every measurable set E C R",
IT(xe)l|Lovew) < CulE),
then
T : L'(u) — LT>®(v),

with constant bounded by 2"Clu) 4, .

A remarkable multi-variable extension of Theorem 2.3 is the following, the proof

of which is similar to that of [15, Theorem 3.9|, with obvious modifications based
on the proof of [16, Theorem 3.5].

Theorem 2.4. Let T be a multi-sub-linear operator that is (g,0)-atomic approz-

imable or iterative (g,0)-atomic approximable. Given weights uy, ..., u, € Ay, and
u = ui/m . .u%m, if there exists a constant C' > 0 such that for all measurable sets

B, ... E, CR",
||T(XE1’ LR 7XEm)||L%,OO(u) S Oul(El) b Um(Em),
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then
T L'uy) % -+ x LY (up) — L™ (u),

with constant bounded by 2™"Cluy] 4, - . . [tUm]a, -

3. TECHNICAL RESULTS

In this section, we gather some technical results that we will use throughout this
article.

3.1. Interpolation of weights.

The next theorem gives us a restricted weak-type interpolation result for weights.

Theorem 3.1. Fixz an mteger m > 2. Let 0 < p < oo, and 0 < #4,...,0,, <
1 such that 61 + --- + 6, . Let uy, ..., Uy, v1,..., 0, be weights, and write
w=ul". . ulm and v = vfl . ..vglm. Let T be a sub-linear operator defined for
characteristic functions. Suppose that for v = 1,...,m, there exists a constant
C; > 0 such that for every measurable set FF C R"™,

(3.1) IO ey < CilIxell oy

Then, for C' = min{Cy+-- -+ Cp,,mC? ... C%}, and every measurable set E C R™,
(3.2) 1T ooy < C Xzl oy

Proof. Without loss of generality, we can assume that for7 =1,...,m, 6; # 0. First,
we prove that (3.2) holds for C' = Cy + - -+ + C,,. The case m = 2 is part of popular
folklore; in |75, Lemma 4.1.3] we gave a proof based on [83, Lemma 3].

For the case m > 2, we proceed by applying the case m = 2 iteratively m — 1
times. Let us assume that we are performing the kth iteration, with 1 <k <m—1,
and that all the previous iterations are already done. We choose the weights

k 0; k 0;
H e o, H e B gk) = Uk, Uék) = Vg1,
i=1 =1
and the exponents
0 +---+0 0
egk) _ N k gtk k+1

Or4-+ 01 7 Ot + O
and write
CH) =+ + Oy
In virtue of (3.1), if we apply the case m = 2 for the kth time, with exponents (9 (k)
and 9§k), and weights ugk), ué ), v%k), and v2 , then we get that for every measurable
set £ C R"™,
17O ey < CElxel e

since (u)%” ()05 = D (I (N — o B and C+) = 00 4.0,

In particular, for k =m — 1, ugm) = u and vim)

1T (xE) | troowy < (Cr+ -+ + Co) | XE o (1)
Now, by hypothesis, for i = 1,...,m, and for every measurable set F' C R",

= v, and we conclude that

||T(XF)||Lp,oo(ui) <G ||XFHLp,1(fUi) = HXF”Lp,l(cg’vi) ’
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and applying the result that we have just proved, we deduce that for every measur-
able set £ C R",

0 m
HT(XE>HLP’°°(U) <m HXE’|Lp,1(c§791,,,Cgfmv) =mCT ... Cgl ”XEHLPJ(Q;)
>>p
3.2. Extensions of Ep.

Let us start by defining the following class of weights, which was introduced in
an unpublished version of [16].

Definition 3.2. Given 1 <p<oo,and 1 < N € N, we say that a weight w
belongs to the class Ap w if there exist measurable functions hy, ..., hy € L}, (R"),
parameters 6,...,0y € (0,1], with 8; +--- + 6y = 1, and a We1ght u € Ay such
that

(3.3) w = (H(Mh) > u.

=1
We can associate a constant to this class of weights, given by

: 1
lwllz, , = inf [l

where the infimum is taken over all weights u € A; such that w can be written as
We also define

(o]
0o = U Ap,N7
N=1

with the corresponding associated constant, given by

wla, ., = jnf llwll, ,

For convenience, we take A, := A,.

It is clear that A1 o = A1, and Ap1 = A Also, observe that for every N > 1,
Ap,N C Ap N+1, and ||wHA S ||w||A , but we don’t know if these inclusion

relations are strict. R
We will use Theorem 3.1 to show that for p > 1, A, C AZ}, but due to the
dependence on m of the constant C' obtained there, we can’t work with | - | A and

we need to introduce a new constant for weights in A, ..

Definition 3.3. Given 1 < p < o0, and w € A\pm, we define the constant

lwls, . = inf Nlwls, ,

We can see that [lw|z == [w]z = [w]a,, and in general, [w]z = < [lwlz .
Moreover, [w[|z = < oo if, and only if [w]z < oo, but we don’t know if there
exists an increasing function f : [1,00) — [0, 00) such that [wl|z = < F([w]z ).

We can now prove that for p > 1, A\p’oo C AZ}.

Theorem 3.4. Given 1 < p < 00, there exists a constant C' > 0, depending only on
p and the dimension n, such that for every N > 1, and every weight w € Ay n,

(3.4) wlap < ONwl; .
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In particular, if w € /Alpm, then w € A;z, and
[wlar < Cllwlz, .-

Proof. Observe that if p = 1, then the result is true for any C' > 1, so we will assume
that p > 1.

For N =1, if w € A\pyl, then we can find a locally integrable function h, and a
weight u € A; such that w = (Mh)*Pu. It was proved in [16, Corollary 2.8] that

[(Mh)Pul ar < ey [u]z/lp , and taking the infimum over all such weights u € A, we

get that [w]ar < cppl|wllz |- By Lemma 8.4, we can take ¢, = o/

For N > 2, if w € zzl\p,N, then we can find locally integrable functions hq, ..., hy,
a weight u € Ay, and real values 0 < 6;,...,0y < 1, with Zf\il 0; = 1, such that

w = (H(Mhi)9i> u = ((Mhi)l_pu)ei =: le

i=1 i=1

Note that for ¢ =1,...,m, w; € Ep,l, and we already know that fAlI,,l C A% so in
virtue of |74, Remark 10|, for every measurable set £ C R",

n n n n 1
1M ) ey < 2772 03]z 1XEN oty < 2772 P[] 47 XN 1y -
We can now apply Theorem 3.1 to deduce that for every measurable set £ C R",
n n 1
1M () ey < 27727 N[l NIz s -
Thus, |74, Theorem 10| implies that
wlag < llwllag < 2"72"Ppe, , Nlul}{?,
and taking the infimum over all suitable representations of w, we conclude that
[wlap < 272 pea Nl .
and hence, (3.4) holds taking C' = 2"72"/Ppc,, .. In particular, C' <, p.
Finally, given w € A, ,, we have that

w <C inf Nllwl|l+ = Cllwl| 3
[ ]AZ;_ Nzlzwegp,N H HAPJ\’ || HAP’OO’

because if N > 1 is such that w & A, v, then |lwllz, , = inf@ = oo. >

3.3. Construction of weights.

The following result produces weights in A.

Lemma 3.5. Let 1 <p,g <oo. Letu e A,, v € A,, and take W = (%)l/p. Then,
W e AH%, and

1 1
< [y /p[v] /P

Aq Ap

[W]AH%

Proof. By definition,

I AON [ AC
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Fix a cube @ C R™. To estimate the first factor in (3.5), in virtue of Holder’s
inequality with exponent p > 1, we get that

FO" < ()" ()"

where the last term is interpreted as esssup,co v(z) ™" if p = 1.
Similarly, to estimate the second factor in (3.5), in virtue of Hélder’s inequality
with exponent ¢ > 1, we have that

(3.7) é(%ﬁ < (]{2 v)l/q (]éulq)qql,

where the last term is interpreted as esssup,cqu(x)~" if ¢ = 1.
Combining (3.5), (3.6), and (3.7), we obtain that

q p—1
P

oz (1) () () () <ot

>

The next lemma allows us to construct nice weights in A\pm.

Lemma 3.6. Let1 <qg<pandl <N €N, and let w be a wezght For a measurable
function h € Li (R™), let v = (Mh)"Pw. Ifw € AqN, then v € Ap Nt1, and

loc
(3.8) lollz, v < %7
In particular, if w € Eq,oo, then v € gpm, and

(3.9) vl 5, ., <2llwllz, .

Proof. Fix v > 1. For a weight w € A\qu, we can find measurable functions
hi,...,hy € Li,.(R™), parameters 6y, ...,0y € (0,1], with 6, +---+ 60y =1, and a
—q
weight u € A; such that w = (Hi]il(]\/[hi)ei> u, with [u]xq <Allwlz, -
Note that if p = 1, then v = w = u, so (3.8) holds. If p > 1, then
a-p 9, 1=4 gviza\ 1P
S (Mh)" 5 (Mhy) N) u,
and since 9= 4 (0; + -+ - + HN)%Z = 1, we have that v € zzl\p,NH, with

1
mmwﬂsum<wmwwp

and (3.8) follows letting 7 tend to 1. If ¢ = 1, then v € Ap, and [jvf|z < [w]xp.

Finally, if w € Eqm, then we can find a natural number N > 1 such that w € Equ,
and in virtue of (3.8), we get that

lollz,. < N+1Dvlg ., <2N H’LUH}/;?N <2Nwllz,
and taking the infimum over all such N > 1, we obtain (3.9). >>p

The following result also lets us construct nice weights in Ep,oo.
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Lemma 3.7. Let1l <p<qgandl < N €N, and let w be a weight. For a measurable
p—1 a—p ~ -~
function h € L} (R™), let v =wast (Mh)s—. Ifw € AN, thenv € A, n, and

loc

(3.10) ol < cllwl? .

with ¢ independent of h. In particular, if w € A\qyoo, then v € A\pm, and

(3.11) lolls, . < cllwlly” .

Proof. Fix v > 1. For a weight w € gq,N, we can find measurable functions
hi,...,hy € L, .(R"), parameters 6y, ...,0y € (0,1], with §; +--- + 0y =1, and a

loc

1—
weight u € A; such that w = (HZ]\LI(MhZ)91> qu, with [u]z/lq < VHMH&,N‘ Thus,

N 1-p N 1-p

p=1 a=p ~

v = (H(Mhi)@) wa=1 (Mh)a1 =: <H(Mhi)9i> u.

i=1 i=1

Applying [18, Lemma 2.12|, we see that u € Ay, with [u]s, < ﬁn%[u]Al, and
hence, v € A\pw, with

1/ 1/
Pl o <@ < (k=) " Wl < (1, 0=L) T g
Ay = WAy = p—1 A = p—1 AgN’

1/p
. p . 71
and letting v tend to 1, (3.10) holds with ¢ = (/in;ltl> :

Finally, if w € A\qm, then we can find a natural number N > 1 such that w € A\q,N,
and in virtue of (3.10), we get that

lollz,.. < Nlollz,, < eNflwl4” < e(Nlellz, )",
and taking the infimum over all such N > 1, we obtain (3.11). >

3.4. Some properties of AZ} weights.

The following result allows us to construct AZ} weights and settles a question
raised in |75, Remark 4.1.8].

Proposition 3.8. Fiz an integer m > 2. Let 1 < pi,...,pm < 00, and 0 <
0r,...,0, <1 such that 01 + ---+ 0,, = 1. Given weights w, GAZ}I,...,wm GAZ}m,

the weight w = w? .. wlr is in AR

m max{p1,...,pm}’ and

Moreover, for every cube () C R"™,
m 0; m
w; | < [wi]i’g" / w.

Proof. Fori =1,...,m, and p := max{py,...,pm}, we know from [74, Remark 10|
that for every measurable set F' C R"™,

IM (P 2o () < 2772 P [wi] ar [IXE | oot ()
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In virtue of Theorem 3.1, we get that for every measurable set £ C R",

m

1M (x &)l zroey < 2772Pm (H[wz]a ) IxEll e ()

i=1

< o7 2”/pm< 1T pz> (H wz]AR> X2l (),

i:1pi#p i=1
and hence (see |74, Theorem 10]),

[w]ar < [Jwllap < 2"72"/pmp< 11 p?i)

i:piF#p

[w,]i{z .

=T

Now, fix a cube Q C R"™. It follows from [10, Proposition 12| that there exist
measurable sets G1,...,G,, C @ such that fori=1,...,m,

Q] <2™|G,;| and sz D)l <2l mw(Q).

Since w; € AZ, we have that

w;(Q) < 2" |w;] ARw1<GZ) < 2Py [wz]ARWZ(Gz)

[[wi@" <2 (H 2mr iy ) (H[wﬂ%) w(Q).

i=1 =1
>
Remark 3.9. Our approach is different than the one presented in [84]. In the case
p1 =+ = pm = 1, a better result was obtained there: for every cube ) C R",
Hwi(Q)ei < (H[wi]%) w(Q).
i=1 i=1

It can be deduced directly from the fact that for v € Ay, fQ v < [v]4, essinfeq v(z).

Remark 3.10. Under the hypotheses of Proposition 3.8, if for some 1 < ¢ < m,
wy € Ay, ..., wp € Ay, then we get that for every cube ) C R"”,

m m V4 m
[[wi@" <2 (H 2mpp> (H[wi]i;) ( II [wi]iig> w(Q),

=1 i=1 i=0+1

which provides a quantitative extension of |17, Lemma 3.1] and [29, Corollary 1.5].

4. A DUAL SAWYER-TYPE INEQUALITY

We devote this section to the study of a novel restricted weak-type inequality for
the Hardy-Littlewood maximal operator M. It can be interpreted as a dual version
of [74, Theorem 2|, and generalizes |18, Lemma 2.6| and [3, Lemma 2.5|. It is based
on our study of the case § = =1 in |74, Theorem 7|, and the proof borrows some
ideas from the aforementioned sources.

Theorem 4.1. Fiz exponents p > 1 and ;, < 0 < 1, and an integer N > 1.
Given measurable functions hy, ..., hx € L (R"), parameters 0y,...,0x € (0,1],
with 61 + --- + 0y = 1, and a wezght w € Ai, consider the A,y weights u =
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N 0.\ ? N AR, :
(Hi:1(Mhi) 1) w and up = (Hi:1(Mhi) ’) w’, and let v be a weight such
that uwv? € As. Then, for every exponent 8 < < 1, there exists a constant C' > 0
such that for every measurable function f,

‘ M*( fugvP")

Up

(4.1)

< C”fHLP/ﬂl(uvp)'

Lpl’oo(u)

Proof. Since p’ > 1, it is enough to establish the result for characteristic functions.
Let £ C R™ be a measurable set such that 0 < uv?(E) < oo, and take f = yg.
In virtue of Kolmogorov’s inequality, we obtain that

M (fug”™) < s ' - f%vp_l)XF
Ug LY’ (u)  O<u(F Ug

(4.2) ‘

L1/ (u)

where the supremum is taken over all measurable sets F' C R” with 0 < u(F') < oo.
For one of such sets F', and applying Fefferman-Stein’s inequality (see [38, Lemma

1]), we have that
N @-1)(3-1)
= [ <H<Mhi>9i)

‘ M*(fuge?™) 1/6

M XF
0 1/0 .
(4.3) ’
y N - 1
< /ﬁﬁ/e / (Mhi)ei va%M(I/XF),
i)\l

(p—1)(1-1
with v = (Hi\il(Mhl)el) p (9 ) Note that v € Al, with [V]Al S W
—(p-1)(3-

We now deal with M(vxp). Fix x € E, and let P C R™ be a cube containing .
Then,

(4.4)

1 1 4 1 4
m PXFVI W PXFVU u < WHXPVU HLGP’vOO(u)HXFXPHL(GP’)”l(u)

1 1
Op/ u(P) @ _ v(P) (u(F N P)\ e
Ty 1 ( X P | owr oo

op' v(P) 1P| u(P)

1
7

1

op' u(Q) @ . 1
< 6p’ 00 1 M’U, (Qp/)/'
_ep,_1<sgp o Xer gy | Pav (o) Male) (@)

Write a := (0p’)" and observe that « > p. Kolmogorov’s inequality gives us that

u(@)"e

[W_I]Ags(y) = p o

IxQvu™ | oo )

)
v(G) (u(@N\Y*
<wamiial (i) = e

Now, for a cube Q C R”, and a nonempty measurable set G C @),

() (2 (5G9 = () v



EXTRAPOLATION VIA SAWYER-TYPE INEQUALITIES 21

and applying Holder’s inequality and Remark 3.9, we deduce that

v(Q) N A= (5-1)16 N (Mhi)(Pfl)(%*l)(G) :
(0) < (E[(Mhl) ]A1> E <(Mhi)(p_1)(;—1)(Q) )

Note that for N = 1, this last estimate is not necessary.
By [18, Lemma 2.5],

(Mh)®~ D(5- )(G) . 5 Ve
i) S TG a7 Ual)

14
so the previous computations yield that

2
Cp p/a

oo a o

—1
and form (4.4) we obtain that M (vxr)(x) < Civ(z) M, (xr)(z )<9P’>’ with

[UV*l]Ag(u) <

= i HUH(BP _ 3 4 9+p( )
@ Oy —1)(1—(p-1) (5—1))3_C"p(1+p(9 )) lull iz
Thus,
(4.5)
/E (H(Mh,)ﬁ) wv%M(VXF) < Cl/E (H(Mhﬂel) wUpT?lVMu(XF)(QTll)I

p—1 1 M 91’ )/
= C’l/ uvTMu(XF)(G;/V = Cl/ ( (XF)> uv?,
E E vP

and applying Holder’s inequality with exponent (6p')’ > 1, we get that

M @'y
(4.6) / (M) u? < 6pf
E vP

Finally, in virtue of [74, Theorem 1], if » > 1 is such that uv? € AR then

e < &7y ([ulag, [ ag)u(F) = Cau(F),
Ll,oo(uvp)

1
p//

u(XF) ®r7)

- wP(E)v .

L1:2° (yoP)

(4.7)

where %’?p : [1,00)2 — [0,00) is a function that increases in each variable and
depends only on r,p, and the dimension n. Note that if v = 1, then we can take
Cy = 2"p||u|\z§
Combining (4.3), (4.5), (4.6), and (4.7), we deduce that
M*(xpugvP™t) 1/6
=

XF

_1_
< Wl B O O ()T e ()
L1/ () p—"0

and from (4.2) we obtain that
‘ M*(xgugv? ")
0

Ug
a1
with C5 := &kl (ﬁClﬁp’ o /)/) , from which the desired result follows by a stan-

< CqunP(E)YV
LP'vOO(u)

dard extension argument (see |9, Page 231|, [43, Exercise 1.4.7] or |81, Appendix]).
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Indeed, for an arbitrary measurable function f, if || f|| Lo 1 (upr) = OO, We are done.
Take f € Lp"l(uvp) and observe that, by Holder’s inequality with exponent up’ > 1,

_ , L 1
1M = (1P ) ™ (@) € L (R).
Now, for every integer k, consider the set Ej := {z € R" : 2F < |f(x)| < 2F1}.

Then, |f|1/“ < o/m ZkeZ 2’“/“)(Ek, so MH( fuguP™!) < QZkez 28 MH (x g, ugvP™1), and
hence,

‘ w < QPZQk XEkUGUp 1)
Ug e oo ez Lp’,oo(u)
<20y ) 2" uvp(Ek)””’ < 2pCy Y 2N (2
keZ ot
2k+1
< 4pCy Z/ N (0 dt < A(p — 1)L F 1t 1wy
ez 7 2"
concluding that (4.1) holds with C' = 4(p — 1)Cs. >

Remark 4.2. The constant C that we have obtained satisfies that

0 0 46 _ 1 p(0—
o<en (5) (rpmr) Sl bl Sz
= O([ulag, [uv?]ap)-

Since the function ¢ behaves well at the endpoint p = 1, it would be interesting to
study an analog of (4.1) involving the limit spaces L*>°(uv) and W (u) (see [8] and |9,
Page 385]), and its applications to upper endpoint extrapolation (see [63, 70, 71]).

5. ONE-VARIABLE OFF-DIAGONAL EXTRAPOLATION

In [35], multi-variable strong-type extrapolation theorems were obtained as corol-
laries of one-variable off-diagonal strong-type extrapolation schemes; that is, results
in which the target space is different from the domain, both in terms of exponents
and weights. In the case of multi-variable restricted weak-type extrapolation, we
observe a similar phenomenon, and we can also deduce our results from one-variable
off-diagonal restricted weak-type extrapolation theorems.

5.1. Restricted weak-type results.

Let us start with the downwards extrapolation. The following result generalizes
and extends [16, Theorem 2.11], [16, Theorem 2.13], and |75, Theorem 4.2.14].

Theorem 5.1. Let 0 < o < 00, and let v € Ay,. Fix an integer N > 1. Given
measurable functions f and g, suppose that for some exponent 1 < p < o0, and
every weight v € A, Ni1,

(5.1) 191l zraeevy < @(llvllz, o I llLrr @),

where pi = %—i— o, V. = oPe/PyePagnd 1) : [1,00) — [0,00) is an increasing

function. Then, for every exponent 1 < q < p, and every weight w € fAlqu,

(5.2) lllzmecwy < WClol 5, I ot
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where qi = é—l— o, W = wie/1%%  and ¥ : [1,00) — [0,00) is an increasing

functz’oni The same result is valid in the case N = oo. If ¢ = 1, then we can take
N =0.

Proof. Observe that if ¢ = p, then there is nothing to prove, so we may assume that
q < p. Pick a weight w € A, y. We may also assume that HfHLq,%( ) < o0o. In
w

particular, f is locally integrable. Fix y > 0 and v > 0. We have that

(ﬁyrqa W o=:I+II.

(5.3) A (y) = /{g|>y}W < A% () +/ 7

{lgl>y}

where 2 := (M f)7/o (£)".
To estimate the term [ in (5.3), we have that

q

() _ 1
(54) I = (’yy) A (7y) (f}/ ) Hg| Lao,>>(W) — (,Yy)qa

with U := (5)% Note that U € A,,. Indeed, if « =0, then U = 1, and if o > 0,

then qu,N C A,y 1, so in virtue of Lemma 3.5, U = (5)é € A,,. Moreover, since
v € A, and & i agy = 1, W € A, and there exists r > 1 such that W € AR,
If s > 1 is such that v € AR, then we can choose r := max{q, s}, and applying
Proposition 3.8, we get that [W]s = < cnr(q[w]AZIz)qa/q(S[V]A;z)aqﬂ.

In virtue of |74, Theorem 2| and Theorem 3.4, we deduce that

b

L3> (wU7)

U

(5.5)

HM_f < & ([wlag, W]ag) | Fll ey

La:2°(wU?)
< & CN g, s earaON w7, )/ (sl ) Flsm o

<p' T 8L (CONwll 5 ear(@ON[w] 5 ) (s[1]ag) ") f] s

_p
=: pl q(bu,waHLq 2

(w)

and combining (5.4) and (5.5), we obtain that

(5.6) I<

A V[
(yy)de L

We proceed to estimate the term 77 in (5.3). Take v := (M f)9Pw. Since w €
A, v, it follows from Lemma 3.6 that v € A, 11, with HU”K], o S HwH%p . Note
s a,N

that if ¢ = 1, then v € A\p, with [[v][z < [w]xp. Observe that

Pla—Pal — (Mf)q(l—{;—g)wa(qa Pa)+92  a(pa—da) +0da
— (Mf)%(Q*P)wpa/PVapa — ,Upa/pyapa’

so by (5.1) and the monotonicity of ¢, we get that

(vy)”‘*/ yPe /
5.7 II = pPe/Pyora < ——((lw qu P N I o s
(5.7) (YY)% S99} (vy)2= Lo
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00 1/p
T / (/ ) 0z
0 {If|>=}
> /pdz
<o [T ([ W) TESTypen,
0 {If1>=} L

Combining the estimates (5.3), (5.6), (5.7), and (5.8), we conclude that

1
Ay (y) < T T

= (et

pra (p) Pa q/p » Pagq

— e f p
G \g wllwlz, 7 Il 5y
and taking the infimum over all v > 0 (see [75, Lemma 3.1.1]), it follows that

_ da /Do o
gAY (y) < Lo (pa qa) (1_9) pie(22-2)
Pa — 4

do q
ga(1-2 o
< il Dl e 171%,

LU% (w) |

with

(5.8)

Finally, raising everything to the power q—a in this last expression, and taking the
supremum over all y > 0, we see that (5.2) holds, with

(5.9 V() = €2 En (CNE, cr(qCNE) ™/ U(s[u] 4m ) %) “rep(€77), € >1,

P9 149

1/qa 1/pa
o . _4a_p _ Pa Pa — 4a
Q:p7q - p3 ’ qq 1 ( - ) (—) ‘
Pa — Ga qo

It remains to discuss the case N = oco. By hypothesis, we have that for every
weight v € A4, ,

(5.10) 9]l e e vy < ©(llvllz, I lze1 )

Pick a weight w € A\q,oo. We can find an integer Ny > 1 such that w € @LNO, with
lwliz, . < NOHngqN < 2[jwllz, - From (5.10), we deduce that for every weight
,00 ,Ng ,00

where

v E Ap,No+17

9]l zraevy < O((No + Dllvllz, o IS llzra@) = b (vl 2
and applying Theorem 5.1 for Ny, we conclude that

WAl ag o = YWz, Il e,

M llzet )

p,No+1

191l aeoe ) < Wi ([0l 5

a,Ng w)

with Wy, as in (5.9), and
(5.11) U(E) = €2, 60 (20€, 6,1 (2qCE) ™/ 1(s[V] 4p ) 2% ) " o9p(4€), € > 1.
>>p

Remark 5.2. For N = 1 and a = 0, a version of Theorem 5.1 for sub-linear
operators and A, weights was obtained in [16, Theorem 2.13|, avoiding the class
A, 2 via an interpolation argument based on Theorem 3.1 for m = 2.

We now discuss the upwards extrapolation. The following result generalizes and
extends [3, Theorem 1.6], [18, Theorem 3.1|, and |75, Theorem 4.2.18|, using some
ideas from their proofs.
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Theorem 5.3. Let 0 < a < o0, and let v € A,,. Fix an integer N > 1. Given
measurable functions f and g, suppose that for some exponent 1 < p < oo, and

every weight v € Ay N,
(5.12) 19l oaso vy < ([0l 2, I 0),

where pi = %—i— a, V. = vPa/PyePaand 3 1 [1,00) — [0,00) is an increasing

e

function. Then, for every finite exponent ¢ > p, and every weight w € //l\q,N,

(5.13) 191l zaacewy < W(llwll 5, Izt w),

where qi = %—l— a, W = wie/1y2%  and ¥ : [1,00) — [0,00) is an increasing

functz’onﬁ The same result is valid in the case N = oo.

Proof. If ¢ = p, then there is nothing to prove, so we may assume that ¢ > p.
Pick a weight w € A, y. We can find measurable functions hy,...,hy € L},.(R"),
parameters 6y, ...,0y € (0,1], with 6; +---4+60y5 = 1, and a weight u € A; such that

q
w = (Hi]il(Mhi)ei> u, with [u]z/lq < (1+ %)Hw”gqN. As usual, we may assume
that || f| a1, < o0

Fix a natural number ¢ > 1, and let g, := |g|XB(0,0), Where B(0, ¢) is the ball of
center 0 and radius p in R”. We will prove (5.13) for the pair (f, g,). Since g, < |g|,
we already know that (5.12) holds for (f, g,). Fix y > 0 such that )\ZZ(y) # 0. If no
such y exists, then ||g, | 0.0y = 0 and we are done.

In order to apply (5.12), we want to find a weight v € zzl\pJV such that Ag‘:(y) <
Ay (y). We take

p—1 1 a=p

(5.14) vi= wi (M (g ¥ W g 70

where wg := wu’~! and wy := wu’"!, with
1 1
—1l4 <<l
T i [uls

. 1’ pzl’ R 1_1;7 p:17
5‘—{ﬂ—9-ﬂ p>1, and ’u'_{l, p> 1.

p—1 p—1’
For p > 1, we also impose that § < 7, or equivalently,
—1 1
1=- _ ;. P2- <y
q—p q—p

If p=1, then v = M“(wgw_iWl/qlx{|gg‘>y})u7(1_“). In virtue of [72, Lemma
3.26], u™ € Ay, with [u"]a, < [u]a,, and we can use [18, Lemma 2.12] to deduce that
v e Al, with

WM1<TO+%V Wﬂhw

(5.15) o S 12 < gl S

Agn ™~ 1—-6

If p > 1, then applying Lemma 3.7 we sce that v € A, y, and lvllz , < c||w5||q/p

) 1\ . 1 1
with e =, (421) 7. Since 1< 8 <7, Juslls, , < /47 S [? < 1+ Dllwllg, .
SO

1/p
qg—1
ol S (427)  ol2?,
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Thus, “UH&,N < C’g||w||%/fN, with Cp ~,, 145 for p=1, and Cp ~ ¢ for p > 1.
Observe that

-

'S
»Q

a=p Pa 9=P

Pa Pa _
— 4 Pa/P,0Pa p a=1, p q-1 T bera=t,, T(A=m) B IR ap,
V=vw v Zwﬂ Wy w pd W ra U R A ST

_ Y1,,72,,73 qa /4, ,04. _
= w2 = w0 sy = WX gl

since

q—l P oq- q—1
Pa (P—1
SR (A O+7(1—p)—1)=0
= (2 R O - 1)
o — Q 1 1
73::apa+a(JOc'p_'q p: L + - = Qfq,

p¢ g—1 1+ap 14+ap 1+aq
so (5.12) implies that

(5.16) A (y) s/ vPe/P o =Agvg(y>_ (Co ||w||"/” e L )
{lgol>v} yre

We want to replace || f||p.1(v) by || f]|2a1(w) in (5.16). Applying Hélder’s inequality
with exponent g > 1, we obtam that for every ¢t > 0,

) op
MH I Wl et
AL(E) = / (wow Xtgl>0) |
{If1>} We

_1 ’
M (wow™ 7 WY x g0, 15)
Wy

a—-p
q—1

(5.17) < w{Ifl> o

Lq'voo(w)

M
M (waUT™ X g, 150) ||
Wo

= L({If| > tyy/s

)
Lq'v‘x’(w)

with U = (%)1/(1 = (ﬁ)%“q Note that if a = 0, then U = 1, and for a > 0,
wEA?QAqJFé, so U € Ay by Lemma 3.5.

Moreover, if s > 1 is such that v € A%, then by Proposition 3.8, W € AR with
r = max{q, s}, and [W]ur < cnr(q[w]AR)qa/q( [V]ar )%, Also, since wU? = W,
Theorem 4.1, Remark 4.2, and Theorem 34 give us that

MH(w q—1 >y ; 1/q
‘ (weU ™" X(jgyl>0) < q'¢([wlan, [W]ar)W ({|gel > v}/

We L0 (w)
< buW ({lgol > y}V,

with
Buw = SNl g s car(@CN Il g, V=1 (s[v]a) ).
Plugging this bound into (5.17), we get that

(5.18) AﬂﬂéiﬁfWHMA>wf_ w({ f| > £}/,
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and hence,

TP / () et

RS

1/p L[
(5.19) <p (ﬂ) oL W ({lgal >y} / w({If] > t})Vedt

p ' 1 gp
_ (—) L W {lgd > 914 e

Combining the estimates (5.16) and (5.19), we have that

1 _pa
(5.20) A (y) < yz‘l’e(H wll g I Iy A ()5

with
[ l/p’ 1l 49-p /
walluls,,) = (1) ek ol )

By our choice of y and g,, 0 < AY (y) < W(B(0,0)) < oo, so we can divide by
)\g‘:(y)l_% in (5.20) and raise everything to the power Ii, obtaining that

g () < Go(llwll g ) 1F o

and taking the supremum over all y > 0, we deduce (5.13) for the pair (f, g,) and
the function Wy; the result for the pair (f, g) follows by taking the supremum over
all o > 1. It remains to compute a function ¥ independent of 6.

We need to control the term ¢,, appropriately, possibly by performing crude
estimates and not paying much attention to optimality. Recall that by Remark 4.2,

4 0 40
o 51 (559 ()
POt g —1\ -0 1+q(6—-1)

x & (CNwll5, . ear(@CNuwll 5 )*™/(s[v]az) ™) “ON ] 5. ..

and note that

<ﬁ> (%) < (e 1))4 = F0n)

If p =1, then for 6, := 1_%7

1
lnf F<0 :U’) =T F<0*7 1) ~n Q[ ]A1 5 QHMH% N’ and 00* ~n 1—

~q.
/<9<l 9 - 0*

If p>1, then p =1, and we argue as fOHOWS' if 7> (57’;), , then we choose

5(p 1)

0 = 0,; otherwise, we choose 0 = q—; -7 . Thus,

F<e,1>snmax{quj}mlsmax{ 2224 fuls,

In conclusion, (5.13) holds, with W(¢) defined for £ > 1 as
(5.21)

6, €0 (CNET)» i1 & (ONE, ¢ur(qCNE)=/1(s[u] 4z )% )3 a1 gp(c, €L £9/P),
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1
1/p' 4 =1, P a1
P q q, p=
@27(] == XY e d g P 1 , and
q q—1 ax4q, =7, p>1,
o 4, y p=1
= p
P,q (%) . p>1.

Now, we discuss the case N = oco. By hypothesis, we have that for every weight

v E Ap 005 (u 10) holds. Pick a weight w € Aqoo We can find an integer Ny > 1 such
that w € Aq,NO, with flwl|z, = < N0Hw||,4qN < 2wllz, - From (5.10), we deduce
,O0 A ,00

where

that for every weight v € gp,Nm
lgllrevy < WWNollvllz, (IS lirawy = ¥na(lollz, ) e

and applying Theorem 5.3 for Ny, we conclude that

g1l zaae vy < o (1wl 5, (I llzory < Clwllz, I llzerw),

with Wy, as in (5.21), and U() defined for £ > 1 as
(5.22) ) _
@ (C (26)1+1) i1 & (20{, a7 (29CE) %/ (s ]Ag)“qa)E'%w(cn%q(%)q/f’)
>

5.2. Weak-type results.

The arguments and techniques we have used to produce restricted weak-type
extrapolation schemes can be easily modified to cover weak-type extrapolation in a
context much broader than that of A, weights. We begin by defining the classes of
functions that will play their role in what follows.

Definition 5.4. Given exponents 1 < p < oo and 0 < ¢ < 00, a positive function w
belongs to the class A7 if there exist a weight v € A;, and a positive function u such
that u” € Ay, and w = v'"Pu. Equivalently, w € A7 if, and only if w” € Ai4o(p-1),
and we associate to this class of functions the constant given by

[wlag == [W]4,, 00
Similarly, given an index 1 < N € NU {o0}, a positive function w belongs to
the class A° oN if w? e Al+o’ (»—1),N, and we associate to this class of functions the
constant glven by
—~ L — all
lwllz =z, .

Remark 5.5. Note that in virtue of [30, Theorem 2.2], if 0 > 1, then w € A7 if,
and only if w € A,NRH,, and this last condition was extrapolated in [2, 25, 35, 48].
In [61, 62], a slightly different notation was used. There, they worked with A,
with 0 < r < oo, which is the class of positive functions w such that w" € Al*ﬁ'

We have that w € A, if, and only if w? € A7, with o = ]fj.

The next result allows us to construct functions in the previous classes. It is an
adaptation of Lemma 3.6.

Lemma 5.6. Let 1 < q < p, and fir 0,6 > 0 such that 0 < U(qpfll)) < 1. For a

measurable function h € L}, (R"), and w € A, let v = (Mh)' =P+ ys/o,
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(a) If g > 1, then v € A7, and

1_;'_‘7(17*1)
[U]Ag < C[w]Az s(g—1) ,

with ¢ mdependent/\of h.
(b) If g=1, then v € A7, and

1
ol < w770

Proof. To prove (a), since w* € Aj4(4-1), we can find positive, measurable functions

w0 and @, such that v = @i V@S, with

TR SR B
wo € A1, [wo)a, < STV [w]jl(g*l), @i € A, and  [wila, < o [w] .

The details on the construction of such functions are available in [24, Theorem 4.2]
and [72, Lemma 3.18]. Write

_ (a=1) \ =P
1—sle=b) ;(p71) s/o . ~1-p _¢/o
v = ((Mh) c=1) 157 wy” =1 wy Pwy’C.

In virtue of [18, Lemma 2.12], wwy, € A;, with [@o]a, Sa %[wo]fh. Hence,

applying [24, Theorem 4.2], v7 € A144(p—1), With

o(p=1) o(p-1)
~ q10(p—1 B 1+<+a(p—1) 1422
[v]ag < [Fo)3 V[wila, < eptelaD <cn @D D ] g .

To prove (b), observe that v = (Mh)'?w}/", 50 v € Ay, g(p-1), and

.+ 1
P e R ()

>

We can now present a weak-type version of the downwards extrapolation in The-
orem 5.1, working with the class A7.

Theorem 5.7. Fiz 0 < a < 00, and let v be a positive, measurable function. Given
measurable functions f and g, suppose that for some exponents 1 < p < oo and
o >0, and every v € A7,

(5.23) 9] race vy < ([0]ag)|| fll 2o (w)

where ia =14 V =pe/rpere and 3 : [1,00) — [0,00) is an increasing
function. Then, for every exponent 1 < q < p, and every w € Ay,

(5.24) 191 £ae ooy < W ([w]ag) [1f ]| o)

where ¢ = #”ﬁ)q, q% = %+oz, W = w/ip2%  and U : [1,00) — [0,00) is an

increasing function.

Proof. We will prove this statement adapting the proof of Theorem 5.1. If ¢ = p,
then there is nothing to prove, so we may assume that ¢ < p. Pick w € A;. We may
also assume that || f||fa(w) < 00. Fix y > 0 and v > 0. We have that

’yy Pa—qa
(525  AV(y) = / W< AW (y) + / (" w11
{lgl>y} {

lgI>y}
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where

Upa/pyapa qo—Pa q 1—¢
¥ = (T and v = M(|f| a0 TG ) ImPraay,s/o,

v

S T
To estimate the term I in (5.25), writing U := (W) (Feq)(+<la=1) we obtain,
after some involved computations, that

q —c 1+¢(g—1)
7 My 1 M(|f| e wma) |
=T (e (y)e U LiHela—1)00 (U1 H(a- )
(5'26> < 1 M(|f| 1+<(qq71) w1+i(7qil)) Ltele-1)
N (7y) Li+s(a=1) (w<)
1+¢(g—1) .
Cn Nts(a-1) It q
Gy (Hsla=1))) [ g™ 1 o

where in the last inequality we have used the classical Buckley’s bound for the Hardy-
Littlewood maximal operator M in [12, Theorem 2.5] (see [72, Theorem 3.11]). It is
worth mentioning that we need the second inequality because an optimal weak-type
version of the Sawyer-type inequality in |74, Theorem 2| is not known.

To estimate the term /7 in (5.25), since 0 < ((q 1)) < 1, it follows from Lemma 5.6
that v € A7, with

[ ] Q:()[ ]1+ q((s 11)) and €, = 1+<(q_1) (C1+<(ql_1) U(p — 1>> P
n _1) ,

so by (5.23), we get that

Wpa :(s 1) )
(527) I[ < (fyy) ||g||LPo¢ OO(UPa/PVOLPa) S (Pyy) ¢(€0[ ] ( R )p ||f||LP(U Y
with
. 1/p
Il = (] |f\PM(\f|1+<é1>w1+i<m>1p+é<q%c/o)
(5.28) !

<(/. |f|prf|q<l—5>w<l—<><l—’q’>+</“) A1,

Finally, if we argue as in the last steps of the proof of Theorem 5.1, we can combine
(5.26), (5.27), and (5.28) to conclude that (5.24) holds, with

o(p—1)

w(¢) = g @ )y(ee ), 6>,

where

(5.29)
&= € (en (14 <(q — 1)))( D) o ( Pa )1/% (pa—qa>1/pa.

Pa — Ga Ga

>

Remark 5.8. We can use Rubio de Francia’s iteration algorithm to improve The-
orem 5.7, producing a better function W. Indeed, for ¢ > 1, we can take

vi=2%(|f| 1+<(qq—1)w1+i(_q§—1) )1—P+§(q—1)w</0

Y
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where for a measurable function h € L'+~ (),

= M*(|hl)
Rh =
,; 2k|| M|

L1+§(q71)(w§)

is the Rubio de Francia’s iteration algorithm (see |35, 76]). In virtue of [35, Lemma
2.2], we have that ||<%h||L1+<(q—1)(wg) < 2||h||Ll+<(q—1)(wg)7 |h| < Zh, and Zh € A;,
1

with [Zh]a, < 2| M| ira-vaesy < 26, (1+<¢(g—1)) [w];‘(g_”. Moreover, apply-
. a(p—1) -
ing [35, Lemma 2.1], we obtain that v € A7, with [v]4; < Qo[w]jl%’*l) and €y =

(2¢, (1 + (g — 1))/)G(p_1)_§(q_l). Hence, we can rewrite the proof of Theorem 5.7 to
conclude that (5.24) holds, with
() = 2GR Mey@e i), > 1.

Remark 5.9. Note that given 0 < r < p, if in (5.23) we replace ||f|rr@) by
| f|lLer(v), then we can replace estimate (5.28) by

o0 ” dt 1/7‘ p 1/7"
e < 1/r t*q)\wtr/p_ N Q/PT
e <0 ([ ez ) T = (2) s

0
and follow the proof of Theorem 5.7, using that

p—

T rq

Hf”Lq’%(w)
in (5.26) (see [43, Proposition 1.4.10]), to conclude that

P 1

loll roce < (?)w (%) T s,

q p

We can extrapolate down to the endpoint ¢ = 1 by following the same argument
in the proof of Theorem 5.7 and using in (5.26) the classical Sawyer-type inequality
for the Hardy-Littlewood maximal operator (see |27, Theorem 1.4] and |74, Theorem

2).

Theorem 5.10. Fiz 0 < o < 00, and let v be a positive, measurable function.
Given measurable functions f and g, suppose that for some exponents 1 < p < oo
and o > 0, and every function v € A7,

191l zrace vy < P llvl] 5o 1F 1l o1 ),

where pL = 1%4- a, V. = oPa/PyePaand 3 : [1,00) — [0,00) is an increasing

function. Then, for every function w € A§ such that W € AR for some r > 1,

I90 e ey < Wrlllag, VLam)IF 1 s

1 a
where ¢ = %, W = wievT™a, and ¥, : [1,00)> — [0,00) is a function

mcreasing 1 each variable.

It is worth mentioning that the following conjecture would allow us to prove
Theorem 5.10 for an arbitrary exponent 1 < g < p.

Conjecture 5.11. Fizx exponents ¢ > 1 and ¢ > 0 (or 0 < ¢ < 1), and write
0=1+¢(qg—1). Let u and v be positive, measurable functions such that us € AZ}
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and usv® € AR for some r > 1. Then, there exists a function ¢ : [1,00)? — [0, 00),
icreasing i each variable, such that for every measurable function f,
0

< o[ g 1007 ) | £

Le:2° (uspe)

‘VNUW%TU
v

Remark 5.12. If ¢ = 1 or ¢ = 1, then Conjecture 5.11 follows from |74, Theorem
2| and [74, Lemma 3|. In general, for h € L, ,(R") and w € A%,

1hxqll Lo (w)

Mh(:L‘) S [U}]Azz ZL;E W = [w]AgzMLl’%(w

so the desired result may require to better understand the operator MLL% in the
w

(B2, e R,

context of Sawyer-type inequalities. For s > 1, Mp1.gn) was studied in |6, 58, 80].

Next, we study a weak-type version of the upwards extrapolation in Theorem 5.3
for the class A7.

Theorem 5.13. Fiz 0 < a < oo, and let v be a positive, measurable function. Given
measurable functions f and g, suppose that for some exponents 1 < p < q < oo and
¢ >0, and every v € A7,

(5.30) gl oeqv) < (0]ag) 1l

where o = (1_5%, i = %%— o, V = oPe/PyPeand ap : [1,00) — [0,00) is an

increasing function. Then, for every w € Ay,

(5.31) 191l Lo wy < W([w]ag) 1 flzorw),

where + = L 4o, W = w/1% gnd U : [1,00) — [0,00) is an increasing
qo q

function.

Proof. We will adapt the proof of Theorem 5.3. To do so, we have to choose an
appropriate function v € A7, and find suitable replacements for estimates (5.17),
(5.18), and (5.19) to control || f||Lrw) by || f]| er(w), and keep track of the changes in
the constants involved.

If ¢ = p, then there is nothing to prove, so we may assume that ¢ > p. As
usual, pick w € Aj and choose positive, measurable functions wy and w; such that

1- :
ws = w8, with

PR S T
wo € A, [wola, e VTV, wie A, and  [wila, < 60D [wlag

Fix a natural number ¢ > 1, and let g, := |g|XB(0,0)X{w<o}- It is enough to prove
(5.31) for the pair (f,g,). We know that (5.30) holds for (f,g,) because g, < |g|.
Fix y > 0 such that A} (y) # 0. If no such y exists, then 190/l Laer ooy = 0 and we

are done. Since Wx(jg,/>51 € L'(R"), instead of (5.14), we can take

( _ /
w%/qM(wo 1WX{|gg|>y})1/q ) ¢ > 17 P = 17

1—¢

s—1
vi= 9 @ MWW X)), ¢<1l,p=1,

!

-1 1, q 1
wsz(wq (It<(g—1)) W (It<(g—1)) X{|gg|>y})(1-%)(1+§(q_1))/
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Note that (1 + 1) =1+ ( ,s0 forp > 1, ¢ (q Ly (Hg(;(;i)l))(qu)) —1,

(g -
and for p =1, &+ % =1 and (—) + 0 = 1, so in virtue of |18, Lemma 2.12],
v e A7, with

( C711+<(qfl)(1 +slg—1)), c>1,p=1,
1+2e=1) I+s(g—1)1 1
[v]ag < Qio[w]A;(q Uoand €= o U, c<lp=1
L+s(g—1)+o(p—1)+ 2=
{ Cn (=) c(((}]) 11)), p>]_
Observe that V > w%<%+ngip1>)W%(l_g)l/“pa)({lggby} = WX{lgol>y}-
Now, estimate (5.17) for p > 1 should be replaced by
M (w ™m0 W TGD e =
W STV X{lgel>y}) 1
> 1)) < > ¢})P/ ,
o({151> 1) < w({l] > 1) g
L4 (w)

for p=1and ¢ > 1 by

_ 1
M (e, 1WX{|99|>y})

wg Yoo

v({|f] > t}) < qu({|f| > t}H)Ve

)

L1200 (w)

and for p=1and 0 <¢ <1 by

1
M(w WY, " xqig,150))

v({If1 > 1) <w({lf] >t} =
wwo, L4 (w)
1
Since w* € Ajq¢q-1), Wi € A1+ Lo with [wliq]Al+ = [w]jf Y and by

the classical Buckley’s bound for M (see [12, Theorem 2. 5] [72 Theorem 3.11}),

raat iy = (L ola = D)l

S s(g—1
HM(U} 1+<(q—1) W1+<(‘1*1> X{lgg‘>y})

s(g—1)
< W({lgl > yh) .
S _S
Similarly, for 0 < ¢ < 1, since wy ‘e € A,, wow, * € Ay, with [wowf’q]Aq, —
1

[y "wi]%, s s0

Also, for ¢ > 1, w = (w*)Ys € Ay ((4-1), S0 in virtue of [74, Theorem 2| (see also
[27, Theorem 1.4]),

a+1+s(g—1) 1+<
< qlw] g W ({90 > y}Y7.

RS
LY (wowo, 7))

M (w l/qWI/qw X{Igg|>y})

< & ([wla) W ({lg0l > y}),

‘ M(wo_lWX{\ggby})
L1 (w)

wg ooy

where &7, : [1,00) — [0,00) is an increasing function that depends only on g,
and the dimension n. Once again, the required optimal weak-type versions of |74,
Theorem 2| and |74, Theorem 7| are unavailable.
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Now, we can replace (5.18) by

o({1f1 > 1}) < d(lwlag W(Hlgel >y} rw({If] > 1)/,
and (5.19) by

1/p
p 1_1
532 Wl < (Zollula))  Wllad > 13 1 bange
with
(87, ([wlag) "7, szl p=1,
+1+s(g—1) 1+1
$lwlag) =14 e " qlw]e s<lp=1,
L (cn(l + §(q _ 1))[w]A;)(17§)(1+<<q 1)) 7 p> 1.

Finally, if we follow the proof of Theorem 5.3 performing the previous changes
and keeping track of the constants, we conclude that (5.31) holds, with

p 1/p o)
W(e) = (acb(f)) BETE), 1.

>
Remark 5.14. Alternatively, if 1 < p < ¢ < oo, then we can take

-1 1, q, 1
v = wa TR (w DY [ Ty X{|gg‘>y})(1*5)(1“(‘1*1))'7

. 14—1 _1
where for a measurable function h € L' @D (wT=7),

& MR
A= ZzhHMuk

1

1-9)
is the Rubio de Francia’s iteration algorithm (see [35, 76]). In virtue of [35, Lemma

2.2], we have that |h| < Z'h, H%’h” ) 2 < 2[h| o sand Z'h e
=Y (q D (wT=a) +<(q D (w )

Ay, with [Z'h]a, < 2”MHL”<(4 1 < 2¢,(1+<(g— 1))[ w] a5 Moreover, applying

“D(wT-1)
o(p—1)
[35, Lemma 2.1], we get that v € A7, with [v]ag < (2¢,(1 + (g — 1)))1?(571) [w] as.
Hence, we can argue as before to conclude that (5.31) holds, with

q 1)(

1/17 -1
W(e) = (g) 2D T ) (2601 4 <(g - D) ST €), e> L

Remark 5.15. Note that given r > 0, if in (5.30) we replace || f|| o) by || fll e+ ),
then we can replace estimate (5.32) by

1/r .
11l zorwy < (g) ([l as) "W ({lgel >y}~ 1 f |y

and follow the proof of Theorem 5.13 to conclude that

1

1_1
py"?
ooy < (2) 7 L) 1llarge

A more familiar presentation of Theorem 5.13 follows assumlng that 0<o <1,

in which case we can fix an exponent ¢ > p and choose ¢ : m > 0. Th1s

restriction on o appears in Az extrapolation.
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Corollary 5.16. Fix 0 < o < 00, and let v be a positive, measurable function.
Given measurable functions f and g, suppose that for some exponents 1 < p < oo
and 0 < o <1, and every v € A7,

9] Lra e vy < ([v]ag) || fllLew),
1

where - = 1 4 a, V = oPe/PyPe and ¢p . [1,00) — [0,00) is an increasing
function. Then, for every finite exponent q > p, and every w € Ay,

191l Laaoe vy < W(fw]ag) || Il Law (),

where ¢ = m, qla é—l— a, W = w/1p2%  and W : [1,00) — [0,00) is an

increasing function.

6. MULTI-VARIABLE EXTRAPOLATION

This section presents our theorems on multi-variable mixed and restricted weak-
type extrapolation.

6.1. Main results.

The following general extrapolation scheme is a combination of Theorems 5.1, 5.3,
and 5.7, and Corollary 5.16.

Theorem 6.1. Fiz 1 < Ny,...,N,, € NU{oo}, and 0 < lg < ¢ < lyy < m.

Given measurable functions f1,..., fm, and g, suppose that for some exponents 1 <
pl,...,pm<oo,§:pil—l— +—, and allwezghtsv,EAplNH,i—l AR,
v, €Ay N, i =Ulr+1,....0, andv, € A, i =0(+1,...,m,
(6.1)

6l ooy < il o Bl e Pl

l m
X (HHfiHLPi*l(yi)) (H ”fiHLPi(Ui)) ’
i=1 i=0+1

where ¢ : [1,00)™ — [0,00) is a function increasing in each variable. Then, for

Mﬁmwwwmmwl<m<ph~w%ﬁa>mﬂ%~ 1<WH<pr~me42
Degnt1s - - - 5 E: L. +—, and allwezghtstGAq Ny t=1,...,0, and w; € A,
t=0+1,...,m,
||g||L‘1»°°(wg/q1wg,{qm) S ¢(||w1||gq Ny g e ooy I:wé-‘rl]Aq(’.-&-l’ e )
(6.2)
HHf'LH ‘12 mm{l q7f H ||f1||qu min{p;,q;} bl
. i=0+1

where ® : [1,00)™ — [0,00) is a function increasing in each variable. If for some
1<i</lgr, qg=1, then we can take N; = 0.

Proof. We are going to prove this theorem in m consecutive steps, one for each
variable. The argument is simple, but the notation is appalling. A
At step 1 < i < m, we take p® = p;, ¢V = ¢, f? = f;, ¢ = g, v = v,
(1) -— -
w = wy,

. 1 1 } O o
a(z)::<z—>+<z—>, and y(l)::<H w; qj)(ij p’).
1<j<i Ui icjem Pi 1<j<i i<j<m
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If 1 <i< /g, we pick N® := N;, and

(H (go |wz 1||A -1 Ni— 5 ||U’L+1||AZ)+1N+1+17'..))
Ay & v ll 3

1<j<i
7—1:4Vi—1

(H I, )(H 5l (UJ> I I, €51

1<j5<i i<j<t {<j<m

€i—1

X (10( . 74Hwifl

Pit1Nip1+1’

and apply Theorem 5.1. Here, for 1 < j < lg, if N; < oo, then ¢; := %, and &; is
J

as in (5.9), and if N; = oo, then ¢; := 1, and & is as in (5.11), taking into account

Proposition 3.8 to handle v®; that is,

1 1
[V(Z)]Aﬁﬂx{(n7~»,qz'—1,pi+1 pm} S Q:Z < H [wJ]A% ) ( H [Uj]AZ}J_ J) ) Q:Z 2 L.

""" 1<j<i i<j<m

Alternatively, one could also use |75, Lemma 4.1.11].
If (r +1<i</ wepick N® := N,, and

< H g |wZ 1||A LN N3 ||Uz+1||Ap 1N ))

1<j<lr
X ( H Eil(. .., ||/LU2'—1H;fqi71’Ni7 € v H—l“AP I ))
Ir<j<i
1 qi—1/Pi—1
X 90(' o 7Cn€pi—17‘h‘—1 <2||wi_1||ng;1vN¢71> 75 ||Ul+1||Ap A )
<H 1] Laymin{1. %) ) (H 151l o (U]> I Il €21,
1<j<i (wj) i<j<t t<j<m

and apply Theorem 5.3. Here, for {z +1 < j </, if N; < oo, then @Z} is as in (5.21),
and if N; = oo, then & is as in (5.22), handling v as before.
If 0+ 1<i< oy, we pick 0 :=1=:¢® and

SO(E) - (H E(- [wila, l,g,[Um]Aw,...)>

1<5<lpr
X H Cg} wz 1] Ag_y» 57 [Ui+1]Api+17 s ))
Ir<j<t
pi—1-1
(i—1 i—1—1
X H 2 pJ Q: J)> ( Q:( )[wi_l]zqii1 757 [UZ'—FI]ApH_l? s )
1<j<i
< T 15 Ltpin ) (H Hf;||LqJ(wj)> I 1w, €21
1<5<¢e 0<j<i 1<j<m

and apply Theorem 5.7 and Remark 5.8 to get better constants.
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Finally, if oy + 1 < i < m, we pick ¢ := 1 =: ¢, and for £ > 1,

¢(i)(§) = ( H éa]( o [wi—l]Aqi_l & [Ui+1]14pi+1’ s ))

1<i<tr
X ( IT &G wiala, .6 [Ui+1]Api+1,-~)>
Ir<j<t
i 1/p; 1 1
Lu b\ 422
X H 2 P;Q(J))(H (_J) 29\P; 4
<é<j<zDjt tonej<i NI
R
X SO( .. ,(2qu2'71) %i—1 [wifl]Aqi,l’é.’ {Ui+1]Api+17 .. )
X (H 1/l qj’min{l,ﬂ.} ) (H HfjHqu*min{Pjvqﬂ(wj)) H Hfj“LPj(vj)v
1<j<¢ L P ) (w;) 1<j<i i<j<m

and apply Corollary 5.16 and Remark 5.14 to get better constants.
Hence, (6.2) holds, with

@o:( I @@m) ( I @%m)

1<j<tr tr<j<t

(e
(<j<bom K

X
Lon<j<m
1
X (A€, . C”Q:PL’RH*HRH (2§£R+1)‘1€R+1/p€7a+1 L
— }
€0 ggqjtiil g e e ey <2qugm+1) qum+1_1 §£m+17 .. ), 5 E [1, OO)m

>

Remark 6.2. Note that in the case £ = 0, we obtain an alternative proof of the
weak-type extrapolation schemes in [19, Theorem 3.12| and [46, Theorem 6.1], and
the one that follows from |35, Theorem 6.1].

We have presented Theorem 6.1 in its general form, for (m+ 1)-tuples of functions
(fi,---, fm»g). In the next corollary, we deduce the corresponding extrapolation
result for m-variable operators.

Corollary 6.3. Let T be an m-variable operator defined for suitable measurable
functions. Fiz 1 < Ny,...,N,, € NU{oo}, and 0 < lp < £ < lyy < m, and
suppose that for some exponents 1 < pi,...,pm < 00, % = p% + -+ }%, and all
weights v; € zzl\pi,Ni+1; 1=1,... 0, v; € /Alpl.,Nl., i =Ulrp+1,...,0, and v; € A,,,
1=0+1,...,m,

(6.3)

T o LP2 (vg) X -+ - X DO (vg) X LP () X - - X LP7 (0y,) — LB (0P/PY | p/m),

with constant bounded as in (6.1). Then, for all finite exponents 1 < ¢1 < pq,...,
Qert1 2 Digts- s L < Qs S Posty oo Qomgit 2> Deogits -5 ¢ = o + o+ oy and
all weights w; € ﬁthi, i=1,....0, andw;, € Ay, i =0+1,...,m,
(6.4)

m

é .
T (H L%mm{l’ii}(w,.)> x (H L‘”’min{pi’%}(wi)> s Lo (¥ ),

i=1 i=0+1
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with constant bounded as in (6.2). If for some 1 <1i < /{g, q; = 1, then we can take

Proof. Given f; € Lqi’min{l’%}(wi), i = 1,...,0, and f; € Lem{peaid(y,), ¢ =
4+ 1,...,m, take g := |T(f1,..., fm)], and for every natural number o > 1, let
9o = min{g, 0}xB(0,0)- We can perform this step under the vague assumption that
T is defined for suitable measurable functions, including fi,..., f,,. Note that for
every o > 1, g, < g, so from (6.3) we deduce (6.1) for g,, and by Theorem 6.1, we
obtain (6.2) for g,. Finally, we get (6.4) by taking the supremum over all p > 1,
since g, T g and

HgHLq,oo(wg/le,w%qm) = Sggll) HggHLq’oo(wtlz/mmw%qm) .

>

Remark 6.4. If the operator T is initially defined for some nice functions, say
bounded functions with compact support or simple functions, and (6.3) only holds
for these, then we can recover (6.4) in full generality via a standard density argument,
assuming that 7" is multi-sub-linear (see |44, Proposition 7.2.3]).

6.2. A one-weight scheme.

For simplicity, suppose that ¢z = 0 and ¢ = m = 2. Although from Theorem 6.1
we can deduce a one-weight conclusion, we need to assume a two-weight hypothesis
to get it because, in general, the weights v; and vy, that we chose in (5.14) are
different. However, for ¢; > p; > 1 and ¢ > ps > 1 such that 2% = Zi—j, we can
have v; = vy. That is, these weights can coincide if the points (p1,p2) and (¢, ¢2)
in (1,00)? lay on a straight line passing through the point (1,1). Equivalently,
for some v > 0, the points P = (pil,p%) and @ = (qil,qiz) in (0,1)? belong to
the graph of the function F,(z) := Rt defined for 0 < z < 1. Adding this
assumption in Theorem 6.1 allows us to obtain the following one-weight theorem, and
the corresponding extrapolation scheme for multi-variable operators. See Figure 2

for a pictorial representation of these results.

Theorem 6.5. Fizintegers Ny, ..., N,, > 1. Given measurable functions fi,..., fm,
and g, suppose that for some exponents p1 = -+ =pm =1 0or1 < p1,...,pm < 00,
11 1 : m 7
5=t 4 o-, and every weight v € (V2 Ap, N,
(6.5) 90 ey < U015, ooe sl o )Tl

i=1
where ¢ : [1,00)™ — [0, 00) is a function increasing in each variable. Then, for all
finite exponents q Zpl,...,Aqm > pm such that le—j == z:j, é = q%+~~~+qim,
and every weight w € (-, Ay N,
(6.6) 900wy < @Uwlz, oo lwls, o) T il

i=1
where @ : [1,00)™ — [0,00) is a function that increases in each variable. The
same result is valid if for some index 0 < ¢ < m, Nyyy = --+ = N,,, = 00 and
Ni,..., Ny < o0.

Proof. We will follow the steps of the proof of Theorem 5.3, skipping most of the
tedious computations.
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Note that if for some 1 < i < m, ¢; = p;, then ¢ = p1,...,¢n = pn and there is
nothing to prove, so we may assume that ¢; > p;, 2 = 1, ..., m. Fix a natural number
0> 1,and let g, := |g|xB(0,0). We will prove (6.6) for the tuple (fi,..., fm,g,). Pick
a weight w € (N, ‘Z{inNi and fix y > 0 such that \j) (y) # 0.

In order to apply (6.5), we want to find a weight v € N, A\thi such that
A () < Ag (y). If1 < pi,...,pm < oo, then the restrictions on the exponents allow
us to take any 1 < j < m, and choose

pj—1 45 —P;j

vi= wqflM(wX{lgglw}) Y

In virtue of Lemma 3.7, we see that fori=1,...,m, v € Ethi, with
1/pi
g —1 /
~ < Qz pi
lols, 0, S0 (557) Holly”
If py =+ = pn = 1, then we argue as follows: for ¢y := min{qy,...,qn}, and
N == max{Ny,..., N}, Nt Ay, € Agn, so we can find measurable functions

hi,...,hy € Li,.(R™), parameters 6y, ...,0x € (0,1], with 6 + -+ 60y =1, and a
1—q
weight u € A; such that w = (H;V:l(th)ej> ’ u, with [u]z/lqo < (1+ qLO)Hng o
q0;

In particular, for i =1,...,m,

-1 6;(q0—1) a
(6.7) w= | M(xpn)'" 5 [[(Mhy) o= u.

J=1

This step is crucial to guarantee that we can apply Theorem 4.1 m times, one for
each of the exponents ¢, ..., ¢, and always working with the same weight u E Ay

Now, write ¢ := max{qi,...,¢n}, and choose 0 := 1 — E’ T:=1+
6—1

on+1 [U]A

and p:=1— =% and define wp := wu’~! and

v = M* (WX (g, syt M.

In virtue of (5.15), we see that v € Ay, with
il :
o)y S =2 S g mmax { i, 1"

1<k<m

Observe that, in any case, v > wx(|g,[>y}> 50 (6.5) implies that

1
Ag W) < AY (y) < ﬁw(Hngpl,Nl, csllvllg, H 1fill Lo
(6.8)

(p m
S _pH |fZ||LP1 1('[) ?

where ¢ is given by

1/p1 B 1/pm
plen (Bl ) e (el )T, 1<p <o,

am,Nm

q0 q0
PlCndoe max {||w||qu,Nk} e Cnlo @%&{lelngk} ), pj=1.
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For i =1,...,m, we want to replace || fil| ,»:1(p) by || fill o1 () in (6.8). Applying
Holder’s inequality with exponent ;;’7? > 1, we obtain that for every ¢ > 0,

‘ M@ || 471 1<p <oo

v G s v L% (w) | ’
N (1) < Zw({|fi] > 3P/ x

Di H MHE(wox{|go|>y}) ’ pi=1

we quL-,OO(w) ) ¢ :

Now, |74, Theorem 8| gives us that

qi+1

M /
|| gl > 0

w

ng’oo(w)

and from (6.7) and Theorem 4.1, we deduce that

1/q;

M (woX{|g,/>y})
Wo

Snugigee (U4, [w]igw(ﬂgd > y})

Lq;’oo(w)

Thus, in virtue of Theorem 3.4,

q; —Pg

)\;)cz(t) < %¢i%1 w({|gg| > y})h%w({]fi] > t})pi/qz"

with
n qi+1
e (Nllwls, )" | < py < o0,
O; =
" 2 q0
Q:q“q"o <Ni||w’|2qi’Ni> 12%& {”wHA\qk’Nk} ’ pi=1,
for some constants &, & > 1, and hence,
AN VP 1 e
6.9 Di p; g;—1 L1
(6.9) Willsy < () o8 " wlllgel > uh il
Combining the estimates (6.8) and (6.9), we have that
w 1 . w 1-2
N ) < (s, ool (H ||fi||§qi,1(w)> N2 () E

with

N N A
ol ool = (T(2) 7o) &

i=1
and the desired result follows.
Now, suppose that for some index 0 < ¢ < m, Nyy; = --- = N,,, = oo and
Ny, ..., Ny < co. By hypothesis, we have that for every weight v € (2, A,, ;.
(6.10)

m
191l oy < @UW0liz,, oo 015, o, W0l e 1007, O TT il iy -
i=1

Pick a weight w € ", Xqi,Ni. For i ={+1,...,m, we can find an integer N? > 1

such that w € A, yo, with [Jwl|z < ]\fio|]w||g%NO < 2[lwllz, .- From (6.10), we
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deduce that for every weight v € (ﬂle Epi, Ni) N <ﬂ;1£ 1 gph N?)’

£+1

m
HgHLp,oo(v) < SD( ) HUHEP@N@’ Ng—i-lHUHEpH_lYNO LA ) H HfiHLmJ(v) )
i=1

and applying Theorem 6.5 for Ny, ..., Ny, N, ..., N2, we conclude that

m
||g||Lq-,<>0(w) <., ||w||A\q£,Ne7 HwHﬁqu,m’ ) H HfiHL‘h‘vl(w) )
i=1

—

with ®(€) defined for £ € [1,00)™ as

mo o\ 1/, e S ans
m(;) -~
q;

1 9,=p;

1<p <oo, |74t

i=1 ¢ JXimax{. .., &, 280, 1Y, pi = 1,
_ 1/pe 1 1/pes1
. o, (;% Z@> . Cn, (Zﬁi_l@&ﬂ)qﬂl) ,.oon), 1<pj<oo,
o( . epgoomax {. .., &, 28001, .. 10, p; =1,
where T; := N;§ for 1 <i </, and Y; :=2§ for £ +1 <7 < m. >

(1,1)

FIGURE 2. Pictorial representation of Theorem 6.5 and Corollary 6.6
for m = 2.

As usual, from Theorem 6.5 we can obtain the corresponding extrapolation result
for multi-variable operators arguing as in the proof of Corollary 6.3.

Corollary 6.6. Let T be an m-variable operator defined for suitable measurable
functions. Fiz 1 < Ny,...,N, € NU{oco}. Suppose that for some exponents
prL=-=pm=1o0orl <p,...,pm <00, = = p%—l—~~+i, and every weight

m
vE ﬂz‘:l Api,Nw

1
p

T: L”l’l(v) X e X me’l(v) — LP™(v),
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with constant bounded as in (6.5). Then for all ﬁmte exponents G > Py,

Gm = Pm such that Zi—j = = % = S+t —, and every weight

CIm*l ’
m
w e mizl AgiNis

T: L% (w) x - x L™ (w) — L9 (w),
with constant bounded as in (6.6).

Remark 6.7. One-weight strong-type extrapolation for multi-variable operators
was studied in [46, Theorem 1.2|, assuming an alternative condition on the expo-

nents; that is, % =... = 2’—’”. An analog for restricted weak-type operators in the

downwards case was obtained in [4, Theorem 1.3].

7. APPLICATIONS

In this section, we apply the extrapolation results previously introduced to pro-
duce mixed and restricted weak-type bounds for classical operators.

7.1. Weak-type operators.

We will demonstrate that, under suitable conditions, a weak-type hypothesis for
a multi-sub-linear operator 7' is more than enough to run an extrapolation argu-
ment yielding the full range of weighted restricted weak-type bounds for such an
operator. In particular, we extend outside the Banach range the well-known equiv-
alence between weak-type for characteristic functions and restricted weak-type (see
[9, 65, 81]). Also, we show that weighted restricted weak-type conditions are stronger
than the usual weighted weak-type ones.

The next result follows applying Theorems 6.1 and 2.4, Corollary 6.3, and the
standard extension argument in [9, Page 256| if ¢ > 1.

Theorem 7.1. Let T' be a multi-sub-linear operator defined for suitable measurable

functions. Suppose that for some exponents 1 < pq,...,pm < 00, 119 = pil + -4 #,

and all weights v; € Epi, 1=1,...,m,
T 0cers X8 e g aggomy < #0rln, ool ) TL (B
i=1
for all measurable sets Ey, ..., E, CR", where ¢ :[1,00)™ — [0,00) is a function

icreasing in each variable. Then, for all exponents 1 < q1,...,¢m < 00, % =

qi1—|—---+qim, and all weights w; GA\qi’oo, t=1,...,m,

T L (wy) X -+ x LI (wy,) — L (wd™ . wam),

with monotonically increasing dependence of the constant on (|lwillz, _)1<i<m, pro-

vided that g > 1 or T is (g,0)-atomic approzimable or iterative (g, 6)-atomic approx-
1mable.

Remark 7.2. This result provides positive evidence for the conjecture that given
p>1,and v € A, there exists a weight vy € A, such that vy =~ v, with implicit
constants depending only on p, [jv[|z _, and the dimension n.

Remark 7.3. Under the hypotheses of Theorem 7.1, and assuming that 7" is (g, §)-
atomic approximable or iterative (g, d)-atomic approximable, we can extrapolate
down to the endpoint (1,...,1, w%) with Theorems 6.1 and 2.4, and in virtue of the
classical multi-variable weak-type Rubio de Francia’s extrapolation in [46, Theorem
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6.1], we deduce that for all exponents 1 < qq,...,¢n < 00, % = qil + -+ —, and
all weights w; € A,,,i=1,...,m,

T L% (wy) X -+ X LI (wy,) — L& (. w/om)

Y

with monotonically increasing dependence of the constant on ([w;] Aqi)lgigm-
Recently, the following class of operators has been extensively studied in [13].

Definition 7.4. Given a Banach space B, we say that an m-variable operator
T is a B-valued multi-linear bounded oscillation operator if there is a B-valued
m-linear (or m-sub-linear if B = R) operator 7 such that for every z € R,
T(f)(z) = || T(f)(2)||s, and there exist constants Cy, Cy > 0 such that for all func-
tions fi,..., fm € L'(R"):

(a) For every cube Q C R", there exists a cube P C R" so that @ € P, and

%ngxw@»~nﬁmxmmchligm.

(b) For every cube Q C R",

—

sup | (T(F) = T a) () - ﬁu—ﬂ&@NM<xﬂbwfm«

z,YEQ P2Q

It follows immediately from [13, Theorem 1.7] that we can transfer the weak-
type (1,...,1,=) bounds for M in [60, Theorem 3.3| to general B-valued multi-
linear bounded oscillation operators, and we can apply our extrapolation scheme in
Corollary 6.3 to obtain the corresponding mixed and restricted weak-type estimates.

Theorem 7.5. Let T be a B-valued multi-linear bounded oscillation operator defined
for suitable measurable functions, and suppose that

T:LYR") x --- x LYR") — Lmw™(R").

Then, for all exponents 1 < qq1,...,qn < 00, % = qil + 4 qu’ and all weights

w; € A\qi,ooy 1= 1,...,m,
T L% (wy) x - x LI (wy,) — LY (wd ™ . w/om),

with monotonically increasing dependence of the constant on (|[wil| 3, )i<i<m- Like-
wise, we also get mized-type inequalities for T.

Many well-known multi-variable operators satisfy the hypotheses of Theorem 7.5,
meaning that we automatically cover the full range of mixed and restricted weak-
type bounds for them. Among these, we find multi-linear Littlewood-Paley square
operators (see [13, Theorem 2.13|), multi-linear Fourier integral operators (see [13,
Theorem 2.20]), higher order Calderén commutators (see |13, Theorem 2.24]), and
maximally modulated multi-linear singular integrals (see [13, Theorem 2.27]). The
multi-sub-linear maximal operator M (see |13, Theorem 2.1]), and m-variable w-
Calderén-Zygmund operators with w satisfying the Dini condition (see |13, Theorem
2.5]) also satisfy the hypotheses of Theorem 7.5, but we managed to produce better
results for them in [74, Theorem 10], |75, Theorem 5.2.7|, and |75, Remark 5.2.9].
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7.2. Product-type operators and commutators.

We start with the following result, that gives us mixed-type bounds for products
of one-variable operators.

Proposition 7.6. Let 11, ...,T,, be one-variable operators defined for suitable mea-
surable functions. For i =2,...,m, suppose that for some p; > 1, and every weight
v; € pr

T; : LPY (vy) — LPY (),
with constant bounded by p;([vi]a, ), where p; : [1,00) — [0,00) is an increasing
function. Suppose also that for some py > 1, and every weight v, € AZ}I,

T : Lp1’1<U1) — Lpl’oo(U1>,

with constant bounded by ¢1([v1]ar ), where ¢y = [1,00) — [0,00) is an increasing
function. If pil + -+ ﬁ = % < 1, then for all weights w, € A;zl, and w; € Ap,,
1 =2,...,m, and all suitable measurable functions fi,..., fm,

||T1f1 R Tmfm”Lp,oo(wi’/Pl“_w%Pm) S (I)([Qﬂl]A;2 Apyy - H ||fz||LPz A w;)s

where ® : [1,00)™ — [0, 00) is a function increasing in each variable.

p/m p/Pm

Proof. Writing w := w; .wm'™ and applying |75, Lemma 2.2.1], we get that
22m—2p/ m
ITufr - TonfnllLeoowy < ———— H T fill Lot oy | 1 T2 frllzenoo ()
P2...Pm i—2
22m—2p/ m
S — HSOi([wi]Api) ([wn] AR H 1 fill Lot (-
P2 Pm \ iy
>>p
Remark 7.7. For ¢« = 2,...,m, if T} is sub-linear, and for some p; > 1, and every

weight v; € AIZ,

Ty : LPit (v;) — LP°(vy),
with constant bounded by ¢;([v;] AR) then in virtue of 75, Theorem 3.1.9], T; sat-
isfies the hypotheses of Proposmon 7.6.

For operators as in Remark 7.7, we should be able to extend Proposition 7.6
for Pis---,Pm > 1, without restrictions on p, and assuming that for 1 < ¢ < m,

i€ AR i=1,...,0,and w; € Ay, i = £+ 1,...,m. This question is still open
due to the lack of a Holder-type inequality for Lorentz spaces with the change of
measures (see [75, Page 27| or [17]) and a complete mixed-type generalization of
[75, Lemma 2.2.1], although we managed to do the job for the particular case of
the point-wise product of Hardy-Littlewood maximal operators (see |74, Theorem
3] and |75, Remark 2.4.2]). Fortunately, we can use Corollary 6.3, and Remarks 5.9
and 5.15, to improve the conclusion of Proposition 7.6.

Theorem 7.8. Let T}, ..., T,, be sub-linear operators defined for suitable measurable
functions. Fori=1,...,m, suppose that for some p; > 1, and every weight v; € AZ}L_,

T; : Lp“l(vz-) — LP(vy),
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with constant bounded by ¢;([vilar), where ¢; : [1,00) — [0,00) is an increasing
function. Consider the operator

T®(f1,...,fm)(l') = Tlfl(x)Tmfm( ) T ER”,
defined for suitable measurable functions fi,..., fom. If pi cee z% = }D < 1, then
forallexponent31§q1<oo,1<q2,...,qm<oo andé qil—l—"-—i-qim, and all

weights wy € A\qhoo, and w; € Ay, 1 =2,...,m,

7 . L8 () x - Lo (B} () oy L0 (/B qtfan),
with monotonically increasing dependence of the constant on ||wl||gq1 > and [wi] 4, ,

;,mind 1,2 .
i=2,...,m. If ¢ > 1, then we can replace the space L {I’Pi}(wi) by L9 (w;),
1=1,...,m

Let us recall some basic concepts on commutators (see |23, 42, 60]). Given a
function f € L. (R"), the sharp maximal operator M# is defined by

# = Ssu
M7 () Z;E@\/‘f

Ifbe L} (R") is such that M#b € L>°(R™), we say that b is a function of bounded
mean oscillation, and we denote by BMO the class of all these functions. For
b e BMO, we write

, xeR"

6]l paro = I M7D| oo gen)-

Given an m-variable operator T' defined for measurable functions on R", and
measurable functions by, ..., b, with b = (by, ..., b,,), the m-variable commutators
[b,T);,i=1,...,m, are formally defined for measurable functions fi,..., f,, by

B0, T)(fr, - fo) (@) o= bi()T(fi, - .., f) ()
_T(fla'“7fi—17bifi7fi+17"'7fm)<$>) IER”.
In particular, if 7= T'®, then

b, T%i(fr, - f) (@) = [0, T fi2) [ [ T fi(2), = € R™
JF#i
Hence, these operators are, in fact, product-type operators, and we can follow the
approach of Theorem 7.8 to prove weighted bounds for them, using known estimates
for commutators of one-variable operators, as we show in the next result.

Corollary 7.9. Fix 1 <i < m, and let T; be a linear operator such that for every
weight u € As,

T; : L*(u) — L*(u),
with constant bounded by ¢;([u]a,), where ¢; : [1,00) — [0,00) is an increasing

function. Also, for every 1 < j # 1 < m, let T} be a sub-linear operator such that
for some p; > 1, and every weight v; € A;?,

Ty« L (vg) — L (vy),
with constant bounded by ¢;([vj]ar ), where ; : [1,00) — [0,00) is an increasing

function. Let b; € BMO, and fiz an index ¢ # i. If Z#Z o < 1, then for all finite
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exponents z%i <1- Z#ipij, 1 <q < oi), 1< qu,oo Qo1 ety s Qm < 00, and
%Zqil—l—---—i-q%n, and all weights wy € Ag, 00, and w; € Ag,, 1 < j # £ < m,

pd 1 a s m

5,72 - L™ () - L {8 (4, ) oy Looe (¥ L agtfam),
with constant bounded by ®y([wi]a, -, ng||gqem, [wesi]a,, o), and as usual,
Py 1 [1,00)™ — [0,00) is a function increasing in each variable. If ¢ > 1, then we

43

”j}(wj) by L9 (w;), j=1,...,m.

can replace the space L 8
Proof. In virtue of [20, Corollary 3.3], we have that for 1 < r < co, and every weight
v; € A,
(b, T3] - L7 (v;) — L™ (vy),
with constant bounded by
eillolan) = ensdiCog bl I b
In particular,
(b, T;] - L (v;) — L"*°(vy),
with constant also bounded by ¢;([v;] 4,.), and arguing as in the proof of [75, Theorem
3.1.9], we get that for every weight v; € A,,

[bi, T’z] : Lr’l(Ui) — Lr’l(?}i),
2 ~
with constant bounded by ¢, [vi]fgoi(C’n,r[vi]ir).
Choosing 1 < r := p; < 0o, and writing ]l? = il + -+ # < 1, we deduce the
desired result applying Proposition 7.6, Remark 7.7, Corollary 6.3, and Remarks 5.9
and 5.15.
Since [b, T'®); is multi-sub-linear, the conclusion for ¢ > 1 follows from the standard

extension argument in [9, Page 256]. >

Remark 7.10. It is worth mentioning that the function ®; that we obtain is of the
form ®; = ||bi|| Baro®, where @ : [1,00)™ — [0, 00) is a function increasing in each
variable and independent of b.

7.3. Averaging operators and N BV Fourier multipliers.

We have seen in Theorem 7.8 that, sometimes, we can use extrapolation techniques
to avoid the application of some Hdélder-type inequalities for Lorentz spaces. In the
next result, we will see that we can also use extrapolation theorems to overcome the
lack of Minkowski’s integral inequality for the Lorentz quasi-norm || - || pa.cc () When
qg<1.

Theorem 7.11. Let {T{'}icr, ..., {T"}i, cr be families of sub-linear operators
defined for suitable measurable functions. For i = 1,...,m, suppose that for some
pi > 1, every t; € R, and every weight v; € Ag,

T! o LP (v;) — P> (vy),
with constant bounded by ¢;([vi|ar), where ¢; : [1,00) — [0,00) is an increasing

function independent of t;. For a measure pn on R™ such that |p|(R™) < oo, consider
the averaging operator

T.(f1,. s fm)(2) = /m TV fi(z) . T fo(2)du(ty, . . . tn), x €R™,
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defined for suitable measurable functions fi,..., fm. If p% + -+ pL = % < 1, then
for all exponents 1 < g1 <00, 1 < qg,...,¢n < 00, and%z qil—iﬂ--—l—qi, and all
weights wy € A\ql,oo; and w; € Ay, 1=2,...,m,

T, : qu’min{l’%}(wl) X e X Lqm’min{l’%}(wm) — Lq’oo(w?/q1 Cwd/am)

9

with monotonically increasing dependence of the constant on lengl _, and [wi]a,

i=2,...,m. If ¢ > 1, then we can replace the space Lqi’min{l’%}(wi) by L% (wy;),
1=1,...,m

Proof. Since p > 1, in virtue of Minkowski’s integral inequality (see [79, Proposition

2.1] and [5, Theorem 4.4]), we have that for all weights v; € A%, v; € A, i =

2,...,m,and v : —vp/pl B[P

HT;L(fla SR fm>HL1”°°(v) < p,/R HTflfl . 'T;mmeLp’“(v)d’m(tb s 7tm)>

and applying Proposition 7.6, we get that

ITu(frs s fr)llipe ) < PIUl(R™)R([01]ag s [v2] 4y, - - H 1fill it o

where @ : [1,00)™ — [0,00) is a function that increases in each variable. The
desired result follows from Corollary 6.3, taking into account Remarks 5.9 and 5.15,
and the standard extension argument in [9, Page 256 if ¢ > 1. >[>>

Now, let us recall some classical definitions from |78, Chapter 8|.

Definition 7.12. Given a function f : R — R, we say that f is of bounded
variation if

V(f) = lim Supz |f(z;) — f(z;1)] € R,

T—00
where the supremum is taken over all N and over all choices of xg, ..., zy such that
—00 <y < < - <xy=2x<o00. Wecall V(f) the total variation of f. The
class of all functions f of bounded variation will be denoted by BV (R).
We say that a function f € BV(R) is normalized if lim,, o, f(z) = 0. The class
of these functions will be denoted by NBV (R).

We say that a function f : R — R is absolutely continuous if for every e > 0,
there exists 0 > 0 such that

N
Z (b; —aj) < ¢ implies Z |f(b;) — f(a;)] <e,
7j=1 7j=1

whenever (a1, b1), ..., (ay,by) are disjoint segments. The class of all such functions
will be denoted by AC(R).

Let us focus our attention to [34, Corollary 3.8]. This result tells us that for a
function m € NBV(R) that is right-continuous at every point of R, we can write

3
(71 m(E) = / dm(t) = / V(s (B)dm(t) = / Neoo(E)dm(t), €€ R,

—00
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where dm denotes the Lebesgue-Stieltjes measure associated with m. Therefore, the
linear multiplier operator T, given by

-~

Tl () 1= m(OF(©) = [ xuml© im0 ¢ <R
initially defined for Schwartz functions f on R, can be written as
Tof(z) = / S, f(x)dm(t), z€R,
R

where

Stoof(z) 1= f( )+ = ethmH( —2mit- () = f( )+ 627mt:z:H A (2).
As usual, H denotes the Hzlben‘ transform on R, deﬁned as

Hf(z) = 1 lim /) dy, z€R,

T e=0F {yeR:|z—y|>et LT — Y

and for a Schwartz function f : R — R, we denote by f its Fourier transform,
given by

- / fly)e vy, € eR.
R

Since for 1 < p < oo, H : LP(R) — LP(R) with constant bounded by ¢,, in
virtue of Minkowski’s integral inequality we conclude that

1+c¢
| T f1] o () §A|!St,wf\!Lv<R>d\m\(t) <— 2V ()| f1] Lo )

and m is an LP Fourier multiplier for every 1 < p < oc.
Inspired by this result, let us take a measure p on R™ such that |u|(R™) < oo,
and define the function

mu(ﬁl, . ,fm) =

du(ry, ..., Tm)

.....

(7.2) / (HX( 00.6) (T )d,u(h,...,r )

/ (HX(’”JOO )dﬂ(rl,...,r ),

for &,...,&n € R. It is clear that ||m,, || pe@m) < |p|(R™) < 00, so it makes sense to
consider the m-linear multiplier operator
T, (f) / / m,, (€ (&)@ ge, e, xR,

initially defined for Schwartz functions fi, ..., fu.
Arguing as we did in the linear case, and applying Fubini’s theorem, we have that

mu( _‘)( / <H/ X (14,00) 5] f](gj) 2mzﬁjd§]> d/L(Tl, ce, T )

= /Rm <H Srj:°°fj<x)> dFL(rl? s ,T‘m),
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so Ty, is, in fact, an m-variable averaging operator, and we can follow the approach
of Theorem 7.11 to prove weighted bounds for it, exploiting known restricted weak-
type bounds for the Hilbert transform, as we show in the next theorem, which
generalizes and extends [4, Corollary 1.4] and [4, Corollary 1.6], being this last
result primarily based on Corollary 3.3.14, Proposition 3.4.1, and Theorem 3.4.7 in
[75].

Theorem 7.13. Given exponents 1 < q1 < 00, 1 < qo,...,qm < 00, and é = q% +
R qu’ and weights w, € A\ql o Wi €Ay, 1 =2,...,m, and w = wi’/‘“ w?n/qm,
(7.3) T, + L (wy) x Hquvm‘“{l ) — LO®(wd /i),

for all exponents 1 < py,...,pym < 00 such that p% + -+ zi < 1, with constant
bounded by (I>(||u11||gq1 o lwa]ag,s - .), where @ ¢ [1,00)™ — [0,00) is a function

i, min &

increasing in each variable. If ¢ > 1, then we can replace the space L {lp}(wl)
by L‘h”l( Z) i = 2,...,m. Moreover, for all exponents 1 < q1,...,¢n < 00, % =
o+ o, and every weight u € (V1) Ay, oo,

(7.4) T, LI () x - x LI (u) — LY (u),

with constant bounded by 5(||u|]gq1 ooz, ), where ® : [1,00)™ — [0, 00)

1S a function increasing in each variable.

Proof. 1t follows from |74, Theorem 10] and [59, Theorem 1.1] that for every p > 1,
and every weight v € AZ}, H : LP'(v) — LP*>(v), with constant bounded by

o cp[v]%rzl, p>1,
Plelap) "{ ol {1+ loglela), p=1,

so for every o € R, and every h € LP1(v),
1
1S achllinmte) < [hllmoee) + | Hohllirome) < (5 +¢<[U]A5>> A

Choosing exponents 1 < po,...,pm < oo such that piz + e+ ﬁ < 1, and

0 < pil <1-=3" ]%, and applying Theorem 7.11, we get that for all weights

u1eAl,wieAqi,iZQ,...,m,withi::1+l2+---+qu,

(75> Tm ul X H Lq“mln{l _) LqO, ( ]_ (210/(12 . w;]_,;)/(Im)’

i
with suitable control of the constant.
It was proved in [4] that T;,, can be approximated by some iterative (e, d)-atomic

= S o_ym &
operators ka1 ’’’’’ w,, associated to the multipliers my, . (&) ==m,(§)e ~7'F | and

these also satisfy (7.5) uniformly on kq,...,k, € N \ {0}, so in virtue of Fatou S

lemma and Theorem 2.3, we can replace the space L" o (uy) by L'(uy) in (7.5), and
extrapolating the first varlable with Corollary 6.3, we establish (7.3), taking into
account the standard extension argument in [9, Page 256] if ¢ > 1.

Finally, (7.4) follows immediately from the one-weight weak-type (1,...,1,1)

7T m

bounds for Ti,, in [4, Corollary 1.4] and our extrapolation scheme in Corollary 6.6.

>
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Remark 7.14. For simplicity, fix m = 2. Observe that for 1 < py,ps < o0,

1_ 1 1 R R _ ,,p/P1 /P2 S =
s T, <Lue A, va € Ay, and v = vy’ and in virtue of [75, Lemma

2.2.1], we get that for 0,7 € R,

1(So.00f)(S7,009) ||va°°(v)
< 1fgllreey + 1 f Hegll ooy + |9 Ho fll oo () + | (Ho ) (Hrg)l| Lroo )
< @([Ul]A;—‘;J [UQ]AI%)H.]CHLPI’I(DQ||g||L?’2’1(vz) + H(Hcrf)(H’rg>HLPv<>0(y),

where ¢ : [1,00)? — [0,00) is a function increasing in each variable and inde-
pendent of ¢ and 7. Hence, if we could prove restricted weak-type bounds for the
point-wise product of Hilbert transforms, we would be able to transfer them to the
operator T, , using our extrapolation results, arguing as in the proof of Theorem 7.13.

If we take right-continuous functions my, ..., m,, € NBV(R), we can easily con-
struct a function like (7.2) by merely considering their product, since by (7.1),

(Mm@ @my) (&1, .-, &) = mu(&r) .o mp ()

:/R.../R <ﬁx(wm)(§j)> dmy(rq) . ..dm,(ry,),
and

R R

The following result, which is a combination of Theorems 8.17 and 8.18 in [78§],
will allow us to construct another simple yet more elaborate example of a function
like (7.2), along with many examples of functions in NBV (R).

Theorem 7.15. If ) € L'(R), and for every x € R,

fla) = [ wtan

then f € NBV(R) N AC(R), and f' = 1 almost everywhere. Conversely, if f €
NBV(R) N AC(R), then f is differentiable almost everywhere, f' € L'(R), and for
every r € R,

fa) = [ s
An immediate consequence of Theorem 7.15 is the next lemma.

Lemma 7.16. For a function m € NBV(R) N AC(R), and for all &, ..., &, € R,

m, (&, Em) = m(min{gy, ..., &n)) = /]R (H X(r,@(ﬁj)) m'(r)dr,

with, [[m, || Lo @my <l 1@y < 00

Proof. By Theorem 7.15, we have that

min{&1,....&m}
m(min{¢y, ..., &n}) = / w'(r)dr

—0o0
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The function m, is an example of a function like (7.2) with the measure u restricted
to R. More generally, we can take a subset £ C R™, and a measure v on F such
that |v|(E) < oo, and consider the function

(7.6) my, g€, 6m) = V(ENRe e),  |muglle@m) < |V|(F) < oo,

with Re, ¢, == {(r1,...,rm) € R™ 1 ry < &,...,1 < &n}. This example was
suggested to us by M. J. Carro. See Figure 3 for a pictorial representation of it.

R? /)

(&1, &)

m, 5 (§1,62) = V(BN Re, ¢,)

FIGURE 3. Pictorial representation of the function in (7.6) for m = 2.

In the particular case when E = (0, 1)™, the unit m-cube, and v is the Lebesgue
measure on F, we obtain that

mmE(gla s 7€m) = H min{la gj}X{reR:r>0}(€j)'

j=1
We get a more elaborate example if we consider the unit half-ball,
E:{('xla"'axm) EIR7n$rn ZO,SC%—l-—l-x%lS 1},

and v the Lebesgue measure on E (see |75, Page 112]).

8. To Ap AND BEYOND

In this section, we adapt our techniques to establish multi-variable weak-type
extrapolation theorems for tuples of measures analogous to the ones presented in
[61, 62, 70|, omitting classical constructions of weights involving Rubio de Francia’s
iteration algorithm. We will deduce our extrapolation schemes from one-variable
off-diagonal results obtained with an approach that differs fundamentally from [62,
Theorem 3.1| and [35, Theorem 5.1].

This time, the underlying measure won’t be the Lebesgue measure as before, but
a more general doubling measure p. Sometimes, we will invoke statements that
appear in the literature for the Lebesgue measure but are also valid for u, with
almost identical proofs, and apply them in the form that suits our needs without
prior notice.

8.1. Weighted weights.

Before proceeding, let us push our understanding of A;z further. The following is
a restricted weak-type version of |27, Lemma 2.1].
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Lemma 8.1. Let 1 <p < oo, and u € Ay. If v e AX(u), then wv € A%, with
[uv]ar < [u]a, [V]aR w)-

Proof. This result follows directly from the definitions of [uv]ax and [v]ar (), since
for every cube (Q C R",

() < )

||XQU_IU_1||LP/1°°(M)) eSmSGIQHfU(ZL‘) < ||XQU_1||LP/1°°(vdu)’

and

>

Remark 8.2. We showed in |74, Lemma 2| that if u € A, then uv € A if, and
only if v € A (u), so it would be interesting to study a version of Lemma 8.1 relating
[u] AR, [v] AR(u), and [uv] 4= for suitable exponents 1 < p,q,r < oo other than those
above.

The next result is an extension of [18, Lemma 2.12], and the proof is similar.

Lemma 8.3. Let p be a positive, locally finite, doubling Borel measure on R™, with
doubling constant 1 < C, < oo, and fir 0 < 6 < 1. For a p-measurable function
0+#h e LL.(R" n) such that M,h < 0o p-a.e., andw € Ay(u), let v = (M,h)' ~°u’.

Then, v € Ay(u), and

xkCF
(8.1) (V] 4, ) < 5“ (W] A, (1)

where k > 1 is a universal constant. In particular, if du(y) = u(y)dy and v € Ay,
then (uM,h)*=°(uw)® € Ay, with constant independent of h.
Proof. In virtue of |50, Theorem 1.1|, taking
1
6 . SOODH [w}Al(M) ’

D, :=1log,C,, and 7r:=1+

we have that w” € A;(u), with
[0 au) < (247 [wa )" < 4€V 167 [w]a, .

For p:=%>1,0<p (1 -4) <1, and from [53, Proposition 2.10] and [50, (3.11)]
(see also [43, Exercise 2.1.1]), we deduce that (M,h)?' 179 € A, (), with
, I{()CHO
) M. h)P (1=9) < 7 m
where k¢ > 1 is a universal constant; ko = 6 works.

Applying Hoélder’s inequality with exponent p, we get that for every cube Q C R"
such that 0 < u(Q) < oo, and pra.e. z € Q,

@ /Q vdp < (@ /Q w"du) " (@ /Q (Muh)”/(l“”du) "

- y 5 KOCSO 1/p s

< (4167 [w] 4, () Pw () (m) Mihtz)
144k

< 28!k S wlao(@),

and (8.1) holds for k = 28¢%/¢ky.
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Finally, for u € A;, it follows from (8.1), Lemma 8.1, and [43, Proposition 7.1.5]
that uv € Ay, with

271!4]
o

[(wM ) = (uw)’]a, < ——[ulx

o w]a, -
>>p

We present a novel generalization of Theorem 2.7 and Corollary 2.8 in [16], fol-
lowing a different approach.

Lemma 8.4. Let i be a positive, locally finite, doubling Borel measure on R™, with
doubling constant 1 < C, < 00, and fix 1 < p < oo. For a p-measurable function
0#he L. (R u) such that M,h < 0o p-a.e., and v € Ay(p), let w = (M,h) Pov.
Then, w € AX(n), and
» 1
[w ]AR( < (kC} )l/p[ ]A/ﬁu)7

where k > 1 is a universal constant. In particular, if du(y) = u(y)dy and u € Ay,
then (Myh)'"Puv € A%, with constant independent of h.

Proof. We first discuss the case v = 1; that is, w = (M,h)'"?, by adapting an

unpublished argument for du(y) = dy by C. Pérez (|73]).
From the definition of [w] ARy and an elementary estimate, we get that

1
1 /wdu> x@(Mh )" I e
Q M(Q)p !

as QM e \
P (u(@) /de’”‘ > < n(@Q) )
1 tr "~
- wd su M,h)'"d
(ll,(Q)/Q M) <t>€ Q) /{zGQ:Muh(fE)>t}( = M)
1

o g o) (= )

It is well-known (see [42, Page 160]) that for every cube @@ C R™ such that
0 < (@) < oo, and p-a.e. x € Q,

M, (hxrmsq)(z) < Ci H= eiseglf M (hxen3Q)(y) = Juq;

so M,h(x) < M,(hxsq)(z) + Juq. Hence, for t > 0,

tu({r € Q : Myh(z) > 1)) _ tul{z € Q : My(hxsg)(x) + Jug > 1))

(8.4) Q) B wQ)
' < tn({zr € Q: Juq > %}> I tu({z € @ : My (hxsq)(x) > %}) — T+ I
= 1(Q) wQ) . '
Now,

(8.5) I1<2J,0< 205 p-essinf M,h(y),
yeQ
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and
M L
7 (@
(8.6) " Cro2
/ |h|dp < K C’“°+2p, essme Wh(y),

HMu(hXSQ)HLLOO(u)

with kg > 2 universal. Note that in the third inequality of (8.6), we have used the
weak-type (1, 1) bound for M, in |43, Exercise 2.1.1].
Combining (8.3), (8.4), (8.5), and (8.6), we obtain that

1 -1

R < My h)' Py ) (260C5° 2 - ess inf M,h(y))"

Wm@w>—sép(u@wdé( ) “)<’“ 2 e s it Muh(y))
< (2RCpet?)Pt,

For the general case; that is, w = (M,h)'Pv, with v € A;(u), note that

1

,u—esssupv(y)ﬁ < (- essinfv(y))ﬁ < ([U]Al(u) Q) )P = K1,

YEQ vee fQ vdp
so for t > 0,

u({z € Q: Myh(z)o(x)™ > 1}) < p({z € Q : Myh(x) > Kt}),
and we can reuse (8.4), (8.5), and (8.6) to conclude that w € AX(y), with

p—1
D . L ||XQU1 pM h”Lpoo wdu)
[wh5W>‘S%p<u«»L/ ) a(Q)

u{ € Q: Myh(a)o(x)™s > 1))\
= sgp (N wd,u <t>0 M(Q) >
K-'ru({z € Q: Mh(z) > 1) \""
<o (i wdﬂ) (s o )

< Mhlpd 2cnCF02 1 essinf M. h p—1
< [y sup (vadu/< ) v u) (2ro G- ess inf M,h(y))
S (QHOCZ(H— )p 1[ ]AI(M)‘
Finally, if du(y) = u(y)dy and u € Ay, it follows from Lemma 8.1 that uw € A%,
with
[(Mah)' Puo]ag < (L) Tulas Tl

1 Ar(uw)

>

Remark 8.5. It is worth mentioning that for u, v, and h as above, and 0 < § < 1,
(M, h)°Plyy € A,, 1 < p < co. Indeed, in virtue of the argument we used in (8.2),
[24, Theorem 4.2], and [27, Lemma 2.1,

[(Muh)é(l—p)uv]Ap < (%) ) [U]ZI[U]AI(U),

with £ > 1 universal.

Here, there is another new extension of Theorem 2.7 and Corollary 2.8 in [16].
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Lemma 8.6. Let u € Ay, and fixr 1 < p < co. For a function 0 # h € L},.(u) such
that M,h < co a.e., and v € Ay, let w = (uM,h)' "Pv. Then, w € A%, and

[wlar < én([u]a,) 7 [0] 47,

where ¢y, : [1,00) — [0,00) is an increasing function depending only on the dimen-
sion n.

Proof. As in the proof of Lemma 8.4, we first discuss the case w = (uM,h)'"P by
adapting the argument for u = 1 by C. Pérez (|73]). We have that

1
) |umM4wmm ’
[w]AZ} = su p
p—1
(8.7) = sup ( ) (sup (uMuh)l_p>
>0 |Q Jizeq: @) Mun(z)>t}

cop () (st -y

We know from [42, Page 160| and [43, Proposition 7.1.5] that, for every cube
Q CR" and a.e. x € Q,

M. (hxpaQ) (x) < 3"[ulay essinf Mo (hxems)(y) =t Jug;

so M,h(x) < M,(hxsq)(x) + Juq. Hence, for t > 0,

(8.8)
t{z € @ : u(x) M, h(z) > t}| t|{x€Q u(x)Jug > £}
Q B Q|
|tz € @ u(@)Mu(hxag)(z) > 5}

=1+l

Q|
For the first term, we get that

1 27,
1= t< 2wl / u < 2Ju,Q][ u
(8.9) 101 Jueo umnossy Q1 Jueco uwio>t) Q

< 2-3"[ul}, (essinfu(y)) (essinf Muh(y)) < 2-3"[uf}, essinf u(y) Moh(y).

For the second term, we apply the Sawyer-type inequality in [74, Theorem 1| (see
also [27, Theorem 1.3]) to obtain that

1< {x e g MullXao)(@) t}' <2 HM (hxsq)
u(z)~? Q| L ()
Cga1 1 n (Q
1)  STg ‘Q, JMW<3@NHAHM1Q %?/ymu

< 367 ([ula) [, (essinf u(y) (essint Mah(y)
< 367, (ula,lul?, essint u(y) Muh(y),

where &' : [1,00) — [0, 00) is an increasing function that depends only on n.
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Combining (8.7), (8.8), (8.9), and (8.10), we deduce that

g < s (f ) (3706 ) 2, eigronin))

< (3"(&7 ([u)ay) + 2)[wl,)

1
1

Now, for v € Ay, esssup,cqv(y) > < ([U]Al%>ﬁ =: K~! and for t > 0,

Hre@: u(x)Muh(a:)v(x)ﬁ >t} < H{zr €@ :ulx)Mh(x) > Kt}
Thus, if w = (uM,h)'"Pv, then by (8.8), (8.9), and (8.10),

1 p—1
HXQUEUMU}LHIZPQO(M
p _—
ol =sup (£, ) a
1 —1
tHz € Q : ulz) Muh(z)v(x) ™ > 1]\
=P (Ji “’) (i‘iﬁ’ Q) )
K '7{z € Q : u(x)M,h(x) > 7'}|>p_1
< (f ) (sup o

1

< 6" ol sup (ﬁ /Q <uMuh>”v) (essinf u(y) Muh(y))"

yeq
< Gn([u]a,)" " [v]ay,
with
on (&) = 3"(&74(E) + 2)?, £>1.
>

Remark 8.7. As in Remark 8.5, for u, v, and h as in Lemma 8.6, and 0 < § < 1,
(u(M, b)) "Pv € Ay, 1 < p < oo, with

(M) 7oL, < (cﬁ“ﬂzg ) vl

and x > 1 universal.

AN

It is clear that a factorization of AZ} has to cover a plethora of unusual weights,

and once again, we have to ponder the following question: is ﬁp enough?
Let us point out that the argument we used in the proof of Lemma 8.4 gives us
that for p > 1, and w € A,(n),

’ 1/p’
1 Y x| pree
W[ AR §sup<—/wdu) £ < 0.
wazw =5 @ Jo HQ)

Does this last condition characterize A% (u)?

8.2. One-variable extrapolation remastered.

We are now ready to develop weak-type analogs of [62, Theorem 3.1|, starting
with downwards extrapolation.
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Theorem 8.8. Fix 0 < a < 0o, and let v be a positive, measurable function such
that for p = yTia p(x)dx is a locally finite, doubling Borel measure on R"™, with
doubling constant 1 < C,, < oo. Given measurable functions f and g, suppose that
for some exponent 1 < p < oo, and every positive, measurable function v such that

Vﬂ_l € A(1+a)pa (H);
(8.11) Igllzree vy < PVE 4400 ) 1F 22w,

where - o= —+a V = uPa/PyePa anda) : [1,00) — [0,00) is an increasing function.

Then, for every exponent 1 < g < p, and every positive, measurable function w such
that W™ € A(11a)ga (1),

(8.12) 190l ooy < CUW B A4 a0 1 22 w),
where qia = %—l— a, W = wie/1%%  and U : [1,00) — [0,00) is an increasing
function.

Proof. We will prove this statement adapting the proof of Theorem 5.7. If ¢ = p,
then there is nothing to prove, so we may assume that ¢ < p. Pick w such that
W™ € Aptayg, (). We may also assume that || f|| o) < 0o. Fixy > 0 and v > 0.
We have that

Pa—qa
(8.13) N (y) = / W < A5 (vy) +/ (%) W =1+1II,
{lgl>y} {lg|>y}
where
(8.14)
1
pa/p QAP da—Pa ag “ w I+ap
¥ = (%) and = <Mu(|f|%wmﬂ_1)ﬂ> rea— rier

For the term [ in (8.13), we obtain that

Z || oo o "
]- S || |L11a ) 1 M#(‘fl%wmufl) (14a)q.
(8.15) (yy)e () LO+0)40:0 (W~ 1dy)
e W™ ot 11
(7y)se H Ao ) 1 L) -

where in the last inequality we have used the weak-type bound for the Hardy-
Littlewood maximal operator A, in [50, (3.11)].

For the term I7 in (8.13), we argue as follows: since Wu™" € A(14a)q, (1), we can
1—q
find functions wy, w; € A;(u) such that Wpu=! = w, ™", with

aq

[@o] ay ) < (KO [Wu_l] (1] A,y < (KO W ]

A(ta)g (B)’ A(1ta)ga (1)

and x > 1 universal. The construction of such functions combines the argument in
the proof of |72, Lemma 3.18] and the Buckley-type bounds for A, in [50, Theorem
1.3]. In virtue of Lemma 8.3 and [24, Theorem 4.2], if we write

_1 14+aq «a (g—p)(1+a)
Vi = M#(‘f’ Tra qTHa g~ )(1+ap)(1+mﬂ W M
1-p
ltag _a (p-(+a)  W=DUFOP)\ Tap
_ T p (p—1)(1+aq)
= (/\4M<|f‘ Tha qTHe g~ )(p D+ q)wp 1 w1,
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then we see that V™! € Apta)p, (1), with

p—1
= (0 —1)(1+ aq) T
Vi ]A(1+a)pa(ﬂ) = (’%O “(qg—1)(1+ ap) [wO]Al(M) [wl]Al(H)
e
< G[Wp ]A(1+Ot)lla( )

where )

w0y (1+a) it (1ra)y @ — D1+ aq) i¥ap
¢ == (kC)F ((HCM) (1+a) (q—l)(1+@p)) |

so by (8.11), we get that

(8.16)
PP R e
11 < (7y)qa Hg‘ LPa,o0 (yPa/Pyapa) S (’Yy) w(Q:O[W,U/ ]A(H_a)q ) ”f‘ )
and
(8.17)

P Tl i L R i g, o a/p
1 llerr = / /] (M”(|f| e wite ):u) w THag < || fIIZs (w)*
R

Finally, if we argue as in the proof of Theorem 5.1, we can combine (8.13), (8.15),
(8.16), and (8.17) to conclude that (8.12) holds, Wlth

1)(1+agq

W(E) = Cy&i rp(Coe Tl ), €3> 1,

1/qa o 1/pa a 1_1
¢, = ( Po ) (pa Qa) CM(H— )qa(q p)

Pa — qao qo

where

>

Remark 8.9. As in Remark 5.8, for ¢ > 1, we can take

(¢—p)(1+a)

vi= (B o) T W
where for a measurable function h € L1+ (W u~tdy),

S ME(Ih))
A= D AL e ’

LO+e)aa (Wp—1du)
and rewrite the proof of Theorem 8.8 to conclude that (8.12) holds, with

(1+aq

W(¢) = 20+ (G=5) gy (T i ), € > 1,
where € is as in (5.29), and €, := (KCH(1 4+ a)d )(AH)(Pa—da)

The proof of Theorem 8.8 extends to the case ¢ = 1 almost verbatim, taking
proper care of the terms with divisions by ¢ — 1.

Theorem 8.10. Fiz 0 < a < 00, and let v be a positive, measurable function such
that for p = 1/1%0(, p(x)dz is a locally finite, doubling Borel measure on R™, with
doubling constant 1 < C, < oo. Given measurable functions f and g, suppose that
for some exponent 1 < p < 0o, and every positive, measurable function v such that

Vﬂil € A(1+a)pa (N)y
lollzsosry < VI s, o) I lscr
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where pi = —|— a, V. = vPa/PyePaand 4 : [1,00) — [0,00) is an increasing

function. Then for every positive, measurable function w such that Wu=t € Ay(u),

—1_ _111 _ ra
o1l 2 gy < 25 W OV TNy

where W = wTa [
Remark 8.11. Note that for « = 0 and v = 1, we recover [16, Theorem 2.11].
As usual, we will now focus on the upwards extrapolation.

Theorem 8.12. Fiz 0 < a < 00, and let v be a positive, measurable function such
that for p = yTia p(x)dz is a locally finite, doubling Borel measure on R™, with
doubling constant 1 < C,, < 0o. Given measurable functions f and g, suppose that
for some exponent 1 < p < 0o, and every positive, measurable function v such that

Vﬂil S A(1+a)pa (PJ)}
(8.18) 9]l rae vy < OV A a0 |22 w),

where La =14, V= pa/pera and 4 : [1,00) — [0,00) is an increasing
function. Then, for every finite exponent q > p, and every positive, measurable
function w such that Wp™ € A11a)q. (1),

(8.19) 91| Lacoeqwy < U(W B a0 ) |20 )
where qla = %4— a, W = wie/12%  and U : [1,00) — [0,00) is an increasing
function.

Proof. We will adapt the proofs of Theorems 5.3 and 5.13. If ¢ = p, then there is
nothing to prove, so we may assume that ¢ > p.

Pick w such that Wpu™' € Ag4a), (1). By duality, wl%q,u’l € A@tayg (1), with

1+aq
[wﬁﬂ—l]A(HQ)q/(M [Wﬂ_l]A(H o (1) and it follows from [50, Theorem 1.2] that
_1 _ o —
wliql’b ! € A(l-i-a)q/—a(:u)a Wlth €= /-gcll';zqql [W,LL 1]A<1+a)Qa(N)7 and
B L 9(1+a) =
w01 Ay S 2070 CROTO Wt o

Note that W € LL (R"). Let g, := |glX50.), With o > 1, and y > 0 such that
gg< )#O IfWetakeﬁ::l_i_a_?’and

ER
M (waa W75 x f1g,1541)" p=1
8.20 V=
( ) (g=p)(14+a) p—1

1 1
7 —_ —
MM(U}Q(I"!‘Q)WQ (14+a) X{|gg\>y}) q—1 w 4 1’ p > 17
then we can write

1 1 B
Mu(quWq/BX{\gg|>y})1+av p: 17
Vit =
(q p)(1+o) (p 1)(1+oq)

M (wq(lJra W d'(i+a) (HO‘)X{\g |>y}) q—1)(I+ap) (W/J,_l) a—D(+ar)  p > 1.

1-q

Choose @y, @; € A;(u) such that Wy = @@, with

14agq

[wo]Al(H) S (KCZ) (el [W’u_l]A(H-a)qa( )’ [wl]x‘h(ﬂ) S (HCZ)(l—i_a)qa [Wlu_l]A(l-i—a)qa(H)’
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and £ > 1 universal. In virtue of Lemma 8.3 and [24, Theorem 4.2|, we see that
Vute Agtayp. (1), with

-1 R =]
Vi a0 a0 < oW ]A(l+a)qa (m) 7
and
kCr(1+ a)qa, p=1,

Q:o =

(HCS)1+(1+G) (61a+q/1(f;;)) (g=1)(A+oap) p> 1.

(p—1)(1+aq)’

Observe that V' > Wixg,>41, and we can apply (8.18) to control )\g‘;(y), as we
did in (5.16). Now, for p > 1,

1 1 %
M, (wa@+a) W 7+a) =
o({|f] > t}) < w{|f] > t})P/ u o X{lgol>y}) |
W T+a L(+a)d! (w)
and for p =1,
M, ( W ) A
q q
v({If] > t}) < w({|f| > tHV | =~ w 1/5X{|gg|>y}
w
L4 (w)

By the Buckley-type bounds for M, in [50, Theorem 1.3,

1 1 . B
HMM(wq<l+°‘) W 70+a) X{\gg|>y}) H < ch(l + a)qa [W,u 1]A(l+a)qa )

1
L(1+a)d’ (wT=a p=1du)

1
X W({lgel > y}) 7,

and

1

< wCu(Be) T p™ 30

L5
”Mu<wwwqﬁX{lggl>y})‘ Atayg—< (1)

L8 (T = dp)
_1
X W({lgel > y})e.

Note that % <pB <14 a,and

1 _ q - 1 . HC}’:[W“_l]A(I-&-Q)qa (/J,) < (q - 1)/4//
B —1 1+agq HC,’;[W/lfl]A(H&)qa(u) -1~ 1+4aq
Moreover,
B (4 kG E a0 =1 _ (14 a)gak — 1
Bq —1 KOEIW A yan ) — 1 - k—1 ’

50 (1+a)ga < (B¢) < (14 a)gar’.
Combining the previous estimates, we get that

o({[£1> 1) < S(W i ag s, )W {lgel > 1) rw{[ ] > 1),

and

1/p
b _ 1_1
11l 2oy < (aqﬁ([Wu 1]A<1+a)qa<u>)> W(Hlgol >y} [[f | Law ) »



EXTRAPOLATION VIA SAWYER-TYPE INEQUALITIES 61

with
o o (1+a)x’
(kK CE(1 + a)ga) ' (203“* Mag) R
o(§) = §=> 1.
(g—p)(1+a)
(KCFA+a)gal) 7, p>1,

Finally, if we follow the proof of Theorem 5.3 performing the previous changes,
we conclude that (8.19) holds, with

(p—1)(1+aq)

1/p
‘P(S)Z(geb(é)) B(CETEIE), € > 1

>
Remark 8.13. As in Remark 5.14, if 1 < p < ¢ < 0o, then we can take
V= L@L(wq(lia) Wq/(llJroz) X{‘gg|>y}>%w%7
where for a measurable function i € LU+ (wTa y~1dp),
> MF¥(|h
e :_ng“ M, ||F G ’
LO+e) (1T =1 dpy)
and argue as before to conclude that (8.19) holds, with
p 1/p (1+ /<1_1) (g—p)(1+o)
v(Ee) = (=) 20 ET((1+ a)aunCy) e TG, €2 1.
q

At this point, we suspect that, to deduce restricted weak-type analogs of Theorems
8.8 and 8.12, we should examine the following conjecture and a convenient dual
version yet to be determined.

Conjecture 8.14. Fiz 0 < a < oo, and let v be a positive, measurable function
such that for p = vTie p(x)dx is a locally finite, doubling Borel measure On R™,
with doubling constant 1 < C, <oo. Fiz an exponent ¢ > 1, and wmte = =2 + Q.
Let w be a positive, measurable function such that Wu=! € A@M (1), where W =
wie/9y%% . Then, there exists a function ¢ : [1,00)? — [0,00), increasing in each
variable, such that for every measurable function f,

1+a)qa

s ey < oG W a0 1T
Equivalently,
M, f )
R < o(Cy, (W (TFa)da dta
v L1(]1+a)qa,oo(wv(1+a>qa) ¢( 1 [ ILL ] (1+a)q (#)) ||f||L1(jl+a)qa’11$aq (w)

where v = (w)“%a, and for 1 < r < oo and 0 < s < oo, L (w) is the weighted
Lorentz space given by the quasi-norm || f{|rs () := || fv||zrs(w)-

Remark 8.15. Further hypotheses on v and w may be required (see Subsection 8.3).
In particular, u, w® € Ay for some 0 < e < 1.

Observe that 77, (R") = LP(w), but this relation generally fails for arbitrary
exponents r and s. We wonder what would happen if we were to replace the spaces
LPY(w) and LP°°(w) with L’;’ll ,»(R") and LP77 (R™) in the definition of restricted
weak-type, and how this would affect the characterizations of Af and the corres-
ponding extrapolation schemes. Similar weak-type questions were studied in [67].
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8.3. Extensions of A3 and extrapolation.

Given exponents 1 < py, ..., pm < 00, with P = (p1, -+, Dm), write

1 1 1 1
a=—+-+— and -=—+a.
P2 Pm P n
Also, for positive, measurable functions vy, ..., vy, with ¥ = (v1,...,v,,), write
m 1
v= Hvia”, p=via, and V =uy= v]f/pl ap,
=2
In virtue of [62, Lemma 3.2| and Definition 5.4, if v € Ap, then for i =2,...,m,
v; € Agii, with g; = ﬁ n e A and V,u_l S A(1+a)p(ﬂ), with
[Ui]AZZ? < [ﬂi&lﬁi? [ ] % [_11+a7 and [VM_I]A(Ha)p(M < [ﬁ]p 5
Conversely, if va, ..., v,,, and u are as above, and v; is such that Vu=! € Aitap(p),
then v € Ap, with
m 1
—1 1/17 14+« oip;
mAﬁ <[V ]A(Ha)p(u) MAI% g[vi]Agg :

Note that p is a positive, locally finite, doubling Borel measure on R", with
doubling constant C), < 2%[;1],41% (see [43, Proposition 7.1.5]).

Hence, we can combine Theorems 8.8 and 8.12 as we did in the proof of Theo-
rem 6.1 to establish the weak-type A extrapolation theory in an alternate manner
from |61, 62, 70], avoiding the use of Rubio de Francia’s iteration algorithm as the
primary tool in constructing measures.

Theorem 8.16. Given measurable functions fl,.. fm, and g, suppose that for

some exponents 1 < pi, ..., pm < 00, ; = = —I— -+ —, and every U € AI;,

191l oo () < 2([0]a) H 1ill s oy

where ¢ : [1,00) — [0, 1s an increasing function. Then, for all exponents

00)
1<q1,...,qm<oo,%:qi+ —i——,andeveryweAg

||g||L£11°°(Vu7) S (P([w]/l@) H ||fi||Lqi*mi“{Pivqi}(wi) 5
=1

where ® : [1,00) — [0,00) is an increasing function. If for some 1 < i < m,
p; = 1, then we can also take q; = 1.

The first step towards a restricted weak-type analog of this theorem is to define
a proper class of tuples of measures to extrapolate. We introduce some ideas that
may not be final but point in the right direction.

Let us review the structure of Az. It follows from [60, Theorem 3.6] that 7 € Ap

if, and only if for i« = 1,...,m, v; € A/, with 0; = m, and vz € Apyp.
Moreover,
m 1
1 ip; iDi
O, < 2 TI00TE . Welan, [0, and  [olg < (0132

i=1

This argument motivates the next definition.
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Definition 8.17. Fix 1 < Ny,..., N,, € NU{oo}, and 0 < ¢ < m. Given exponents

11 1 1 , s
1Spl,...,pm<oo,5:])—1+---+ﬁ,andai:m,z:l,...,m,andposmlve,

measurable functions wy, ..., w,,, with &/ = (w1, ..., w,,), we say that:
(a) W € APN, with P = (pl,...,pm) and N = (Ny,...,Ny,), if w; € A7

1 =1,...,m, and l/wEAmle+ 4nN,,- Ny =--- =N, =1, we simply
e

(plw"apf) N - (va"'7N£)7 ﬁ = (pf-i—la"wpm)a
if w; € A"?yN, =1,.... 0w € Al i =L+ 1,...,m, and vz € Ay, (or

=
g
Mm
s
el
)
2
';T‘
:UL

Amp,N1+--~+Ne+m—€)~
If ¢ =0, we take Ap 5 5 := Ap, and if £ =m, we take A5 5 5 := Ap 5

Remark 8.18. It is clear that these classes contain Az. Moreover, [, ﬁpiy N, C

(Hf AN > x (T s 4p) C APRN? and we want to believe that

A@ and Aﬁ ax C Aﬁ y but proof is required. It would be helpful to

produce characterlzatlons of AR and A 5 resembling [60, Theorem 3.6].

A\ 7
Ay

Note that if we take parameters —n (1 +pz~(m 1) <Bi<n(p—1),i=1,...,m,
with —n < Y7 2% < n(mp — 1), then & = (|2, ..., |z[*") € Ap, and if for
i =40+ 1,...,m, we also impose that 3; < n(p; — 1), then @ € A\ﬁﬁi (see [43,
Example 7.1.7]). In particular, if for some 1 < j < m, p; # 1, then for 5; = n(p;—1),
wegAsifl<j<U{, andngAPRllf€+1<j<m

It is worth mentioning that, mlmlcklng the case m = 1, we can identify the
following well-behaved subclass of A B

Definition 8.19. Given exponents 1 < py,...,p, < 00, % = pil + e+ —, and
E)\ositive, measurable functions wy, . .., w,,, we say that @ = (w; m) belongs to
Q 5 if there exist functions hy, .. h € L} (R"), and 4 = (ul, e ,um) € Ay such
that

<(Mh1)1 pry ,...,(Mhm)l—pmufz";) .

We associate to this class the constant given by
Wl g, = inf [d]a;,
where the infimum is taken over all suitable representations of .

Remark 8.20. In practice, for @ = (wyq,...,w,) € gﬁ, it would be convenient
to construct functions hy,...,h, € L} (R"), and @ = (uy,...,u,) such that
1

W = ((Mh))" Py, ..., (Mhy) "Pruy,), with u, ™" € A, i = 1,...,m, and

uﬁ’/ PLoub/Pm e Ay Ts there a similar factorization result for @ € Ap, replacing

Mhl,...,Mhm by vq,..., v, € A7

Af‘ger all we }ELVG seen so far, itA seems reasonable to consider extrapolation theories
for Aﬁ,]\? and Aﬁ, AN (or even (), but for now, we cannot follow the road map
suggested by Theorems 8.8 and 8.12 because, given (wi,ws,...,w,) € A , with
Q= (ql,pg, o ,pm) we don’t know if for vy as in (8.14) or (8. 2()) (1, Wa, ..., W)
BN+ With P= (p1,p2,---,Pm) and N = (2,1,...,1), or AP if ¢; = 1. Luckily,

for G = T, we have that pn = wy/™ ... wy™ € A, and something can be arranged.

isin A
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We are now ready to present the first restricted weak-type extrapolation scheme
assuming multi-variable conditions on the tuples of measures involved, which is
an endpoint result that falls outside the classical multi-variable Rubio de Francia’s
extrapolation theory in [61, 62, 70]. Remarkably, our favorite Sawyer-type inequality
saves the day through Lemma 8.6.

Theorem 8.21. Fiz m > 2. Given measurable functions fi, ..., fm, and g, suppose
that for some exponents 1 < p; < 00, pp = -+ = py = 1, and p = %,
and every m-tuple of positive, measurable functions U = (vy,...,v,) such that
1
. vé/m, um e Ay, and vg € AR
14+p1(m—1)
(8.21)

1
<o Mmoo 0 a0y A el ag, HHLHM
T+p (m—1)

1911 o.o0 v

where @ : [1,00)™ — [0,00) is a function increasing in each variable. Then, for
every W = (wy, ..., wy,) € Ay,

(822) ||g||L%'°O(Vu7) < (P([w]AT) q ||fi||L1'I’%(wi) ;

where ® : [1,00) — [0, 00) is an increasing function.

Proof. We will adapt the proof of Theorem 8.8. Pick @ = (wy,...,wy,) € Aj.
We know from [60, Theorem 3.6] and [62, Lemma 3.2| that for i = 1,...,m, and

W= w;/m...w}n/m,
(8:23) mae { [, [ s [ ™y oy ), < 50

Fix y > 0 and 7 > 0. We have that

-2
s20 = [ wexzow [ () Twe=ten
{lg|>y} {lgl>y}

_1
where & = M#(flwi o hym,

To estimate the term [ in (8.24), in virtue of (8.23), [50, (3.11)], and [43, Propo-
sition 7.1.5|, we deduce that

(8.25)
1 1/m 1 -1
j< L R T
= G 2 om = Gy (1M 10 i
10n+10g2 balay 1/m pi_pl n+-L log, ['LD’]Aﬂ 1/m
< W[Uh sl fillz ) < (7y>1/m10 i[] ] Hf1HL1 A o)’
To estimate the term /7 in (8.24), take
A W R LGkt
(8.26) v = <Mu<f1w1 T )M) wy ",
and v; = w;, i = 2,...,m. Since % =1- %, it follows from (8.23)
1
and Lemma 8.6 that v; ™™™ € AR ..,, , with
1+p1(m—1)
1
T 1/ m T = 2P
R P S () i R A U S

I+p1(m—1)
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where ¢, : [1,00) — [0, 00) is an increasing function depending only on the dimen-
sion n. Moreover,

1—mp 1/m

1
_ . p/m P/P2 p/pm __ , 1tp1(m=1) mp 1-
vy =, PP — g p = M, (frw, pwy

)
and Lemma 8.4 tells us that vy € AR | with

mp?

g ey —»i 1+w}, mn 7 +55 + —
Walag, < (cq[d ]z/lm)(mm [w]A( P _ ¢ [W]Aﬂ( o)

- Y
1 1

and xk > 1 universal.
Hence, by (8.21) and the monotonicity of ¢, we get that

(8.27)
e (’Vy)p/ Vs
Y™ S at>uy
,yp m m1 mlp —11/m mp’ m
< Gy PO R e (L Huflum

and || fill i1,y < P1 uflu”pl

P1 u}l)

Combining the estlmates (8.24), (8.25), and (8.27), we conclude that

1—
Mo(y) < DLk st gt/ g |
o= (Vy)l/m Ul nar
P 1 _1
p /y 1/m mo! [ m s1l/m sy m )
aemrodale 1A [w]A;pa[w]A/f T ) H||fz Ip/pmw)

and taking the infimum over all v > 0 (see |75, Lemma 3.1.1]), (8.22) holds, with
(8.28)
+K

1 m\ 1P S .~
D(6) = € (1075 sgm) T (g, (M) e £ R, e2 1,

_1
P1

" mp)™ (mp — 1)5_1. >

From Theorem 8.21, we can obtain the following extrapolation result for multi-
variable operators arguing as in the proof of Corollary 6.3.

3
m o .__
where ' = p,

Corollary 8.22. Fixm > 2, and let'T' be an m-variable operator defined for charac-

teristic functions. Suppose that for some exponents 1 < p; < 00, po = -+ = pp, = 1,
and p = #@f every m-tuple of positive, measurable functions U = (vy,...,vn)
such that val(m Ve AR L, v;/m, o™ e Ay, and vy € Aﬁp, and all mea-

1+py (m—1)

surable sets Eq,. .., E, CR",

m

||T(XE17 cee ’XEm)||LP7°°(y17) < @(Ula vy U, U H l/pz
=1

with ¢ as in (8.21). Then, for every W = (wy,...,wy,) € Az, and all measurable
sets Fy,..., F,, CR",

1
||T(XF17'“7me)||[/%’°°(1/“—)) < pl A* Hw’b

with ® as in (8.28).
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Remark 8.23. The extension of this last bound to the full weak-type (1,...,1,+)

P m

would require a version of Theorem 2.4 for tuples of measures in Ay. At the time of
writing, such a result is not available.

Note that for @ € Ay, and vy,..., v, as in (8.26), we have that v € Ag‘, with

P = (p1,1,...,1). Indeed, by the argument in the proof of Lemma 8.6, and using
(8.23), we get that for every cube @ C R™,

||XQ”1_1||L”'1’°°@1> 1/m -2 (¢ 1ym (@) pyrtmel
Ie] < Gu([@]47) ([w]AT Vw(Q))

1—L
X ((essmfp(y))(esseglf]\/[#h(y))) P1 0 —%,

yeQ

1
where h = flwi mp~t. Also, from [62, Lemma 3.2| and |60, Theorem 3.6, we
deduce that the m-tuple (1,ws, ..., wy,) is in Az, with

(1, w2, -y w4 = Sup< il ) H (essinfw,(y)) ™" < [@].

Q o, ve@ !
Thus,
IXQUT | pto0 ) ™ essSU w;(y)~!
2 (v1) Pyeq WilY
[0]4r = supvg(Q)"/?
g Q| g Q|
1/my1—-L . 1-L  1-m—L - —1
< ¢n r1 sup ( essinf P1 P1 essmf w;(y
([ 4.") Qp( ssinf () 71Q| ll )

1-p ﬁerfl 1
< (1o 8 [y m0s) ™ (esint M)

< [} ™ g (] ™) sup (Q] ess inf u(y)' 7 u(Q)

< [y ™ gu( ™).

1

Therefore, the extrapolation argument described in the proof of Theorem &8.21
and Corollary 8.22 can be applied to classical multi-variable operators such as the
multi-sub-linear maximal operator M, sparse operators like Ag, and multi-linear
Calderon-Zygmund operators, for which we can prove weighted restricted weak-type
bounds (see |74, Theorem 10]).

Theorem 8.21 and Corollary 8.22 are proof of concept; they show that a genuinely
multi-variable restricted weak-type extrapolation theory is conceiv?ble, and that the

. o . . 1 : —1
appropriate conditions on the measures involved are close to v, """ € AR .,
1+p; (m—1)

i=1,...,m, and vz € A%

mps which should characterize A%.

To keep advancing, one may have to develop the theory of Af(u) weights further,
generalize Subsection 8.1 for u € A, prove restricted weak-type versions of 62,
Lemma 3.2| and [60, Theorem 3.6], and make some progress with Conjecture 8.14
and suitable dual forms of it.

In [74], we suggested that multi-variable Sawyer-type inequalities for M might
play a role in Ag extrapolation, but for now, this doesn’t seem to be the case.
Nevertheless, the relation between [74, Conjecture 1] and Conjecture 8.14 should be

explored.
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AUTHOR’S NOTE

The reader may encounter the phantom reference Endpoint weighted estimates for
bi-linear Fourier multipliers via restricted bi-linear extrapolation in the literature, an
unfinished draft containing E. R. P.’s ideas, results, and figure designs from Chapter
3 of his Ph.D. dissertation. Due to the censorship, discrimination, and contempt
that E. R. P. suffered from the principal investigators of his former research group
while preparing such a manuscript, he decided to discontinue the project and not
authorize its publication. That material should not have been circulated without
proper citation; that is, [75]. The present document supersedes the one above.

Coping with rights violations, negligence, unethical behavior, toxic workplace
culture, and the challenges posed by COVID-19 resulted in mental and emotional
exhaustion. There have been plenty of reasons to let this research rot, yet here it
is, fresh as a fish, against all odds. The intervention of two individuals made it
possible. The author is indebted to Carlos Pérez Moreno for his trust, support, and
mentorship, especially during the aftermath of the pandemic. The author also wishes
to express gratitude to Marta de Ledn Contreras for providing an opportunity that
motivated him enough to jump-start this study again, as well as to the personnel
he met at UPV/EHU and BCAM for their help and assistance.

Regarding funding, the Margarita Salas grant was advertised as highly competitive
and prestigious but did not comply, forcing part of its beneficiaries to resign or file
a lawsuit against the employing universities. By contrast, PGC2018-094522-B-100
worked like a charm.
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