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Abstract. We present a multi-variable extension of Rubio de Francia’s restricted
weak-type extrapolation theory that does not involve Rubio de Francia’s itera-
tion algorithm; instead, we rely on the following Sawyer-type inequality for the
weighted Hardy-Littlewood maximal operator Mu:∥∥∥∥Mu(fv)

v

∥∥∥∥
L1,∞(uv)

≤ Cu,v∥f∥L1(uv), u, uv ∈ A∞.

Our approach can be adapted to recover weak-type AP⃗ extrapolation schemes,
including an endpoint result that falls outside the classical theory.

Among the applications of our work, we highlight extending outside the Banach
range the well-known equivalence between restricted weak-type and weak-type for
characteristic functions, and obtaining mixed and restricted weak-type bounds
with AR

p weights for relevant families of multi-variable operators, addressing the
lack in the literature of these types of estimates. We also reveal several standalone
properties of the class AR

p .
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1. Introduction

In the topic of weighted theory, a result that has attracted the attention of many
researchers in the field is the so-called Rubio de Francia’s extrapolation theorem (see
[76, 77]), which provides a precious shortcut when trying to prove weighted strong-
type bounds. In its simplest form, it says that if a sub-linear operator T satisfies
that

T : Lp(v) −→ Lp(v),

for some 1 ≤ p <∞, and every Muckenhoupt weight v in Ap, then

T : Lq(w) −→ Lq(w),

for every 1 < q < ∞, and every Muckenhoupt weight w in Aq (see Section 2 for
definitions).

Many alternative proofs of this theorem are available in the literature (see [2, 28,
34, 41]), also tracking the sharp dependence of ∥T∥Lq(w)→Lq(w) in terms of [w]Aq (see
[33]), and off-diagonal results where the domain and target Lebesgue spaces differ
both in terms of exponents and weights (see [25, 35, 48] for strong-type results, and
[69] for weak-type ones). Moreover, it was discovered that the operator T plays no
role in the extrapolation process, and one can simply work with families of pairs of
measurable functions (see [26, 31, 35]).

Around the beginning of the current millennium, the topic of multi-variable op-
erators started gathering interest, with the resolution of Calderón’s conjecture (see
[54, 57]) and the development of a systematic treatment of multi-linear Calderón-
Zygmund operators (see [47]), and the first results on multi-variable Rubio de Fran-
cia’s extrapolation appeared.

In [46], it was proved that if an m-variable operator T satisfies that

T : Lp1(v1)× · · · × Lpm(vm) −→ Lp(v
p/p1
1 . . . vp/pmm ),

for some exponents 1 ≤ p1, . . . , pm < ∞, with 1
p
= 1

p1
+ · · · + 1

pm
, and all weights

v1 ∈ Ap1 , . . . , vm ∈ Apm , then

T : Lq1(w1)× · · · × Lqm(wm) −→ Lq(w
q/q1
1 . . . wq/qm

m ),

for all exponents 1 < q1, . . . , qm < ∞, with 1
q
= 1

q1
+ · · · + 1

qm
, and all weights

w1 ∈ Aq1 , . . . , wm ∈ Aqm .
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In [35], the sharp dependence of ∥T∥
Lq1 (w1)×···×Lqm (wm)→Lq(w

q/q1
1 ...w

q/qm
m )

in terms of
([wi]Aqi

)1≤i≤m was established, and analogous multi-variable weak-type extrapola-
tion schemes were studied in [19]. Once again, the operator T plays no role, and all
the results can be stated for (m+ 1)-tuples of measurable functions.

Recently, multi-variable strong-type extrapolation theorems for AP⃗ weights have
been obtained in [61, 62, 70], solving in the affirmative a question that had been
going around for about a decade, since the publication of [60], where such weights
were introduced.

Rubio de Francia’s extrapolation theory provides a potent set of tools in Harmonic
Analysis, but it has a weak spot; namely, it does not allow to produce estimates in
the endpoint q1 = · · · = qm = 1, which can be easily seen by considering m-variable
commutators (see [60]).

In the case of one-variable extrapolation, the works of M. J. Carro, L. Grafakos,
and J. Soria (see [16]), M. J. Carro and J. Soria (see [18]), and S. Baena-Miret and
M. J. Carro (see [3]) give a solution to this problem assuming a slightly stronger
extrapolation hypothesis. They showed that if a sub-linear operator T satisfies that

T : Lp,1(v) −→ Lp,∞(v),

for some exponent 1 ≤ p <∞, and every weight v in Âp, then

T : Lq,min{1, qp}(w) −→ Lq,∞(w),

for every exponent 1 ≤ q <∞, and every weight w in Âq. Here, for r ≥ 1, the class
Âr contains all the weights of the form (Mh)1−ru, where h ∈ L1

loc(Rn) and u ∈ A1.
If r = 1, then Â1 = A1, but for r > 1, Ar ⊊ Âr ⊆ AR

r .
In general, the classical strong and weak-type Rubio de Francia’s extrapolation

theorems rely on three fundamental ingredients: factorization of Ar weights, con-
struction of A1 weights via Rubio de Francia’s iteration algorithm (see [11, 76]),
and sharp weighted bounds for the Hardy-Littlewood maximal operator M . How-
ever, in the setting of restricted weak-type Rubio de Francia’s extrapolation, many
technical difficulties appear. For instance, no factorization result is known for AR

r

weights, which justifies the need for the class Âr. Also, within this framework, the
Rubio de Francia’s iteration algorithm can not be defined and has to be carefully re-
placed by the Hardy-Littlewood maximal operator M in the construction of weights.
Fortunately, we do have sharp weighted restricted weak-type bounds for M .

The main purpose of this project is to build upon [3, 16, 18, 19, 75] and extend to
the multi-variable setting the restricted weak-type Rubio de Francia’s extrapolation
techniques discussed there.

The first result that we were able to deduce, presented in [75, Theorem 3.2.1],
allows us to extrapolate down to the endpoint (1, 1, 1

2
) from a diagonal estimate.

Simply put, if a two-variable operator T satisfies that

T : Lr,1(v1)× Lr,1(v2) −→ L
r
2
,∞(v

1/2
1 v

1/2
2 ),

for some exponent 1 < r <∞, and all weights v1, v2 ∈ Âr, then

T : L1, 1
r (w1)× L1, 1

r (w2) −→ L
1
2
,∞(w

1/2
1 w

1/2
2 ),

for all weights w1, w2 ∈ A1. The crucial point in its proof is the endpoint bound

(1.1) M⊗ : L1(w1)× L1(w2) −→ L
1
2
,∞(w

1/2
1 w

1/2
2 ),
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proved in [60] and refined in [75, Theorem 2.4.1] and [74, Theorem 3]. Here, the
operator M⊗ is defined for locally integrable functions f1 and f2 by

M⊗(f1, f2)(x) :=Mf1(x)Mf2(x), x ∈ Rn,

where M is the Hardy-Littlewood maximal operator.
For simplicity, in [75, Chapter 3] we decided to work on two-variable extrapolation;

the extension from two variables to multiple variables is just a matter of notation.
The approach to establishing general downwards extrapolation schemes is now

evident: find some auxiliary operator Z for which we can prove mixed and re-
stricted weak-type inequalities, and use the extrapolation hypotheses to transfer
such bounds to the generic operator T . The operator Z plays the same role as the
Hardy-Littlewood maximal operator plays in the one-variable restricted weak-type
extrapolation theory of Rubio de Francia.

As it turns out, sometimes we can take M⊗ to be our auxiliary operator (see
[75, Theorem 3.2.4]). Moreover, our preliminary mixed-type inequalities for M⊗

in [75, Theorem 2.2.10] encouraged us to develop the multi-variable mixed-type
extrapolation theory of Rubio de Francia, partially presented in [75, Section 3.3]
and completed in Section 6.

After a detailed analysis of the proof of (1.1) in [60], we concluded that the
complete solution to multi-variable mixed and restricted weak-type extrapolation,
along with the corresponding bounds for M⊗, relies on weighted inequalities for
operators of the form

Z f =
Mf

U
on Lorentz spaces, being U some nice weight. This discovery forced us into devel-
oping our theory of Sawyer-type inequalities for Lorentz spaces, displayed in [75,
Section 2] and [74].

One of our most remarkable achievements is the following, which, unexpectedly,
keeps popping up in our calculations: if u ∈ A∞ and uv ∈ A∞, then there exists a
well-behaved constant Cu,v such that for every measurable function f ,

(1.2)
∥∥∥∥Mu(fv)

v

∥∥∥∥
L1,∞(uv)

≤ Cu,v

∫
Rn

|f(x)|u(x)v(x)dx.

By exploiting (1.2), the Sawyer-type inequality in [74, Theorem 2], and its dual
version in Theorem 4.1, we manage to produce Theorem 6.1, the multi-variable
mixed and restricted weak-type extrapolation scheme that we were seeking, fulfilling
the original goal of our project. In general terms, we have that if an m-variable
operator T satisfies that

T : Lp1,1(v1)× · · · ×Lpℓ,1(vℓ)×Lpℓ+1(vℓ+1)× · · · ×Lpm(vm) −→ Lp,∞(v
p/p1
1 . . . vp/pmm ),

for some exponents 1 ≤ p1, . . . , pm < ∞, with 1
p
= 1

p1
+ · · · + 1

pm
, and all weights

vi ∈ Âpi,∞, i = 1, . . . , ℓ, and vi ∈ Api , i = ℓ+ 1, . . . ,m, then

T :

(
ℓ∏

i=1

L
qi,min

{
1,

qi
pi

}
(wi)

)
×

(
m∏

i=ℓ+1

Lqi,min{pi,qi}(wi)

)
−→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),

for all exponents 1 ≤ q1, . . . , qℓ <∞, 1 < qℓ+1, . . . , qm <∞, with 1
q
= 1

q1
+ · · ·+ 1

qm
,

and all weights wi ∈ Âqi,∞, i = 1, . . . , ℓ, and wi ∈ Aqi , i = ℓ + 1, . . . ,m. Here, for
r ≥ 1, the class Âr,∞ is an extension of Âr such that Âr ⊆ Âr,∞ ⊆ AR

r .
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In particular, and ignoring some technicalities (see Theorem 7.1), we get that if
an m-variable operator T satisfies that

T : Lp1,1(v1)× · · · × Lpm,1(vm) −→ Lp,∞(v
p/p1
1 . . . vp/pmm ),

for some exponents 1 ≤ p1, . . . , pm < ∞, with 1
p
= 1

p1
+ · · · + 1

pm
, and all weights

v1 ∈ Âp1 , . . . , vm ∈ Âpm , then

T : Lq1,1(w1)× · · · × Lqm,1(wm) −→ Lq,∞(w
q/q1
1 . . . wq/qm

m ),

for all exponents 1 ≤ q1, . . . , qm < ∞, with 1
q
= 1

q1
+ · · · + 1

qm
, and all weights

w1 ∈ Âq1,∞, . . . , wm ∈ Âqm,∞. For a one-weight version, see Corollary 6.6.
Following A. Cordoba’s philosophy on strong-type extrapolation, we can say that:

There is no restricted weak type, only weighted (1,...,1,1/m).

Let us point out that in the mixed-type setting, and when working with Ar

weights, we can either follow the classical approach, using Rubio de Francia’s itera-
tion algorithm, or our new strategy, with (1.2) and related Sawyer-type inequalities,
to run the extrapolation procedures, with the former leading to better constants than
the latter, but in the restricted weak-type setting, the first option is not available,
and we have no choice but to use Sawyer-type inequalities.

Our techniques can be further enhanced and, when combined with recently un-
earthed structures inside AR

p (see Subsection 8.1), can be used to tackle extrapolation
assuming multi-variable conditions on the tuples of measures involved (see Subsec-
tion 8.2 and Theorem 8.16), including endpoint results that are out of reach for the
classical procedures in [61, 62, 70] (see Theorem 8.21).

Inspired by [35], we derive our multi-variable extrapolation theorems from one-
variable off-diagonal extrapolation results (see Section 5 and Subsection 8.2).

For technical reasons, in all our extrapolation arguments, we require the constants
in each estimate to depend increasingly on the constants of the weights involved.
This hypothesis may seem restrictive at first, but it is not, since sharp constants are
this way (see [33, Footnote 3]).

Note that for mixed and restricted weak-type bounds for multi-variable operators,
the Lorentz spaces that we consider have first exponents 1 ≤ r1, . . . , rm < ∞, and
r such that 1

r
= 1

r1
+ · · · + 1

rm
. Hence, we can identify each choice of exponents

r1, . . . , rm with the point ( 1
r1
, . . . , 1

rm
) in the space of parameters (0, 1]m.

A relevant region inside this m-cube is the so-called Banach range (see Figure 1),

Bm := {(x1, . . . , xm) ∈ (0, 1]m : x1 + · · ·+ xm < 1},
where the corresponding values of the exponent r are strictly bigger than one, and
hence, Lr,∞(v) is a Banach space, being v a weight. In particular, duality is available
(see [43, Theorem 1.4.16.(v)]).

Duality has proved to be a powerful tool in the study of weighted inequalities for
classical operators, especially when combined with sparse domination techniques.
Thus, working with Lorentz spaces where duality is not available is a problem in
practice, and it gets worse as we increase the number of variables m, since the
Banach range shrinks fast. In fact, one can check that

|Bm| =
1

m!
.

This lack of duality can sometimes be circumvented by wisely using Kolmogorov’s
inequalities (see [74] and [75, Chapter 5]), but not always, and that’s when our
extrapolation kicks in. We can prove bounds in the Banach range by hand, and
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0 1 (0, 0) (1, 0)

(0, 1)

(0, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

Figure 1. Pictorial representation of the Banach range for one, two,
and three variables.

then effectively extend them outside it via multi-variable mixed or restricted weak-
type extrapolation techniques.

In particular, our extrapolation schemes are handy for overcoming two funda-
mental problems of weak Lebesgue spaces Lr,∞(v) with 0 < r ≤ 1, strongly related
to the absence of duality: the lack of Hölder-type inequalities with the change of
measures, and Minkowski’s integral inequality.

The first problem becomes an obstacle when working with product-type opera-
tors. Nevertheless, using our Hölder-type inequalities from [75, Subsection 2.2.1],
we can obtain bounds for such operators in the Banach range, and then apply an
extrapolation result to extend them past such a range of exponents. For the exact
details, see Proposition 7.6 and Theorem 7.8. These arguments also apply to some
multi-variable commutators, as shown in Corollary 7.9.

The second problem is an impediment when trying to produce bounds for av-
eraging operators. Here, the strategy is to prove estimates in the Banach range
using Minkowski’s integral inequality and then extrapolate outside it, as we see in
Theorem 7.11.

As a particular case, we started working with multi-linear multipliers of the form

Tm(f1, . . . , fm)(x) :=

∫
R
· · ·
∫
R
m(ξ⃗)f̂1(ξ1) . . . f̂m(ξm)e

2πix(ξ1+···+ξm)dξ1 . . . dξm,
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initially defined for Schwartz functions f1, . . . , fm, and x ∈ R. The study of such
operators was initiated by R. R. Coifman and Y. Meyer (see [21, 22]). In recent
years, the interest in them has increased, following the works by M. Lacey and C.
Thiele on the bi-linear Hilbert transform and Calderón’s conjecture (see [55, 56, 57]).
For more information and results on m-linear multipliers and related topics, see
[40, 44, 45, 47, 51, 64, 68].

Following [34], we found that for nice symbols m, it is possible to write Tm as an
averaging operator of products of modulated and translated Hilbert transforms, and
hence, in Theorem 7.13, we are able to establish mixed-type inequalities for these
operators using our multi-variable extrapolation tools, combined with bounds on
weighted Lorentz spaces for the point-wise product of Hilbert transforms.

It’s time to face the elephant in the room: mixed and restricted weak-type results
with AR

p weights are scarce in the literature and generally difficult to prove, even in
the Banach range. This means that the required estimate to start extrapolating will
not always be available. Fortunately, we can find plenty of weak-type (1, . . . , 1, 1

m
)

operators out there, and extrapolate upwards from the endpoint p1 = · · · = pm = 1
with Corollary 6.3 or Theorem 7.1 to cover the full range of mixed and restricted
weak-type bounds for them. A remarkable example is the family of so-called multi-
linear bounded oscillation operators (see [13]), including Calderón-Zygmund oper-
ators, Littlewood-Paley square operators, Fourier integral operators, higher order
Calderón commutators, and maximally modulated singular integrals. See Theo-
rem 7.5 for details.

Developing (1.2) and its corollaries, Sawyer-type inequalities for Lorentz spaces
and mixed and restricted weak-type bounds for M⊗, and using them to deduce
multi-variable extrapolation schemes is an original idea of the author—E. R. P.—
and was first described by him in [75]. What follows is a satisfactory closure of that
piece of work.

2. Preliminaries

In this section, we introduce some basic concepts that we will use throughout this
document.

2.1. Notation and conventions.

In general, we will work in Rn, with 1 ≤ n ∈ N. Unless otherwise specified, by
a function f we mean a real or complex-valued function on Rn. If we say that a
function f is measurable, but we don’t specify any measure, then it is with respect
to the Lebesgue measure on Rn. The same applies to measurable sets, integrals, and
also to the expression a.e.; that is, almost everywhere.

Given a measure ν, and a ν-measurable set E, we use the notation

ν(E) :=

∫
E

dν.

If ν is the Lebesgue measure, then we simply write |E|. Given a measurable function
f , and a measurable set E, with |E| ≠ 0, we use the notation

−
∫
E

f :=
1

|E|

∫
E

f(x)dx.

A cube Q is a subset of Rn that admits an expression as a Cartesian product
of n intervals of the same length, the side length of Q, denoted by ℓQ. If these
intervals are all open, then the cube is called open, and if they are all closed, then
the cube is called closed. By default, our cubes will be open, and we can find a
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unique xQ ∈ Rn, called the center of Q, such that Q =
{
xQ + ℓQy : y ∈ (−1

2
, 1
2
)n
}
.

For γ > 0, γQ :=
{
xQ + γℓQy : y ∈ (−1

2
, 1
2
)n
}
. With the obvious modifications,

these notions extend to arbitrary cubes.
Given non-negative quantities A and B, we write A ≲ B if there exists a finite

constant C > 0, independent of A and B, such that A ≤ CB. If A ≲ B ≲ A ,
then we write A ≂ B. The constant C is called the implicit constant. Usually, we
will denote implicit constants by κ, c, c, C, or C. In many cases, they will depend
on some parameters α1, . . . , αℓ, and if we want to point out that dependence, we
will use subscripts, e.g., A ≲α1,...,αℓ

B, or A ≂α1,...,αℓ
B, or A ≤ Cα1,...,αℓ

B. We
shall use numerical subscripts and superscripts to label different implicit constants
appearing in the same argument. We write A ≤ C(α1, . . . , αℓ)B when we want
to interpret C as a function of the parameters α1, . . . , αℓ. In these cases, we may
replace C by other symbols, like ϕ, φ,Φ, ψ, or Ψ, especially when the dependence
on the parameters is monotonically increasing.

Given real or complex vector spaces X1, . . . , Xm, and Y , endowed with quasi-
norms ∥ · ∥X1 , . . . , ∥ · ∥Xm , and ∥ · ∥Y , respectively, and an operator T defined on
X1 × · · · ×Xm and taking values in Y , we use the notation

T : X1 × · · · ×Xm −→ Y

to indicate that T is a bounded operator from X1 × · · · × Xm to Y ; that is, there
exists a finite constant C > 0 such that for all f1 ∈ X1, . . . , fm ∈ Xm,

∥T (f1, . . . , fm)∥Y ≤ C
m∏
i=1

∥fi∥Xi
.

Among all such constants C, we shall denote by ∥T∥∏m
i=1 Xi→Y the smallest one.

We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero, and the empty product is equal to one.

2.2. Lorentz spaces and weights.

We include a brief exposition about Lebesgue and Lorentz spaces, containing
definitions and well-known properties. For a detailed discussion, see [9, 43].

Given 0 < p < ∞, and a σ-finite measure space (X, ν), Lp(X, ν) is the set of
ν-measurable functions f on X such that

∥f∥Lp(X,ν) :=

(∫
X

|f |pdν
)1/p

<∞,

and L∞(X, ν) is the set of ν-measurable functions f on X such that

∥f∥L∞(X,ν) := ν- ess sup
x∈X

|f(x)| <∞.

The Lebesgue space Lp(X, ν) is a Banach space for 1 ≤ p ≤ ∞, and a quasi-Banach
space for 0 < p < 1.

Given 0 < p, q <∞, and a ν-measurable function f on X, define

∥f∥Lp,q(X,ν) :=

(
p

∫ ∞

0

yqλνf (y)
q/pdy

y

)1/q

=

(∫ ∞

0

tq/pf ∗
ν (t)

q dt

t

)1/q

,

and for q = ∞, define

∥f∥Lp,∞(X,ν) := sup
y>0

yλνf (y)
1/p = sup

t>0
t1/pf ∗

ν (t),
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where λνf is the distribution function of f with respect to ν, defined on [0,∞) by

λνf (y) := ν({x ∈ X : |f(x)| > y}),

and f ∗
ν is the decreasing rearrangement of f with respect to ν, defined on [0,∞) by

f ∗
ν (t) := inf{y > 0 : λνf (y) ≤ t}.

The set of all ν-measurable functions f on X with ∥f∥Lp,q(X,ν) < ∞ is denoted
by Lp,q(X, ν), and it is called the Lorentz space with indices p and q. The space
L∞,∞(X, ν) is L∞(X, ν) by definition.

For 0 < p ≤ ∞, Lp,p(X, ν) = Lp(X, ν), and hence, Lebesgue spaces are particular
examples of Lorentz spaces. The space Lp,∞(X, ν) is usually called weak Lp(X, ν).

Some Lorentz spaces that will be of great interest for us are Lp,1(Rn, ν), Lp,p(Rn, ν),
and Lp,∞(Rn, ν), where dν(x) = w(x)dx, and w is a weight; i.e., 0 < w ∈ L1

loc(Rn).
For such measures on Rn, we shall write Lp,q(ν), Lp,q(w), or Lp,q(Rn) if w = 1.

In general, Lp,q(X, ν) is a quasi-Banach space, but if 1 < p <∞ and 1 ≤ q ≤ ∞,
or p = q = 1, or p = q = ∞, then it can be normed to become a Banach space.

Lorentz spaces are nested; that is, if 0 < p <∞, and 0 < q < r ≤ ∞, then

Lp,q(X, ν) ↪→ Lp,r(X, ν),

and for every f ∈ Lp,q(X, ν),

∥f∥Lp,r(X,ν) ≤
(
q

p

) r−q
rq

∥f∥Lp,q(X,ν).

Given parameters 0 < r < p <∞, consider the quantity

|||f |||Lp,∞(X,ν) := sup
0<ν(E)<∞

ν(E)
1
p
− 1

r

(∫
E

|f |rdν
)1/r

,

where the supremum is taken over all ν-measurable sets E ⊆ X such that 0 <
ν(E) <∞. We have that

∥f∥Lp,∞(X,ν) ≤ |||f |||Lp,∞(X,ν) ≤
(

p

p− r

)1/r

∥f∥Lp,∞(X,ν).

This is classical (see [43, Exercise 1.1.12]), and we will refer to these inequalities as
Kolmogorov’s inequalities.

For f ∈ L1
loc(Rn), the Hardy-Littlewood maximal operator M , introduced in [49],

is defined by

Mf(x) := sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy, x ∈ Rn,

where the supremum is taken over all cubes Q ⊆ Rn containing x. For an exponent
µ > 0, we write Mµf :=M(|f |1/µ)µ.

In [66], Muckenhoupt studied the boundedness of M on Lebesgue spaces Lp(w),
obtaining that for 1 < p <∞,

M : Lp(w) −→ Lp(w)

if, and only if w ∈ Ap; that is, if

[w]Ap
:= sup

Q

(
−
∫
Q

w

)(
−
∫
Q

w1−p′
)p−1

<∞.

Moreover, if 1 ≤ p <∞,
M : Lp(w) −→ Lp,∞(w)
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if, and only if w ∈ Ap, where a weight w ∈ A1 if

[w]A1
:= sup

Q

(
−
∫
Q

w

)(
ess inf
x∈Q

w(x)
)−1

<∞.

Buckley proved in [12] (see also [72]) that for 1 ≤ p <∞,

∥M∥Lp(w)→Lp,∞(w) ≲n [w]
1/p
Ap
,

and if p > 1, then

∥M∥Lp(w)→Lp(w) ≲n p
′[w]

1
p−1

Ap
.

In [32, 52], Chung, Hunt, and Kurtz, and Kerman, and Torchinsky proved that
for 1 ≤ p <∞,

M : Lp,1(w) −→ Lp,∞(w)

if, and only if w ∈ AR
p , where a weight w is in AR

p if

[w]AR
p
:= sup

Q
w(Q)1/p

∥χQw
−1∥Lp′,∞(w)

|Q|
<∞,

or equivalently, if

∥w∥AR
p
:= sup

Q
sup
E⊆Q

|E|
|Q|

(
w(Q)

w(E)

)1/p

<∞.

We have that [w]AR
p
≤ ∥w∥AR

p
≤ p[w]AR

p
, and

∥M∥Lp,1(w)→Lp,∞(w) ≂n,p [w]AR
p
.

A remarkable subclass of AR
p is Âp, introduced in [16]. Given 1 ≤ p < ∞, a

weight w belongs to the class Âp if there exist a function h ∈ L1
loc(Rn), and a weight

u ∈ A1 such that w = (Mh)1−pu. It is possible to associate a constant to this class
of weights, given by

∥w∥Âp
:= inf [u]

1/p
A1
,

where the infimum is taken over all weights u ∈ A1 such that w = (Mh)1−pu. If
w ∈ Âp, then ∥w∥AR

p
≲n,p ∥w∥Âp

, and Âp ⊆ AR
p , but it is not known if this inclusion

is strict for p > 1. Note that Â1 = A1, and for p > 1, Ap ⊊ Âp.
We now introduce some other classes of weights that will appear later. For more

information about them, see [27, 30, 36, 42, 43, 50, 82].
Define the class of weights

A∞ :=
⋃
p≥1

Ap =
⋃
p≥1

AR
p .

It is known that a weight w ∈ A∞ if, and only if

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ) <∞.

Given s > 1, we say that a weight w ∈ RHs if

[w]RHs
:= sup

Q

|Q|
w(Q)

(
−
∫
Q

ws

)1/s

<∞,

and w ∈ RH∞ if

[w]RH∞ := sup
Q

|Q|
w(Q)

ess sup
x∈Q

w(x) <∞.
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We have that
A∞ =

⋃
1<s≤∞

RHs.

For a positive Borel measure ν on Rn,

Mνf(x) := sup
Q∋x

1

ν(Q)

∫
Q

|f(y)|dν(y), x ∈ Rn,

where the supremum is taken over all cubes Q ⊆ Rn containing x and such that
0 < ν(Q) <∞. If dν(y) = w(y)dy for some weight w, we simply write Mw, and call
it the weighted Hardy-Littlewood maximal operator.

Given a positive Borel measure ν on Rn, we say it is locally finite if ν(Q) < ∞
for every cube Q ⊆ Rn, and doubling if there exists a constant C > 0 such that
for every cube Q ⊆ Rn, ν(2Q) ≤ Cν(Q); the smallest of such constants is the
doubling constant of ν. For a measure ν with these properties, and f ∈ L1

loc(Rn, ν),
|f(x)| ≤ Mνf(x) ν-a.e. x ∈ Rn (see [39, Theorem 7.8] and [7, Theorem 8.4.6]). A
particular case of interest is dν(y) = w(y)dy, with w ∈ A∞.

Given a positive, locally finite, doubling Borel measure ν on Rn, and 0 < w ∈
L1
loc(Rn, ν), we say that w ∈ Ap(ν), with p > 1, if

[w]Ap(ν) := sup
Q

(
1

ν(Q)

∫
Q

wdν

)(
1

ν(Q)

∫
Q

w1−p′dν

)p−1

<∞,

and w ∈ A1(ν) if

[w]A1(ν) := sup
Q

(
1

ν(Q)

∫
Q

wdν

)(
ν- ess inf

x∈Q
w(x)

)−1
<∞.

Also, for p ≥ 1, w ∈ AR
p (ν) if

[w]AR
p (ν) := sup

Q

(∫
Q

wdν

)1/p ∥χQw
−1∥Lp′,∞(wdν)

ν(Q)
<∞,

and w ∈ Âp(ν) if there exist a function h ∈ L1
loc(Rn, ν), and u ∈ A1(ν) such that

w = (Mνh)
1−pu. To this class of functions we can associate the constant

∥w∥Âp(ν)
:= inf [u]

1/p
A1(ν)

,

where the infimum is taken over all u ∈ A1(ν) such that w = (Mνh)
1−pu.

As before, we define
A∞(ν) :=

⋃
p≥1

Ap(ν).

For w ∈ A∞(ν),

[w]A∞(ν) := sup
Q

1∫
Q
wdν

∫
Q

Mν(wχQ)dν <∞.

If p > 1, then Mν : Lp(wdν) −→ Lp(wdν) if, and only if w ∈ Ap(ν), and if p ≥ 1,
then Mν : Lp,1(wdν) −→ Lp,∞(wdν) if, and only if w ∈ AR

p (ν).
In [60], the following multi-variable extension of the Hardy-Littlewood maximal

operator was introduced in connection with the theory of multi-linear Calderón-
Zygmund operators:

M(f⃗)(x) := sup
Q∋x

m∏
i=1

(
1

|Q|

∫
Q

|fi(yi)|dyi
)
, x ∈ Rn,

for f⃗ = (f1, . . . , fm), with fi ∈ L1
loc(Rn), i = 1, . . . ,m.
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For 1 ≤ p1, . . . , pm < ∞, P⃗ = (p1, . . . , pm), 1
p
= 1

p1
+ · · · + 1

pm
, and weights

w1, . . . , wm, with w⃗ = (w1, . . . , wm), and νw⃗ := w
p/p1
1 . . . w

p/pm
m ,

M : Lp1(w1)× · · · × Lpm(wm) −→ Lp,∞(νw⃗)

if, and only if w⃗ ∈ AP⃗ ; that is, if

[w⃗]A
P⃗
:= sup

Q

(
−
∫
Q

νw⃗

)1/p m∏
i=1

(
−
∫
Q

w
1−p′i
i

)1/p′i

<∞,

where
(
−
∫
Q
w

1−p′i
i

)1/p′i
is replaced by

(
ess infx∈Qwi(x)

)−1 if pi = 1. Moreover, if
1 < p1, . . . , pm <∞, then

M : Lp1(w1)× · · · × Lpm(wm) −→ Lp(νw⃗)

if, and only if w⃗ ∈ AP⃗ .
More generally, for 0 ≤ ℓ ≤ m, and R⃗ = (p1, . . . , pℓ),

M : Lp1,1(w1)× · · · × Lpℓ,1(wℓ)× Lpℓ+1(wℓ+1)× · · · × Lpm(wm) −→ Lp,∞(νw⃗)

if, and only if w⃗ ∈ AM
P⃗ ,R⃗

; that is, if

[w⃗]AM
P⃗ ,R⃗

:= sup
Q
νw⃗(Q)

1/p

(
ℓ∏

i=1

∥χQw
−1
i ∥

Lp′
i
,∞(wi)

|Q|

)(
m∏

i=ℓ+1

∥χQw
−1
i ∥

Lp′
i (wi)

|Q|

)
<∞.

If ℓ = 0, then AM
P⃗ ,R⃗

= AP⃗ , and if ℓ = m, then AM
P⃗ ,R⃗

= AR
P⃗

(see [74, Theorem 9] and
[75, Remark 5.2.9]).

2.3. Types of bounds.

Let m ≥ 1, and let T be an m-variable operator defined for suitable measurable
functions on Rn. Given exponents 0 < p1, q1, . . . , pm, qm, p, q ≤ ∞, and weights
w1, . . . , wm, w, suppose that

T : Lp1,q1(w1)× · · · × Lpm,qm(wm) −→ Lp,q(w);

that is, T is a bounded operator from Lp1,q1(w1)× · · · × Lpm,qm(wm) to Lp,q(w).
(a) We say that T is of strong type (p1, . . . , pm, p) if q1 = p1, . . . , qm = pm, and

q = p.
(b) We say that T is of weak type (p1, . . . , pm, p) if q1 = p1, . . . , qm = pm, and

q = ∞.
(c) We say that T is of restricted weak type (p1, . . . , pm, p) if q1 = · · · = qm = 1,

and q = ∞. We may also use this terminology if 0 < qi ≤ 1, i = 1, . . . ,m.
(d) We say that T is of mixed type (p1, . . . , pℓ, pℓ+1, . . . , pm, p), with 1 ≤ ℓ < m,

if q1 ≤ 1, . . . , qℓ ≤ 1 and qℓ+1 = pℓ+1, . . . , qm = pm, and q = ∞. We may also
use this terminology if 1 ≤ p1, . . . , pm < ∞, and wi ∈ AR

pi
, for i = 1, . . . , ℓ,

and wi ∈ Api , for i = ℓ + 1, . . . ,m, independently of the choice of the other
exponents. We first introduced this definition in [75].

Analogously, we will talk about strong, weak, mixed, and restricted weak-type
inequalities.

The definitions of types strong and weak are standard (see [43, Section 1.3]), but
the ones of mixed and restricted weak may vary depending on the source (see [1],
[9, Chapter 4], [16, 18, 37], [43, Section 1.4], [81]). In the long run, referring to our
mixed type as mild type may be convenient.
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2.4. (ε, δ)-atomic operators.

We introduce multi-variable extensions of some topics presented in [14, 15, 16].

Definition 2.1. Given δ > 0, we say that a tuple of functions (a1, . . . , am) in∏m
i=1 L

1(Rn) is a δ-atom if∫
Rn

· · ·
∫
Rn

a1(x1) . . . am(xm)dx1 . . . dxm = 0,

and there exist cubes Q1, . . . , Qm ⊆ Rn such that for i = 1, . . . ,m, |Qi| ≤ δ and
supp ai ⊆ Qi.

Recall that for a measurable function f ,

∥f∥L1(Rn)+L∞(Rn) :=

∫ 1

0

f ∗(s)ds.

Definition 2.2. Let T be a multi-sub-linear operator defined for suitable measurable
functions (see [44, Page 494]).

(a) We say that T is (ε, δ)-atomic if for every ε > 0, there exists δ > 0 such that
for every δ-atom (a1, . . . , am),

∥T (a1, . . . , am)∥L1(Rn)+L∞(Rn) ≤ ε
m∏
i=1

∥ai∥L1(Rn).

(b) We say that T is (ε, δ)-atomic approximable if there exists a sequence {Tk}k∈N
of (ε, δ)-atomic operators such that for all measurable sets E1, . . . , Em ⊆ Rn,
and all f1, . . . , fm ∈ L1(Rn) such that ∥fi∥L∞(Rn) ≤ 1, i = 1, . . . ,m,

|Tk(χE1 , . . . , χEm)| ≤ |T (χE1 , . . . , χEm)|, and |T (f⃗)| ≤ lim inf
k→∞

|Tk(f⃗)|.

(c) We say that T is iterative (ε, δ)-atomic (resp. approximable) if for all func-
tions g1, . . . , gm ∈ L1(Rn) with ∥gi∥L∞(Rn) ≤ 1, i = 1, . . . ,m, the m one-
variable operators of the form T (g1, . . . , gi−1, ·, gi+1, . . . , gm) are (ε, δ)-atomic
(resp. approximable).

The next result will be needed later. It is a two-weight version of [16, Theorem
3.5], and the proof is the same.

Theorem 2.3. Let T be a sub-linear operator that is (ε, δ)-atomic approximable,
and fix 0 < q < ∞. Given weights u ∈ A1 and v, if there exists a constant C > 0
such that for every measurable set E ⊆ Rn,

∥T (χE)∥Lq,∞(v) ≤ Cu(E),

then
T : L1(u) −→ Lq,∞(v),

with constant bounded by 2nC[u]A1.

A remarkable multi-variable extension of Theorem 2.3 is the following, the proof
of which is similar to that of [15, Theorem 3.9], with obvious modifications based
on the proof of [16, Theorem 3.5].

Theorem 2.4. Let T be a multi-sub-linear operator that is (ε, δ)-atomic approx-
imable or iterative (ε, δ)-atomic approximable. Given weights u1, . . . , um ∈ A1, and
u = u

1/m
1 . . . u

1/m
m , if there exists a constant C > 0 such that for all measurable sets

E1, . . . , Em ⊆ Rn,

∥T (χE1 , . . . , χEm)∥L 1
m,∞(u)

≤ Cu1(E1) . . . um(Em),
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then
T : L1(u1)× · · · × L1(um) −→ L

1
m
,∞(u),

with constant bounded by 2mnC[u1]A1 . . . [um]A1.

3. Technical results

In this section, we gather some technical results that we will use throughout this
article.

3.1. Interpolation of weights.

The next theorem gives us a restricted weak-type interpolation result for weights.

Theorem 3.1. Fix an integer m ≥ 2. Let 0 < p < ∞, and 0 ≤ θ1, . . . , θm ≤
1 such that θ1 + · · · + θm = 1. Let u1, . . . , um, v1, . . . , vm be weights, and write
u = uθ11 . . . uθmm , and v = vθ11 . . . vθmm . Let T be a sub-linear operator defined for
characteristic functions. Suppose that for i = 1, . . . ,m, there exists a constant
Ci > 0 such that for every measurable set F ⊆ Rn,

(3.1) ∥T (χF )∥Lp,∞(ui)
≤ Ci ∥χF∥Lp,1(vi)

.

Then, for C = min{C1+ · · ·+Cm,mC
θ1
1 . . . Cθm

m }, and every measurable set E ⊆ Rn,

(3.2) ∥T (χE)∥Lp,∞(u) ≤ C ∥χE∥Lp,1(v) .

Proof. Without loss of generality, we can assume that for i = 1, . . . ,m, θi ̸= 0. First,
we prove that (3.2) holds for C = C1 + · · ·+Cm. The case m = 2 is part of popular
folklore; in [75, Lemma 4.1.3] we gave a proof based on [83, Lemma 3].

For the case m > 2, we proceed by applying the case m = 2 iteratively m − 1
times. Let us assume that we are performing the kth iteration, with 1 ≤ k ≤ m− 1,
and that all the previous iterations are already done. We choose the weights

u
(k)
1 :=

k∏
i=1

u
θi

θ1+···+θk
i , v

(k)
1 :=

k∏
i=1

v
θi

θ1+···+θk
i , u

(k)
2 := uk+1, v

(k)
2 := vk+1,

and the exponents

θ
(k)
1 :=

θ1 + · · ·+ θk
θ1 + · · ·+ θk+1

, θ
(k)
2 :=

θk+1

θ1 + · · ·+ θk+1

,

and write
C(k) := C1 + · · ·+ Ck.

In virtue of (3.1), if we apply the case m = 2 for the kth time, with exponents θ(k)1

and θ(k)2 , and weights u(k)1 , u
(k)
2 , v

(k)
1 , and v(k)2 , then we get that for every measurable

set E ⊆ Rn,
∥T (χE)∥Lp,∞(u

(k+1)
1 )

≤ C(k+1)∥χE∥Lp,1(v
(k+1)
1 )

,

since (u(k)1 )θ
(k)
1 (u

(k)
2 )θ

(k)
2 = u

(k+1)
1 , (v(k)1 )θ

(k)
1 (v

(k)
2 )θ

(k)
2 = v

(k+1)
1 , and C(k+1) = C(k)+Ck+1.

In particular, for k = m− 1, u(m)
1 = u and v(m)

1 = v, and we conclude that

∥T (χE)∥Lp,∞(u) ≤ (C1 + · · ·+ Cm)∥χE∥Lp,1(v).

Now, by hypothesis, for i = 1, . . . ,m, and for every measurable set F ⊆ Rn,

∥T (χF )∥Lp,∞(ui)
≤ Ci ∥χF∥Lp,1(vi)

= ∥χF∥Lp,1(Cp
i vi)

,
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and applying the result that we have just proved, we deduce that for every measur-
able set E ⊆ Rn,

∥T (χE)∥Lp,∞(u) ≤ m ∥χE∥Lp,1(C
pθ1
1 ...Cpθm

m v)
= mCθ1

1 . . . Cθm
m ∥χE∥Lp,1(v) .

▷▷▶
3.2. Extensions of Âp.

Let us start by defining the following class of weights, which was introduced in
an unpublished version of [16].

Definition 3.2. Given 1 ≤ p < ∞, and 1 ≤ N ∈ N, we say that a weight w
belongs to the class Âp,N if there exist measurable functions h1, . . . , hN ∈ L1

loc(Rn),
parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · · + θN = 1, and a weight u ∈ A1 such
that

(3.3) w =

(
N∏
i=1

(Mhi)
θi

)1−p

u.

We can associate a constant to this class of weights, given by

∥w∥Âp,N
:= inf [u]

1/p
A1
,

where the infimum is taken over all weights u ∈ A1 such that w can be written as
(3.3).

We also define

Âp,∞ :=
∞⋃

N=1

Âp,N ,

with the corresponding associated constant, given by

[w]Âp,∞
:= inf

N≥1
∥w∥Âp,N

.

For convenience, we take Âp,0 := Ap.

It is clear that Â1,∞ = A1, and Âp,1 = Âp. Also, observe that for every N ≥ 1,
Âp,N ⊆ Âp,N+1, and ∥w∥Âp,N+1

≤ ∥w∥Âp,N
, but we don’t know if these inclusion

relations are strict.
We will use Theorem 3.1 to show that for p ≥ 1, Âp,∞ ⊆ AR

p , but due to the
dependence on m of the constant C obtained there, we can’t work with [ · ]Âp,∞

, and
we need to introduce a new constant for weights in Âp,∞.

Definition 3.3. Given 1 ≤ p <∞, and w ∈ Âp,∞, we define the constant

∥w∥Âp,∞
:= inf

N≥1
N∥w∥Âp,N

.

We can see that ∥w∥Â1,∞
= [w]Â1,∞

= [w]A1 , and in general, [w]Âp,∞
≤ ∥w∥Âp,∞

.
Moreover, ∥w∥Âp,∞

< ∞ if, and only if [w]Âp,∞
< ∞, but we don’t know if there

exists an increasing function 𭟋 : [1,∞) −→ [0,∞) such that ∥w∥Âp,∞
≤ 𭟋([w]Âp,∞

).
We can now prove that for p ≥ 1, Âp,∞ ⊆ AR

p .

Theorem 3.4. Given 1 ≤ p <∞, there exists a constant C > 0, depending only on
p and the dimension n, such that for every N ≥ 1, and every weight w ∈ Âp,N ,

(3.4) [w]AR
p
≤ CN∥w∥Âp,N

.
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In particular, if w ∈ Âp,∞, then w ∈ AR
p , and

[w]AR
p
≤ C∥w∥Âp,∞

.

Proof. Observe that if p = 1, then the result is true for any C ≥ 1, so we will assume
that p > 1.

For N = 1, if w ∈ Âp,1, then we can find a locally integrable function h, and a
weight u ∈ A1 such that w = (Mh)1−pu. It was proved in [16, Corollary 2.8] that
[(Mh)1−pu]AR

p
≤ cn,p[u]

1/p
A1

, and taking the infimum over all such weights u ∈ A1, we
get that [w]AR

p
≤ cn,p∥w∥Âp,1

. By Lemma 8.4, we can take cn,p = c
1/p′
n .

For N ≥ 2, if w ∈ Âp,N , then we can find locally integrable functions h1, . . . , hN ,
a weight u ∈ A1, and real values 0 < θ1, . . . , θN ≤ 1, with

∑N
i=1 θi = 1, such that

w =

(
N∏
i=1

(Mhi)
θi

)1−p

u =
N∏
i=1

(
(Mhi)

1−pu
)θi =:

N∏
i=1

wi.

Note that for i = 1, . . . ,m, wi ∈ Âp,1, and we already know that Âp,1 ⊆ AR
p , so in

virtue of [74, Remark 10], for every measurable set E ⊆ Rn,

∥M(χE)∥Lp,∞(wi)
≤ 2n72n/p[wi]AR

p
∥χE∥Lp,1(wi)

≤ 2n72n/pcn,p[u]
1/p
A1

∥χE∥Lp,1(wi)
.

We can now apply Theorem 3.1 to deduce that for every measurable set E ⊆ Rn,

∥M(χE)∥Lp,∞(w) ≤ 2n72n/pcn,pN [u]
1/p
A1

∥χE∥Lp,1(w) .

Thus, [74, Theorem 10] implies that

[w]AR
p
≤ ∥w∥AR

p
≤ 2n72n/ppcn,pN [u]

1/p
A1
,

and taking the infimum over all suitable representations of w, we conclude that

[w]AR
p
≤ 2n72n/ppcn,pN∥w∥Âp,N

,

and hence, (3.4) holds taking C = 2n72n/ppcn,p. In particular, C ≲n p.
Finally, given w ∈ Âp,∞, we have that

[w]AR
p
≤ C inf

N≥1 :w∈Âp,N

N∥w∥Âp,N
= C∥w∥Âp,∞

,

because if N ≥ 1 is such that w ̸∈ Âp,N , then ∥w∥Âp,N
= inf ∅ = ∞. ▷▷▶

3.3. Construction of weights.

The following result produces weights in A∞.

Lemma 3.5. Let 1 ≤ p, q < ∞. Let u ∈ Aq, v ∈ Ap, and take W =
(
u
v

)1/p. Then,
W ∈ A1+ q

p
, and

[W ]A1+
q
p
≤ [u]

1/p
Aq

[v]
1/p
Ap
.

Proof. By definition,

(3.5) [W ]A1+
q
p
= sup

Q

(
−
∫
Q

(u
v

)1/p)(
−
∫
Q

(u
v

)− 1
q

)q/p

.
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Fix a cube Q ⊆ Rn. To estimate the first factor in (3.5), in virtue of Hölder’s
inequality with exponent p ≥ 1, we get that

(3.6) −
∫
Q

(u
v

)1/p
≤
(
−
∫
Q

u

)1/p(
−
∫
Q

v1−p′
) p−1

p

,

where the last term is interpreted as ess supx∈Q v(x)
−1 if p = 1.

Similarly, to estimate the second factor in (3.5), in virtue of Hölder’s inequality
with exponent q ≥ 1, we have that

(3.7) −
∫
Q

(u
v

)− 1
q ≤

(
−
∫
Q

v

)1/q (
−
∫
Q

u1−q′
) q−1

q

,

where the last term is interpreted as ess supx∈Q u(x)
−1 if q = 1.

Combining (3.5), (3.6), and (3.7), we obtain that

[W ]A1+
q
p
≤ sup

Q

(
−
∫
Q

u

)1/p(
−
∫
Q

u1−q′
) q−1

p
(
−
∫
Q

v

)1/p(
−
∫
Q

v1−p′
) p−1

p

≤ [u]
1/p
Aq

[v]
1/p
Ap
.

▷▷▶

The next lemma allows us to construct nice weights in Âp,∞.

Lemma 3.6. Let 1 ≤ q ≤ p and 1 ≤ N ∈ N, and let w be a weight. For a measurable
function h ∈ L1

loc(Rn), let v = (Mh)q−pw. If w ∈ Âq,N , then v ∈ Âp,N+1, and

(3.8) ∥v∥Âp,N+1
≤ ∥w∥q/p

Âq,N
.

In particular, if w ∈ Âq,∞, then v ∈ Âp,∞, and

(3.9) ∥v∥Âp,∞
≤ 2∥w∥Âq,∞

.

Proof. Fix γ > 1. For a weight w ∈ Âq,N , we can find measurable functions
h1, . . . , hN ∈ L1

loc(Rn), parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a

weight u ∈ A1 such that w =
(∏N

i=1(Mhi)
θi

)1−q

u, with [u]
1/q
A1

≤ γ∥w∥Âq,N
.

Note that if p = 1, then v = w = u, so (3.8) holds. If p > 1, then

v =
(
(Mh)

q−p
1−p (Mh1)

θ1
1−q
1−p . . . (MhN)

θN
1−q
1−p

)1−p

u,

and since q−p
1−p

+ (θ1 + · · ·+ θN)
1−q
1−p

= 1, we have that v ∈ Âp,N+1, with

∥v∥Âp,N+1
≤ [u]

1/p
A1

≤ γq/p ∥w∥q/p
Âq,N

,

and (3.8) follows letting γ tend to 1. If q = 1, then v ∈ Âp, and ∥v∥Âp
≤ [w]

1/p
A1

.
Finally, if w ∈ Âq,∞, then we can find a natural numberN ≥ 1 such that w ∈ Âq,N ,

and in virtue of (3.8), we get that

∥v∥Âp,∞
≤ (N + 1) ∥v∥Âp,N+1

≤ 2N ∥w∥q/p
Âq,N

≤ 2N ∥w∥Âq,N
,

and taking the infimum over all such N ≥ 1, we obtain (3.9). ▷▷▶

The following result also lets us construct nice weights in Âp,∞.
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Lemma 3.7. Let 1 < p < q and 1 ≤ N ∈ N, and let w be a weight. For a measurable
function h ∈ L1

loc(Rn), let v = w
p−1
q−1 (Mh)

q−p
q−1 . If w ∈ Âq,N , then v ∈ Âp,N , and

(3.10) ∥v∥Âp,N
≤ c∥w∥q/p

Âq,N
,

with c independent of h. In particular, if w ∈ Âq,∞, then v ∈ Âp,∞, and

(3.11) ∥v∥Âp,∞
≤ c∥w∥q/p

Âq,∞
.

Proof. Fix γ > 1. For a weight w ∈ Âq,N , we can find measurable functions
h1, . . . , hN ∈ L1

loc(Rn), parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a

weight u ∈ A1 such that w =
(∏N

i=1(Mhi)
θi

)1−q

u, with [u]
1/q
A1

≤ γ∥w∥Âq,N
. Thus,

v =

(
N∏
i=1

(Mhi)
θi

)1−p

u
p−1
q−1 (Mh)

q−p
q−1 =:

(
N∏
i=1

(Mhi)
θi

)1−p

ũ.

Applying [18, Lemma 2.12], we see that ũ ∈ A1, with [ũ]A1 ≤ κn
q−1
p−1

[u]A1 , and
hence, v ∈ Âp,N , with

∥v∥Âp,N
≤ [ũ]

1/p
A1

≤
(
κn
q − 1

p− 1

)1/p

[u]
1/p
A1

≤
(
γqκn

q − 1

p− 1

)1/p

∥w∥q/p
Âq,N

,

and letting γ tend to 1, (3.10) holds with c =
(
κn

q−1
p−1

)1/p
.

Finally, if w ∈ Âq,∞, then we can find a natural numberN ≥ 1 such that w ∈ Âq,N ,
and in virtue of (3.10), we get that

∥v∥Âp,∞
≤ N ∥v∥Âp,N

≤ cN ∥w∥q/p
Âq,N

≤ c(N ∥w∥Âq,N
)q/p,

and taking the infimum over all such N ≥ 1, we obtain (3.11). ▷▷▶

3.4. Some properties of AR
p weights.

The following result allows us to construct AR
p weights and settles a question

raised in [75, Remark 4.1.8].

Proposition 3.8. Fix an integer m ≥ 2. Let 1 ≤ p1, . . . , pm < ∞, and 0 <
θ1, . . . , θm ≤ 1 such that θ1 + · · ·+ θm = 1. Given weights w1 ∈ AR

p1
, . . . , wm ∈ AR

pm,
the weight w = wθ1

1 . . . wθm
m is in AR

max{p1,...,pm}, and

[w]AR
max{p1,...,pm}

≲
m∏
i=1

[wi]
θi
AR

pi

.

Moreover, for every cube Q ⊆ Rn,
m∏
i=1

(∫
Q

wi

)θi

≲

(
m∏
i=1

[wi]
piθi
AR

pi

)∫
Q

w.

Proof. For i = 1, . . . ,m, and p := max{p1, . . . , pm}, we know from [74, Remark 10]
that for every measurable set F ⊆ Rn,

∥M(χF )∥Lp,∞(wi) ≤ 2n72n/p[wi]AR
p
∥χF∥Lp,1(wi).
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In virtue of Theorem 3.1, we get that for every measurable set E ⊆ Rn,

∥M(χE)∥Lp,∞(w) ≤ 2n72n/pm

(
m∏
i=1

[wi]
θi
AR

p

)
∥χE∥Lp,1(w)

≤ 2n72n/pm

( ∏
i : pi ̸=p

pθii

)(
m∏
i=1

[wi]
θi
AR

pi

)
∥χE∥Lp,1(w),

and hence (see [74, Theorem 10]),

[w]AR
p
≤ ∥w∥AR

p
≤ 2n72n/pmp

( ∏
i : pi ̸=p

pθii

)
m∏
i=1

[wi]
θi
AR

pi

.

Now, fix a cube Q ⊆ Rn. It follows from [10, Proposition 12] that there exist
measurable sets G1, . . . , Gm ⊆ Q such that for i = 1, . . . ,m,

|Q| ≤ 2m|Gi| and
m∏
i=1

wi(Gi)
θi ≤ 21−

1
mw(Q).

Since wi ∈ AR
pi

, we have that

wi(Q) ≤ 2mpi∥wi∥piAR
pi

wi(Gi) ≤ 2mpippii [wi]
pi
AR

pi

wi(Gi),

so
m∏
i=1

wi(Q)
θi ≤ 21−

1
m

(
m∏
i=1

2mpiθippiθii

)(
m∏
i=1

[wi]
piθi
AR

pi

)
w(Q).

▷▷▶
Remark 3.9. Our approach is different than the one presented in [84]. In the case
p1 = · · · = pm = 1, a better result was obtained there: for every cube Q ⊆ Rn,

m∏
i=1

wi(Q)
θi ≤

(
m∏
i=1

[wi]
θi
A1

)
w(Q).

It can be deduced directly from the fact that for v ∈ A1, −
∫
Q
v ≤ [v]A1 ess infx∈Q v(x).

Remark 3.10. Under the hypotheses of Proposition 3.8, if for some 1 ≤ ℓ ≤ m,
w1 ∈ Ap1 , . . . , wℓ ∈ Apℓ , then we get that for every cube Q ⊆ Rn,

m∏
i=1

wi(Q)
θi ≤ 21−

1
m

(
m∏
i=1

2mpiθippiθii

)(
ℓ∏

i=1

[wi]
θi
Api

)(
m∏

i=ℓ+1

[wi]
piθi
AR

pi

)
w(Q),

which provides a quantitative extension of [17, Lemma 3.1] and [29, Corollary 1.5].

4. A dual Sawyer-type inequality

We devote this section to the study of a novel restricted weak-type inequality for
the Hardy-Littlewood maximal operator M . It can be interpreted as a dual version
of [74, Theorem 2], and generalizes [18, Lemma 2.6] and [3, Lemma 2.5]. It is based
on our study of the case θ = µ = 1 in [74, Theorem 7], and the proof borrows some
ideas from the aforementioned sources.

Theorem 4.1. Fix exponents p > 1 and 1
p′
< θ < 1, and an integer N ≥ 1.

Given measurable functions h1, . . . , hN ∈ L1
loc(Rn), parameters θ1, . . . , θN ∈ (0, 1],

with θ1 + · · · + θN = 1, and a weight w ∈ A1, consider the Âp,N weights u =
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i=1(Mhi)

θi

)1−p

w and uθ =
(∏N

i=1(Mhi)
θi

)1−p

wθ, and let v be a weight such
that uvp ∈ A∞. Then, for every exponent θ < µ ≤ 1, there exists a constant C > 0
such that for every measurable function f ,

(4.1)
∥∥∥∥Mµ(fuθv

p−1)

uθ

∥∥∥∥
Lp′,∞(u)

≤ C∥f∥Lp′,1(uvp).

Proof. Since p′ > 1, it is enough to establish the result for characteristic functions.
Let E ⊆ Rn be a measurable set such that 0 < uvp(E) <∞, and take f = χE.

In virtue of Kolmogorov’s inequality, we obtain that∥∥∥∥Mµ(fuθv
p−1)

uθ

∥∥∥∥
Lp′,∞(u)

≤ sup
0<u(F )<∞

∥∥∥∥Mµ(fuθv
p−1)

uθ
χF

∥∥∥∥
L1/θ(u)

u(F )
1
p′−θ

,(4.2)

where the supremum is taken over all measurable sets F ⊆ Rn with 0 < u(F ) <∞.
For one of such sets F , and applying Fefferman-Stein’s inequality (see [38, Lemma

1]), we have that

∥∥∥∥Mµ(fuθv
p−1)

uθ
χF

∥∥∥∥1/θ
L1/θ(u)

=

∫
F

M(u
1/µ
θ v

p−1
µ χE)

µ/θ

(
N∏
i=1

(Mhi)
θi

)(p−1)( 1
θ
−1)

≤ κµ/θn

µ

µ− θ

∫
E

(
N∏
i=1

(Mhi)
θi

) 1−p
θ

wv
p−1
θ M(νχF ),

(4.3)

with ν :=
(∏N

i=1(Mhi)
θi

)(p−1)( 1
θ
−1)

. Note that ν ∈ A1, with [ν]A1 ≤ cn
1−(p−1)( 1

θ
−1)

.

We now deal with M(νχF ). Fix x ∈ E, and let P ⊆ Rn be a cube containing x.
Then,

1

|P |

∫
P

χFν =
1

|P |

∫
P

χFνu
−1u ≤ 1

|P |
∥χPνu

−1∥Lθp′,∞(u)∥χFχP∥L(θp′)′,1(u)

=
θp′

θp′ − 1

(
u(P )

1
(θp′)′

ν(P )
∥χPνu

−1∥Lθp′,∞(u)

)
ν(P )

|P |

(
u(F ∩ P )
u(P )

) 1
(θp′)′

≤ θp′

θp′ − 1

(
sup
Q

u(Q)
1

(θp′)′

ν(Q)
∥χQνu

−1∥Lθp′,∞(u)

)
[ν]A1ν(x)Mu(χF )(x)

1
(θp′)′ .

(4.4)

Write α := (θp′)′ and observe that α > p. Kolmogorov’s inequality gives us that

[uν−1]AR
α (ν) := sup

Q

u(Q)1/α

ν(Q)
∥χQνu

−1∥Lα′,∞(u)

≤ sup
Q

sup
G⊆Q

ν(G)

ν(Q)

(
u(Q)

u(G)

)1/α

=: ∥uν−1∥AR
α (ν).

Now, for a cube Q ⊆ Rn, and a nonempty measurable set G ⊆ Q,(
u(Q)

u(G)

)1/α

=

(
|Q|
|G|

)p/α
(
|G|
|Q|

(
u(Q)

u(G)

)1/p
)p/α

≤
(
|Q|
|G|

)p/α

∥u∥p/α
AR

p
,
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and applying Hölder’s inequality and Remark 3.9, we deduce that

ν(G)

ν(Q)
≤

(
N∏
i=1

[(Mhi)
(p−1)( 1

θ
−1)]θiA1

)
N∏
i=1

(
(Mhi)

(p−1)( 1
θ
−1)(G)

(Mhi)
(p−1)( 1

θ
−1)(Q)

)θi

.

Note that for N = 1, this last estimate is not necessary.
By [18, Lemma 2.5],

(Mhi)
(p−1)( 1

θ
−1)(G)

(Mhi)
(p−1)( 1

θ
−1)(Q)

≤ cn

1− (p− 1)
(
1
θ
− 1
) ( |G|

|Q|

)p/α

,

so the previous computations yield that

[uν−1]AR
α (ν) ≤

c2n(
1− (p− 1)

(
1
θ
− 1
))2∥u∥p/αAR

p
,

and form (4.4) we obtain that M(νχF )(x) ≤ C1ν(x)Mu(χF )(x)
1

(θp′)′ , with

C1 :=
c3nθp

′∥u∥
p

(θp′)′

AR
p

(θp′ − 1)
(
1− (p− 1)

(
1
θ
− 1
))3 = c3np

(
θ

1 + p(θ − 1)

)4

∥u∥
1
θ
+p(1− 1

θ )
AR

p
.

Thus,

∫
E

(
N∏
i=1

(Mhi)
θi

) 1−p
θ

wv
p−1
θ M(νχF ) ≤ C1

∫
E

(
N∏
i=1

(Mhi)
θi

) 1−p
θ

wv
p−1
θ νMu(χF )

1
(θp′)′

= C1

∫
E

uv
p−1
θ Mu(χF )

1
(θp′)′ = C1

∫
E

(
Mu(χF )

vp

) 1
(θp′)′

uvp,

(4.5)

and applying Hölder’s inequality with exponent (θp′)′ > 1, we get that∫
E

(
Mu(χF )

vp

) 1
(θp′)′

uvp ≤ θp′
∥∥∥∥Mu(χF )

vp

∥∥∥∥ 1
(θp′)′

L1,∞(uvp)

uvp(E)
1

θp′ .(4.6)

Finally, in virtue of [74, Theorem 1], if r ≥ 1 is such that uvp ∈ AR
r , then∥∥∥∥Mu(χF )

vp

∥∥∥∥
L1,∞(uvp)

≤ Ẽ n
r,p([u]AR

p
, [uvp]AR

r
)u(F ) =: C2u(F ),(4.7)

where Ẽ n
r,p : [1,∞)2 −→ [0,∞) is a function that increases in each variable and

depends only on r, p, and the dimension n. Note that if v = 1, then we can take
C2 ≂n 2np∥u∥p

AR
p
.

Combining (4.3), (4.5), (4.6), and (4.7), we deduce that∥∥∥∥Mµ(χEuθv
p−1)

uθ
χF

∥∥∥∥1/θ
L1/θ(u)

≤ κµ/θn

µ

µ− θ
C1θp

′C
1

(θp′)′

2 u(F )
1

(θp′)′ uvp(E)
1

θp′ ,

and from (4.2) we obtain that∥∥∥∥Mµ(χEuθv
p−1)

uθ

∥∥∥∥
Lp′,∞(u)

≤ C3uv
p(E)1/p

′
,

with C3 := κµn

(
µ

µ−θ
C1θp

′C
1

(θp′)′

2

)θ

, from which the desired result follows by a stan-

dard extension argument (see [9, Page 231], [43, Exercise 1.4.7] or [81, Appendix]).
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Indeed, for an arbitrary measurable function f , if ∥f∥Lp′,1(uvp) = ∞, we are done.
Take f ∈ Lp′,1(uvp) and observe that, by Hölder’s inequality with exponent µp′ > 1,

|f |1/µu1/µθ v
p−1
µ =

(
|f |p′uvp

) 1
µp′ (

uwp(θ−1)
) 1

µp ∈ L1
loc(Rn).

Now, for every integer k, consider the set Ek := {x ∈ Rn : 2k < |f(x)| ≤ 2k+1}.
Then, |f |1/µ ≤ 21/µ

∑
k∈Z 2

k/µχEk
, so Mµ(fuθv

p−1) ≤ 2
∑

k∈Z 2
kMµ(χEk

uθv
p−1), and

hence,∥∥∥∥Mµ(fuθv
p−1)

uθ

∥∥∥∥
Lp′,∞(u)

≤ 2p
∑
k∈Z

2k
∥∥∥∥Mµ(χEk

uθv
p−1)

uθ

∥∥∥∥
Lp′,∞(u)

≤ 2pC3

∑
k∈Z

2kuvp(Ek)
1/p′ ≤ 2pC3

∑
k∈Z

2kλuv
p

f (2k)1/p
′

≤ 4pC3

∑
k∈Z

∫ 2k+1

2k
λuv

p

f (t)1/p
′
dt ≤ 4(p− 1)C3∥f∥Lp′,1(uvp),

concluding that (4.1) holds with C = 4(p− 1)C3. ▷▷▶
Remark 4.2. The constant C that we have obtained satisfies that

C ≤ cnp
3

(
µ

µ− θ

)θ (
θ

1 + p(θ − 1)

)4θ

Ẽ n
r,p([u]AR

p
, [uvp]AR

r
)θ−1+ 1

p [u]
1+p(θ−1)

AR
p

=: ϕ([u]AR
p
, [uvp]AR

r
).

Since the function ϕ behaves well at the endpoint p = 1, it would be interesting to
study an analog of (4.1) involving the limit spaces L∞(uv) and W (u) (see [8] and [9,
Page 385]), and its applications to upper endpoint extrapolation (see [63, 70, 71]).

5. One-variable off-diagonal extrapolation

In [35], multi-variable strong-type extrapolation theorems were obtained as corol-
laries of one-variable off-diagonal strong-type extrapolation schemes; that is, results
in which the target space is different from the domain, both in terms of exponents
and weights. In the case of multi-variable restricted weak-type extrapolation, we
observe a similar phenomenon, and we can also deduce our results from one-variable
off-diagonal restricted weak-type extrapolation theorems.

5.1. Restricted weak-type results.

Let us start with the downwards extrapolation. The following result generalizes
and extends [16, Theorem 2.11], [16, Theorem 2.13], and [75, Theorem 4.2.14].

Theorem 5.1. Let 0 ≤ α < ∞, and let ν ∈ A∞. Fix an integer N ≥ 1. Given
measurable functions f and g, suppose that for some exponent 1 ≤ p < ∞, and
every weight v ∈ Âp,N+1,

(5.1) ∥g∥Lpα,∞(V ) ≤ ψ(∥v∥Âp,N+1
)∥f∥Lp,1(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every exponent 1 ≤ q ≤ p, and every weight w ∈ Âq,N ,

(5.2) ∥g∥Lqα,∞(W ) ≤ Ψ(∥w∥Âq,N
)∥f∥

L
q,

q
p (w)

,
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where 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an increasing

function. The same result is valid in the case N = ∞. If q = 1, then we can take
N = 0.

Proof. Observe that if q = p, then there is nothing to prove, so we may assume that
q < p. Pick a weight w ∈ Âq,N . We may also assume that ∥f∥

L
q,

q
p (w)

< ∞. In
particular, f is locally integrable. Fix y > 0 and γ > 0. We have that

λWg (y) =

∫
{|g|>y}

W ≤ λWZ (γy) +

∫
{|g|>y}

(γy
Z

)pα−qα
W =: I + II,(5.3)

where Z := (Mf)q/qα
(
w
ν

)α.
To estimate the term I in (5.3), we have that

(5.4) I =
(γy)qα

(γy)qα
λWZ (γy) ≤ 1

(γy)qα
∥Z ∥qαLqα,∞(W ) =

1

(γy)qα

∥∥∥∥Mf

U

∥∥∥∥q
Lq,∞(wUq)

,

with U :=
(
ν
w

)αqα
q . Note that U ∈ A∞. Indeed, if α = 0, then U = 1, and if α > 0,

then Âq,N ⊆ Aq+ 1
α
, so in virtue of Lemma 3.5, U =

(
ν
w

) 1

q+ 1
α ∈ A∞. Moreover, since

ν ∈ A∞, and qα
q
+ αqα = 1, W ∈ A∞, and there exists r ≥ 1 such that W ∈ AR

r .
If s ≥ 1 is such that ν ∈ AR

s , then we can choose r := max{q, s}, and applying
Proposition 3.8, we get that [W ]AR

r
≤ cnr(q[w]AR

q
)qα/q(s[ν]AR

s
)αqα .

In virtue of [74, Theorem 2] and Theorem 3.4, we deduce that

∥∥∥∥Mf

U

∥∥∥∥
Lq,∞(wUq)

≤ E n
r,q([w]AR

q
, [W ]AR

r
)∥f∥Lq,1(w)

≤ E n
r,q(CN∥w∥Âq,N

, cnr(qCN∥w∥Âq,N
)qα/q(s[ν]AR

s
)αqα)∥f∥Lq,1(w)

≤ p1−
p
q E n

r,q(CN∥w∥Âq,N
, cnr(qCN∥w∥Âq,N

)qα/q(s[ν]AR
s
)αqα)∥f∥

L
q,

q
p (w)

=: p1−
p
qϕν,w∥f∥

L
q,

q
p (w)

,

(5.5)

and combining (5.4) and (5.5), we obtain that

(5.6) I ≤ 1

(γy)qα
pq−pϕq

ν,w∥f∥
q

L
q,

q
p (w)

.

We proceed to estimate the term II in (5.3). Take v := (Mf)q−pw. Since w ∈
Âq,N , it follows from Lemma 3.6 that v ∈ Âp,N+1, with ∥v∥Âp,N+1

≤ ∥w∥q/p
Âq,N

. Note

that if q = 1, then v ∈ Âp, with ∥v∥Âp
≤ [w]

1/p
A1

. Observe that

Z qα−pαW = (Mf)q(1−
pα
qα
)wα(qα−pα)+

qα
q να(pα−qα)+αqα

= (Mf)
pα
p
(q−p)wpα/pναpα = vpα/pναpα ,

so by (5.1) and the monotonicity of ψ, we get that

II =
(γy)pα

(γy)qα

∫
{|g|>y}

vpα/pναpα ≤ γpα

(γy)qα
ψ(∥w∥q/p

Âq,N
)pα ∥f∥pαLp,1(v) ,(5.7)
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with

∥f∥Lp,1(v) = p

∫ ∞

0

(∫
{|f |>z}

v

)1/p

dz

≤ p

∫ ∞

0

zq/p
(∫

{|f |>z}
w

)1/p
dz

z
=
p

q
∥f∥q/p

L
q,

q
p (w)

.

(5.8)

Combining the estimates (5.3), (5.6), (5.7), and (5.8), we conclude that

λWg (y) ≤ 1

(γy)qα
pq−pϕq

ν,w∥f∥
q

L
q,

q
p (w)

+
γpα

(γy)qα

(
p

q

)pα

ψ(∥w∥q/p
Âq,N

)pα ∥f∥
pαq
p

L
q,

q
p (w)

,

and taking the infimum over all γ > 0 (see [75, Lemma 3.1.1]), it follows that

yqαλWg (y) ≤ pα
pα − qα

(
pα − qα
qα

)qα/pα (p
q

)qα

pqα(2−
q
p
− p

q )

× ϕ
qα(1− q

p)
ν,w ψ(∥w∥q/p

Âq,N
)qα ∥f∥qα

L
q,

q
p (w)

.

Finally, raising everything to the power 1
qα

in this last expression, and taking the
supremum over all y > 0, we see that (5.2) holds, with

(5.9) Ψ(ξ) = Cα
p,qE

n
r,q(CNξ, cnr(qCNξ)

qα/q(s[ν]AR
s
)αqα)1−

q
pψ(ξq/p), ξ ≥ 1,

where

Cα
p,q := p3−

q
p
− p

q q−1

(
pα

pα − qα

)1/qα (pα − qα
qα

)1/pα

.

It remains to discuss the case N = ∞. By hypothesis, we have that for every
weight v ∈ Âp,∞,

(5.10) ∥g∥Lpα,∞(V ) ≤ ψ(∥v∥Âp,∞
)∥f∥Lp,1(v).

Pick a weight w ∈ Âq,∞. We can find an integer N0 ≥ 1 such that w ∈ Âq,N0 , with
∥w∥Âq,∞

≤ N0∥w∥Âq,N0
≤ 2∥w∥Âq,∞

. From (5.10), we deduce that for every weight

v ∈ Âp,N0+1,

∥g∥Lpα,∞(V ) ≤ ψ((N0 + 1)∥v∥Âp,N0+1
)∥f∥Lp,1(v) =: ψN0(∥v∥Âp,N0+1

)∥f∥Lp,1(v),

and applying Theorem 5.1 for N0, we conclude that

∥g∥Lqα,∞(W ) ≤ ΨN0(∥w∥Âq,N0
)∥f∥

L
q,

q
p (w)

≤ Ψ(∥w∥Âq,∞
)∥f∥

L
q,

q
p (w)

,

with ΨN0 as in (5.9), and

(5.11) Ψ(ξ) = Cα
p,qE

n
r,q(2Cξ, cnr(2qCξ)

qα/q(s[ν]AR
s
)αqα)1−

q
pψ(4ξ), ξ ≥ 1.

▷▷▶
Remark 5.2. For N = 1 and α = 0, a version of Theorem 5.1 for sub-linear
operators and Âp weights was obtained in [16, Theorem 2.13], avoiding the class
Âp,2 via an interpolation argument based on Theorem 3.1 for m = 2.

We now discuss the upwards extrapolation. The following result generalizes and
extends [3, Theorem 1.6], [18, Theorem 3.1], and [75, Theorem 4.2.18], using some
ideas from their proofs.
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Theorem 5.3. Let 0 ≤ α < ∞, and let ν ∈ A∞. Fix an integer N ≥ 1. Given
measurable functions f and g, suppose that for some exponent 1 ≤ p < ∞, and
every weight v ∈ Âp,N ,

(5.12) ∥g∥Lpα,∞(V ) ≤ ψ(∥v∥Âp,N
)∥f∥Lp,1(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every finite exponent q ≥ p, and every weight w ∈ Âq,N ,

(5.13) ∥g∥Lqα,∞(W ) ≤ Ψ(∥w∥Âq,N
)∥f∥Lq,1(w),

where 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an increasing

function. The same result is valid in the case N = ∞.

Proof. If q = p, then there is nothing to prove, so we may assume that q > p.
Pick a weight w ∈ Âq,N . We can find measurable functions h1, . . . , hN ∈ L1

loc(Rn),
parameters θ1, . . . , θN ∈ (0, 1], with θ1+ · · ·+θN = 1, and a weight u ∈ A1 such that

w =
(∏N

i=1(Mhi)
θi

)1−q

u, with [u]
1/q
A1

≤ (1 + 1
q
)∥w∥Âq,N

. As usual, we may assume
that ∥f∥Lq,1(w) <∞.

Fix a natural number ϱ ≥ 1, and let gϱ := |g|χB(0,ϱ), where B(0, ϱ) is the ball of
center 0 and radius ϱ in Rn. We will prove (5.13) for the pair (f, gϱ). Since gϱ ≤ |g|,
we already know that (5.12) holds for (f, gϱ). Fix y > 0 such that λWgϱ (y) ̸= 0. If no
such y exists, then ∥gϱ∥Lqα,∞(W ) = 0 and we are done.

In order to apply (5.12), we want to find a weight v ∈ Âp,N such that λWgϱ (y) ≤
λVgϱ(y). We take

v := w
p−1
q−1

β

(
Mµ(wθw

− 1
q′W 1/q′χ{|gϱ|>y})u

τ(1−µ)
) q−p

q−1
,(5.14)

where wβ := wuβ−1 and wθ := wuθ−1, with

τ := 1 +
1

2n+1[u]A1

,
1

q′
< θ < 1,

β :=

{
1, p = 1,
q−1
p−1

− θ · q−p
p−1

, p > 1,
and µ :=

{
1− 1−θ

τ
, p = 1,

1, p > 1.

For p > 1, we also impose that β ≤ τ , or equivalently,
q − 1

q − p
− τ · p− 1

q − p
≤ θ.

If p = 1, then v = Mµ(wθw
− 1

q′W 1/q′χ{|gϱ|>y})u
τ(1−µ). In virtue of [72, Lemma

3.26], uτ ∈ A1, with [uτ ]A1 ≲ [u]A1 , and we can use [18, Lemma 2.12] to deduce that
v ∈ A1, with

(5.15) [v]A1 ≲n
[u]A1

1− µ
≤
τ(1 + 1

q
)q

1− θ
∥w∥q

Âq,N
≲

∥w∥q
Âq,N

1− θ
.

If p > 1, then applying Lemma 3.7 we see that v ∈ Âp,N , and ∥v∥Âp,N
≤ c∥wβ∥q/pÂq,N

,

with c ≂n

(
q−1
p−1

)1/p
. Since 1 < β ≤ τ , ∥wβ∥Âq,N

≤ [uβ]
1/q
A1

≲ [u]
1/q
A1

≤ (1 + 1
q
)∥w∥Âq,N

,
so

∥v∥Âp,N
≲n

(
q − 1

p− 1

)1/p

∥w∥q/p
Âq,N

.
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Thus, ∥v∥Âp,N
≤ Cθ∥w∥q/pÂq,N

, with Cθ ≂n
1

1−θ
for p = 1, and Cθ ≂ c for p > 1.

Observe that

V = vpα/pναpα ≥ w
pα
p
· p−1
q−1

β w
pα
p
· q−p
q−1

θ w
− pα

pq′ ·
q−p
q−1W

pα
pq′ ·

q−p
q−1uτ(1−µ) pα

p
· q−p
q−1 ναpαχ{|gϱ|>y}

= wγ1uγ2νγ3 = wqα/qναqαχ{|gϱ|>y} = Wχ{|gϱ|>y},

since

γ1 :=
pα
p

· p− 1

q − 1
+
pα
p

· q − p

q − 1
− pα
pq′

· q − p

q − 1
+
qα
q

· pα
pq′

· q − p

q − 1

=
pα
p

(
1−

(
1− p

q

)(
1− qα

q

))
=
pα
p

· 1 + αp

1 + αq
=
qα
q
,

γ2 := (β − 1)
pα
p

· p− 1

q − 1
+ (θ − 1)

pα
p

· q − p

q − 1
+ τ(1− µ)

pα
p

· q − p

q − 1

=
pα
p

(
p− 1

q − 1
· β +

q − p

q − 1
(θ + τ(1− µ))− 1

)
= 0,

γ3 := αpα + αqα · pα
pq′

· q − p

q − 1
=

αp

1 + αp
+

1

1 + αp
− 1

1 + αq
= αqα,

so (5.12) implies that

λWgϱ (y) ≤
∫
{|gϱ|>y}

vpα/pναpα = λVgϱ(y) ≤
1

ypα
ψ(Cθ∥w∥q/pÂq,N

)pα ∥f∥pαLp,1(v) .(5.16)

We want to replace ∥f∥Lp,1(v) by ∥f∥Lq,1(w) in (5.16). Applying Hölder’s inequality
with exponent q

p
> 1, we obtain that for every t > 0,

λvf (t) =

∫
{|f |>t}

(
Mµ(wθw

− 1
q′W 1/q′χ{|gϱ|>y})

wθ

) q−p
q−1

w

≤ q

p
w({|f | > t})p/q

∥∥∥∥∥Mµ(wθw
− 1

q′W 1/q′χ{|gϱ|>y})

wθ

∥∥∥∥∥
q−p
q−1

Lq′,∞(w)

=
q

p
w({|f | > t})p/q

∥∥∥∥Mµ(wθU
q−1χ{|gϱ|>y})

wθ

∥∥∥∥
q−p
q−1

Lq′,∞(w)

,

(5.17)

with U :=
(
W
w

)1/q
=
(
ν
w

) α
1+αq . Note that if α = 0, then U = 1, and for α > 0,

w ∈ AR
q ⊆ Aq+ 1

α
, so U ∈ A∞ by Lemma 3.5.

Moreover, if s ≥ 1 is such that ν ∈ AR
s , then by Proposition 3.8, W ∈ AR

r , with
r := max{q, s}, and [W ]AR

r
≤ cnr(q[w]AR

q
)qα/q(s[ν]AR

s
)αqα . Also, since wU q = W ,

Theorem 4.1, Remark 4.2, and Theorem 3.4 give us that∥∥∥∥Mµ(wθU
q−1χ{|gϱ|>y})

wθ

∥∥∥∥
Lq′,∞(w)

≤ q′ϕ([w]AR
q
, [W ]AR

r
)W ({|gϱ| > y})1/q′

≤ ϕν,wW ({|gϱ| > y})1/q′ ,
with

ϕν,w := q′ϕ(CN∥w∥Âq,N
, cnr(qCN∥w∥Âq,N

)qα/q(s[ν]AR
s
)αqα).

Plugging this bound into (5.17), we get that

(5.18) λvf (t) ≤
q

p
ϕ

q−p
q−1
ν,w W ({|gϱ| > y})1−

p
qw({|f | > t})p/q,
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and hence,

∥f∥Lp,1(v) = p

∫ ∞

0

λvf (t)
1/pdt

≤ p

(
q

p

)1/p

ϕ
1
p
· q−p
q−1

ν,w W ({|gϱ| > y})
1
p
− 1

q

∫ ∞

0

w({|f | > t})1/qdt

=

(
p

q

)1/p′

ϕ
1
p
· q−p
q−1

ν,w W ({|gϱ| > y})
1
p
− 1

q ∥f∥Lq,1(w).

(5.19)

Combining the estimates (5.16) and (5.19), we have that

(5.20) λWgϱ (y) ≤
1

ypα
Ψθ(∥w∥Âq,N

)pα ∥f∥pαLq,1(w) λ
W
gϱ (y)

1− pα
qα ,

with

Ψθ(∥w∥Âq,N
) :=

(
p

q

)1/p′

ϕ
1
p
· q−p
q−1

ν,w ψ(Cθ∥w∥q/pÂq,N
).

By our choice of y and gϱ, 0 < λWgϱ (y) ≤ W (B(0, ϱ)) < ∞, so we can divide by
λWgϱ (y)

1− pα
qα in (5.20) and raise everything to the power 1

pα
, obtaining that

yλWgϱ (y)
1/qα ≤ Ψθ(∥w∥Âq,N

) ∥f∥Lq,1(w) ,

and taking the supremum over all y > 0, we deduce (5.13) for the pair (f, gϱ) and
the function Ψθ; the result for the pair (f, g) follows by taking the supremum over
all ϱ ≥ 1. It remains to compute a function Ψ independent of θ.

We need to control the term ϕν,w appropriately, possibly by performing crude
estimates and not paying much attention to optimality. Recall that by Remark 4.2,

ϕν,w ≲n
q4

q − 1

(
µ

µ− θ

)θ (
θ

1 + q(θ − 1)

)4θ

× Ẽ n
r,q(CN∥w∥Âq,N

, cnr(qCN∥w∥Âq,N
)qα/q(s[ν]AR

s
)αqα)1/qCN∥w∥Âq,N

,

and note that(
µ

µ− θ

)θ (
θ

1 + q(θ − 1)

)4θ

≤ 1

µ− θ

(
1

1 + q(θ − 1)

)4

=: 𭟋(θ, µ).

If p = 1, then for θ∗ := 1− 1
5q

,

inf
1
q′<θ<1

𭟋(θ, µ) = τ ′𭟋(θ∗, 1) ≂n q[u]A1 ≲ q∥w∥q
Âq,N

, and Cθ∗ ≂n
1

1− θ∗
≂ q.

If p > 1, then µ = 1, and we argue as follows: if τ ≥ p′

(5q)′
− 4

5(p−1)
, then we choose

θ = θ∗; otherwise, we choose θ = q−1
q−p

− τ · p−1
q−p

. Thus,

𭟋(θ, 1) ≲n max

{
q,
q − p

p− 1

}
[u]A1 ≲ max

{
q,
q − p

p− 1

}
∥w∥q

Âq,N
.

In conclusion, (5.13) holds, with Ψ(ξ) defined for ξ ≥ 1 as
(5.21)

cnC
0
p,q(CNξ

q+1)
1
p
· q−p
q−1 Ẽ n

r,q(CNξ, cnr(qCNξ)
qα/q(s[ν]AR

s
)αqα)

1
pq

· q−p
q−1ψ(cnC

1
p,qξ

q/p),
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where

C0
p,q :=

(
p

q

)1/p′
(

q4

q − 1
×

{
q, p = 1,

max
{
q, q−p

p−1

}
, p > 1,

}) 1
p
· q−p
q−1

, and

C1
p,q :=

{
q, p = 1,(

q−1
p−1

)1/p
, p > 1.

Now, we discuss the case N = ∞. By hypothesis, we have that for every weight
v ∈ Âp,∞, (5.10) holds. Pick a weight w ∈ Âq,∞. We can find an integer N0 ≥ 1 such
that w ∈ Âq,N0 , with ∥w∥Âq,∞

≤ N0∥w∥Âq,N0
≤ 2∥w∥Âq,∞

. From (5.10), we deduce

that for every weight v ∈ Âp,N0 ,

∥g∥Lpα,∞(V ) ≤ ψ(N0∥v∥Âp,N0
)∥f∥Lp,1(v) =: ψN0(∥v∥Âp,N0

)∥f∥Lp,1(v),

and applying Theorem 5.3 for N0, we conclude that

∥g∥Lqα,∞(W ) ≤ ΨN0(∥w∥Âq,N0
)∥f∥Lq,1(w) ≤ Ψ(∥w∥Âq,∞

)∥f∥Lq,1(w),

with ΨN0 as in (5.21), and Ψ(ξ) defined for ξ ≥ 1 as
(5.22)

cnC
0
p,q(C(2ξ)

q+1)
1
p
· q−p
q−1 Ẽ n

r,q(2Cξ, cnr(2qCξ)
qα/q(s[ν]AR

s
)αqα)

1
pq

· q−p
q−1ψ(cnC

1
p,q(2ξ)

q/p).

▷▷▶
5.2. Weak-type results.

The arguments and techniques we have used to produce restricted weak-type
extrapolation schemes can be easily modified to cover weak-type extrapolation in a
context much broader than that of Ap weights. We begin by defining the classes of
functions that will play their role in what follows.

Definition 5.4. Given exponents 1 ≤ p <∞ and 0 < σ <∞, a positive function w
belongs to the class Aσ

p if there exist a weight v ∈ A1, and a positive function u such
that uσ ∈ A1, and w = v1−pu. Equivalently, w ∈ Aσ

p if, and only if wσ ∈ A1+σ(p−1),
and we associate to this class of functions the constant given by

[w]Aσ
p
:= [wσ]A1+σ(p−1)

.

Similarly, given an index 1 ≤ N ∈ N ∪ {∞}, a positive function w belongs to
the class Âσ

p,N if wσ ∈ Â1+σ(p−1),N , and we associate to this class of functions the
constant given by

∥w∥Âσ
p,N

:= ∥wσ∥Â1+σ(p−1),N
.

Remark 5.5. Note that in virtue of [30, Theorem 2.2], if σ ≥ 1, then w ∈ Aσ
p if,

and only if w ∈ Ap∩RHσ, and this last condition was extrapolated in [2, 25, 35, 48].
In [61, 62], a slightly different notation was used. There, they worked with Ap,r,
with 0 < r < ∞, which is the class of positive functions w such that wr ∈ A1+ r

p′
.

We have that w ∈ Ap,r if, and only if wp ∈ Aσ
p , with σ = r

p
.

The next result allows us to construct functions in the previous classes. It is an
adaptation of Lemma 3.6.

Lemma 5.6. Let 1 ≤ q < p, and fix σ, ς > 0 such that 0 ≤ ς(q−1)
σ(p−1)

≤ 1. For a
measurable function h ∈ L1

loc(Rn), and w ∈ Aς
q, let v = (Mh)1−p+ ς

σ
(q−1)wς/σ.
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(a) If q > 1, then v ∈ Aσ
p , and

[v]Aσ
p
≤ c[w]

1+
σ(p−1)
ς(q−1)

Aς
q

,

with c independent of h.
(b) If q = 1, then v ∈ Âσ

p , and

∥v∥Âσ
p
≤ [w]

1
1+σ(p−1)

Aς
1

.

Proof. To prove (a), since wς ∈ A1+ς(q−1), we can find positive, measurable functions
ϖ0 and ϖ1 such that wς = ϖ

ς(1−q)
0 ϖς

1, with

ϖ0 ∈ A1, [ϖ0]A1 ≤ c
1+ 1

ς(q−1)
n [w]

1
ς(q−1)

Aς
q

, ϖς
1 ∈ A1, and [ϖς

1]A1 ≤ c1+ς(q−1)
n [w]Aς

q
.

The details on the construction of such functions are available in [24, Theorem 4.2]
and [72, Lemma 3.18]. Write

v =

(
(Mh)1−

ς(q−1)
σ(p−1)ϖ

ς(q−1)
σ(p−1)

0

)1−p

ϖ
ς/σ
1 =: ϖ̃1−p

0 ϖ
ς/σ
1 .

In virtue of [18, Lemma 2.12], ϖ̃0 ∈ A1, with [ϖ̃0]A1 ≲n
σ(p−1)
ς(q−1)

[ϖ0]A1 . Hence,
applying [24, Theorem 4.2], vσ ∈ A1+σ(p−1), with

[v]Aσ
p
≤ [ϖ̃0]

σ(p−1)
A1

[ϖς
1]A1 ≤ c1+ς(q−1)

n

(
c
1+ 1

ς(q−1)
n

σ(p− 1)

ς(q − 1)

)σ(p−1)

[w]
1+

σ(p−1)
ς(q−1)

Aς
q

.

To prove (b), observe that v = (Mh)1−pϖ
ς/σ
1 , so vσ ∈ Â1+σ(p−1), and

∥v∥Âσ
p
≤ [ϖς

1]
1

1+σ(p−1)

A1
= [w]

1
1+σ(p−1)

Aς
1

.

▷▷▶
We can now present a weak-type version of the downwards extrapolation in The-

orem 5.1, working with the class Aσ
p .

Theorem 5.7. Fix 0 ≤ α <∞, and let ν be a positive, measurable function. Given
measurable functions f and g, suppose that for some exponents 1 < p < ∞ and
σ > 0, and every v ∈ Aσ

p ,

(5.23) ∥g∥Lpα,∞(V ) ≤ ψ([v]Aσ
p
)∥f∥Lp(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every exponent 1 < q ≤ p, and every w ∈ Aς
q,

(5.24) ∥g∥Lqα,∞(W ) ≤ Ψ([w]Aς
q
)∥f∥Lq(w),

where ς = σp
σp+(1−σ)q

, 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an

increasing function.

Proof. We will prove this statement adapting the proof of Theorem 5.1. If q = p,
then there is nothing to prove, so we may assume that q < p. Pick w ∈ Aς

q. We may
also assume that ∥f∥Lq(w) <∞. Fix y > 0 and γ > 0. We have that

λWg (y) =

∫
{|g|>y}

W ≤ λWZ (γy) +

∫
{|g|>y}

(γy
Z

)pα−qα
W =: I + II,(5.25)
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where

Z :=

(
vpα/pναpα

W

) 1
qα−pα

and v :=M(|f |
q

1+ς(q−1)w
1−ς

1+ς(q−1) )1−p+ ς
σ
(q−1)wς/σ.

To estimate the term I in (5.25), writing U :=
(

ναq

w(1+αq)ς−1

) 1
(1+αq)(1+ς(q−1)) , we obtain,

after some involved computations, that

I ≤
∥Z ∥qαLqα,∞(W )

(γy)qα
=

1

(γy)qα

∥∥∥∥∥M(|f |
q

1+ς(q−1)w
1−ς

1+ς(q−1) )

U

∥∥∥∥∥
1+ς(q−1)

L1+ς(q−1),∞(wςU1+ς(q−1))

≤ 1

(γy)qα

∥∥∥M(|f |
q

1+ς(q−1)w
1−ς

1+ς(q−1) )
∥∥∥1+ς(q−1)

L1+ς(q−1)(wς)

≤ c
1+ς(q−1)
n

(γy)qα

(
(1 + ς(q − 1))′

)1+ς(q−1)
[w]

1+ 1
ς(q−1)

Aς
q

∥f∥qLq(w) ,

(5.26)

where in the last inequality we have used the classical Buckley’s bound for the Hardy-
Littlewood maximal operator M in [12, Theorem 2.5] (see [72, Theorem 3.11]). It is
worth mentioning that we need the second inequality because an optimal weak-type
version of the Sawyer-type inequality in [74, Theorem 2] is not known.

To estimate the term II in (5.25), since 0 < ς(q−1)
σ(p−1)

< 1, it follows from Lemma 5.6
that v ∈ Aσ

p , with

[v]Aσ
p
≤ C0[w]

1+
σ(p−1)
ς(q−1)

Aς
q

and C0 := c1+ς(q−1)
n

(
c
1+ 1

ς(q−1)
n

σ(p− 1)

ς(q − 1)

)σ(p−1)

,

so by (5.23), we get that

II ≤ γpα

(γy)qα
∥g∥pα

Lpα,∞(vpα/pναpα )
≤ γpα

(γy)qα
ψ(C0[w]

1+
σ(p−1)
ς(q−1)

Aς
q

)pα ∥f∥pαLp(v) ,(5.27)

with

∥f∥Lp(v) =

(∫
Rn

|f |pM(|f |
q

1+ς(q−1)w
1−ς

1+ς(q−1) )1−p+ ς
σ
(q−1)wς/σ

)1/p

≤
(∫

Rn

|f |p|f |q(1−
p
q )w(1−ς)(1− p

q )+ς/σ

)1/p

= ∥f∥q/pLq(w).

(5.28)

Finally, if we argue as in the last steps of the proof of Theorem 5.1, we can combine
(5.26), (5.27), and (5.28) to conclude that (5.24) holds, with

Ψ(ξ) = C1ξ
( 1
q
− 1

p)(1+
1

ς(q−1))ψ(C0ξ
1+

σ(p−1)
ς(q−1) ), ξ ≥ 1,

where
(5.29)

C1 := C
(
cn (1 + ς(q − 1))′

)( 1
q
− 1

p)(1+ς(q−1))
, C :=

(
pα

pα − qα

)1/qα (pα − qα
qα

)1/pα

.

▷▷▶
Remark 5.8. We can use Rubio de Francia’s iteration algorithm to improve The-
orem 5.7, producing a better function Ψ. Indeed, for q > 1, we can take

v := R(|f |
q

1+ς(q−1)w
1−ς

1+ς(q−1) )1−p+ ς
σ
(q−1)wς/σ,
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where for a measurable function h ∈ L1+ς(q−1)(wς),

Rh :=
∞∑
k=0

Mk(|h|)
2k∥M∥k

L1+ς(q−1)(wς)

is the Rubio de Francia’s iteration algorithm (see [35, 76]). In virtue of [35, Lemma
2.2], we have that ∥Rh∥L1+ς(q−1)(wς) ≤ 2∥h∥L1+ς(q−1)(wς), |h| ≤ Rh, and Rh ∈ A1,

with [Rh]A1 ≤ 2∥M∥L1+ς(q−1)(wς) ≤ 2cn (1 + ς(q − 1))′ [w]
1

ς(q−1)

Aς
q

. Moreover, apply-

ing [35, Lemma 2.1], we obtain that v ∈ Aσ
p , with [v]Aσ

p
≤ C̃0[w]

σ(p−1)
ς(q−1)

Aς
q

and C̃0 :=(
2cn (1 + ς(q − 1))′

)σ(p−1)−ς(q−1). Hence, we can rewrite the proof of Theorem 5.7 to
conclude that (5.24) holds, with

Ψ(ξ) = 2(
1
q
− 1

p)(1+ς(q−1))Cψ(C̃0ξ
σ(p−1)
ς(q−1) ), ξ ≥ 1.

Remark 5.9. Note that given 0 < r ≤ p, if in (5.23) we replace ∥f∥Lp(v) by
∥f∥Lp,r(v), then we can replace estimate (5.28) by

∥f∥Lp,r(v) ≤ p1/r
(∫ ∞

0

t
rq
p λwf (t)

r/pdt

t

)1/r

=

(
p

q

)1/r

∥f∥q/p
L
q,

rq
p (w)

,

and follow the proof of Theorem 5.7, using that

∥f∥Lq(w) ≤
(
r

p

) p−r
rq

∥f∥
L
q,

rq
p (w)

in (5.26) (see [43, Proposition 1.4.10]), to conclude that

∥g∥Lqα,∞(W ) ≤
(
p

q

)1/r (
r

p

)( p
r
−1)( 1

q
− 1

p)
Ψ([w]Aς

q
)∥f∥

L
q,

rq
p (w)

.

We can extrapolate down to the endpoint q = 1 by following the same argument
in the proof of Theorem 5.7 and using in (5.26) the classical Sawyer-type inequality
for the Hardy-Littlewood maximal operator (see [27, Theorem 1.4] and [74, Theorem
2]).

Theorem 5.10. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function.
Given measurable functions f and g, suppose that for some exponents 1 < p < ∞
and σ > 0, and every function v ∈ Âσ

p ,

∥g∥Lpα,∞(V ) ≤ ψ(∥v∥Âσ
p
)∥f∥Lp,1(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every function w ∈ Aς
1 such that W ∈ AR

r for some r ≥ 1,

∥g∥
L

1
1+α ,∞

(W )
≤ Ψr([w]Aς

1
, [W ]AR

r
)∥f∥

L
1, 1p (w)

,

where ς = σp
1+σ(p−1)

, W = w
1

1+αν
α

1+α , and Ψr : [1,∞)2 −→ [0,∞) is a function
increasing in each variable.

It is worth mentioning that the following conjecture would allow us to prove
Theorem 5.10 for an arbitrary exponent 1 ≤ q < p.

Conjecture 5.11. Fix exponents q ≥ 1 and ς > 0 (or 0 < ς ≤ 1), and write
ϱ = 1 + ς(q − 1). Let u and v be positive, measurable functions such that uς ∈ AR

ϱ
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and uςvϱ ∈ AR
r for some r ≥ 1. Then, there exists a function ϕ : [1,∞)2 −→ [0,∞),

increasing in each variable, such that for every measurable function f ,∥∥∥∥∥M(|f |q/ϱu
1−ς
ϱ )

v

∥∥∥∥∥
ϱ

Lϱ,∞(uςvϱ)

≤ ϕ([uς ]AR
ϱ
, [uςvϱ]AR

r
)∥f∥qLq,1(u).

Remark 5.12. If q = 1 or ς = 1, then Conjecture 5.11 follows from [74, Theorem
2] and [74, Lemma 3]. In general, for h ∈ L1

loc(Rn) and w ∈ AR
ϱ ,

Mh(x) ≤ [w]AR
ϱ
sup
Q∋x

∥hχQ∥Lϱ,1(w)

w(Q)1/ϱ
=: [w]AR

ϱ
M

L
1, 1ϱ (w)

(|h|ϱ)(x)1/ϱ, x ∈ Rn,

so the desired result may require to better understand the operator M
L
1, 1ϱ (w)

in the
context of Sawyer-type inequalities. For s ≥ 1, ML1,s(Rn) was studied in [6, 58, 80].

Next, we study a weak-type version of the upwards extrapolation in Theorem 5.3
for the class Aσ

p .

Theorem 5.13. Fix 0 ≤ α <∞, and let ν be a positive, measurable function. Given
measurable functions f and g, suppose that for some exponents 1 ≤ p ≤ q <∞ and
ς > 0, and every v ∈ Aσ

p ,

(5.30) ∥g∥Lpα,∞(V ) ≤ ψ([v]Aσ
p
)∥f∥Lp(v),

where σ = ςq
(1−ς)p+ςq

, 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an

increasing function. Then, for every w ∈ Aς
q,

(5.31) ∥g∥Lqα,∞(W ) ≤ Ψ([w]Aς
q
)∥f∥Lq,p(w),

where 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an increasing

function.

Proof. We will adapt the proof of Theorem 5.3. To do so, we have to choose an
appropriate function v ∈ Aσ

p , and find suitable replacements for estimates (5.17),
(5.18), and (5.19) to control ∥f∥Lp(v) by ∥f∥Lq,p(w), and keep track of the changes in
the constants involved.

If q = p, then there is nothing to prove, so we may assume that q > p. As
usual, pick w ∈ Aς

q and choose positive, measurable functions ϖ0 and ϖ1 such that
wς = ϖ

ς(1−q)
0 ϖς

1, with

ϖ0 ∈ A1, [ϖ0]A1 ≤ c
1+ 1

ς(q−1)
n [w]

1
ς(q−1)

Aς
q

, ϖς
1 ∈ A1, and [ϖς

1]A1 ≤ c1+ς(q−1)
n [w]Aς

q
.

Fix a natural number ϱ ≥ 1, and let gϱ := |g|χB(0,ϱ)χ{W≤ϱ}. It is enough to prove
(5.31) for the pair (f, gϱ). We know that (5.30) holds for (f, gϱ) because gϱ ≤ |g|.
Fix y > 0 such that λWgϱ (y) ̸= 0. If no such y exists, then ∥gϱ∥Lqα,∞(W ) = 0 and we
are done. Since Wχ{|gϱ|>y} ∈ L1(Rn), instead of (5.14), we can take

v :=



ϖ
1/q
1 M(ϖ−1

0 Wχ{|gϱ|>y})
1/q′ , ς ≥ 1, p = 1,

ϖ
1−ς
q

1 M(w1/qW 1/q′ϖ
ς−1
q

1 χ{|gϱ|>y}), ς < 1, p = 1,

w
p−1
q−1M(w

1
q
· q′
(1+ς(q−1))′W

1
(1+ς(q−1))′χ{|gϱ|>y})

(1− p
q )(1+ς(q−1))′ , p > 1.
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Note that (1 + ς(q − 1))′ = 1 + 1
ς(q−1)

, so for p > 1, σ
ς

(
p−1
q−1

+ (1+ς(q−1))(q−p)
q(q−1)

)
= 1,

and for p = 1, σ
ςq

+ σ
q′

= 1 and σ(1−ς)
ςq

+ σ = 1, so in virtue of [18, Lemma 2.12],
v ∈ Aσ

p , with

[v]Aσ
p
≤ C0[w]

1+
σ(p−1)
ς(q−1)

Aς
q

and C0 :=



c
1+ς(q−1)
n (1 + ς(q − 1)), ς ≥ 1, p = 1,

c
1+ς(q−1)
n

1+ς(q−1)
1−ς

, ς < 1, p = 1,

c
1+ς(q−1)+σ(p−1)+

σ(p−1)
ς(q−1)

n
ς(q−1)
σ(p−1)

, p > 1.

Observe that V ≥ w
pα
p (

p−1
q−1

+ q−p
q(q−1))W

pα
p (1−

p
q )ναpαχ{|gϱ|>y} = Wχ{|gϱ|>y}.

Now, estimate (5.17) for p > 1 should be replaced by

v({|f | > t}) ≤ w({|f | > t})p/q
∥∥∥∥∥∥M(w

ς
1+ς(q−1)W

ς(q−1)
1+ς(q−1)χ{|gϱ|>y})

1+ς(q−1)
ςq

w

∥∥∥∥∥∥
q−p
q−1

Lq′ (w)

,

for p = 1 and ς ≥ 1 by

v({|f | > t}) ≤ qw({|f | > t})1/q
∥∥∥∥M(ϖ−1

0 Wχ{|gϱ|>y})

ϖ−q
0 ϖ1

∥∥∥∥1/q
′

L1,∞(w)

,

and for p = 1 and 0 < ς < 1 by

v({|f | > t}) ≤ w({|f | > t})1/q
∥∥∥∥∥∥M(w1/qW 1/q′ϖ

ς−1
q

1 χ{|gϱ|>y})

wϖ
ς−1
q

1

∥∥∥∥∥∥
Lq′ (w)

.

Since wς ∈ A1+ς(q−1), w
1

1−q ∈ A1+ 1
ς(q−1)

, with [w
1

1−q ]A
1+ 1

ς(q−1)

= [w]
1

ς(q−1)

Aς
q

, and by

the classical Buckley’s bound for M (see [12, Theorem 2.5], [72, Theorem 3.11]),∥∥∥M(w
ς

1+ς(q−1)W
ς(q−1)

1+ς(q−1)χ{|gϱ|>y})
∥∥∥
L
1+ 1

ς(q−1) (w
1

1−q )
≤ cn(1 + ς(q − 1))[w]Aς

q

×W ({|gϱ| > y})
ς(q−1)

1+ς(q−1) .

Similarly, for 0 < ς < 1, since ϖ1−q
0 ϖς

1 ∈ Aq, ϖ0ϖ
ς

1−q

1 ∈ Aq′ , with [ϖ0ϖ
ς

1−q

1 ]Aq′
=

[ϖ1−q
0 ϖς

1]
1

q−1

Aq
, so∥∥∥∥M(w1/qW 1/q′ϖ

ς−1
q

1 χ{|gϱ|>y})

∥∥∥∥
Lq′ (ϖ0ϖ

ς
1−q
1 )

≤ c
q+ 1

ς
+ς(q−1)

n q[w]
1+ 1

ς

Aς
q
W ({|gϱ| > y})1/q′ .

Also, for ς ≥ 1, w = (wς)1/ς ∈ A1+ς(q−1), so in virtue of [74, Theorem 2] (see also
[27, Theorem 1.4]),∥∥∥∥M(ϖ−1

0 Wχ{|gϱ|>y})

ϖ−q
0 ϖ1

∥∥∥∥
L1,∞(w)

≤ E n
ς,q([w]Aς

q
)W ({|gϱ| > y}),

where E n
ς,q : [1,∞) −→ [0,∞) is an increasing function that depends only on q, ς,

and the dimension n. Once again, the required optimal weak-type versions of [74,
Theorem 2] and [74, Theorem 7] are unavailable.
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Now, we can replace (5.18) by

v({|f | > t}) ≤ ϕ([w]Aς
q
)W ({|gϱ| > y})1−

p
qw({|f | > t})p/q,

and (5.19) by

∥f∥Lp(v) ≤
(
p

q
ϕ([w]Aς

q
)

)1/p

W ({|gϱ| > y})
1
p
− 1

q ∥f∥Lq,p(w) ,(5.32)

with

ϕ([w]Aς
q
) :=



qE n
ς,q([w]Aς

q
)1/q

′
, ς ≥ 1, p = 1,

c
q+ 1

ς
+ς(q−1)

n q[w]
1+ 1

ς

Aς
q
, ς < 1, p = 1,

(
cn(1 + ς(q − 1))[w]Aς

q

)(1− p
q )(1+

1
ς(q−1)) , p > 1.

Finally, if we follow the proof of Theorem 5.3 performing the previous changes
and keeping track of the constants, we conclude that (5.31) holds, with

Ψ(ξ) =

(
p

q
ϕ(ξ)

)1/p

ψ(C0ξ
1+

σ(p−1)
ς(q−1) ), ξ ≥ 1.

▷▷▶
Remark 5.14. Alternatively, if 1 ≤ p < q <∞, then we can take

v := w
p−1
q−1 R ′(w

1
q
· q′
(1+ς(q−1))′W

1
(1+ς(q−1))′χ{|gϱ|>y})

(1− p
q )(1+ς(q−1))′ ,

where for a measurable function h ∈ L1+ 1
ς(q−1) (w

1
1−q ),

R ′h :=
∞∑
k=0

Mk(|h|)
2k∥M∥k

L
1+ 1

ς(q−1) (w
1

1−q )

is the Rubio de Francia’s iteration algorithm (see [35, 76]). In virtue of [35, Lemma
2.2], we have that |h| ≤ R ′h, ∥R ′h∥

L
1+ 1

ς(q−1) (w
1

1−q )
≤ 2∥h∥

L
1+ 1

ς(q−1) (w
1

1−q )
, and R ′h ∈

A1, with [R ′h]A1 ≤ 2∥M∥
L
1+ 1

ς(q−1) (w
1

1−q )
≤ 2cn(1+ς(q−1))[w]Aς

q
. Moreover, applying

[35, Lemma 2.1], we get that v ∈ Aσ
p , with [v]Aσ

p
≤ (2cn(1 + ς(q − 1)))1−

σ(p−1)
ς(q−1) [w]Aς

q
.

Hence, we can argue as before to conclude that (5.31) holds, with

Ψ(ξ) =

(
p

q

)1/p

2(
1
p
− 1

q )(1+
1

ς(q−1))ψ((2cn(1 + ς(q − 1)))1−
σ(p−1)
ς(q−1) ξ), ξ ≥ 1.

Remark 5.15. Note that given r > 0, if in (5.30) we replace ∥f∥Lp(v) by ∥f∥Lp,r(v),
then we can replace estimate (5.32) by

∥f∥Lp,r(v) ≤
(
p

q

)1/r

ϕ([w]Aς
q
)1/pW ({|gϱ| > y})

1
p
− 1

q ∥f∥Lq,r(w) ,

and follow the proof of Theorem 5.13 to conclude that

∥g∥Lqα,∞(W ) ≤
(
p

q

) 1
r
− 1

p

Ψ([w]Aς
q
) ∥f∥Lq,r(w) .

A more familiar presentation of Theorem 5.13 follows assuming that 0 < σ ≤ 1,
in which case we can fix an exponent q > p and choose ς := σp

σp+(1−σ)q
> 0. This

restriction on σ appears in AP⃗ extrapolation.
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Corollary 5.16. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function.
Given measurable functions f and g, suppose that for some exponents 1 ≤ p < ∞
and 0 < σ ≤ 1, and every v ∈ Aσ

p ,

∥g∥Lpα,∞(V ) ≤ ψ([v]Aσ
p
)∥f∥Lp(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every finite exponent q ≥ p, and every w ∈ Aς
q,

∥g∥Lqα,∞(W ) ≤ Ψ([w]Aς
q
)∥f∥Lq,p(w),

where ς = σp
σp+(1−σ)q

, 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an

increasing function.

6. Multi-variable extrapolation

This section presents our theorems on multi-variable mixed and restricted weak-
type extrapolation.

6.1. Main results.

The following general extrapolation scheme is a combination of Theorems 5.1, 5.3,
and 5.7, and Corollary 5.16.

Theorem 6.1. Fix 1 ≤ N1, . . . , Nm ∈ N ∪ {∞}, and 0 ≤ ℓR ≤ ℓ ≤ ℓM ≤ m.
Given measurable functions f1, . . . , fm, and g, suppose that for some exponents 1 ≤
p1, . . . , pm < ∞, 1

p
= 1

p1
+ · · · + 1

pm
, and all weights vi ∈ Âpi,Ni+1, i = 1, . . . , ℓR,

vi ∈ Âpi,Ni
, i = ℓR + 1, . . . , ℓ, and vi ∈ Api, i = ℓ+ 1, . . . ,m,

∥g∥
Lp,∞(v

p/p1
1 ...v

p/pm
m )

≤ φ(∥v1∥Âp1,N1+1
, . . . , ∥vℓR+1∥ÂpℓR+1,NℓR+1

, . . . , [vℓ+1]Apℓ+1
, . . . )

×

(
ℓ∏

i=1

∥fi∥Lpi,1(vi)

)(
m∏

i=ℓ+1

∥fi∥Lpi (vi)

)
,

(6.1)

where φ : [1,∞)m −→ [0,∞) is a function increasing in each variable. Then, for
all finite exponents 1 ≤ q1 ≤ p1, . . . , qℓR+1 ≥ pℓR+1, . . . , 1 < qℓ+1 ≤ pℓ+1, . . . , qℓM+1 ≥
pℓM+1, . . . , 1

q
= 1

q1
+ · · ·+ 1

qm
, and all weights wi ∈ Âqi,Ni

, i = 1, . . . , ℓ, and wi ∈ Aqi,
i = ℓ+ 1, . . . ,m,

∥g∥
Lq,∞(w

q/q1
1 ...w

q/qm
m )

≤ Φ(∥w1∥Âq1,N1
, . . . , [wℓ+1]Aqℓ+1

, . . . )

×

(
ℓ∏

i=1

∥fi∥
L
qi,min{1,

qi
pi}(wi)

)(
m∏

i=ℓ+1

∥fi∥Lqi,min{pi,qi}(wi)

)
,

(6.2)

where Φ : [1,∞)m −→ [0,∞) is a function increasing in each variable. If for some
1 ≤ i ≤ ℓR, qi = 1, then we can take Ni = 0.

Proof. We are going to prove this theorem in m consecutive steps, one for each
variable. The argument is simple, but the notation is appalling.

At step 1 ≤ i ≤ m, we take p(i) := pi, q(i) := qi, f (i) := fi, g(i) := g, v(i) := vi,
w(i) := wi,

α(i) :=

(∑
1≤j<i

1

qj

)
+

( ∑
i<j≤m

1

pj

)
, and ν(i) :=

( ∏
1≤j<i

w

1

α(i)qj

j

)( ∏
i<j≤m

v

1

α(i)pj

j

)
.
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If 1 ≤ i ≤ ℓR, we pick N (i) := Ni, and

ψ(i)(ξ) :=

( ∏
1≤j<i

Ej(. . . , ∥wi−1∥Âqi−1,Ni−1
, ξ, ∥vi+1∥Âpi+1,Ni+1+1

, · · · )

)
× φ(. . . , 4∥wi−1∥ei−1

Âqi−1,Ni−1

, ξ, ∥vi+1∥Âpi+1,Ni+1+1
, · · · )

×

( ∏
1≤j<i

∥fj∥
L
qj ,

qj
pj (wj)

)( ∏
i<j≤ℓ

∥fj∥Lpj,1(vj)

) ∏
ℓ<j≤m

∥fj∥Lpj (vj)
, ξ ≥ 1,

and apply Theorem 5.1. Here, for 1 ≤ j ≤ ℓR, if Nj < ∞, then ej :=
qj
pj

, and Ej is
as in (5.9), and if Nj = ∞, then ej := 1, and Ej is as in (5.11), taking into account
Proposition 3.8 to handle ν(i); that is,

[ν(i)]AR
max{q1,...,qi−1,pi+1,...,pm}

≤ Ci

( ∏
1≤j<i

[wj]

1

α(i)qj

AR
qj

)( ∏
i<j≤m

[vj]

1

α(i)pj

AR
pj

)
, Ci ≥ 1.

Alternatively, one could also use [75, Lemma 4.1.11].
If ℓR + 1 ≤ i ≤ ℓ, we pick N (i) := Ni, and

ψ(i)(ξ) :=

( ∏
1≤j≤ℓR

Ej(. . . , ∥wi−1∥Âqi−1,Ni−1
, ξ, ∥vi+1∥Âpi+1,Ni+1

, · · · )

)

×

( ∏
ℓR<j<i

Ẽj(. . . , ∥wi−1∥Âqi−1,Ni−1
, ξ, ∥vi+1∥Âpi+1,Ni+1

, · · · )

)

× φ(· · · , cnC1
pi−1,qi−1

(
2∥wi−1∥Âqi−1,Ni−1

)qi−1/pi−1

, ξ, ∥vi+1∥Âpi+1,Ni+1
, · · · )

×

( ∏
1≤j<i

∥fj∥
L
qj ,min

{
1,

qj
pj

}
(wj)

)( ∏
i<j≤ℓ

∥fj∥Lpj,1(vj)

) ∏
ℓ<j≤m

∥fj∥Lpj (vj)
, ξ ≥ 1,

and apply Theorem 5.3. Here, for ℓR+1 ≤ j ≤ ℓ, if Nj <∞, then Ẽj is as in (5.21),
and if Nj = ∞, then Ẽj is as in (5.22), handling ν(i) as before.

If ℓ+ 1 ≤ i ≤ ℓM, we pick σ(i) := 1 =: ς(i), and

ψ(i)(ξ) :=

( ∏
1≤j≤ℓR

Ej(· · · , [wi−1]Aqi−1
, ξ, [vi+1]Api+1

, . . . )

)

×

( ∏
ℓR<j≤ℓ

Ẽj(· · · , [wi−1]Aqi−1
, ξ, [vi+1]Api+1

, . . . )

)

×

( ∏
ℓ<j<i

2
1−

qj
pj C(j)

)
φ(· · · , C̃(i−1)

0 [wi−1]

pi−1−1

qi−1−1

Aqi−1
, ξ, [vi+1]Api+1

, . . . )

×

( ∏
1≤j≤ℓ

∥fj∥
L
qj ,min

{
1,

qj
pj

}
(wj)

)( ∏
ℓ<j<i

∥fj∥Lqj (wj)

) ∏
i<j≤m

∥fj∥Lpj (vj)
, ξ ≥ 1,

and apply Theorem 5.7 and Remark 5.8 to get better constants.
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Finally, if ℓM + 1 ≤ i ≤ m, we pick σ(i) := 1 =: ς(i), and for ξ ≥ 1,

ψ(i)(ξ) :=

( ∏
1≤j≤ℓR

Ej(· · · , [wi−1]Aqi−1
, ξ, [vi+1]Api+1

, . . . )

)

×

( ∏
ℓR<j≤ℓ

Ẽj(· · · , [wi−1]Aqi−1
, ξ, [vi+1]Api+1

, . . . )

)

×

( ∏
ℓ<j≤ℓM

2
1−

qj
pj C(j)

)( ∏
ℓM<j<i

(
pj
qj

)1/pj

2
q′j

(
1
pj

− 1
qj

))

× φ(· · · , (2cnqi−1)
1− pi−1−1

qi−1−1 [wi−1]Aqi−1
, ξ, [vi+1]Api+1

, . . . )

×

( ∏
1≤j≤ℓ

∥fj∥
L
qj ,min

{
1,

qj
pj

}
(wj)

)( ∏
ℓ<j<i

∥fj∥Lqj ,min{pj,qj}(wj)

) ∏
i<j≤m

∥fj∥Lpj (vj)
,

and apply Corollary 5.16 and Remark 5.14 to get better constants.
Hence, (6.2) holds, with

Φ(ξ⃗) =

( ∏
1≤j≤ℓR

Ej(ξ⃗)

)( ∏
ℓR<j≤ℓ

Ẽj(ξ⃗)

)

×

( ∏
ℓ<j≤ℓM

2
1−

qj
pj C(j)

)( ∏
ℓM<j≤m

(
pj
qj

)1/pj

2
q′j

(
1
pj

− 1
qj

))
× φ(4ξe11 , . . . , cnC

1
pℓR+1,qℓR+1

(2ξℓR+1)
qℓR+1/pℓR+1 , . . . ,

C̃
(ℓ+1)
0 ξ

pℓ+1−1

qℓ+1−1

ℓ+1 , . . . , (2cnqℓM+1)
1−

pℓM+1−1

qℓM+1−1 ξℓM+1, . . . ), ξ⃗ ∈ [1,∞)m.

▷▷▶
Remark 6.2. Note that in the case ℓ = 0, we obtain an alternative proof of the
weak-type extrapolation schemes in [19, Theorem 3.12] and [46, Theorem 6.1], and
the one that follows from [35, Theorem 6.1].

We have presented Theorem 6.1 in its general form, for (m+1)-tuples of functions
(f1, . . . , fm, g). In the next corollary, we deduce the corresponding extrapolation
result for m-variable operators.

Corollary 6.3. Let T be an m-variable operator defined for suitable measurable
functions. Fix 1 ≤ N1, . . . , Nm ∈ N ∪ {∞}, and 0 ≤ ℓR ≤ ℓ ≤ ℓM ≤ m, and
suppose that for some exponents 1 ≤ p1, . . . , pm < ∞, 1

p
= 1

p1
+ · · · + 1

pm
, and all

weights vi ∈ Âpi,Ni+1, i = 1, . . . , ℓR, vi ∈ Âpi,Ni
, i = ℓR + 1, . . . , ℓ, and vi ∈ Api,

i = ℓ+ 1, . . . ,m,
(6.3)
T : Lp1,1(v1)× · · · ×Lpℓ,1(vℓ)×Lpℓ+1(vℓ+1)× · · · ×Lpm(vm) −→ Lp,∞(v

p/p1
1 . . . vp/pmm ),

with constant bounded as in (6.1). Then, for all finite exponents 1 ≤ q1 ≤ p1, . . . ,
qℓR+1 ≥ pℓR+1, . . . , 1 < qℓ+1 ≤ pℓ+1, . . . , qℓM+1 ≥ pℓM+1, . . . , 1

q
= 1

q1
+ · · · + 1

qm
, and

all weights wi ∈ Âqi,Ni
, i = 1, . . . , ℓ, and wi ∈ Aqi, i = ℓ+ 1, . . . ,m,

(6.4)

T :

(
ℓ∏

i=1

L
qi,min

{
1,

qi
pi

}
(wi)

)
×

(
m∏

i=ℓ+1

Lqi,min{pi,qi}(wi)

)
−→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),
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with constant bounded as in (6.2). If for some 1 ≤ i ≤ ℓR, qi = 1, then we can take
Ni = 0.

Proof. Given fi ∈ L
qi,min

{
1,

qi
pi

}
(wi), i = 1, . . . , ℓ, and fi ∈ Lqi,min{pi,qi}(wi), i =

ℓ + 1, . . . ,m, take g := |T (f1, . . . , fm)|, and for every natural number ϱ ≥ 1, let
gϱ := min{g, ϱ}χB(0,ϱ). We can perform this step under the vague assumption that
T is defined for suitable measurable functions, including f1, . . . , fm. Note that for
every ϱ ≥ 1, gϱ ≤ g, so from (6.3) we deduce (6.1) for gϱ, and by Theorem 6.1, we
obtain (6.2) for gϱ. Finally, we get (6.4) by taking the supremum over all ϱ ≥ 1,
since gϱ ↑ g and

∥g∥
Lq,∞(w

q/q1
1 ...w

q/qm
m )

= sup
ϱ≥1

∥gϱ∥Lq,∞(w
q/q1
1 ...w

q/qm
m )

.

▷▷▶
Remark 6.4. If the operator T is initially defined for some nice functions, say
bounded functions with compact support or simple functions, and (6.3) only holds
for these, then we can recover (6.4) in full generality via a standard density argument,
assuming that T is multi-sub-linear (see [44, Proposition 7.2.3]).

6.2. A one-weight scheme.

For simplicity, suppose that ℓR = 0 and ℓ = m = 2. Although from Theorem 6.1
we can deduce a one-weight conclusion, we need to assume a two-weight hypothesis
to get it because, in general, the weights v1 and v2 that we chose in (5.14) are
different. However, for q1 > p1 > 1 and q2 > p2 > 1 such that p1−1

q1−1
= p2−1

q2−1
, we can

have v1 = v2. That is, these weights can coincide if the points (p1, p2) and (q1, q2)
in (1,∞)2 lay on a straight line passing through the point (1, 1). Equivalently,
for some γ > 0, the points P = ( 1

p1
, 1
p2
) and Q = ( 1

q1
, 1
q2
) in (0, 1)2 belong to

the graph of the function Fγ(x) := x
(1−γ)x+γ

, defined for 0 < x ≤ 1. Adding this
assumption in Theorem 6.1 allows us to obtain the following one-weight theorem, and
the corresponding extrapolation scheme for multi-variable operators. See Figure 2
for a pictorial representation of these results.

Theorem 6.5. Fix integers N1, . . . , Nm ≥ 1. Given measurable functions f1, . . . , fm,
and g, suppose that for some exponents p1 = · · · = pm = 1 or 1 < p1, . . . , pm < ∞,
1
p
= 1

p1
+ · · ·+ 1

pm
, and every weight v ∈

⋂m
i=1 Âpi,Ni

,

(6.5) ∥g∥Lp,∞(v) ≤ φ(∥v∥Âp1,N1
, . . . , ∥v∥Âpm,Nm

)
m∏
i=1

∥fi∥Lpi,1(v) ,

where φ : [1,∞)m −→ [0,∞) is a function increasing in each variable. Then, for all
finite exponents q1 ≥ p1, . . . , qm ≥ pm such that p1−1

q1−1
= · · · = pm−1

qm−1
, 1

q
= 1

q1
+ · · ·+ 1

qm
,

and every weight w ∈
⋂m

i=1 Âqi,Ni
,

∥g∥Lq,∞(w) ≤ Φ(∥w∥Âq1,N1
, . . . , ∥w∥Âqm,Nm

)
m∏
i=1

∥fi∥Lqi,1(w) ,(6.6)

where Φ : [1,∞)m −→ [0,∞) is a function that increases in each variable. The
same result is valid if for some index 0 ≤ ℓ < m, Nℓ+1 = · · · = Nm = ∞ and
N1, . . . , Nℓ <∞.

Proof. We will follow the steps of the proof of Theorem 5.3, skipping most of the
tedious computations.
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Note that if for some 1 ≤ i ≤ m, qi = pi, then q1 = p1, . . . , qm = pm and there is
nothing to prove, so we may assume that qi > pi, i = 1, . . . ,m. Fix a natural number
ϱ ≥ 1, and let gϱ := |g|χB(0,ϱ). We will prove (6.6) for the tuple (f1, . . . , fm, gϱ). Pick
a weight w ∈

⋂m
i=1 Âqi,Ni

and fix y > 0 such that λwgϱ(y) ̸= 0.
In order to apply (6.5), we want to find a weight v ∈

⋂m
i=1 Âpi,Ni

such that
λwgϱ(y) ≤ λvgϱ(y). If 1 < p1, . . . , pm <∞, then the restrictions on the exponents allow
us to take any 1 ≤ j ≤ m, and choose

v := w
pj−1

qj−1M(wχ{|gϱ|>y})
qj−pj
qj−1 .

In virtue of Lemma 3.7, we see that for i = 1, . . . ,m, v ∈ Âpi,Ni
, with

∥v∥Âpi,Ni
≲n

(
qi − 1

pi − 1

)1/pi

∥w∥qi/pi
Âqi,Ni

.

If p1 = · · · = pm = 1, then we argue as follows: for q0 := min{q1, . . . , qm}, and
N := max{N1, . . . , Nm},

⋂m
i=1 Âqi,Ni

⊆ Âq0,N , so we can find measurable functions
h1, . . . , hN ∈ L1

loc(Rn), parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a

weight u ∈ A1 such that w =
(∏N

j=1(Mhj)
θj

)1−q0
u, with [u]

1/q0
A1

≤ (1+ 1
q0
)∥w∥Âq0,N

.
In particular, for i = 1, . . . ,m,

(6.7) w =

(
M(χRn)

1− q0−1
qi−1

N∏
j=1

(Mhj)
θj(q0−1)

qi−1

)1−qi

u.

This step is crucial to guarantee that we can apply Theorem 4.1 m times, one for
each of the exponents q1, . . . , qm, and always working with the same weight u ∈ A1.

Now, write q∞ := max{q1, . . . , qm}, and choose θ := 1 − 1
5q∞

, τ := 1 + 1
2n+1[u]A1

,
and µ := 1− 1−θ

τ
, and define wθ := wuθ−1 and

v :=Mµ(wθχ{|gϱ|>y})u
τ(1−µ).

In virtue of (5.15), we see that v ∈ A1, with

[v]A1 ≲n

∥w∥q0
Âq0,N

1− θ
≲ q∞ max

1≤k≤m

{
∥w∥Âqk,Nk

}q0
.

Observe that, in any case, v ≥ wχ{|gϱ|>y}, so (6.5) implies that

λwgϱ(y) ≤ λvgϱ(y) ≤
1

yp
φ(∥v∥Âp1,N1

, . . . , ∥v∥Âpm,Nm
)p

m∏
i=1

∥fi∥pLpi,1(v)

≤ φ̃p

yp

m∏
i=1

∥fi∥pLpi,1(v)
,

(6.8)

where φ̃ is given by
φ(cn

(
q1−1
p1−1

∥w∥q1
Âq1,N1

)1/p1
, . . . , cn

(
qm−1
pm−1

∥w∥qm
Âqm,Nm

)1/pm
), 1 < pj <∞,

φ(cnq∞ max
1≤k≤m

{
∥w∥Âqk,Nk

}q0
, . . . , cnq∞ max

1≤k≤m

{
∥w∥Âqk,Nk

}q0
), pj = 1.
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For i = 1, . . . ,m, we want to replace ∥fi∥Lpi,1(v) by ∥fi∥Lqi,1(w) in (6.8). Applying
Hölder’s inequality with exponent qi

pi
> 1, we obtain that for every t > 0,

λvfi(t) ≤
qi
pi
w({|fi| > t})pi/qi ×


∥∥∥M(wχ{|gϱ|>y})

w

∥∥∥ qi−pi
qi−1

Lq′
i
,∞(w)

, 1 < pi <∞,

∥∥∥Mµ(wθχ{|gϱ|>y})

wθ

∥∥∥
Lq′

i
,∞(w)

, pi = 1.

Now, [74, Theorem 8] gives us that∥∥∥∥M(wχ{|gϱ|>y})

w

∥∥∥∥
Lq′

i
,∞(w)

≲n,qi [w]
qi+1
AR

qi

w({|gϱ| > y})1/q′i ,

and from (6.7) and Theorem 4.1, we deduce that∥∥∥∥Mµ(wθχ{|gϱ|>y})

wθ

∥∥∥∥
Lq′

i
,∞(w)

≲n,qi,q∞ [u]A1 [w]
2
AR

qi
w({|gϱ| > y})1/q′i .

Thus, in virtue of Theorem 3.4,

λvfi(t) ≤
qi
pi
ϕ

qi−pi
qi−1

i w({|gϱ| > y})1−
pi
qiw({|fi| > t})pi/qi ,

with

ϕi :=


Cn
qi

(
Ni∥w∥Âqi,Ni

)qi+1

, 1 < pi <∞,

Cn
qi,q∞

(
Ni∥w∥Âqi,Ni

)2
max
1≤k≤m

{
∥w∥Âqk,Nk

}q0
, pi = 1,

for some constants Cn
qi
,Cn

qi,q∞
≥ 1, and hence,

∥fi∥Lpi,1(v) ≤
(
pi
qi

)1/p′i

ϕ
1
pi

· qi−pi
qi−1

i w({|gϱ| > y})
1
pi

− 1
qi ∥fi∥Lqi,1(w).(6.9)

Combining the estimates (6.8) and (6.9), we have that

λwgϱ(y) ≤
1

yp
Φ(∥w∥Âq1,N1

, . . . , ∥w∥Âqm,Nm
)p

(
m∏
i=1

∥fi∥pLqi,1(w)

)
λwgϱ(y)

1− p
q ,

with

Φ(∥w∥Âq1,N1
, . . . , ∥w∥Âqm,Nm

) =

(
m∏
i=1

(
pi
qi

)1/p′i

ϕ
1
pi

· qi−pi
qi−1

i

)
φ̃,

and the desired result follows.
Now, suppose that for some index 0 ≤ ℓ < m, Nℓ+1 = · · · = Nm = ∞ and

N1, . . . , Nℓ <∞. By hypothesis, we have that for every weight v ∈
⋂m

i=1 Âpi,Ni
,

(6.10)

∥g∥Lp,∞(v) ≤ φ(∥v∥Âp1,N1
, . . . , ∥v∥Âpℓ,Nℓ

, ∥v∥Âpℓ+1,∞
, . . . , ∥v∥Âpm,∞

)
m∏
i=1

∥fi∥Lpi,1(v) .

Pick a weight w ∈
⋂m

i=1 Âqi,Ni
. For i = ℓ+ 1, . . . ,m, we can find an integer N0

i ≥ 1

such that w ∈ Âqi,N0
i
, with ∥w∥Âqi,∞

≤ N0
i ∥w∥Â

qi,N
0
i

≤ 2∥w∥Âqi,∞
. From (6.10), we



EXTRAPOLATION VIA SAWYER-TYPE INEQUALITIES 41

deduce that for every weight v ∈
(⋂ℓ

i=1 Âpi,Ni

)
∩
(⋂m

i=ℓ+1 Âpi,N0
i

)
,

∥g∥Lp,∞(v) ≤ φ(. . . , ∥v∥Âpℓ,Nℓ
, N0

ℓ+1∥v∥Â
pℓ+1,N

0
ℓ+1

, . . . )
m∏
i=1

∥fi∥Lpi,1(v) ,

and applying Theorem 6.5 for N1, . . . , Nℓ, N
0
ℓ+1, . . . , N

0
m, we conclude that

∥g∥Lq,∞(w) ≤ Φ(. . . , ∥w∥Âqℓ,Nℓ
, ∥w∥Âqℓ+1,∞

, . . . )
m∏
i=1

∥fi∥Lqi,1(w) ,

with Φ(ξ⃗) defined for ξ⃗ ∈ [1,∞)m as m∏
i=1

(
pi
qi

)1/p′i

×

 Cn
qi
Υqi+1

i , 1 < pi <∞,

Cn
qi,q∞

Υ2
i max {. . . , ξℓ, 2ξℓ+1, . . . }q0 , pi = 1,


1
pi

qi−pi
qi−1


×


φ(. . . , cn

(
qℓ−1
pℓ−1

ξqℓℓ

)1/pℓ
, cn

(
qℓ+1−1

pℓ+1−1
(2ξℓ+1)

qℓ+1

)1/pℓ+1

, . . . ), 1 < pj <∞,

φ(. . . , cnq∞ max {. . . , ξℓ, 2ξℓ+1, . . . }q0 , . . . ), pj = 1,


where Υi := Niξi for 1 ≤ i ≤ ℓ, and Υi := 2ξi for ℓ+ 1 ≤ i ≤ m. ▷▷▶
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P
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(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2. Pictorial representation of Theorem 6.5 and Corollary 6.6
for m = 2.

As usual, from Theorem 6.5 we can obtain the corresponding extrapolation result
for multi-variable operators arguing as in the proof of Corollary 6.3.

Corollary 6.6. Let T be an m-variable operator defined for suitable measurable
functions. Fix 1 ≤ N1, . . . , Nm ∈ N ∪ {∞}. Suppose that for some exponents
p1 = · · · = pm = 1 or 1 < p1, . . . , pm < ∞, 1

p
= 1

p1
+ · · · + 1

pm
, and every weight

v ∈
⋂m

i=1 Âpi,Ni
,

T : Lp1,1(v)× · · · × Lpm,1(v) −→ Lp,∞(v),
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with constant bounded as in (6.5). Then, for all finite exponents q1 ≥ p1, . . . ,
qm ≥ pm such that p1−1

q1−1
= · · · = pm−1

qm−1
, 1

q
= 1

q1
+ · · · + 1

qm
, and every weight

w ∈
⋂m

i=1 Âqi,Ni
,

T : Lq1,1(w)× · · · × Lqm,1(w) −→ Lq,∞(w),

with constant bounded as in (6.6).

Remark 6.7. One-weight strong-type extrapolation for multi-variable operators
was studied in [46, Theorem 1.2], assuming an alternative condition on the expo-
nents; that is, p1

q1
= · · · = pm

qm
. An analog for restricted weak-type operators in the

downwards case was obtained in [4, Theorem 1.3].

7. Applications

In this section, we apply the extrapolation results previously introduced to pro-
duce mixed and restricted weak-type bounds for classical operators.

7.1. Weak-type operators.

We will demonstrate that, under suitable conditions, a weak-type hypothesis for
a multi-sub-linear operator T is more than enough to run an extrapolation argu-
ment yielding the full range of weighted restricted weak-type bounds for such an
operator. In particular, we extend outside the Banach range the well-known equiv-
alence between weak-type for characteristic functions and restricted weak-type (see
[9, 65, 81]). Also, we show that weighted restricted weak-type conditions are stronger
than the usual weighted weak-type ones.

The next result follows applying Theorems 6.1 and 2.4, Corollary 6.3, and the
standard extension argument in [9, Page 256] if q > 1.

Theorem 7.1. Let T be a multi-sub-linear operator defined for suitable measurable
functions. Suppose that for some exponents 1 ≤ p1, . . . , pm <∞, 1

p
= 1

p1
+ · · ·+ 1

pm
,

and all weights vi ∈ Âpi, i = 1, . . . ,m,

∥T (χE1 , . . . , χEm)∥Lp,∞(v
p/p1
1 ...v

p/pm
m )

≤ φ(∥v1∥Âp1
, . . . , ∥vm∥Âpm

)
m∏
i=1

vi(Ei)
1/pi ,

for all measurable sets E1, . . . , Em ⊆ Rn, where φ : [1,∞)m −→ [0,∞) is a function
increasing in each variable. Then, for all exponents 1 ≤ q1, . . . , qm < ∞, 1

q
=

1
q1
+ · · ·+ 1

qm
, and all weights wi ∈ Âqi,∞, i = 1, . . . ,m,

T : Lq1,1(w1)× · · · × Lqm,1(wm) −→ Lq,∞(w
q/q1
1 . . . wq/qm

m ),

with monotonically increasing dependence of the constant on (∥wi∥Âqi,∞
)1≤i≤m, pro-

vided that q > 1 or T is (ε, δ)-atomic approximable or iterative (ε, δ)-atomic approx-
imable.

Remark 7.2. This result provides positive evidence for the conjecture that given
p > 1, and v ∈ Âp,∞, there exists a weight v0 ∈ Âp such that v0 ≂ v, with implicit
constants depending only on p, ∥v∥Âp,∞

, and the dimension n.

Remark 7.3. Under the hypotheses of Theorem 7.1, and assuming that T is (ε, δ)-
atomic approximable or iterative (ε, δ)-atomic approximable, we can extrapolate
down to the endpoint (1, . . . , 1, 1

m
) with Theorems 6.1 and 2.4, and in virtue of the

classical multi-variable weak-type Rubio de Francia’s extrapolation in [46, Theorem
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6.1], we deduce that for all exponents 1 < q1, . . . , qm < ∞, 1
q
= 1

q1
+ · · · + 1

qm
, and

all weights wi ∈ Aqi , i = 1, . . . ,m,

T : Lq1(w1)× · · · × Lqm(wm) −→ Lq,∞(w
q/q1
1 . . . wq/qm

m ),

with monotonically increasing dependence of the constant on ([wi]Aqi
)1≤i≤m.

Recently, the following class of operators has been extensively studied in [13].

Definition 7.4. Given a Banach space B, we say that an m-variable operator
T is a B-valued multi-linear bounded oscillation operator if there is a B-valued
m-linear (or m-sub-linear if B = R) operator T such that for every x ∈ Rn,
T (f⃗)(x) = ∥T (f⃗)(x)∥B, and there exist constants C1, C2 > 0 such that for all func-
tions f1, . . . , fm ∈ L1(Rn):

(a) For every cube Q ⊆ Rn, there exists a cube P ⊆ Rn so that Q ⊊ P , and

sup
x∈Q

∥T (f⃗χ5P )(x)− T (f⃗χ5Q)(x)∥B ≤ C1

m∏
i=1

−
∫
5P

|fi|.

(b) For every cube Q ⊆ Rn,

sup
x,y∈Q

∥∥∥(T (f⃗)− T (f⃗χ5Q)
)
(x)−

(
T (f⃗)− T (f⃗χ5Q)

)
(y)
∥∥∥
B
≤ C2

m∏
i=1

sup
P⊇Q

−
∫
P

|fi|.

It follows immediately from [13, Theorem 1.7] that we can transfer the weak-
type (1, . . . , 1, 1

m
) bounds for M in [60, Theorem 3.3] to general B-valued multi-

linear bounded oscillation operators, and we can apply our extrapolation scheme in
Corollary 6.3 to obtain the corresponding mixed and restricted weak-type estimates.

Theorem 7.5. Let T be a B-valued multi-linear bounded oscillation operator defined
for suitable measurable functions, and suppose that

T : L1(Rn)× · · · × L1(Rn) −→ L
1
m
,∞(Rn).

Then, for all exponents 1 ≤ q1, . . . , qm < ∞, 1
q
= 1

q1
+ · · · + 1

qm
, and all weights

wi ∈ Âqi,∞, i = 1, . . . ,m,

T : Lq1,1(w1)× · · · × Lqm,1(wm) −→ Lq,∞(w
q/q1
1 . . . wq/qm

m ),

with monotonically increasing dependence of the constant on (∥wi∥Âqi,∞
)1≤i≤m. Like-

wise, we also get mixed-type inequalities for T .

Many well-known multi-variable operators satisfy the hypotheses of Theorem 7.5,
meaning that we automatically cover the full range of mixed and restricted weak-
type bounds for them. Among these, we find multi-linear Littlewood-Paley square
operators (see [13, Theorem 2.13]), multi-linear Fourier integral operators (see [13,
Theorem 2.20]), higher order Calderón commutators (see [13, Theorem 2.24]), and
maximally modulated multi-linear singular integrals (see [13, Theorem 2.27]). The
multi-sub-linear maximal operator M (see [13, Theorem 2.1]), and m-variable ω-
Calderón-Zygmund operators with ω satisfying the Dini condition (see [13, Theorem
2.5]) also satisfy the hypotheses of Theorem 7.5, but we managed to produce better
results for them in [74, Theorem 10], [75, Theorem 5.2.7], and [75, Remark 5.2.9].
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7.2. Product-type operators and commutators.

We start with the following result, that gives us mixed-type bounds for products
of one-variable operators.

Proposition 7.6. Let T1, . . . , Tm be one-variable operators defined for suitable mea-
surable functions. For i = 2, . . . ,m, suppose that for some pi > 1, and every weight
vi ∈ Api,

Ti : L
pi,1(vi) −→ Lpi,1(vi),

with constant bounded by φi([vi]Api
), where φi : [1,∞) −→ [0,∞) is an increasing

function. Suppose also that for some p1 ≥ 1, and every weight v1 ∈ AR
p1

,

T1 : L
p1,1(v1) −→ Lp1,∞(v1),

with constant bounded by φ1([v1]AR
p1
), where φ1 : [1,∞) −→ [0,∞) is an increasing

function. If 1
p1

+ · · · + 1
pm

= 1
p
< 1, then for all weights w1 ∈ AR

p1
, and wi ∈ Api,

i = 2, . . . ,m, and all suitable measurable functions f1, . . . , fm,

∥T1f1 . . . Tmfm∥Lp,∞(w
p/p1
1 ...w

p/pm
m )

≤ Φ([w1]AR
p1
, [w2]Ap2

, . . . )
m∏
i=1

∥fi∥Lpi,1(wi),

where Φ : [1,∞)m −→ [0,∞) is a function increasing in each variable.

Proof. Writing w := w
p/p1
1 . . . w

p/pm
m and applying [75, Lemma 2.2.1], we get that

∥T1f1 . . . Tmfm∥Lp,∞(w) ≤
22m−2p′

p2 . . . pm

(
m∏
i=2

∥Tifi∥Lpi,1(wi)

)
∥T1f1∥Lp1,∞(w1)

≤ 22m−2p′

p2 . . . pm

(
m∏
i=2

φi([wi]Api
)

)
φ1([w1]AR

p1
)

m∏
i=1

∥fi∥Lpi,1(wi).

▷▷▶
Remark 7.7. For i = 2, . . . ,m, if Ti is sub-linear, and for some pi > 1, and every
weight vi ∈ AR

pi
,

Ti : L
pi,1(vi) −→ Lpi,∞(vi),

with constant bounded by φi([vi]AR
pi
), then in virtue of [75, Theorem 3.1.9], Ti sat-

isfies the hypotheses of Proposition 7.6.

For operators as in Remark 7.7, we should be able to extend Proposition 7.6
for p1, . . . , pm ≥ 1, without restrictions on p, and assuming that for 1 ≤ ℓ ≤ m,
wi ∈ AR

pi
, i = 1, . . . , ℓ, and wi ∈ Api , i = ℓ + 1, . . . ,m. This question is still open

due to the lack of a Hölder-type inequality for Lorentz spaces with the change of
measures (see [75, Page 27] or [17]) and a complete mixed-type generalization of
[75, Lemma 2.2.1], although we managed to do the job for the particular case of
the point-wise product of Hardy-Littlewood maximal operators (see [74, Theorem
3] and [75, Remark 2.4.2]). Fortunately, we can use Corollary 6.3, and Remarks 5.9
and 5.15, to improve the conclusion of Proposition 7.6.

Theorem 7.8. Let T1, . . . , Tm be sub-linear operators defined for suitable measurable
functions. For i = 1, . . . ,m, suppose that for some pi > 1, and every weight vi ∈ AR

pi
,

Ti : L
pi,1(vi) −→ Lpi,∞(vi),
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with constant bounded by φi([vi]AR
pi
), where φi : [1,∞) −→ [0,∞) is an increasing

function. Consider the operator

T⊗(f1, . . . , fm)(x) := T1f1(x) . . . Tmfm(x), x ∈ Rn,

defined for suitable measurable functions f1, . . . , fm. If 1
p1

+ · · ·+ 1
pm

= 1
p
< 1, then

for all exponents 1 ≤ q1 < ∞, 1 < q2, . . . , qm < ∞, and 1
q
= 1

q1
+ · · · + 1

qm
, and all

weights w1 ∈ Âq1,∞, and wi ∈ Aqi, i = 2, . . . ,m,

T⊗ : L
q1,min

{
1,

q1
p1

}
(w1)× · · · × Lqm,min{1, qmpm}(wm) −→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),

with monotonically increasing dependence of the constant on ∥w1∥Âq1,∞
, and [wi]Aqi

,

i = 2, . . . ,m. If q > 1, then we can replace the space Lqi,min
{
1,

qi
pi

}
(wi) by Lqi,1(wi),

i = 1, . . . ,m.

Let us recall some basic concepts on commutators (see [23, 42, 60]). Given a
function f ∈ L1

loc(Rn), the sharp maximal operator M# is defined by

M#f(x) := sup
Q∋x

1

|Q|

∫
Q

∣∣∣∣f −−
∫
Q

f

∣∣∣∣ , x ∈ Rn.

If b ∈ L1
loc(Rn) is such that M#b ∈ L∞(Rn), we say that b is a function of bounded

mean oscillation, and we denote by BMO the class of all these functions. For
b ∈ BMO, we write

∥b∥BMO := ∥M#b∥L∞(Rn).

Given an m-variable operator T defined for measurable functions on Rn, and
measurable functions b1, . . . , bm, with b⃗ = (b1, . . . , bm), the m-variable commutators
[⃗b, T ]i, i = 1, . . . ,m, are formally defined for measurable functions f1, . . . , fm by

[⃗b, T ]i(f1, . . . , fm)(x) := bi(x)T (f1, . . . , fm)(x)

− T (f1, . . . , fi−1, bifi, fi+1, . . . , fm)(x), x ∈ Rn.

In particular, if T = T⊗, then

[⃗b, T⊗]i(f1, . . . , fm)(x) = [bi, Ti]fi(x)
∏
j ̸=i

Tjfj(x), x ∈ Rn.

Hence, these operators are, in fact, product-type operators, and we can follow the
approach of Theorem 7.8 to prove weighted bounds for them, using known estimates
for commutators of one-variable operators, as we show in the next result.

Corollary 7.9. Fix 1 ≤ i ≤ m, and let Ti be a linear operator such that for every
weight u ∈ A2,

Ti : L
2(u) −→ L2(u),

with constant bounded by ϕi([u]A2), where ϕi : [1,∞) −→ [0,∞) is an increasing
function. Also, for every 1 ≤ j ̸= i ≤ m, let Tj be a sub-linear operator such that
for some pj > 1, and every weight vj ∈ AR

pj
,

Tj : L
pj ,1(vj) −→ Lpj ,∞(vj),

with constant bounded by φj([vj]AR
pj
), where φj : [1,∞) −→ [0,∞) is an increasing

function. Let bi ∈ BMO, and fix an index ℓ ̸= i. If
∑

j ̸=i
1
pj
< 1, then for all finite
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exponents 1
pi
< 1 −

∑
j ̸=i

1
pj

, 1 ≤ qℓ < ∞, 1 < q1, . . . , qℓ−1, qℓ+1, . . . , qm < ∞, and
1
q
= 1

q1
+ · · ·+ 1

qm
, and all weights wℓ ∈ Âqℓ,∞, and wj ∈ Aqj , 1 ≤ j ̸= ℓ ≤ m,

[⃗b, T⊗]i : L
q1,min

{
1,

q1
p1

}
(w1)× · · · × Lqm,min{1, qmpm}(wm) −→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),

with constant bounded by Φb⃗([w1]Aq1
, . . . , ∥wℓ∥Âqℓ,∞

, [wℓ+1]Aqℓ+1
, . . . ), and as usual,

Φb⃗ : [1,∞)m −→ [0,∞) is a function increasing in each variable. If q > 1, then we

can replace the space L
qj ,min

{
1,

qj
pj

}
(wj) by Lqj ,1(wj), j = 1, . . . ,m.

Proof. In virtue of [20, Corollary 3.3], we have that for 1 < r <∞, and every weight
vi ∈ Ar,

[bi, Ti] : L
r(vi) −→ Lr(vi),

with constant bounded by

φi([vi]Ar) := cn,rϕi(Cn,r[vi]
max{1, 1

r−1}
Ar

)[vi]
max{1, 1

r−1}
Ar

∥bi∥BMO.

In particular,
[bi, Ti] : L

r(vi) −→ Lr,∞(vi),

with constant also bounded by φi([vi]Ar), and arguing as in the proof of [75, Theorem
3.1.9], we get that for every weight vi ∈ Ar,

[bi, Ti] : L
r,1(vi) −→ Lr,1(vi),

with constant bounded by c̃n,r[vi]
2

r−1

Ar
φi(C̃n,r[vi]

2
Ar
).

Choosing 1 < r := pi < ∞, and writing 1
p
:= 1

p1
+ · · · + 1

pm
< 1, we deduce the

desired result applying Proposition 7.6, Remark 7.7, Corollary 6.3, and Remarks 5.9
and 5.15.

Since [⃗b, T⊗]i is multi-sub-linear, the conclusion for q > 1 follows from the standard
extension argument in [9, Page 256]. ▷▷▶
Remark 7.10. It is worth mentioning that the function Φb⃗ that we obtain is of the
form Φb⃗ = ∥bi∥BMOΦ, where Φ : [1,∞)m −→ [0,∞) is a function increasing in each
variable and independent of b⃗.

7.3. Averaging operators and NBV Fourier multipliers.

We have seen in Theorem 7.8 that, sometimes, we can use extrapolation techniques
to avoid the application of some Hölder-type inequalities for Lorentz spaces. In the
next result, we will see that we can also use extrapolation theorems to overcome the
lack of Minkowski’s integral inequality for the Lorentz quasi-norm ∥ · ∥Lq,∞(w) when
q ≤ 1.

Theorem 7.11. Let {T t1
1 }t1∈R, . . . , {T tm

m }tm∈R be families of sub-linear operators
defined for suitable measurable functions. For i = 1, . . . ,m, suppose that for some
pi > 1, every ti ∈ R, and every weight vi ∈ AR

pi
,

T ti
i : Lpi,1(vi) −→ Lpi,∞(vi),

with constant bounded by φi([vi]AR
pi
), where φi : [1,∞) −→ [0,∞) is an increasing

function independent of ti. For a measure µ on Rm such that |µ|(Rm) <∞, consider
the averaging operator

Tµ(f1, . . . , fm)(x) :=

∫
Rm

T t1
1 f1(x) . . . T

tm
m fm(x)dµ(t1, . . . , tm), x ∈ Rn,
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defined for suitable measurable functions f1, . . . , fm. If 1
p1

+ · · ·+ 1
pm

= 1
p
< 1, then

for all exponents 1 ≤ q1 < ∞, 1 < q2, . . . , qm < ∞, and 1
q
= 1

q1
+ · · · + 1

qm
, and all

weights w1 ∈ Âq1,∞, and wi ∈ Aqi, i = 2, . . . ,m,

Tµ : L
q1,min

{
1,

q1
p1

}
(w1)× · · · × Lqm,min{1, qmpm}(wm) −→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),

with monotonically increasing dependence of the constant on ∥w1∥Âq1,∞
, and [wi]Aqi

,

i = 2, . . . ,m. If q > 1, then we can replace the space Lqi,min
{
1,

qi
pi

}
(wi) by Lqi,1(wi),

i = 1, . . . ,m.

Proof. Since p > 1, in virtue of Minkowski’s integral inequality (see [79, Proposition
2.1] and [5, Theorem 4.4]), we have that for all weights v1 ∈ AR

p1
, vi ∈ Api , i =

2, . . . ,m, and v := v
p/p1
1 . . . v

p/pm
m ,

∥Tµ(f1, . . . , fm)∥Lp,∞(v) ≤ p′
∫
Rm

∥T t1
1 f1 . . . T

tm
m fm∥Lp,∞(v)d|µ|(t1, . . . , tm),

and applying Proposition 7.6, we get that

∥Tµ(f1, . . . , fm)∥Lp,∞(v) ≤ p′|µ|(Rm)Φ([v1]AR
p1
, [v2]Ap2

, . . . )
m∏
i=1

∥fi∥Lpi,1(vi),

where Φ : [1,∞)m −→ [0,∞) is a function that increases in each variable. The
desired result follows from Corollary 6.3, taking into account Remarks 5.9 and 5.15,
and the standard extension argument in [9, Page 256] if q > 1. ▷▷▶

Now, let us recall some classical definitions from [78, Chapter 8].

Definition 7.12. Given a function f : R −→ R, we say that f is of bounded
variation if

V (f) := lim
x→∞

sup
N∑
j=1

|f(xj)− f(xj−1)| ∈ R,

where the supremum is taken over all N and over all choices of x0, . . . , xN such that
−∞ < x0 < x1 < · · · < xN = x < ∞. We call V (f) the total variation of f . The
class of all functions f of bounded variation will be denoted by BV (R).

We say that a function f ∈ BV (R) is normalized if limx→−∞ f(x) = 0. The class
of these functions will be denoted by NBV (R).

We say that a function f : R −→ R is absolutely continuous if for every ε > 0,
there exists δ > 0 such that

N∑
j=1

(bj − aj) < δ implies
N∑
j=1

|f(bj)− f(aj)| < ε,

whenever (a1, b1), . . . , (aN , bN) are disjoint segments. The class of all such functions
will be denoted by AC(R).

Let us focus our attention to [34, Corollary 3.8]. This result tells us that for a
function m ∈ NBV (R) that is right-continuous at every point of R, we can write

(7.1) m(ξ) =

∫ ξ

−∞
dm(t) =

∫
R
χ(−∞,ξ)(t)dm(t) =

∫
R
χ(t,∞)(ξ)dm(t), ξ ∈ R,
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where dm denotes the Lebesgue-Stieltjes measure associated with m. Therefore, the
linear multiplier operator Tm given by

T̂mf(ξ) := m(ξ)f̂(ξ) =

∫
R
χ(t,∞)(ξ)f̂(ξ)dm(t), ξ ∈ R,

initially defined for Schwartz functions f on R, can be written as

Tmf(x) =

∫
R
St,∞f(x)dm(t), x ∈ R,

where

St,∞f(x) :=
1

2
f(x) +

i

2
e2πitxH(e−2πit·f)(x) =:

1

2
f(x) +

i

2
e2πitxHtf(x).

As usual, H denotes the Hilbert transform on R, defined as

Hf(x) :=
1

π
lim
ε→0+

∫
{y∈R : |x−y|>ε}

f(y)

x− y
dy, x ∈ R,

and for a Schwartz function f : R −→ R, we denote by f̂ its Fourier transform,
given by

f̂(ξ) :=

∫
R
f(y)e−2πiyξdy, ξ ∈ R.

Since for 1 < p < ∞, H : Lp(R) −→ Lp(R) with constant bounded by cp, in
virtue of Minkowski’s integral inequality we conclude that

∥Tmf∥Lp(R) ≤
∫
R
∥St,∞f∥Lp(R)d|m|(t) ≤ 1 + cp

2
V (m)∥f∥Lp(R),

and m is an Lp Fourier multiplier for every 1 < p <∞.
Inspired by this result, let us take a measure µ on Rm such that |µ|(Rm) < ∞,

and define the function

mµ(ξ1, . . . , ξm) :=

∫
{(r1,...,rm)∈Rm : r1<ξ1,...,rm<ξm}

dµ(r1, . . . , rm)

=

∫
Rm

(
m∏
j=1

χ(−∞,ξj)(rj)

)
dµ(r1, . . . , rm)

=

∫
Rm

(
m∏
j=1

χ(rj ,∞)(ξj)

)
dµ(r1, . . . , rm),

(7.2)

for ξ1, . . . , ξm ∈ R. It is clear that ∥mµ∥L∞(Rm) ≤ |µ|(Rm) <∞, so it makes sense to
consider the m-linear multiplier operator

Tmµ(f⃗)(x) :=

∫
R
· · ·
∫
R
mµ(ξ⃗)f̂1(ξ1) . . . f̂m(ξm)e

2πix(ξ1+···+ξm)dξ1 . . . dξm, x ∈ R,

initially defined for Schwartz functions f1, . . . , fm.
Arguing as we did in the linear case, and applying Fubini’s theorem, we have that

Tmµ(f⃗)(x) =

∫
Rm

(
m∏
j=1

∫
R
χ(rj ,∞)(ξj)f̂j(ξj)e

2πixξjdξj

)
dµ(r1, . . . , rm)

=

∫
Rm

(
m∏
j=1

Srj ,∞fj(x)

)
dµ(r1, . . . , rm),
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so Tmµ is, in fact, an m-variable averaging operator, and we can follow the approach
of Theorem 7.11 to prove weighted bounds for it, exploiting known restricted weak-
type bounds for the Hilbert transform, as we show in the next theorem, which
generalizes and extends [4, Corollary 1.4] and [4, Corollary 1.6], being this last
result primarily based on Corollary 3.3.14, Proposition 3.4.1, and Theorem 3.4.7 in
[75].

Theorem 7.13. Given exponents 1 ≤ q1 < ∞, 1 < q2, . . . , qm < ∞, and 1
q
= 1

q1
+

· · ·+ 1
qm

, and weights w1 ∈ Âq1,∞, wi ∈ Aqi, i = 2, . . . ,m, and w = w
q/q1
1 . . . w

q/qm
m ,

(7.3) Tmµ : Lq1,1(w1)×
m∏
i=2

L
qi,min

{
1,

qi
pi

}
(wi) −→ Lq,∞(w

q/q1
1 . . . wq/qm

m ),

for all exponents 1 < p2, . . . , pm < ∞ such that 1
p2

+ · · · + 1
pm

< 1, with constant
bounded by Φ(∥w1∥Âq1,∞

, [w2]Aq2
, . . . ), where Φ : [1,∞)m −→ [0,∞) is a function

increasing in each variable. If q > 1, then we can replace the space Lqi,min
{
1,

qi
pi

}
(wi)

by Lqi,1(wi), i = 2, . . . ,m. Moreover, for all exponents 1 ≤ q1, . . . , qm < ∞, 1
q
=

1
q1
+ · · ·+ 1

qm
, and every weight u ∈

⋂m
i=1 Âqi,∞,

(7.4) Tmµ : Lq1,1(u)× · · · × Lqm,1(u) −→ Lq,∞(u),

with constant bounded by Φ̃(∥u∥Âq1,∞
, . . . , ∥u∥Âqm,∞

), where Φ̃ : [1,∞)m −→ [0,∞)

is a function increasing in each variable.

Proof. It follows from [74, Theorem 10] and [59, Theorem 1.1] that for every p ≥ 1,
and every weight v ∈ AR

p , H : Lp,1(v) −→ Lp,∞(v), with constant bounded by

ϕ([v]AR
p
) :=

{
cp[v]

p+1
AR

p
, p > 1,

c[v]A1(1 + log[v]A1), p = 1,

so for every σ ∈ R, and every h ∈ Lp,1(v),

∥Sσ,∞h∥Lp,∞(v) ≤ ∥h∥Lp,∞(v) + ∥Hσh∥Lp,∞(v) ≤
(
1

p
+ ϕ([v]AR

p
)

)
∥h∥Lp,1(v).

Choosing exponents 1 < p2, . . . , pm < ∞ such that 1
p2

+ · · · + 1
pm

< 1, and
0 < 1

p1
< 1 −

∑m
i=2

1
pi

, and applying Theorem 7.11, we get that for all weights
u1 ∈ A1, wi ∈ Aqi , i = 2, . . . ,m, with 1

q0
:= 1 + 1

q2
+ · · ·+ 1

qm
,

(7.5) Tmµ : L
1, 1

p1 (u1)×
m∏
i=2

L
qi,min

{
1,

qi
pi

}
(wi) −→ Lq0,∞(uq01 w

q0/q2
2 . . . wq0/qm

m ),

with suitable control of the constant.
It was proved in [4] that Tmµ can be approximated by some iterative (ε, δ)-atomic

operators Tmk1,...,km
associated to the multipliers mk1,...,km(ξ⃗) := mµ(ξ⃗)e

−
∑m

j=1

ξ2j
kj , and

these also satisfy (7.5) uniformly on k1, . . . , km ∈ N \ {0}, so in virtue of Fatou’s
lemma and Theorem 2.3, we can replace the space L1, 1

p1 (u1) by L1(u1) in (7.5), and
extrapolating the first variable with Corollary 6.3, we establish (7.3), taking into
account the standard extension argument in [9, Page 256] if q > 1.

Finally, (7.4) follows immediately from the one-weight weak-type (1, . . . , 1, 1
m
)

bounds for Tmµ in [4, Corollary 1.4] and our extrapolation scheme in Corollary 6.6.
▷▷▶
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Remark 7.14. For simplicity, fix m = 2. Observe that for 1 ≤ p1, p2 < ∞,
1
p
= 1

p1
+ 1

p2
< 1, v1 ∈ AR

p1
, v2 ∈ AR

p2
, and v = v

p/p1
1 v

p/p2
2 , and in virtue of [75, Lemma

2.2.1], we get that for σ, τ ∈ R,

∥(Sσ,∞f)(Sτ,∞g)∥Lp,∞(v)

≤ ∥fg∥Lp,∞(v) + ∥fHτg∥Lp,∞(v) + ∥gHσf∥Lp,∞(v) + ∥(Hσf)(Hτg)∥Lp,∞(v)

≤ φ([v1]AR
p1
, [v2]AR

p2
)∥f∥Lp1,1(v1)∥g∥Lp2,1(v2) + ∥(Hσf)(Hτg)∥Lp,∞(v),

where φ : [1,∞)2 −→ [0,∞) is a function increasing in each variable and inde-
pendent of σ and τ . Hence, if we could prove restricted weak-type bounds for the
point-wise product of Hilbert transforms, we would be able to transfer them to the
operator Tmµ using our extrapolation results, arguing as in the proof of Theorem 7.13.

If we take right-continuous functions m1, . . . ,mm ∈ NBV (R), we can easily con-
struct a function like (7.2) by merely considering their product, since by (7.1),

(m1 ⊗ · · · ⊗mm)(ξ1, . . . , ξm) := m1(ξ1) . . .mm(ξm)

=

∫
R
· · ·
∫
R

(
m∏
j=1

χ(rj ,∞)(ξj)

)
dm1(r1) . . . dmm(rm),

and

∥m1 ⊗ · · · ⊗mm∥L∞(Rm) ≤
∫
R
· · ·
∫
R
d|m1|(r1) . . . d|mm|(rm) = V (m1) . . . V (mm) <∞.

The following result, which is a combination of Theorems 8.17 and 8.18 in [78],
will allow us to construct another simple yet more elaborate example of a function
like (7.2), along with many examples of functions in NBV (R).

Theorem 7.15. If ψ ∈ L1(R), and for every x ∈ R,

f(x) :=

∫ x

−∞
ψ(r)dr,

then f ∈ NBV (R) ∩ AC(R), and f ′ = ψ almost everywhere. Conversely, if f ∈
NBV (R) ∩ AC(R), then f is differentiable almost everywhere, f ′ ∈ L1(R), and for
every x ∈ R,

f(x) =

∫ x

−∞
f ′(r)dr.

An immediate consequence of Theorem 7.15 is the next lemma.

Lemma 7.16. For a function m ∈ NBV (R) ∩ AC(R), and for all ξ1, . . . , ξm ∈ R,

m∗(ξ1, . . . , ξm) := m(min{ξ1, . . . , ξm}) =
∫
R

(
m∏
j=1

χ(r,∞)(ξj)

)
m′(r)dr,

with ∥m∗∥L∞(Rm) ≤ ∥m′∥L1(R) <∞.

Proof. By Theorem 7.15, we have that

m(min{ξ1, . . . , ξm}) =
∫ min{ξ1,...,ξm}

−∞
m′(r)dr

=

∫
R

(
m∏
j=1

χ(−∞,ξj)(r)

)
m′(r)dr =

∫
R

(
m∏
j=1

χ(r,∞)(ξj)

)
m′(r)dr.

▷▷▶
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The function m∗ is an example of a function like (7.2) with the measure µ restricted
to R. More generally, we can take a subset E ⊆ Rm, and a measure ν on E such
that |ν|(E) <∞, and consider the function

(7.6) mν,E(ξ1, . . . , ξm) := ν(E ∩Rξ1,...,ξm), ∥mν,E∥L∞(Rm) ≤ |ν|(E) <∞,

with Rξ1,...,ξm := {(r1, . . . , rm) ∈ Rm : r1 < ξ1, . . . , rm < ξm}. This example was
suggested to us by M. J. Carro. See Figure 3 for a pictorial representation of it.

(ξ1, ξ2)

Rξ1,ξ2

ER2

mν,E(ξ1, ξ2) = ν(E ∩Rξ1,ξ2)

Figure 3. Pictorial representation of the function in (7.6) for m = 2.

In the particular case when E = (0, 1)m, the unit m-cube, and ν is the Lebesgue
measure on E, we obtain that

mν,E(ξ1, . . . , ξm) =
m∏
j=1

min{1, ξj}χ{r∈R : r>0}(ξj).

We get a more elaborate example if we consider the unit half-ball,

E = {(x1, . . . , xm) ∈ Rm : xm ≥ 0, x21 + · · ·+ x2m ≤ 1},

and ν the Lebesgue measure on E (see [75, Page 112]).

8. To AP⃗ and beyond

In this section, we adapt our techniques to establish multi-variable weak-type
extrapolation theorems for tuples of measures analogous to the ones presented in
[61, 62, 70], omitting classical constructions of weights involving Rubio de Francia’s
iteration algorithm. We will deduce our extrapolation schemes from one-variable
off-diagonal results obtained with an approach that differs fundamentally from [62,
Theorem 3.1] and [35, Theorem 5.1].

This time, the underlying measure won’t be the Lebesgue measure as before, but
a more general doubling measure µ. Sometimes, we will invoke statements that
appear in the literature for the Lebesgue measure but are also valid for µ, with
almost identical proofs, and apply them in the form that suits our needs without
prior notice.

8.1. Weighted weights.

Before proceeding, let us push our understanding of AR
p further. The following is

a restricted weak-type version of [27, Lemma 2.1].
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Lemma 8.1. Let 1 ≤ p <∞, and u ∈ A1. If v ∈ AR
p (u), then uv ∈ AR

p , with

[uv]AR
p
≤ [u]A1 [v]AR

p (u).

Proof. This result follows directly from the definitions of [uv]AR
p

and [v]AR
p (u), since

for every cube Q ⊆ Rn,

1

|Q|

(∫
Q

uv

)1/p

≤ [u]A1

u(Q)

(∫
Q

vdu

)1/p

ess inf
x∈Q

u(x),

and
∥χQu

−1v−1∥Lp′,∞(uv) ess inf
x∈Q

u(x) ≤ ∥χQv
−1∥Lp′,∞(vdu).

▷▷▶
Remark 8.2. We showed in [74, Lemma 2] that if u ∈ A∞, then uv ∈ A∞ if, and
only if v ∈ A∞(u), so it would be interesting to study a version of Lemma 8.1 relating
[u]AR

q
, [v]AR

p (u), and [uv]AR
r

for suitable exponents 1 ≤ p, q, r < ∞ other than those
above.

The next result is an extension of [18, Lemma 2.12], and the proof is similar.

Lemma 8.3. Let µ be a positive, locally finite, doubling Borel measure on Rn, with
doubling constant 1 ≤ Cµ < ∞, and fix 0 < δ < 1. For a µ-measurable function
0 ̸= h ∈ L1

loc(Rn, µ) such that Mµh <∞ µ-a.e., and w ∈ A1(µ), let v = (Mµh)
1−δwδ.

Then, v ∈ A1(µ), and

(8.1) [v]A1(µ) ≤
κCκ

µ

δ
[w]A1(µ),

where κ > 1 is a universal constant. In particular, if dµ(y) = u(y)dy and u ∈ A1,
then (uMuh)

1−δ(uw)δ ∈ A1, with constant independent of h.

Proof. In virtue of [50, Theorem 1.1], taking

Dµ := log2Cµ, and r := 1 +
1

6 · 800Dµ [w]A1(µ)

,

we have that wr ∈ A1(µ), with

[wr]A1(µ) ≤ (2 · 4Dµ [w]A1(µ))
r ≤ 4e1/e16Dµ [w]A1(µ).

For p := r
δ
> 1, 0 < p′(1− δ) < 1, and from [53, Proposition 2.10] and [50, (3.11)]

(see also [43, Exercise 2.1.1]), we deduce that (Mµh)
p′(1−δ) ∈ A1(µ), with

(8.2) [(Mµh)
p′(1−δ)]A1(µ) ≤

κ0C
κ0
µ

1− p′(1− δ)
,

where κ0 > 1 is a universal constant; κ0 = 6 works.
Applying Hölder’s inequality with exponent p, we get that for every cube Q ⊆ Rn

such that 0 < µ(Q) <∞, and µ-a.e. x ∈ Q,

1

µ(Q)

∫
Q

vdµ ≤
(

1

µ(Q)

∫
Q

wrdµ

)1/p(
1

µ(Q)

∫
Q

(Mµh)
p′(1−δ)dµ

)1/p′

≤ (4e1/e16Dµ [w]A1(µ))
1/pw(x)δ

(
κ0C

κ0
µ

1− p′(1− δ)

)1/p′

Mµh(x)
1−δ

≤ 28e1/eκ0
C14+κ0

µ

δ
[w]A1(µ)v(x),

and (8.1) holds for κ = 28e1/eκ0.
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Finally, for u ∈ A1, it follows from (8.1), Lemma 8.1, and [43, Proposition 7.1.5]
that uv ∈ A1, with

[(uMuh)
1−δ(uw)δ]A1 ≤

2nκκ

δ
[u]κ+1

A1
[w]A1(u).

▷▷▶

We present a novel generalization of Theorem 2.7 and Corollary 2.8 in [16], fol-
lowing a different approach.

Lemma 8.4. Let µ be a positive, locally finite, doubling Borel measure on Rn, with
doubling constant 1 ≤ Cµ < ∞, and fix 1 < p < ∞. For a µ-measurable function
0 ̸= h ∈ L1

loc(Rn, µ) such that Mµh <∞ µ-a.e., and v ∈ A1(µ), let w = (Mµh)
1−pv.

Then, w ∈ AR
p (µ), and

[w]AR
p (µ) ≤ (κCκ

µ)
1/p′ [v]

1/p
A1(µ)

,

where κ > 1 is a universal constant. In particular, if dµ(y) = u(y)dy and u ∈ A1,
then (Muh)

1−puv ∈ AR
p , with constant independent of h.

Proof. We first discuss the case v = 1; that is, w = (Mµh)
1−p, by adapting an

unpublished argument for dµ(y) = dy by C. Pérez ([73]).
From the definition of [w]AR

p (µ) and an elementary estimate, we get that

[w]p
AR

p (µ)
= sup

Q

(
1

µ(Q)

∫
Q

wdµ

) ∥χQ(Mµh)
p−1∥p

Lp′,∞(wdµ)

µ(Q)p−1

= sup
Q

(
1

µ(Q)

∫
Q

wdµ

)(∥χQMµh∥pLp,∞(wdµ)

µ(Q)

)p−1

= sup
Q

(
1

µ(Q)

∫
Q

wdµ

)(
sup
t>0

tp

µ(Q)

∫
{x∈Q :Mµh(x)>t}

(Mµh)
1−pdµ

)p−1

≤ sup
Q

(
1

µ(Q)

∫
Q

wdµ

)(
sup
t>0

tµ({x ∈ Q :Mµh(x) > t})
µ(Q)

)p−1

.

(8.3)

It is well-known (see [42, Page 160]) that for every cube Q ⊆ Rn such that
0 < µ(Q) <∞, and µ-a.e. x ∈ Q,

Mµ(hχRn\3Q)(x) ≤ C2
µ µ- ess inf

y∈Q
Mµ(hχRn\3Q)(y) =: Jµ,Q,

so Mµh(x) ≤Mµ(hχ3Q)(x) + Jµ,Q. Hence, for t > 0,

tµ({x ∈ Q :Mµh(x) > t})
µ(Q)

≤ tµ({x ∈ Q :Mµ(hχ3Q)(x) + Jµ,Q > t})
µ(Q)

≤
tµ({x ∈ Q : Jµ,Q >

t
2
})

µ(Q)
+
tµ({x ∈ Q :Mµ(hχ3Q)(x) >

t
2
})

µ(Q)
=: I + II.

(8.4)

Now,

(8.5) I ≤ 2Jµ,Q ≤ 2C2
µ µ- ess inf

y∈Q
Mµh(y),
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and

II ≤
tµ
({
Mµ(hχ3Q) >

t
2

})
µ(Q)

≤ 2

µ(Q)
∥Mµ(hχ3Q)∥L1,∞(µ)

≤
κ0C

κ0
µ

µ(Q)

∫
3Q

|h|dµ ≤
κ0C

κ0+2
µ

µ(3Q)

∫
3Q

|h|dµ ≤ κ0C
κ0+2
µ µ- ess inf

y∈Q
Mµh(y),

(8.6)

with κ0 ≥ 2 universal. Note that in the third inequality of (8.6), we have used the
weak-type (1, 1) bound for Mµ in [43, Exercise 2.1.1].

Combining (8.3), (8.4), (8.5), and (8.6), we obtain that

[w]p
AR

p (µ)
≤ sup

Q

(
1

µ(Q)

∫
Q

(Mµh)
1−pdµ

)(
2κ0C

κ0+2
µ µ- ess inf

y∈Q
Mµh(y)

)p−1

≤ (2κ0C
κ0+2
µ )p−1.

For the general case; that is, w = (Mµh)
1−pv, with v ∈ A1(µ), note that

µ- ess sup
y∈Q

v(y)
1

1−p ≤
(
µ- ess inf

y∈Q
v(y)

) 1
1−p ≤

(
[v]A1(µ)

µ(Q)∫
Q
vdµ

) 1
p−1

=: K−1,

so for t > 0,

µ({x ∈ Q :Mµh(x)v(x)
1

1−p > t}) ≤ µ({x ∈ Q :Mµh(x) > Kt}),
and we can reuse (8.4), (8.5), and (8.6) to conclude that w ∈ AR

p (µ), with

[w]p
AR

p (µ)
= sup

Q

(
1

µ(Q)

∫
Q

wdµ

)∥χQv
1

1−pMµh∥pLp,∞(wdµ)

µ(Q)

p−1

≤ sup
Q

(
1

µ(Q)

∫
Q

wdµ

)(
sup
t>0

tµ({x ∈ Q :Mµh(x)v(x)
1

1−p > t})
µ(Q)

)p−1

≤ sup
Q

(
1

µ(Q)

∫
Q

wdµ

)(
sup
τ>0

K−1τµ({x ∈ Q :Mµh(x) > τ})
µ(Q)

)p−1

≤ [v]A1(µ) sup
Q

(
1∫

Q
vdµ

∫
Q

(Mµh)
1−pvdµ

)(
2κ0C

κ0+2
µ µ- ess inf

y∈Q
Mµh(y)

)p−1

≤ (2κ0C
κ0+2
µ )p−1[v]A1(µ).

Finally, if dµ(y) = u(y)dy and u ∈ A1, it follows from Lemma 8.1 that uw ∈ AR
p ,

with
[(Muh)

1−puv]AR
p
≤ (cκ0

n [u]κ0+2
A1

)1/p
′
[u]A1 [v]

1/p
A1(u)

.

▷▷▶
Remark 8.5. It is worth mentioning that for u, v, and h as above, and 0 < δ < 1,
(Muh)

δ(1−p)uv ∈ Ap, 1 ≤ p <∞. Indeed, in virtue of the argument we used in (8.2),
[24, Theorem 4.2], and [27, Lemma 2.1],

[(Muh)
δ(1−p)uv]Ap ≤

(
cκn[u]

κ
A1

1− δ

)p−1

[u]pA1
[v]A1(u),

with κ > 1 universal.

Here, there is another new extension of Theorem 2.7 and Corollary 2.8 in [16].
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Lemma 8.6. Let u ∈ A1, and fix 1 < p < ∞. For a function 0 ̸= h ∈ L1
loc(u) such

that Muh <∞ a.e., and v ∈ A1, let w = (uMuh)
1−pv. Then, w ∈ AR

p , and

[w]AR
p
≤ ϕn([u]A1)

1/p′ [v]
1/p
A1
,

where ϕn : [1,∞) −→ [0,∞) is an increasing function depending only on the dimen-
sion n.

Proof. As in the proof of Lemma 8.4, we first discuss the case w = (uMuh)
1−p by

adapting the argument for u = 1 by C. Pérez ([73]). We have that

[w]p
AR

p
= sup

Q

(
−
∫
Q

w

)(∥χQuMuh∥pLp,∞(w)

|Q|

)p−1

= sup
Q

(
−
∫
Q

w

)(
sup
t>0

tp

|Q|

∫
{x∈Q :u(x)Muh(x)>t}

(uMuh)
1−p

)p−1

≤ sup
Q

(
−
∫
Q

w

)(
sup
t>0

t|{x ∈ Q : u(x)Muh(x) > t}|
|Q|

)p−1

.

(8.7)

We know from [42, Page 160] and [43, Proposition 7.1.5] that, for every cube
Q ⊆ Rn, and a.e. x ∈ Q,

Mu(hχRn\3Q)(x) ≤ 3n[u]A1 ess inf
y∈Q

Mu(hχRn\3Q)(y) =: Ju,Q,

so Muh(x) ≤Mu(hχ3Q)(x) + Ju,Q. Hence, for t > 0,

t|{x ∈ Q : u(x)Muh(x) > t}|
|Q|

≤
t|{x ∈ Q : u(x)Ju,Q >

t
2
}|

|Q|

+
t|{x ∈ Q : u(x)Mu(hχ3Q)(x) >

t
2
}|

|Q|
=: I + II.

(8.8)

For the first term, we get that

I =
1

|Q|

∫
{x∈Q :u(x)Ju,Q> t

2
}
t ≤ 2Ju,Q

|Q|

∫
{x∈Q :u(x)Ju,Q> t

2
}
u ≤ 2Ju,Q−

∫
Q

u

≤ 2 · 3n[u]2A1

(
ess inf
y∈Q

u(y)
)(

ess inf
y∈Q

Muh(y)
)
≤ 2 · 3n[u]2A1

ess inf
y∈Q

u(y)Muh(y).
(8.9)

For the second term, we apply the Sawyer-type inequality in [74, Theorem 1] (see
also [27, Theorem 1.3]) to obtain that

II ≤ t

|Q|

∣∣∣∣{x ∈ Rn :
Mu(hχ3Q)(x)

u(x)−1
>
t

2

}∣∣∣∣ ≤ 2

|Q|

∥∥∥∥Mu(hχ3Q)

u−1

∥∥∥∥
L1,∞(Rn)

≤
E n
1,1([u]A1)

|Q|

∫
3Q

|h|u ≤ 3nE n
1,1([u]A1)[u]A1

u(Q)

|Q|
· 1

u(3Q)

∫
3Q

|h|u

≤ 3nE n
1,1([u]A1)[u]

2
A1

(
ess inf
y∈Q

u(y)
)(

ess inf
y∈Q

Muh(y)
)

≤ 3nE n
1,1([u]A1)[u]

2
A1

ess inf
y∈Q

u(y)Muh(y),

(8.10)

where E n
1,1 : [1,∞) −→ [0,∞) is an increasing function that depends only on n.
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Combining (8.7), (8.8), (8.9), and (8.10), we deduce that

[w]p
AR

p
≤ sup

Q

(
−
∫
Q

(uMuh)
1−p

)(
3n(E n

1,1([u]A1) + 2)[u]2A1
ess inf
y∈Q

u(y)Muh(y)

)p−1

≤
(
3n(E n

1,1([u]A1) + 2)[u]2A1

)p−1
.

Now, for v ∈ A1, ess supy∈Q v(y)
1

1−p ≤
(
[v]A1

|Q|
v(Q)

) 1
p−1

=: K−1, and for t > 0,

|{x ∈ Q : u(x)Muh(x)v(x)
1

1−p > t}| ≤ |{x ∈ Q : u(x)Muh(x) > Kt}|.

Thus, if w = (uMuh)
1−pv, then by (8.8), (8.9), and (8.10),

[w]p
AR

p
= sup

Q

(
−
∫
Q

w

)∥χQv
1

1−puMuh∥pLp,∞(w)

|Q|

p−1

≤ sup
Q

(
−
∫
Q

w

)(
sup
t>0

t|{x ∈ Q : u(x)Muh(x)v(x)
1

1−p > t}|
|Q|

)p−1

≤ sup
Q

(
−
∫
Q

w

)(
sup
τ>0

K−1τ |{x ∈ Q : u(x)Muh(x) > τ}|
|Q|

)p−1

≤ ϕn([u]A1)
p−1[v]A1 sup

Q

(
1

v(Q)

∫
Q

(uMuh)
1−pv

)(
ess inf
y∈Q

u(y)Muh(y)
)p−1

≤ ϕn([u]A1)
p−1[v]A1 ,

with
ϕn(ξ) = 3n(E n

1,1(ξ) + 2)ξ2, ξ ≥ 1.

▷▷▶
Remark 8.7. As in Remark 8.5, for u, v, and h as in Lemma 8.6, and 0 < δ < 1,
(u(Muh)

δ)1−pv ∈ Ap, 1 ≤ p <∞, with

[(u(Muh)
δ)1−pv]Ap ≤

(
cκn[u]

κ+1
A1

1− δ

)p−1

[v]A1 ,

and κ > 1 universal.

It is clear that a factorization of AR
p has to cover a plethora of unusual weights,

and once again, we have to ponder the following question: is Âp enough?
Let us point out that the argument we used in the proof of Lemma 8.4 gives us

that for p > 1, and w ∈ Âp(µ),

[w]AR
p (µ) ≤ sup

Q

(
1

µ(Q)

∫
Q

wdµ

)1/p
(
∥χQw

1−p′∥L1,∞(µ)

µ(Q)

)1/p′

<∞.

Does this last condition characterize AR
p (µ)?

8.2. One-variable extrapolation remastered.

We are now ready to develop weak-type analogs of [62, Theorem 3.1], starting
with downwards extrapolation.
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Theorem 8.8. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function such
that for µ = ν

α
1+α , µ(x)dx is a locally finite, doubling Borel measure on Rn, with

doubling constant 1 ≤ Cµ < ∞. Given measurable functions f and g, suppose that
for some exponent 1 < p < ∞, and every positive, measurable function v such that
V µ−1 ∈ A(1+α)pα(µ),

(8.11) ∥g∥Lpα,∞(V ) ≤ ψ([V µ−1]A(1+α)pα (µ))∥f∥Lp(v),

where 1
pα

= 1
p
+α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing function.

Then, for every exponent 1 < q ≤ p, and every positive, measurable function w such
that Wµ−1 ∈ A(1+α)qα(µ),

(8.12) ∥g∥Lqα,∞(W ) ≤ Ψ([Wµ−1]A(1+α)qα (µ))∥f∥Lq(w),

where 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an increasing

function.

Proof. We will prove this statement adapting the proof of Theorem 5.7. If q = p,
then there is nothing to prove, so we may assume that q < p. Pick w such that
Wµ−1 ∈ A(1+α)qα(µ). We may also assume that ∥f∥Lq(w) <∞. Fix y > 0 and γ > 0.
We have that

λWg (y) =

∫
{|g|>y}

W ≤ λWZ (γy) +

∫
{|g|>y}

(γy
Z

)pα−qα
W =: I + II,(8.13)

where
(8.14)

Z :=

(
vpα/pναpα

W

) 1
qα−pα

and v :=
(
Mµ(|f |

1+αq
1+α w

α
1+αµ−1)µ

) (q−p)(1+α)
1+αq

w
1+αp
1+αq .

For the term I in (8.13), we obtain that

I ≤
∥Z ∥qαLqα,∞(W )

(γy)qα
=

1

(γy)qα

∥∥∥Mµ(|f |
1+αq
1+α w

α
1+αµ−1)

∥∥∥(1+α)qα

L(1+α)qα,∞(Wµ−1dµ)

≤ 10(1+α)qα log2 Cµ

(γy)qα
[Wµ−1]A(1+α)qα (µ) ∥f∥qLq(w) ,

(8.15)

where in the last inequality we have used the weak-type bound for the Hardy-
Littlewood maximal operator Mµ in [50, (3.11)].

For the term II in (8.13), we argue as follows: since Wµ−1 ∈ A(1+α)qα(µ), we can

find functions ϖ0, ϖ1 ∈ A1(µ) such that Wµ−1 = ϖ
1−q
1+αq

0 ϖ1, with

[ϖ0]A1(µ) ≤ (κCκ
µ)

(1+α)q′ [Wµ−1]
1+αq
q−1

A(1+α)qα (µ), [ϖ1]A1(µ) ≤ (κCκ
µ)

(1+α)qα [Wµ−1]A(1+α)qα (µ),

and κ > 1 universal. The construction of such functions combines the argument in
the proof of [72, Lemma 3.18] and the Buckley-type bounds for Mµ in [50, Theorem
1.3]. In virtue of Lemma 8.3 and [24, Theorem 4.2], if we write

V µ−1 =Mµ(|f |
1+αq
1+α w

α
1+αµ−1)

(q−p)(1+α)
(1+αp)(1+αq)Wµ−1

=

(
Mµ(|f |

1+αq
1+α w

α
1+αµ−1)

(p−q)(1+α)
(p−1)(1+αq)ϖ

(q−1)(1+αp)
(p−1)(1+αq)

0

) 1−p
1+αp

ϖ1,
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then we see that V µ−1 ∈ A(1+α)pα(µ), with

[V µ−1]A(1+α)pα (µ) ≤
(
κCκ

µ

(p− 1)(1 + αq)

(q − 1)(1 + αp)
[ϖ0]A1(µ)

) p−1
1+αp

[ϖ1]A1(µ)

≤ C0[Wµ−1]
1+

(p−1)(1+αq)
(q−1)(1+αp)

A(1+α)qα (µ) ,

where

C0 := (κCκ
µ)

(1+α)qα

(
(κCκ

µ)
1+(1+α)q′ (p− 1)(1 + αq)

(q − 1)(1 + αp)

) p−1
1+αp

,

so by (8.11), we get that

II ≤ γpα

(γy)qα
∥g∥pα

Lpα,∞(vpα/pναpα )
≤ γpα

(γy)qα
ψ(C0[Wµ−1]

1+
(p−1)(1+αq)
(q−1)(1+αp)

A(1+α)qα (µ) )pα ∥f∥pαLp(v) ,

(8.16)

and

∥f∥Lp(v) =

(∫
Rn

|f |p
(
Mµ(|f |

1+αq
1+α w

α
1+αµ−1)µ

) (q−p)(1+α)
1+αq

w
1+αp
1+αq

)1/p

≤ ∥f∥q/pLq(w).

(8.17)

Finally, if we argue as in the proof of Theorem 5.1, we can combine (8.13), (8.15),
(8.16), and (8.17) to conclude that (8.12) holds, with

Ψ(ξ) = C1ξ
1
q
− 1

pψ(C0ξ
1+

(p−1)(1+αq)
(q−1)(1+αp) ), ξ ≥ 1,

where

C1 :=

(
pα

pα − qα

)1/qα (pα − qα
qα

)1/pα

C
4(1+α)qα( 1

q
− 1

p)
µ .

▷▷▶
Remark 8.9. As in Remark 5.8, for q > 1, we can take

v :=
(
Rµ(|f |

1+αq
1+α w

α
1+αµ−1)µ

) (q−p)(1+α)
1+αq

w
1+αp
1+αq ,

where for a measurable function h ∈ L(1+α)qα(Wµ−1dµ),

Rµh :=
∞∑
k=0

Mk
µ(|h|)

2k∥Mµ∥kL(1+α)qα (Wµ−1dµ)

,

and rewrite the proof of Theorem 8.8 to conclude that (8.12) holds, with

Ψ(ξ) = 2(1+α)qα( 1
q
− 1

p)Cψ(C̃0ξ
(p−1)(1+αq)
(q−1)(1+αp) ), ξ ≥ 1,

where C is as in (5.29), and C̃0 := (κCκ
µ(1 + α)q′)(1+α)(pα−qα).

The proof of Theorem 8.8 extends to the case q = 1 almost verbatim, taking
proper care of the terms with divisions by q − 1.

Theorem 8.10. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function such
that for µ = ν

α
1+α , µ(x)dx is a locally finite, doubling Borel measure on Rn, with

doubling constant 1 ≤ Cµ < ∞. Given measurable functions f and g, suppose that
for some exponent 1 < p < ∞, and every positive, measurable function v such that
V µ−1 ∈ Â(1+α)pα(µ),

∥g∥Lpα,∞(V ) ≤ ψ(∥V µ−1∥Â(1+α)pα (µ))∥f∥Lp,1(v),
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where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every positive, measurable function w such that Wµ−1 ∈ A1(µ),

∥g∥
L

1
1+α ,∞

(W )
≤ p3−

1
p
−pC1[Wµ−1]

1/p′

A1(µ)
ψ([Wµ−1]

1
(1+α)pα

A1(µ)
)∥f∥

L
1, 1p (w)

,

where W = w
1

1+αµ.

Remark 8.11. Note that for α = 0 and ν = 1, we recover [16, Theorem 2.11].

As usual, we will now focus on the upwards extrapolation.

Theorem 8.12. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function such
that for µ = ν

α
1+α , µ(x)dx is a locally finite, doubling Borel measure on Rn, with

doubling constant 1 ≤ Cµ < ∞. Given measurable functions f and g, suppose that
for some exponent 1 ≤ p < ∞, and every positive, measurable function v such that
V µ−1 ∈ A(1+α)pα(µ),

(8.18) ∥g∥Lpα,∞(V ) ≤ ψ([V µ−1]A(1+α)pα (µ))∥f∥Lp(v),

where 1
pα

= 1
p
+ α, V = vpα/pναpα, and ψ : [1,∞) −→ [0,∞) is an increasing

function. Then, for every finite exponent q ≥ p, and every positive, measurable
function w such that Wµ−1 ∈ A(1+α)qα(µ),

(8.19) ∥g∥Lqα,∞(W ) ≤ Ψ([Wµ−1]A(1+α)qα (µ))∥f∥Lq,p(w),

where 1
qα

= 1
q
+ α, W = wqα/qναqα, and Ψ : [1,∞) −→ [0,∞) is an increasing

function.

Proof. We will adapt the proofs of Theorems 5.3 and 5.13. If q = p, then there is
nothing to prove, so we may assume that q > p.

Pick w such that Wµ−1 ∈ A(1+α)qα(µ). By duality, w
1

1−qµ−1 ∈ A(1+α)q′(µ), with

[w
1

1−qµ−1]A(1+α)q′ (µ)
= [Wµ−1]

1+αq
q−1

A(1+α)qα (µ), and it follows from [50, Theorem 1.2] that

w
1

1−qµ−1 ∈ A(1+α)q′−ε(µ), with ε := 1+αq
κCκ

µ(q−1)
[Wµ−1]−1

A(1+α)qα (µ), and

[w
1

1−qµ−1]A(1+α)q′−ε(µ)
≤ 2

1+αq
q−1 C2(1+α)q′

µ [Wµ−1]
1+αq
q−1

A(1+α)qα (µ).

Note that W ∈ L1
loc(Rn). Let gϱ := |g|χB(0,ϱ), with ϱ ≥ 1, and y > 0 such that

λWgϱ (y) ̸= 0. If we take β := 1 + α− ε
q′

, and

(8.20) v :=


Mµ(w

1
qβW

1
q′βχ{|gϱ|>y})

β, p = 1,

Mµ(w
1

q(1+α)W
1

q′(1+α)χ{|gϱ|>y})
(q−p)(1+α)

q−1 w
p−1
q−1 , p > 1,

then we can write

V µ−1 =


Mµ(w

1
qβW

1
q′βχ{|gϱ|>y})

β
1+α , p = 1,

Mµ(w
1

q(1+α)W
1

q′(1+α)χ{|gϱ|>y})
(q−p)(1+α)
(q−1)(1+αp) (Wµ−1)

(p−1)(1+αq)
(q−1)(1+αp) , p > 1.

Choose ϖ0, ϖ1 ∈ A1(µ) such that Wµ−1 = ϖ
1−q
1+αq

0 ϖ1, with

[ϖ0]A1(µ) ≤ (κCκ
µ)

(1+α)q′ [Wµ−1]
1+αq
q−1

A(1+α)qα (µ), [ϖ1]A1(µ) ≤ (κCκ
µ)

(1+α)qα [Wµ−1]A(1+α)qα (µ),
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and κ > 1 universal. In virtue of Lemma 8.3 and [24, Theorem 4.2], we see that
V µ−1 ∈ A(1+α)pα(µ), with

[V µ−1]A(1+α)pα (µ) ≤ C0[Wµ−1]
1+

(p−1)(1+αq)
(q−1)(1+αp)

A(1+α)qα (µ) ,

and

C0 :=


κCκ

µ(1 + α)qα, p = 1,

(κCκ
µ)

1+(1+α)
(
qα+

q′(p−1)
1+αp

)
(q−1)(1+αp)
(p−1)(1+αq)

, p > 1.

Observe that V ≥ Wχ{|gϱ|>y}, and we can apply (8.18) to control λWgϱ (y), as we
did in (5.16). Now, for p > 1,

v({|f | > t}) ≤ w({|f | > t})p/q
∥∥∥∥∥Mµ(w

1
q(1+α)W

1
q′(1+α)χ{|gϱ|>y})

w
1

1+α

∥∥∥∥∥
(q−p)(1+α)

q−1

L(1+α)q′ (w)

,

and for p = 1,

v({|f | > t}) ≤ w({|f | > t})1/q
∥∥∥∥∥Mµ(w

1
qβW

1
q′βχ{|gϱ|>y})

w1/β

∥∥∥∥∥
β

Lβq′ (w)

.

By the Buckley-type bounds for Mµ in [50, Theorem 1.3],∥∥∥Mµ(w
1

q(1+α)W
1

q′(1+α)χ{|gϱ|>y})
∥∥∥
L(1+α)q′ (w

1
1−q µ−1dµ)

≤ κCκ
µ(1 + α)qα[Wµ−1]A(1+α)qα (µ)

×W ({|gϱ| > y})
1

(1+α)q′ ,

and ∥∥∥Mµ(w
1
qβW

1
q′βχ{|gϱ|>y})

∥∥∥
Lβq′ (w

1
1−q µ−1dµ)

≤ κCκ
µ(βq

′)′[w
1

1−qµ−1]
1

βq′−1

A(1+α)q′−ε(µ)

×W ({|gϱ| > y})
1

βq′ .

Note that 1
q′
< β < 1 + α, and

1

βq′ − 1
=

q − 1

1 + αq
·

κCκ
µ [Wµ−1]A(1+α)qα (µ)

κCκ
µ [Wµ−1]A(1+α)qα (µ) − 1

≤ (q − 1)κ′

1 + αq
.

Moreover,

βq′

βq′ − 1
=

(1 + α)qακC
κ
µ [Wµ−1]A(1+α)qα (µ) − 1

κCκ
µ [Wµ−1]A(1+α)qα (µ) − 1

≤ (1 + α)qακ− 1

κ− 1
,

so (1 + α)qα ≤ (βq′)′ ≤ (1 + α)qακ
′.

Combining the previous estimates, we get that

v({|f | > t}) ≤ ϕ([Wµ−1]A(1+α)qα (µ))W ({|gϱ| > y})1−
p
qw({|f | > t})p/q,

and

∥f∥Lp(v) ≤
(
p

q
ϕ([Wµ−1]A(1+α)qα (µ))

)1/p

W ({|gϱ| > y})
1
p
− 1

q ∥f∥Lq,p(w) ,
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with

ϕ(ξ) :=


(
κκ′Cκ

µ(1 + α)qα
)1+α

(
2C

2(1+α)qα
µ ξ

)(1+α)κ′

, p = 1,

(
κCκ

µ(1 + α)qαξ
) (q−p)(1+α)

q−1 , p > 1,

ξ ≥ 1.

Finally, if we follow the proof of Theorem 5.3 performing the previous changes,
we conclude that (8.19) holds, with

Ψ(ξ) =

(
p

q
ϕ(ξ)

)1/p

ψ(C0ξ
1+

(p−1)(1+αq)
(q−1)(1+αp) ), ξ ≥ 1.

▷▷▶
Remark 8.13. As in Remark 5.14, if 1 ≤ p < q <∞, then we can take

v := R ′
µ(w

1
q(1+α)W

1
q′(1+α)χ{|gϱ|>y})

(q−p)(1+α)
q−1 w

p−1
q−1 ,

where for a measurable function h ∈ L(1+α)q′(w
1

1−qµ−1dµ),

R ′
µh :=

∞∑
k=0

Mk
µ(|h|)

2k∥Mµ∥k
L(1+α)q′ (w

1
1−q µ−1dµ)

,

and argue as before to conclude that (8.19) holds, with

Ψ(ξ) =

(
p

q

)1/p

2(1+α)q′( 1
p
− 1

q )ψ(((1 + α)qακC
κ
µ)

(q−p)(1+α)
(q−1)(1+αp) ξ), ξ ≥ 1.

At this point, we suspect that, to deduce restricted weak-type analogs of Theorems
8.8 and 8.12, we should examine the following conjecture and a convenient dual
version yet to be determined.

Conjecture 8.14. Fix 0 ≤ α < ∞, and let ν be a positive, measurable function
such that for µ = ν

α
1+α , µ(x)dx is a locally finite, doubling Borel measure on Rn,

with doubling constant 1 ≤ Cµ < ∞. Fix an exponent q ≥ 1, and write 1
qα

= 1
q
+ α.

Let w be a positive, measurable function such that Wµ−1 ∈ AR
(1+α)qα

(µ), where W =

wqα/qναqα. Then, there exists a function ϕ : [1,∞)2 −→ [0,∞), increasing in each
variable, such that for every measurable function f ,∥∥∥Mµ(|f |

1+αq
1+α w

α
1+αµ−1)

∥∥∥(1+α)qα

L(1+α)qα,∞(W )
≤ ϕ(Cµ, [Wµ−1]AR

(1+α)qα
(µ)) ∥f∥

q
Lq,1(w) .

Equivalently,∥∥∥∥Mµf

v

∥∥∥∥
L
(1+α)qα,∞
v (wv(1+α)qα )

≤ ϕ(Cµ, [Wµ−1]AR
(1+α)qα

(µ))
1

(1+α)qα ∥f∥
L
(1+α)qα, 1+α

1+αq
v (w)

,

where v =
(
ν
w

) α
1+α , and for 1 ≤ r < ∞ and 0 < s ≤ ∞, Lr,s

v (ϖ) is the weighted
Lorentz space given by the quasi-norm ∥f∥Lr,s

v (ϖ) := ∥fv∥Lr,s(ϖ).

Remark 8.15. Further hypotheses on ν and w may be required (see Subsection 8.3).
In particular, µ,wε ∈ A∞ for some 0 < ε ≤ 1.

Observe that Lp,p

w1/p(Rn) = Lp(w), but this relation generally fails for arbitrary
exponents r and s. We wonder what would happen if we were to replace the spaces
Lp,1(w) and Lp,∞(w) with Lp,1

w1/p(Rn) and Lp,∞
w1/p(Rn) in the definition of restricted

weak-type, and how this would affect the characterizations of AR
p and the corres-

ponding extrapolation schemes. Similar weak-type questions were studied in [67].
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8.3. Extensions of AP⃗ and extrapolation.

Given exponents 1 ≤ p1, . . . , pm <∞, with P⃗ = (p1, . . . , pm), write

α =
1

p2
+ · · ·+ 1

pm
and

1

p
=

1

p1
+ α.

Also, for positive, measurable functions v1, . . . , vm, with v⃗ = (v1, . . . , vm), write

ν =
m∏
i=2

v
1

αpi
i , µ = ν

α
1+α , and V = νv⃗ = v

p/p1
1 ναp.

In virtue of [62, Lemma 3.2] and Definition 5.4, if v⃗ ∈ AP⃗ , then for i = 2, . . . ,m,
vi ∈ Aσi

pi
, with σi = 1

1+pi(m−1)
, µ ∈ A m

1+α
, and V µ−1 ∈ A(1+α)p(µ), with

[vi]Aσi
pi
≤ [v⃗]σipi

A
P⃗
, [µ]A m

1+α
≤ [v⃗]

1
1+α

A
P⃗
, and [V µ−1]A(1+α)p(µ) ≤ [v⃗]pA

P⃗
.

Conversely, if v2, . . . , vm, and µ are as above, and v1 is such that V µ−1 ∈ A(1+α)p(µ),
then v⃗ ∈ AP⃗ , with

[v⃗]A
P⃗
≤ [V µ−1]

1/p
A(1+α)p(µ)

[µ]1+α
A m

1+α

m∏
i=2

[vi]
1

σipi

A
σi
pi

.

Note that µ is a positive, locally finite, doubling Borel measure on Rn, with
doubling constant Cµ ≤ 2

nm
1+α [µ]A m

1+α
(see [43, Proposition 7.1.5]).

Hence, we can combine Theorems 8.8 and 8.12 as we did in the proof of Theo-
rem 6.1 to establish the weak-type AP⃗ extrapolation theory in an alternate manner
from [61, 62, 70], avoiding the use of Rubio de Francia’s iteration algorithm as the
primary tool in constructing measures.

Theorem 8.16. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm <∞, 1

p
= 1

p1
+ · · ·+ 1

pm
, and every v⃗ ∈ AP⃗ ,

∥g∥Lp,∞(νv⃗)
≤ φ([v⃗]A

P⃗
)

m∏
i=1

∥fi∥Lpi (vi)
,

where φ : [1,∞) −→ [0,∞) is an increasing function. Then, for all exponents
1 < q1, . . . , qm <∞, 1

q
= 1

q1
+ · · ·+ 1

qm
, and every w⃗ ∈ AQ⃗,

∥g∥Lq,∞(νw⃗) ≤ Φ([w⃗]A
Q⃗
)

m∏
i=1

∥fi∥Lqi,min{pi,qi}(wi)
,

where Φ : [1,∞) −→ [0,∞) is an increasing function. If for some 1 ≤ i ≤ m,
pi = 1, then we can also take qi = 1.

The first step towards a restricted weak-type analog of this theorem is to define
a proper class of tuples of measures to extrapolate. We introduce some ideas that
may not be final but point in the right direction.

Let us review the structure of AP⃗ . It follows from [60, Theorem 3.6] that v⃗ ∈ AP⃗

if, and only if for i = 1, . . . ,m, vi ∈ Aσi
pi

, with σi = 1
1+pi(m−1)

, and νv⃗ ∈ Amp.
Moreover,

[v⃗]A
P⃗
≤ [νv⃗]

1/p
Amp

m∏
i=1

[vi]
1

σipi

A
σi
pi

, [νv⃗]Amp ≤ [v⃗]pA
P⃗
, and [vi]Aσi

pi
≤ [v⃗]σipi

A
P⃗
.

This argument motivates the next definition.
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Definition 8.17. Fix 1 ≤ N1, . . . , Nm ∈ N∪{∞}, and 0 < ℓ < m. Given exponents
1 ≤ p1, . . . , pm <∞, 1

p
= 1

p1
+· · ·+ 1

pm
, and σi = 1

1+pi(m−1)
, i = 1, . . . ,m, and positive,

measurable functions w1, . . . , wm, with w⃗ = (w1, . . . , wm), we say that:
(a) w⃗ ∈ ÂP⃗ ,N⃗ , with P⃗ = (p1, . . . , pm) and N⃗ = (N1, . . . , Nm), if wi ∈ Âσi

pi,Ni
,

i = 1, . . . ,m, and νw⃗ ∈ Âmp,N1+···+Nm . If N1 = · · · = Nm = 1, we simply
write ÂP⃗ .

(b) w⃗ ∈ ÂP⃗ ,R⃗,N⃗ , with R⃗ = (p1, . . . , pℓ), N⃗ = (N1, . . . , Nℓ), P⃗ = (pℓ+1, . . . , pm),
if wi ∈ Âσi

pi,Ni
, i = 1, . . . , ℓ, wi ∈ Aσi

pi
, i = ℓ + 1, . . . ,m, and νw⃗ ∈ Amp (or

Âmp,N1+···+Nℓ+m−ℓ).
If ℓ = 0, we take ÂP⃗ ,R⃗,N⃗

:= AP⃗ , and if ℓ = m, we take ÂP⃗ ,R⃗,N⃗
:= ÂR⃗,N⃗ .

Remark 8.18. It is clear that these classes contain AP⃗ . Moreover,
∏m

i=1 Âpi,Ni
⊆

ÂP⃗ ,N⃗ and
(∏ℓ

i=1 Âpi,Ni

)
×
(∏m

i=ℓ+1Api

)
⊆ ÂP⃗ ,R⃗,N⃗ , and we want to believe that

ÂP⃗ ,N⃗ ⊆ AR
P⃗

and ÂP⃗ ,R⃗,N⃗ ⊆ AM
P⃗ ,R⃗

, but proof is required. It would be helpful to
produce characterizations of AR

P⃗
and AM

P⃗ ,R⃗
resembling [60, Theorem 3.6].

Note that if we take parameters −n (1 + pi(m− 1)) < βi ≤ n(pi−1), i = 1, . . . ,m,
with −n <

∑m
i=1

pβi

pi
≤ n(mp − 1), then w⃗ = (|x|β1 , . . . , |x|βm) ∈ ÂP⃗ , and if for

i = ℓ + 1, . . . ,m, we also impose that βi < n(pi − 1), then w⃗ ∈ ÂP⃗ ,R⃗,⃗1 (see [43,
Example 7.1.7]). In particular, if for some 1 ≤ j ≤ m, pj ̸= 1, then for βj = n(pj−1),
w⃗ ̸∈ AP⃗ if 1 ≤ j ≤ ℓ, and w⃗ ̸∈ ÂP⃗ ,R⃗,⃗1 if ℓ+ 1 ≤ j ≤ m.

It is worth mentioning that, mimicking the case m = 1, we can identify the
following well-behaved subclass of ÂP⃗ .

Definition 8.19. Given exponents 1 ≤ p1, . . . , pm < ∞, 1
p
= 1

p1
+ · · · + 1

pm
, and

positive, measurable functions w1, . . . , wm, we say that w⃗ = (w1, . . . , wm) belongs to
â P⃗ if there exist functions h1, . . . , hm ∈ L1

loc(Rn), and u⃗ = (u1, . . . , um) ∈ A1⃗ such
that

w⃗ =

(
(Mh1)

1−p1u
p1
mp

1 , . . . , (Mhm)
1−pmu

pm
mp
m

)
.

We associate to this class the constant given by
∥w⃗∥â

P⃗

:= inf [u⃗]A1⃗
,

where the infimum is taken over all suitable representations of w⃗.

Remark 8.20. In practice, for w⃗ = (w1, . . . , wm) ∈ ÂP⃗ , it would be convenient
to construct functions h1, . . . , hm ∈ L1

loc(Rn), and u⃗ = (u1, . . . , um) such that

w⃗ = ((Mh1)
1−p1u1, . . . , (Mhm)

1−pmum), with u
1

1+pi(m−1)

i ∈ A1, i = 1, . . . ,m, and
u
p/p1
1 . . . u

p/pm
m ∈ A1. Is there a similar factorization result for w⃗ ∈ AP⃗ , replacing

Mh1, . . . ,Mhm by v1, . . . , vm ∈ A1?

After all we have seen so far, it seems reasonable to consider extrapolation theories
for ÂP⃗ ,N⃗ and ÂP⃗ ,R⃗,N⃗ (or even â P⃗ ), but for now, we cannot follow the road map
suggested by Theorems 8.8 and 8.12 because, given (w1, w2, . . . , wm) ∈ ÂQ⃗, with
Q⃗ = (q1, p2, . . . , pm), we don’t know if for v1 as in (8.14) or (8.20), (v1, w2, . . . , wm)

is in ÂP⃗ ,N⃗ , with P⃗ = (p1, p2, . . . , pm) and N⃗ = (2, 1, . . . , 1), or ÂP⃗ if q1 = 1. Luckily,
for Q⃗ = 1⃗, we have that µ = w

1/m
2 . . . w

1/m
m ∈ A1, and something can be arranged.
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We are now ready to present the first restricted weak-type extrapolation scheme
assuming multi-variable conditions on the tuples of measures involved, which is
an endpoint result that falls outside the classical multi-variable Rubio de Francia’s
extrapolation theory in [61, 62, 70]. Remarkably, our favorite Sawyer-type inequality
saves the day through Lemma 8.6.

Theorem 8.21. Fix m ≥ 2. Given measurable functions f1, . . . , fm, and g, suppose
that for some exponents 1 < p1 < ∞, p2 = · · · = pm = 1, and p = p1

1+p1(m−1)
,

and every m-tuple of positive, measurable functions v⃗ = (v1, . . . , vm) such that

v
1

1+p1(m−1)

1 ∈ AR
mp1

1+p1(m−1)

, v1/m2 , . . . , v
1/m
m ∈ A1, and νv⃗ ∈ AR

mp,

(8.21)

∥g∥Lp,∞(νv⃗)
≤ φ([v

1
1+p1(m−1)

1 ]AR
mp1

1+p1(m−1)

, [v
1/m
2 ]A1 , . . . , [v

1/m
m ]A1 , [νv⃗]AR

mp
)

m∏
i=1

∥fi∥Lpi,1(vi)
,

where φ : [1,∞)m+1 −→ [0,∞) is a function increasing in each variable. Then, for
every w⃗ = (w1, . . . , wm) ∈ A1⃗,

(8.22) ∥g∥
L

1
m,∞(νw⃗)

≤ Φ([w⃗]A1⃗
)

m∏
i=1

∥fi∥
L
1, 1

pi (wi)
,

where Φ : [1,∞) −→ [0,∞) is an increasing function.

Proof. We will adapt the proof of Theorem 8.8. Pick w⃗ = (w1, . . . , wm) ∈ A1⃗.
We know from [60, Theorem 3.6] and [62, Lemma 3.2] that for i = 1, . . . ,m, and
µ := w

1/m
2 . . . w

1/m
m ,

(8.23) max
{
[w

1/m
i ]A1 , [µ]A1 , [w

1/m
1 ]A1(µ), [νw⃗]A1

}
≤ [w⃗]

1/m
A1⃗

.

Fix y > 0 and γ > 0. We have that

λνw⃗g (y) =

∫
{|g|>y}

νw⃗ ≤ λνw⃗Z (γy) +

∫
{|g|>y}

(γy
Z

)p− 1
m
νw⃗ =: I + II,(8.24)

where Z :=Mµ(f1w
1− 1

m
1 µ−1)m.

To estimate the term I in (8.24), in virtue of (8.23), [50, (3.11)], and [43, Propo-
sition 7.1.5], we deduce that

I ≤ 1

(γy)1/m
∥Z ∥1/m

L
1
m,∞(νw⃗)

=
1

(γy)1/m

∥∥∥Mµ(f1w
1− 1

m
1 µ−1)

∥∥∥
L1,∞(w

1/m
1 dµ)

≤ 10n+log2[µ]A1

(γy)1/m
[w

1/m
1 ]A1(µ)∥f1∥L1(w1) ≤

p1−p1
1

(γy)1/m
10

n+ 1
m

log2[w⃗]A
1⃗ [w⃗]

1/m
A1⃗

∥f1∥
L
1, 1

p1 (w1)
.

(8.25)

To estimate the term II in (8.24), take

(8.26) v1 :=
(
Mµ(f1w

1− 1
m

1 µ−1)µ
)1−p1

w
1+p1(m−1)

m
1 ,

and vi := wi, i = 2, . . . ,m. Since 1−p1
1+p1(m−1)

= 1 − mp1
1+p1(m−1)

, it follows from (8.23)

and Lemma 8.6 that v
1

1+p1(m−1)

1 ∈ AR
mp1

1+p1(m−1)

, with

[v
1

1+p1(m−1)

1 ]AR
mp1

1+p1(m−1)

≤ ϕn([w⃗]
1/m
A1⃗

)
1

mp′1 [w⃗]
1

m2p

A1⃗
,
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where ϕn : [1,∞) −→ [0,∞) is an increasing function depending only on the dimen-
sion n. Moreover,

νv⃗ = v
p/p1
1 v

p/p2
2 . . . vp/pmm = v

1
1+p1(m−1)

1 µmp =Mµ(f1w
1− 1

m
1 µ−1)1−mpµw

1/m
1 ,

and Lemma 8.4 tells us that νv⃗ ∈ AR
mp, with

[νv⃗]AR
mp

≤ (cn[w⃗]
1/m
A1⃗

)
κ

(mp)′ [w⃗]
1
m(1+

1
mp)

A1⃗
= c

κ
(mp)′
n [w⃗]

1
m

(
1+ 1

mp
+ κ

(mp)′

)
A1⃗

,

and κ > 1 universal.
Hence, by (8.21) and the monotonicity of φ, we get that

II =
(γy)p

(γy)1/m

∫
{|g|>y}

νv⃗

≤ γp

(γy)1/m
φ(ϕn([w⃗]

1/m
A1⃗

)
1

mp′1 [w⃗]
1

m2p

A1⃗
, [w⃗]

1/m
A1⃗

, . . . , c
κ

(mp)′
n [w⃗]

1+κ
m

A1⃗
)p

m∏
i=1

∥fi∥pLpi,1(vi)
,

(8.27)

and ∥f1∥Lp1,1(v1)
≤ p1 ∥f1∥1/p1

L
1, 1

p1 (w1)
.

Combining the estimates (8.24), (8.25), and (8.27), we conclude that

λνw⃗g (y) ≤ p1−p1
1

(γy)1/m
10

n+ 1
m

log2[w⃗]A
1⃗ [w⃗]

1/m
A1⃗

∥f1∥
L
1, 1

p1 (w1)

+
pp1γ

p

(γy)1/m
φ(ϕn([w⃗]

1/m
A1⃗

)
1

mp′1 [w⃗]
1

m2p

A1⃗
, [w⃗]

1/m
A1⃗

, . . . , c
κ

(mp)′
n [w⃗]

1+κ
m

A1⃗
)p

m∏
i=1

∥fi∥p/pi
L
1, 1

pi (wi)
,

and taking the infimum over all γ > 0 (see [75, Lemma 3.1.1]), (8.22) holds, with
(8.28)

Φ(ξ) = Cm
p1

(
10n+

1
m

log2 ξξ1/m
)1− 1

p1 φ(ϕn(ξ
1/m)

1
mp′1 ξ

1
m2p , ξ1/m, . . . , c

κ
(mp)′
n ξ

1+κ
m ), ξ ≥ 1,

where Cm
p1

:= p
3− 1

p1
−p1

1 (mp)m(mp− 1)
1
p1

−1. ▷▷▶
From Theorem 8.21, we can obtain the following extrapolation result for multi-

variable operators arguing as in the proof of Corollary 6.3.

Corollary 8.22. Fix m ≥ 2, and let T be an m-variable operator defined for charac-
teristic functions. Suppose that for some exponents 1 < p1 <∞, p2 = · · · = pm = 1,
and p = p1

1+p1(m−1)
, every m-tuple of positive, measurable functions v⃗ = (v1, . . . , vm)

such that v
1

1+p1(m−1)

1 ∈ AR
mp1

1+p1(m−1)

, v1/m2 , . . . , v
1/m
m ∈ A1, and νv⃗ ∈ AR

mp, and all mea-
surable sets E1, . . . , Em ⊆ Rn,

∥T (χE1 , . . . , χEm)∥Lp,∞(νv⃗)
≤ φ(v1, . . . , vm, νv⃗)

m∏
i=1

vi(Ei)
1/pi ,

with φ as in (8.21). Then, for every w⃗ = (w1, . . . , wm) ∈ A1⃗, and all measurable
sets F1, . . . , Fm ⊆ Rn,

∥T (χF1 , . . . , χFm)∥L 1
m,∞(νw⃗)

≤ pp1−1
1 Φ([w⃗]A1⃗

)
m∏
i=1

wi(Fi),

with Φ as in (8.28).
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Remark 8.23. The extension of this last bound to the full weak-type (1, . . . , 1, 1
m
)

would require a version of Theorem 2.4 for tuples of measures in A1⃗. At the time of
writing, such a result is not available.

Note that for w⃗ ∈ A1⃗, and v1, . . . , vm as in (8.26), we have that v⃗ ∈ AR
P⃗
, with

P⃗ = (p1, 1, . . . , 1). Indeed, by the argument in the proof of Lemma 8.6, and using
(8.23), we get that for every cube Q ⊆ Rn,

∥χQv
−1
1 ∥

Lp′1,∞(v1)

|Q|
≤ ϕn([w⃗]

1/m
A1⃗

)
1− 1

p1

(
[w⃗]

1/m
A1⃗

µ(Q)

νw⃗(Q)

) 1
p1

+m−1

×
((

ess inf
y∈Q

µ(y)
)(

ess inf
y∈Q

Mµh(y)
))1− 1

p1

|Q|−
1
p1 ,

where h := f1w
1− 1

m
1 µ−1. Also, from [62, Lemma 3.2] and [60, Theorem 3.6], we

deduce that the m-tuple (1, w2, . . . , wm) is in A1⃗, with

[(1, w2, . . . , wm)]A1⃗
:= sup

Q

(
µ(Q)

|Q|

)m m∏
i=2

(
ess inf
y∈Q

wi(y)
)−1 ≤ [w⃗]mA1⃗

.

Thus,

[v⃗]AR
P⃗

:= sup
Q
νv⃗(Q)

1/p
∥χQv

−1
1 ∥

Lp′1,∞(v1)

|Q|

m∏
i=2

ess supy∈Qwi(y)
−1

|Q|

≤ ϕn([w⃗]
1/m
A1⃗

)
1− 1

p1 sup
Q

(
ess inf
y∈Q

µ(y)
)1− 1

p1 |Q|1−m− 1
p1

m∏
i=2

(
ess inf
y∈Q

wi(y)
)−1

×
(
[w⃗]

1/m
A1⃗

µ(Q)

νw⃗(Q)

∫
Q

(Mµh)
1−p1

1+p1(m−1)νw⃗

) 1
p1

+m−1 (
ess inf
y∈Q

Mµh(y)
)1− 1

p1

≤ [w⃗]
m+ 1

mp

A1⃗
ϕn([w⃗]

1/m
A1⃗

)
1− 1

p1 sup
Q

(
|Q| ess inf

y∈Q
µ(y)

)1− 1
p1 µ(Q)

1
p1

−1

≤ [w⃗]
m+ 1

mp

A1⃗
ϕn([w⃗]

1/m
A1⃗

)1/p
′
1 .

Therefore, the extrapolation argument described in the proof of Theorem 8.21
and Corollary 8.22 can be applied to classical multi-variable operators such as the
multi-sub-linear maximal operator M, sparse operators like AS , and multi-linear
Calderón-Zygmund operators, for which we can prove weighted restricted weak-type
bounds (see [74, Theorem 10]).

Theorem 8.21 and Corollary 8.22 are proof of concept; they show that a genuinely
multi-variable restricted weak-type extrapolation theory is conceivable, and that the

appropriate conditions on the measures involved are close to v
1

1+pi(m−1)

i ∈ AR
mpi

1+pi(m−1)

,

i = 1, . . . ,m, and νv⃗ ∈ AR
mp, which should characterize AR

P⃗
.

To keep advancing, one may have to develop the theory of AR
p (µ) weights further,

generalize Subsection 8.1 for µ ∈ A∞, prove restricted weak-type versions of [62,
Lemma 3.2] and [60, Theorem 3.6], and make some progress with Conjecture 8.14
and suitable dual forms of it.

In [74], we suggested that multi-variable Sawyer-type inequalities for M might
play a role in AR

P⃗
extrapolation, but for now, this doesn’t seem to be the case.

Nevertheless, the relation between [74, Conjecture 1] and Conjecture 8.14 should be
explored.
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Author’s note

The reader may encounter the phantom reference Endpoint weighted estimates for
bi-linear Fourier multipliers via restricted bi-linear extrapolation in the literature, an
unfinished draft containing E. R. P.’s ideas, results, and figure designs from Chapter
3 of his Ph.D. dissertation. Due to the censorship, discrimination, and contempt
that E. R. P. suffered from the principal investigators of his former research group
while preparing such a manuscript, he decided to discontinue the project and not
authorize its publication. That material should not have been circulated without
proper citation; that is, [75]. The present document supersedes the one above.

Coping with rights violations, negligence, unethical behavior, toxic workplace
culture, and the challenges posed by COVID-19 resulted in mental and emotional
exhaustion. There have been plenty of reasons to let this research rot, yet here it
is, fresh as a fish, against all odds. The intervention of two individuals made it
possible. The author is indebted to Carlos Pérez Moreno for his trust, support, and
mentorship, especially during the aftermath of the pandemic. The author also wishes
to express gratitude to Marta de León Contreras for providing an opportunity that
motivated him enough to jump-start this study again, as well as to the personnel
he met at UPV/EHU and BCAM for their help and assistance.

Regarding funding, the Margarita Salas grant was advertised as highly competitive
and prestigious but did not comply, forcing part of its beneficiaries to resign or file
a lawsuit against the employing universities. By contrast, PGC2018-094522-B-I00
worked like a charm.
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