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Motivated by recent studies of two-phase lipid vesicles possessing 2D solid domains integrated
within a fluid bilayer phase, we study the shape equilibria of closed vesicles possessing a single
planar, circular inclusion. While 2D solid elasticity tends to expel Gaussian curvature, topology re-
quires closed vesicles to maintain an average, non-zero Gaussian curvature leading to an elementary
mechanism of shape frustration that increases with inclusion size. We study elastic ground states
of the Helfrich model of the planar-fluid composite vesicles, analytically and computationally, as a
function of planar fraction and reduced volume. Notably, we show that incorporation of a planar
inclusion of only a few percent dramatically shifts the ground state shapes of vesicles from predom-
inantly prolate to oblate, and moreover, shifts the optimal surface to volume ratio far from spherical
shapes. We show that for sufficiently small planar inclusions, the elastic ground states break sym-
metry via a complex variety of asymmetric oblate, prolate, and triaxial shapes, while inclusion sizes
above about 8% drive composite vesicles to adopt axisymmetric oblate shapes. These predictions
cast useful light on the emergent shape and mechanical responses of fluid-solid composite vesicles.

I. INTRODUCTION

Closed fluid membranes, such as lipid bilayer vesi-
cles, constitute a paradigmatic class of shape-adaptive
soft matter, with known studied connections to biolog-
ical materials [1]. Even single component vesicles are
known to adopt a complex spectrum of low-symmetry
shapes, which can be effectively modeled as equilibria
of a continuum theory controlled by relatively few ther-
modynamic parameters, like surface-to-volume ratio and
asymmetry between the inner and outer membrane[2].
Even for the simplest case of homogeneous vesicles with-
out spontaneous curvature, the shape equilibria of closed
free vesicles vary considerably with symmetry decreas-
ing with progressive deflation, from spherical, to prolate,
to oblate, and ultimately to stomatocyte shapes [3, 4].
Recent work shows that these distinct equilibria exhibit
vastly different responses to shape perturbation upon lo-
calized forcing [5].

The possibilities for symmetry breaking are far more
complex for inhomogeneous vesicles [6]. This includes
fluid-fluid phase-separated vesicles, where mechanical
properties (e.g. bending moduli, spontaneous curvature)
vary with local composition [7–11], as well as closed mem-
branes with protein or particulate absorbates and in-
clusions [12–15], which locally perturb membrane shape
and may collectively reconfigure the global ground sym-
metries. Among inhomogeneous vesicle categories, the
shape equilibria of fluid-solid composites remain partic-
ularly poorly understood. Recent studies of fluid-solid
composite derive from multi-component lipid vesicles,
where one component phase separates into a solid phase
upon cooling from a mixed phase, consistent with one or
more 2D solids domains coexisting within an otherwise
homogeneous 2D “background” fluid. Observations find
that solid domains may vary in number, size, and shape
depending on both equilibrium and non-equilibrium pro-

FIG. 1. (A) A microscopic image of a solid-fluid composite
lipid vesicle (B) a microscopic image of a fluid vesicle adhered
to glass substrate (Reprinted with permission from Gruhn et
al., Langmuir, 2007[23]. Copyright 2007 American Chemical
Society) (C) computational model of the fluid membrane with
a circular inclusion (D) computational model of fluid mem-
brane adhered to the planar substrate.

cessing conditions [6, 16, 17].
Generic geometric and mechanical considerations com-

plicate the understanding of fluid-solid composite vesicle
shape. On one hand, membrane bending elasticity alone
tends to favor uniform mean-curvature shapes, which for
closed vesicles is optimal for spherical shapes. On the
other hand, 2D solid (plate) elasticity strongly resists
spherical curvature, due to the coupling between Gaus-
sian curvature and in-plane strains [18, 19]. While the
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mean value of Gaussian curvature of closed vesicles is
fixed and positive, simple considerations of the relative
energetics of solid strain energy in comparison to mem-
brane bending energy suggest that Gaussian curvature
is strongly partitioned in fluid-solid composite vesicles.
The in-plane strain energy needed to force a solid do-
main of size D onto a sphere of size R is proportional to
Y D6/R4, where Y is the 2D Youngs modulus[20, 21].
In comparison, the characteristic bending energy cost is
proportional to B D2/R2, where B is the bending mod-
ulus [22]. Notably, the ratio

√
B/Y ≡ t defines an elas-

tic thickness that is comparable in dimensions to the
nanometer scale thickness of a 2D solid, while R is of
the order 10s of microns for GUVs (Giant Unilamellar
Vesicles) [1]. Hence, for a solid domain size compara-
ble to the vesicle size, the ratio of strain to bending en-
ergy grows asymptotically as large with vesicle size as
(Y/B)D4/R2 ∼ (R/t)2 ∼ 108. This scaling implies that
forcing the solids to adopt the spherical curvature im-
posed by the closed vesicle is prohibitive relative to the
cost of redistributing that Gaussian curvature to the fluid
phase, where it incurs only additional bending energy
at the scale of ∼ B. On these grounds, it can be ex-
pected that solid domains on composite vesicles adopt
developable shapes [18], with the surrounding fluid phase
taking up the appropriate increase of Gaussian curvature
required by the fixed topology. Hence, we may view the
expulsion of Gaussian curvature from the solid domains
into the surrounding fluid phase and resulting inhomo-
geneous curvatures as a mechanism of shape frustration,
and the magnitude of that frustration will tend to in-
crease with increasing solid domain fraction Φ.

In this article, we study a minimal model of this shape
frustration, where we consider a fluid membrane coex-
isting with a single rigid, planar, and circular inclusion
in a closed, composite vesicle. While solid domains may
in fact bend at low energy with Gaussian curvature (i.e.
isometrically), the case of a planar inclusion presents a
tractable setting for studying structure and thermody-
namics over a comprehensive range of inflations and pla-
nar fractions. Moreover, as we show, the gross features
of shape equilibria for the rigid planar model agree well
with experimentally observed shapes of fluid-solid com-
posites with large, compact solid domains (see example
in Fig. 1A,C). Additionally, we note that the problem of
a fluid vesicle in mechanical equilibrium with a planar
region is also fundamental to models of vesicle adhesion
on planar substrates (see Fig. 1B,D), where binding tran-
sition and resultant bending energy of the bound vesicle
both depend on the (fixed) metric of the substrate[24–
27].

Before proceeding to our model of composite vesicles
with rigid, planar inclusions, we briefly review the clas-
sical results of shape equilibria for homogeneous vesicles,
which constitutes the limiting Φ → 0 case of our planar
inclusion study. The axisymmetric ground states of the
Helfrich model for homogeneous vesicles were first stud-
ied by the analytical solution of the shape equations [2, 3],

FIG. 2. (A) Competing prolate and oblate branches for
ground state shapes of homogeneous vesicles as a function
of reduced volume. (B) Schematic representation parameter
space for single-planar inclusion, where the maximal inflation,
isoperimetric limit, separates allowed from forbidden regimes
of shape space illustrated by examples on the right side.

and subsequent numerical studies [4, 28, 29] show that
ground state shapes retain axisymmetry in the absence
of spontaneous curvature. Two solution branches com-
pete in the regime of high inflation, measured by the
reduced volume parameter

v̄ ≡
√
36π

V

A3/2
(1)

where V and A are respective volume and area, shown in
Fig. 2A, the reduced energy ratio relative to a perfectly
spherical shape. The prolate branch is lowest energy for
v̄ ≥ 0.65, while oblate shapes have lower energy at lower
inflation[30]. Both branches continuously meet the mini-
mal energy spherical shape at maximal inflation as v̄ → 1.
In what follows we consider the symmetry (e.g. oblate
vs. prolate) of ground state shapes in an expanded pa-
rameter space which includes the planar fraction

Φ ≡ Aplanar

A
(2)

where Aplanar = πD2/4 is the area of the planar disc that
continuously meets the fluid vesicle portion. Before con-
sideration of mechanical equilibria, we note that a finite
planar inclusion reduces the range of accessible inflation.
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It is straightforward to understand the states of maxi-
mum inflation, known as the isoperimetric limit shapes,
because the maximal volume that can be enclosed by
the fluid portion remains spherical. Hence, the isoperi-
metric limit shapes are simply spheres cut by planes (see
Fig. 2B), whose intersections enclose the appropriate disc
area. It is straightforward to determine the relationship
between planar fraction and the maximal reduced volume

v̄max(Φ) =
√
1− 2Φ(1 + Φ), (3)

which notably is below the spherical limit for any finite Φ
and vanishes completely at Φ = 1/2, imposing any upper
bound for the planar fraction in our study, shown as the
dashed line in Fig. 2B. The isoperimetric limit shapes are
not smooth, since the fluid and inclusion meet at a finite
angle θiso. We show below that the diverging curvature
in this limit strongly influences the symmetry and energy
landscape of ground state shapes.

In this article, we investigate ground state shapes of
the planar inclusion model in the parameter regime high-
lighted in Fig. 2B via a combination of analytical and
finite-element solutions to shape equilibrium. In Sec. II
we summarize our approach to the axisymmetric solu-
tions of the shape equations for the planar inclusion
model, as well as our approach to non-axisymmetric
shapes via SE (Surface Evolver). We first discuss the
evolution of prolate and oblate solution branches for the
axisymmetric case in Sec. III with increasing planar frac-
tion. We show that increasing Φ shifts the relative sta-
bility of these two branches, with shapes in the prolate
branch completely disappearing from the axisymmetric
ground states for Φ > 0.023. We also show that minimal
energy shapes fall below the upper isoperimetric limit of
inflation, and hence, the incorporation of a planar in-
clusion leads to regimes of positive and negative mem-
brane tension. We next consider the ground state shapes
without any assumption of axisymmetry via the Sur-
face Evolver model in Sec. IV. Indeed, we show that for
sufficiently low planar fraction, ground states break ax-
isymmetry and exhibit a range of complex quasi-prolate
and quasi-oblate shapes, while for sufficiently large pla-
nar fraction (Φ ≳ 0.08), and notably near to zero ten-
sion, ground states retain axisymmetric, oblate shapes.
Next, in Sec. V, we analyze the asymptotic approach to
the maximal inflation shapes and argue that morpholog-
ical frustration imposed by a planar inclusion leads to
a characteristic concentration of diverging fluid bending
energy at the boundary between the phases. We conclude
in Sec. VI with a discussion of the relevance of the pla-
nar inclusion model for experimental shapes of fluid-solid
composite vesicles, as well as remaining questions about
the role of the flexibility of solid domains on the ground
state shape phase diagram of this system.

II. MODEL OF FLUID VESICLE WITH A
PLANAR INCLUSION

Here we introduce our model of composite fluid-planar
inclusion vesicles. We consider closed vesicles including
a single, rigid disc region (i.e. inclusion) which smoothly
matches the tangents of coexisting fluid. Tangent conti-
nuity is required for finite bending energy at the bound-
ary of fluid-solid membranes, as well as at the edge of a
planar contact zone of an adhering vesicle. For the case
of rigid inclusions, the elastic energy derives entirely from
the fluid bending energy which has the form of Helfrich
energy[22],

Eb =
B

2

∮
fluid

dA (2H)2 +BG

∮
dA KG (4)

where H and KG are the respective mean and Gaussian
curvature of the fluid, whose elasticity is parameterized
by the respective bending moduli, B and BG. Because
the fluid membrane is taken to meet continuously tangent
to the planar inclusion and the composite membrane is
closed, the second term in eq. (4) is topologically invari-
ant and equal to a constant 4πBG for all shapes [31].
Hence, we neglect this term in the remaining analysis.
Additionally, we consider the ensemble of fixed areas of
fluid and planar inclusions, as well as fixed internal vol-
ume of the membrane.

Fig. 3 shows schematically the two methods we em-
ployed to study equilibria of this model, as detailed be-
low: A) solutions of axisymmetric shape equations and
B) Surface Evolver simulations of vesicles with fixed pla-
nar regions.

A. Shape equations and axisymmetric
parameterization

Here, we study the equilibria of the fluid bending en-
ergy under the constraints of fixed inclusion size, fixed
fluid phase area Afluid and fixed enclosed volume V . Con-
straining the latter two quantities is accomplished by in-
cluding Lagrange multipliers coupled to Afluid and V (i.e.
membrane tension and pressure) in an augmented ther-
modynamic potential

F = Eb +ΣAfluid − PV (5)

which is a function of the vesicle shape. The equilib-
rium shapes can be found by minimizing the membrane
energy with respect to variation of the fluid membrane
shape (i.e. δF = 0). This gives the standard shape equa-
tion of the Helfrich model (in the absence of spontaneous
curvature)[2, 32]

−P + 2ΣH − 2B
[
2H(H2 −KG)−∇2

⊥H
]
= 0, (6)

where ∇2
⊥ is the surface Laplacian operator. Following

ref. [3], as shown in Fig. 3A, we implement and solve
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FIG. 3. The arclength parametrization of the membrane
shape under global axisymmetry. s is the arclength along
the membrane, X(s) and Z(s) are the spatial coordinates,
and ψ(s) is the tangent angle.

this equation in terms of the curve {X(s), Z(s)} in the
plane parallel to the rotation axis, and s is an arclength
parameter running from s = 0 on the bottom pole to
s = smax at the edge of the solid domain. As shown in
Fig. 3A Z(s) is the position along the rotation axis and
X(s) is the radial separation of the fluid membrane at s
from the symmetry axis. The arc length derivatives of
position in this plane define the orientation angle ψ(s)

X ′(s) = cosψ(s); Z ′(s) = sinψ(s). (7)

Based on these coordinates, the shape equation becomes
a set of coupled ODEs, as detailed in Appendix C. These
equations are solved subject to the boundary conditions
of continuity at the fluid pole of the vesicle

X(0) = 0; ψ(0) = 0, (8)

and at the edge of the planar inclusion

X(smax) = D/2; ψ(smax) = π, (9)

where again we assume tangent continuity, and hence,
finite curvature at the planar-fluid boundary. We im-
plement a shooting-method approach in Mathematica to
solve the shape equations, eq. A3, boundary conditions,
and constraints for fixed fluid/planar area and enclosed

volume, in terms of unknown parameters (e.g. Σ, P and
smax).

Resulting equilibria are analyzed below in terms of
shape (curvature) and energetics (see example on left half
of Fig. 3C). For the purposes of analysis, it is helpful to
work in terms of rescaled variables. In particular, we
consider energetic quantities normalized by B,

Ēb ≡ Eb

8πB
; Σ̄ ≡ Σ/B; P̄ ≡ P/B. (10)

Note that reduced energy, Ēb, is defined such that the
energy of a homogeneous sphere is 1. We also define
the characteristic radius R in terms of an equal volume
sphere, to characterize to macroscopic size of the shape
solutions,

R ≡
√
A

4π
. (11)

Notably, as with homogeneous vesicles in the absence of
spontaneous curvature, the energy of the fluid-planar in-
clusion composite model is scale invariant. Rescaling the
macroscopic size R while holding Φ and v̄ fixed does not
change Ēb. Using this fact and standard variational prin-
ciples for vesicles with fixed area and volume [2] yields
the following relations

AΣ̄ = −A
B

(∂Eb

∂A

)
V,Φ

= 12πv̄
(∂Eb

∂v̄

)
Φ
, (12)

and

V P̄ =
V

B

(∂Eb

∂V

)
A,Φ

= 8πv̄
(∂Eb

∂v̄

)
Φ
, (13)

which relate both internal tension and pressure to the
same first derivative of reduced energy.

B. Surface Evolver composite vesicle model

To complement axisymmetry solutions to the shape
equations, we consider non-axisymmetric shapes via nu-
merical minimization of a discrete-mesh implementation
of composite vesicle energy in Surface Evolver[33, 34]. In
this discrete description, the bending energy was com-
puted based on the vertices of a triangular mesh approx-
imating the vesicle shape

Eb =
B

2

vertex∑
α

(2Hα)
2 ∆Aα (14)

where α is the vertex label. Here, ∆Aα is the effective
area corresponding to the 1/3 of the area of triangular
faces that meet at α, and Hα is the discrete approx-
imation of the mean curvature at α derived from the
normal gradient of ∆Aα [35, 36]. Full details for the
implementation of the bending energy minimization in
Surface Evolver are provided in Appendix B. Briefly, the
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workflow is summarized in Fig. 3B. Beginning with a tri-
angular mesh (of order 104 vertices), an upper section
is flattened to a planar disk, of a size that targets the
appropriate planar fraction Φ. Vertices of the planar in-
clusion are held fixed while eq. (14) is minimized subject
to target values of enclosed volume and fluid area.

Like the solutions to the shape equation, resulting equi-
libria are analyzed below in terms of shape (curvature)
and energetics (see example on the right half of Fig. 3C).
As the equilibria of this finite element model are not re-
quired to have axisymmetry, we also analyze numerical
ground states according to the following symmetry met-
rics. First, we characterize the gyration tensor defined
as

Sij = A−1
vertex∑

α

(xα)i(xα)j ∆Aα (15)

where xα is the position of vertex α relative to the cen-
troid of the vesicle, and i, j = x, y or z are Cartesian
directions. The eigenvalues, S1 ≥ S2 ≥ S3, of the gyra-
tion tensor correspond to the principle moments of the
mass distribution, and the corresponding orthonormal
eigenvectors {e1, e2, e3}, which are the principle axes of
the vesicle shape. Following these definitions, the re-
spective e1 and e3 directions characterize the maximal
and minimal “width” axes of the vesicle, and the trace
Sii = S1 + S2 + S3 = R2

g gives the square radius of gy-
ration of its shape. With the exception of the Φ → 0,
v̄ → 1 spherical limit, all shapes in this study correspond
to unequal principle moments. Based on the dissimilar-
ity of mass distribution along orthogonal (principle) axis
we classify shapes as either oblate if S1 − S2 < 0.1R2

g, as
prolate if S2 − S3 < 0.07R2

g, or otherwise, as triaxial.
Additionally, we characterize the symmetry of ground

state shapes in terms of the centering of the planar in-
clusion on the ground state vesicle. Defining Xplanar as
the vector separating the center of the inclusion from the
centroid of the vesicle, we define a configuration as cen-
tered if Xplanar lies along a principle axes of the vesicle
shape. We define alignment in terms of the angle ω be-
tween Xplanar and the nearest principle axis, defined by

cosω = maxa|X̂planar · ea|, (16)

where a = 1, 2 or 3. We categorize the shapes as centered
if ω < 0.01 and off-centered otherwise.

III. AXISYMMETRIC SHAPE EQUILIBRIA

We first describe the axisymmetric equilibria of the
fluid-planar inclusion composite vesicle. In particular,
we focus on the evolution of oblate and prolate families
of solutions with increasing planar fraction and on the
axisymmetric ground state energy landscape as a func-
tion of Φ and v̄.

A. Prolate branch

Prolate branches of axisymmetric solutions are shown
for a series of planar fractions (Φ) in Fig. 4. In practice,
solution branches are generated via the solution of the
ODEs described in Appendix A. Solution branches at
fixed Φ are swept out by incrementing parameters (e.g.
curvature at the lower pole of the vesicle) leading to a 1D
family of solutions. As shown in the inset of Fig. 4A, the
1D family extends along a lower branch (solid curve) up
to an upper limit of v̄, and then folds back to a higher
energy branch (dashed curve) that extends to a minimal
value of v̄, below which no solution could be found. For
our purposes, we describe only this lower energy branch
as it competes with oblate shapes in the ground state
phase diagram.

Focusing first on the reduced energy Ēb Fig. 4A, we
note two principle effects of increasing solid fraction from
the homogeneous case at Φ = 0. First, we observe that
the maximal value of v̄ for prolate equilibria decreases
with increasing Φ (see limiting solutions in Fig. 4C). Sec-
ond, we note that the reduced energy increases with Φ,
i.e. at fixed v̄. This latter effect can be intuitively under-
stood by inspection of the equilibria at fixed Φ = 0.03 in
Fig. 4B. Axisymmetry limits the planar inclusion to the
pole of prolate shapes, which in the absence of the inclu-
sion (i.e. Φ = 0) would otherwise be the location of max-
imal Gaussian curvature. The inclusion of a finite-size
planar inclusion at the pole of the vesicle then tends to
require Gaussian curvature to be redistributed towards
the opposing pole, breaking the otherwise apolar sym-
metry of the prolate shapes. As Φ increases, the “polar”
asymmetry in the curvature distribution of prolate shape
grows, evidently leading to increase in the overall bend-
ing energy of the vesicles. We contrast this effect of shape
frustration on prolate vesicles with the oblate case below.

B. Oblate branch

In Fig. 5 we show the structure and energetics of the
oblate branch of axisymmetric shape equilibria. As for
the prolate branch, we plot the energy dependence on re-
duced volume for a sequence of fixed planar fraction Φ in
Fig. 5A as solid curves. The dashed vertical lines indicate
the predicted location of the isoperimetric limit volumes
v̄max(Φ). We note for the oblate branch, solutions of the
shape equations become very stiff in the large v̄ regime,
leading to a failure of our numerical method to resolve
solutions beyond a certain upper limit of v̄ for each Φ
which falls below v̄max(Φ). Unlike the prolate case, how-
ever, we discuss in Sec. IV the oblate shape equilibria
exist in this regime that extends fully to the asymptotic
limit v̄ → v̄max(Φ).

Like the prolate solutions, increasing solid fraction in-
creases the bending energy, shifting curves Ēb(v̄) upward
with increasing Φ. Again, this increase in energy can
be attributed to the necessary redistribution of Gaussian
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FIG. 4. Axisymmetric prolate shape equilibria. (A) Plot of reduced energy vs. reduced volume of prolate solutions for a
sequence of increasing planar fractions: Φ = 0, 0.03, 0.06, 0.09, 0.12, 0.15. The inset shows the full 1D branch, which includes
the lower energy branch (solid) and the higher energy branch (dashed) that merge at the maximal reduced volume of v̄ = 0.983.
(B) Shows the evolution of prolate equilibria for fixed planar fraction Φ = 0.06, with fluid surfaces colored according to the
scaled mean curvature (HR) and cross-sections highlighting the detailed shapes. (C) Show sequence of the maximal reduced
volume prolate equilibria for a sequence of Φ values, illustrated in the same style as (B).

curvature imposed by the planar inclusion. However, it
may be intuitive to expect that this effect could be less
geometrically disruptive, and therefore less energetically
costly, for oblate shapes since the planar inclusion occu-
pies a polar region which is the relatively flatter portion
of the oblate equilibria. We describe the consequences of
this for the ground state shape phase diagram below.

The most notable difference between the oblate and
prolate branches is the non-monotonic dependence of
bending energy on reduced volume shown in Fig. 5. For
low v̄, the energy of oblate shapes decreases with increas-
ing inflation consistent with the homogeneous (Φ = 0)
and prolate case, until a point v̄∗(Φ) where Ēb is minimal
with respect to inflation. At higher inflation, v̄ > v̄∗(Φ)
the bending energy increases with v̄. As we discuss be-
low in Sec. V, the structure and energetics of the high
inflation limit derive from the concentration of bending
energy at the fluid-planar boundary that matches the
planar inclusion shape to the fluid membrane, where the
fluid membrane shape becomes increasingly spherical as
inflation increases. This non-monotonic form of Ēb also
implies the existence of an optimal inflation state (i.e.
minimal bending energy) for a given planar fraction at
v̄∗(Φ) < 1, in clear contrast with the homogeneous vesicle
which is minimal in the spherical limit v̄ → 1.

According to eqs. (12) and (13) the non-monotonic de-
pendence of Ēb on reduced volume has implication for
the equation of state relating membrane tension Σ̄ to the

inflation of composite vesicles. Fig. 6 compares the pre-
dicted values of reduced tension as functions of reduced
volume between oblate (blue) and prolate (orange/red)
axisymmetric shapes. Notably, tension (and pressure) is
always negative for prolate shapes, indicating that these
are in effect always below optimal inflation at all v̄. In
contrast, oblate shapes exhibit both under-inflation at
low reduced volumes (i.e. Σ̄(v̄ < v̄∗) < 0) and over-
inflation at higher reduced volumes (i.e. Σ̄(v̄ > v̄∗) > 0)
. As the elastic energy is minimal at v̄∗ for fixed Φ, these
states correspond to vanishing tension. In the remainder
of this article, we refer to the conditions v̄∗(Φ) as zero-
tension states, which notably belong only to the oblate
family.

C. Phase diagram of axisymmetric ground state
shapes

In Fig. 7 we present the axisymmetric ground state
shapes as a function of reduced volume and planar frac-
tion. As shown in Figs. 4 and 5, relative to the ho-
mogeneous case, incorporating a planar region increases
the elastic energies of both prolate and oblate solution
branches. However, Ēb increases more for given Φ for
prolate shapes since the inclusion occupies the region of
otherwise high curvature that has to be redistributed
to the opposite (fluid) pole of the vesicle. Hence, for
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FIG. 5. Axisymmetric oblate shape equilibria. (A) Plot of reduced energy vs. reduced volume of prolate solutions for a
sequence of increasing planar fractions: Φ = 0, 0.03, 0.06, 0.09, 0.12, 0.15. The dashed vertical lines indicate the location of
the corresponding isoperimetric limiting inflation values v̄max(Φ). (B) Shows the evolution of oblate equilibria for fixed planar
fraction Φ = 0.1, with fluid surfaces colored according to the scaled mean curvature (HR) and cross-sections highlighting the
detailed shapes. (C) Show sequence of the maximal reduced volume oblate equilibria for a sequence of Φ values, illustrated in
the same style as (B).

FIG. 6. Plots of reduced tension versus reduced volume for
oblate (blue curves) and prolate (red/orange curves) solution
branches of axisymmetric solutions for a sequence of planar
fractions indicated in the legend.

small planar fraction 0 < Φ < Φc ≃ 0.023, the vesicle
shape exhibits a “re-entrant” dependence on increasing v̄
as shown in Fig. 7B, with oblate shapes stable in the low
and high inflation regions separated by an intermediate
window of stable prolate shapes. As Φ increases, the win-
dow of intermediate stable prolate shapes shrinks until it
completely disappears at a critical point Φc ≃ 0.023 and
v̄c ≃ 0.76. Thus, even an inclusion of a relatively small
size has a surprisingly strong effect on the shape and en-
ergetics of axisymmetric states. Outside of this region,
oblate shapes are generically favored. In particular, this

implies that for fixed Φ minimal energy states are always
oblate and fall along the zero-tension line (shown in green
in Fig. 7A).

In Fig. 7C, we plot the analogous 1D cut for fixed v̄
and increasing Φ, which shows that Ēb is an increasing
function of Φ, marked by a transition between a steep
energy dependence for prolates to a weaker, but still in-
creasing, dependence for oblates. We note that a similar
prolate to oblate transition was reported for a model 2-
phase vesicles [10], with increasing contrast in bending
stiffness, presumably driven by the cost of locating the
stiffer/flatter domain at the high-curvature pole.

Hence, while it was shown for homogeneous vesicles
that oblate solutions occupy a relatively narrow regime
of the parameter space for low reduced volume [3], a
primary conclusion of the axisymmetric shape phase di-
agram in Fig. 7A, is that the incorporation of planar
inclusions, even at low area fractions, expands the sta-
bility of oblate over prolate shapes over much of the 2-
dimensional parameter space. This is notably the case
for the higher reduced volume regime and the minimal-
energy shapes v̄∗(Φ). Fig. 8 analyzes the energetics and
shape of these minimal-energy shapes as a function of Φ,
and also compares axisymmetric solutions to the shape
equation to results of the Surface Evolver simulations
(shown as blue circles). While axisymmetry is not im-
posed for Surface Evolver simulations, we show below (in
Sec. IV) that solutions retain axisymmetry in the regimes
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FIG. 7. (A) Contour plot of the reduced energy of the minimal energy axisymmetric shapes as a function or reduced volume v̄
and planar fraction Φ. Regions are highlighted according to symmetry of lowest energy shape: prolate for low Φ and intermediate
v̄; and oblate elsewhere. Colored regions correspond to regions where axisymmetric solutions are identified. In white regions,
near the isoperimetric limit, numerical solutions could not be obtained. (B) Plot of re-entrant oblate-prolate-oblate shape
along the vertical sequence (increasing reduced volume) as indicated in (A). (C) Plot of prolate-oblate transition at fixed-v̄ and
increasing Φ sequence as indicated in (A).

occupied by the zero-tension states shown in Fig. 8A,
which track but fall somewhat below the isoperimetric
limit shapes in the Φ-v̄ plane. Fig. 8B shows the re-
duced energy of optimal inflation (axisymmetric) shapes
as a function of the planar fraction. Notably, bending
energy increases monotonically with Φ from the homoge-
neous case of Ēb(Φ = 0) = 1, growing with linear depen-
dence in small-Φ limit. This linear slope and super-linear
behavior at larger Φ are consistent with the previously
studied critical adhesion transition behavior for homo-
geneous vesicles on planar substrates (at zero pressure),
in which the size of adhered contact zone grows continu-
ously from zero above a critical adhesion strength [24, 25].
In Fig. 8C, we plot the width to height aspect ratio
of zero-tension vesicles as a function of planar fraction,
which shows that even fairly small inclusions of a few %
area fraction strongly warp the ground state shape away
from the spherically symmetric homogeneous case. No-
tably, for homogeneous fluid vesicles such highly oblate
anisotropies may typically require non-trivial experimen-
tal conditions due to the high degree of pressure necessary
for those states. As the incorporation of planar inclu-
sion shifts the symmetry of the zero-tension state con-
siderably, these otherwise “underinflated” highly oblate
shapes indeed become stable and long-lived configura-
tions in composite vesicles.

IV. AXISYMMETRIC AND
NON-AXISYMMETRIC GROUND STATES

Fig. 9 shows the results from Surface Evolver simula-
tions of ground states of the fluid-planar inclusion com-
posite vesicles in the same Φ-v̄ plane illustrated in ax-
isymmetric shape phase diagram in Fig. 7A. Here, the

simulated parameters are indicated as filled circles col-
ored according to the reduced energy, and examples of
resulting ground state shapes are shown for indicated
points on the right.

The absence of imposed axisymmetry reveals that
ground state shapes break axisymmetry over some, but
not all regions of the parameter space. Foremost, we
note that the location of planar inclusion breaks axisym-
metry, particularly at low Φ values where the gross shape
remains largely prolate. As discussed above, constraining
the planar inclusion to the high-curvature pole of prolate
shapes is energetically costly. Instead, we find that pro-
late ground states displace the inclusion off-axis to the
lower-curvature “sides” of the vesicle, therefore requiring
less disruption of the otherwise elastically preferred pro-
late shape. Notably, this off-axis shape allows for the ex-
pansion of the stable window of prolate shapes to larger
Φ values, relative to the modest range possible for ax-
isymmetric shapes. However, as the size of the planar
inclusion grows, we observe a tendency to flatten the side
of the vesicle it occupies, which in turn gives rise to triax-
ial ground states in which the size distribution along all
three principal axes is unequal (according to the criteria
defined in Sec. II B) and the inclusion plane sits normal
to the thinnest direction of the vesicle. As the size of the
inclusion grows further, the dimensions of vesicle in the
two directions perpendicular to the inclusion plane be-
come more and more similar, eventually becoming equal
as the ground state transitions to an oblate shape where
the inclusion is centered at the flat, polar region.

Taken together, these observations show that break-
ing of axisymmetry alters the shape phase diagram at
low Φ by displacement of the inclusion to locally flatter
regions of the global shape, leading to an expansion of
the non-oblate shape region to large planar fractions, up
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FIG. 8. (A) optimal reduced volume v̄∗ as a function of area
fraction Φ. (B) ground state energy at the optimal reduced
volume. The inset is log-scaled plot of ∆Ēb(v̄

∗) = Ēb(v̄
∗)− 1

as a function of Φ. ∆Ēb(v̄
∗) ≈ Φ for small Φ.

to about Φ ≈ 0.07–0.08. However, we find that ground
states retain axisymmetric oblate shapes in regimes of
sufficiently high inflation and planar fractions. This is
notably the case at and near the zero-tension regions an-
alyzed in Fig. 8. We take advantage of the emergent
axisymmetry of oblate ground states in this high infla-
tion regime to analyze the shape space intermediate to
the zero-tension states and the isoperimetric limit shapes
in the following section.

V. CURVATURE CONCENTRATION IN
NEARLY ISOPERIMETRIC REGIME

Given the emergent axisymmetric oblate shapes for
high reduced volume demonstrated in the previous sec-
tion, here we focus on the structure and energetics of
composite shapes in the high-tension regime, as vesicles
approach the isoperimetric limit volume v̄ → v̄max(Φ).
Our analysis is based on characteristic features of oblate
shapes in this regime, shown in Fig. 10 for a particular
case of Φ = 0.15.

Fig. 10A first compares the reduced energy for v̄ >
v̄∗ for continuum solutions to the axisymmetric shape
equations (solid curve) and Surface Evolver simulations
(filled circles). These show strong quantitative agree-
ment, notwithstanding the fact that continuum solutions
cannot be extended beyond v̄ ≃ 0.953 which falls some-
what below the isoperimetric limit of v̄max ≃ 0.962. No-
tably, Surface Evolver simulations are found in this in-
termediate regime and confirm the tendency of bending
energy to grow as the isoperimetric limit is approached.

Fig. 10B shows the structural pattern in this high-
inflation regime by plotting the reduced mean curvature
H̄ = HR as a function of arc position along the fluid con-
tour. These generically show that curvature is maximal
at the planar inclusion edge s = smax and then rapidly
falls much lower to a nearly constant value on the bottom
pole, i.e. H(s → 0) = 1/Rsphere ≃ 1/R, consistent with
an approximately spherical shape away from the inclu-
sion edge. Defining the length scale λ to characterize the
size of the high bending region, it is notable that λ de-
creases while edge curvature H(smax) grows as v̄ → v̄max,
indicating the curvature and bending energy become in-
creasingly concentrated in this regime.

The apparent separation of scales between the high-
curvature “hinge” at the planar edge and the nearly spher-
ical “bulb” that describes the bulk shape of the fluid phase
suggest the following asymptotic analysis of shape equi-
librium in the nearly isoperimetric limit. First, consider-
ation of the shape equation, eq. (6), in the nearly uniform
spherical bulb implies the standard equilibrium condi-
tion, P − 2ΣH(s = 0) ≈ 0, effectively the Young-Laplace
condition

P̄ ≈ 2Σ̄

R
. (17)

Near the edge, the shape of the membrane is strongly
bent away from the spherical shape and exhibits a much
higher principal curvature κhinge = ψ′(smax) ≫ 1/R.
Notably, for sufficiently large inclusions (i.e. Φ ≲ 1)
the curvature in the hinge direction is also much larger
than the other principle (hoop) direction, so we expect
H(smax) ≈ κhinge/2 and H2(smax) ≫ KG(smax). The
membrane in the hinge region must turn through a fi-
nite angle ∆ψ to match the bulb to the planar inclusion,
which can be roughly estimated as ∆ψ ≈ κhingeλ. We
argue that this turning angle approaches a finite value
corresponding to the angle discontinuity in the isoperi-
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FIG. 9. Phase diagram of shape equilibria and example configurations. The shape equilibria separate into prolate, triaxial,
and oblate branches. The domain position is off-centered on the left side of the dashed line crossing the left top corner and the
middle of the bottom axis, and centered on the right side.

FIG. 10. Shape behavior at v̄ ≲ v̄max. (A) bending energy for Φ = 0.15. (B) curvature distribution along the arclength. The
inset is for the full range of arclength (C) cross-section of v̄ = 0.952 overlayed on a circle. Rsphere is the radius of overlaying
circle, and λ is the hinge length. R =

√
A/4π is the size of the vesicle.

metric limit shape, i.e. ∆ψ(v̄ → v̄max) → θiso, which
gives as an asymptotic relationship

κhinge ≈ θiso/λ, (for v̄ → v̄max) (18)

Applying this result to the shape equation, eq. (6), in
the hinge region, we expect that P̄ ≪ 2Σ̄H(smax) since
H(smax) ≈ κhinge ≫ H(0) ≃ 1/R, suggesting that me-
chanically equilibrium in the hinge results from a balance
of tension and bending terms, that is

Σ̄ ≈ H2(smax)−
∇2

⊥H(smax)

H(smax)
∼ 1/λ2, (for v̄ → v̄max)

(19)
where we estimated ∇2

⊥H(smax) ≈ κhinge/λ
2 and used

the scaling κhinge ∼ 1/λ. Hence, we find that the
hinge size is effectively a bendocapillary length scale
λ ∼

√
1/Σ[37] that becomes arbitrarily short-ranged as

tension diverges in the v̄ → v̄max limit. In this regime,

elastic energy is expected to be dominated by the bend-
ing concentration in the hinge, from which we estimate
the reduced energy,

Ēb ≈ 1

2
κ2hinge Dλ ∼ f(Φ)R

λ
, (for v̄ → v̄max) (20)

where f(Φ) is an O(1) dimensionless function of the pla-
nar fraction. Because elastic energy is related to tension
via thermodynamic derivative with respect to reduced
volume, eq. (12), we have from the scaling dependence
Σ̄ ∼ λ−2 an asymptotic relation for the dependence of
the hinge size on reduced volume

dλ

dv̄
∼ −R

v̄
, (for v̄ → v̄max) (21)

where we neglect, for this purpose, the Φ-dependence of
the prefactor. Since we expect λ → 0 as v̄ → v̄max, in
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FIG. 11. For various Φ, (A) log-log scaled maximum mean curvature Hmax as a function of ∆v̄/v̄ (B) log-log scaled hinge
length λ as a function of ∆v̄/v̄ (C) reduced bending energy Ēb as a function of v̄. (D) log-log scaled reduced bending energy
Ēb as a function of ∆v̄/v̄. Red boxes (□) are the tension-free states.

the isoperimetric limit, we expect the hinge size to obey

λ/R ∼ ln(v̄max/v̄) ∼
∆v̄

v̄
, (for v̄ → v̄max) (22)

where ∆v̄ = v̄max − v̄. Correspondingly, the expected
vanishing of the hinge size suggests that hinge curvature
and reduced energy diverge in the isoperimetric limit as
κhinge ∼ Eb ∼ 1/∆v̄.

In Fig. 11 we analyze the asymptotic approach to the
isoperimetric limit inflation, based on Surface Evolver
simulations, which are able to model shape relaxation
further into this regime than was possible for the analyt-
ical axisymmetric solutions. Fig. 11A analyzes the mean
curvature at the planar edge, H(smax), and size of the
hinge zone, λ, as a function of ∆v̄ on a log-log scale for
a series of planar fractions. We derive a measure of the
hinge size from the slope of mean curvature at the pla-
nar edge, using the definition dH

ds

∣∣∣
smax

/H(smax) ≡ λ−1,

as shown in Fig. 11B, extracted from fit profiles of the
radial profile from 3D relaxed mesh configurations. We
note H(smax) and λ exhibit the respective tendencies to
diverge and vanish as the isoperimetric limit of ∆v̄ → 0
is approached. However, the finite discreteness of the
Surface Evolver mesh calculations limits the ability to
strictly resolve the shape of the hinge below some value
of ∆v̄. Nevertheless, we observe reasonable agreement
with the respective power law growth and decay of hinge
curvature and size predicted by the asymptotic argu-

ment above, particularly for the larger Φ and interme-
diate regime of ∆v̄

In Figs. 11C-D we turn to the energetics of fluid-planar
inclusion composites in the high inflation regime. In gen-
eral, for variable Φ discrete vesicle simulations agree well
with axisymmetric solutions in the regimes where the lat-
ter can be resolved. Fig. 11D tests the prediction for the
power-law divergence of bending energy as ∆v̄ → 0. We
note an apparent reciprocal power law regime for each
value of Φ at intermediate values of ∆v̄, but again a true
divergence of the bending energy is cut off by the finite
energy for crease formation in the triangular mesh ap-
proximation to the Helfrich model, eq. (14). Also, we find
that the slope of dependence in the log-log plot is some-
what below the expected power-law of Ēb ∼ (∆v̄)−1,
particularly for lower Φ. We note that the slope in this
intermediate regime tends somewhat towards −1 as Φ in-
creases, suggesting perhaps that the approximation that
κhinge is much larger than the hoop curvature may limit
the validity of analysis for insufficiently large Φ values.

VI. DISCUSSION AND CONCLUSION

We have explored how rigid planar inclusions reshape
the ground state symmetries and energetics of vesicles.
In particular, we find that circular inclusions strongly
shift the balance of stability towards oblate over prolate
shapes, an effect that is driven by the cost of redistribut-
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FIG. 12. Fluorescent micrographs of three fluid-solid vesicles, each shown from different views and compared to axisymmetric
equilibria of fluid-planar inclusion model. Bright regions are fluorescently labeled fluid phase (DOPC rich) while dark regions
are compact 2D solid domains (DPPC rich). Vesicle in (A) is formed from 20/80 (DPPC/DOPC) lipid composition and vesicles
in (B) and (C) are formed from 30/70 compositions. Estimated solid fractions from the images are consistent with known level-
rule compositions of DPPC/DOPC mixtures cooled to room temperature [38].

ing the “excess” Gaussian curvature expelled from the in-
clusion to the fluid and which therefore increases with Φ.
While we find that this same effect drives ground states
to break axisymmetry for low Φ and sufficiently low in-
flation shapes, ground states retain axisymmetric, oblate
shapes for in the high-inflation regime, and for planar
fractions larger than about 10% of the vesicle area. No-
tably, this results in shifting conditions for zero-tension
(i.e. minimal bending energy) considerably downward in
reduced volume with increasing Φ.

One direct way to assess the relevance of this result is
comparison to the case of fluid-solid composite vesicles
possessing a single large and relatively compact 2D solid
domain. In Fig. 12 we show some example vesicles pre-
pared from mixed DPPC and DOPC lipids prepared via
a combination of electroformation and controlled heat-
ing and recooling, as is described elsewhere[16, 39] (see
Appendix C for details specific to this results). Fig. 12A-
C show three different example vesicles, extracted from
videos allowing for perspectives on different orientations
and focal sections. Notably, the fluorescent dye is present
in the fluid domain, and the single 2D solid domain ap-
pears dark. Comparison to oblate shape equilibria for ax-
isymmetric fluid-planar inclusions shows apparently good
agreement for the 3D shapes and provides a means to esti-
mate the relevant values of Φ and v̄. It is notable the val-
ues of v̄, particularly for Fig. 12A-B, are quite low, with
the lowest value showing obvious and pronounced inward
curvature opposite to the solid domain. Such highly un-
derinflated, quasi-discoidal, shapes are otherwise difficult
to stabilize in homogeneous vesicles, at least without sig-
nificant inner/outer asymmetry, and the fact that they
are long-lived in fluid-solid composites is suggestive of the
importance of the significant shifting of the zero-tension
state downward in reduced volume for Φ ≈ 0.1.

Based on the assumption of planarity for the inclu-
sion, in Sec. V we analyzed the build up of tension in

oblate shapes for v̄ < v̄∗(Φ) and show that energetics de-
rive from a concentration of bending energy at the hinge
whose size becomes decreasingly narrow in the asymp-
totic limit v̄ → v̄max as the isoperimetric limit volume
is approached. We note that the effect of increasing in-
flation on the hinge region at the boundary of solid do-
mains has previously been considered in fluid-solid com-
posites possessing multiple solid domains [40]. In this
case, it was argued that large bending energies at the
edges of solids favored at least partial overlaps of hinges,
in effect a “depletion-like” mechanism that gives rise to
inter-domain attraction, with the spacing controlled to
the hinge size for sufficiently inflated vesicles. In ref. [40]
a 2D vesicle model was used to study inter-domain en-
ergetics for pair-wise domain interactions. In this con-
text, we expect that the asymptotic understanding of
scaling dependence of hinge structure in nearly isoperi-
metric vesicles may be valuable for extending models of
multidomain interactions to 3D vesicles beyond the two-
domain case.

The overall good correspondence between strongly
oblate shapes and experimentally observed fluid-solid
vesicles and the ground shapes of the planar inclusion
model suggests the basic shape frustration by the com-
pact 2D solid domain is well approximated by a strictly
rigid plane, at least in the underinflating regime shown
in Fig. 12. It is important to note that in this system,
the solid domain is not directly visible, and moreover,
while it is reasonable to expect solid elasticity to resist
Gaussian curvature (at least in the absence of topolog-
ical defects in the solid) thin 2D solids are still highly
flexible without changes in Gaussian curvature, i.e. iso-
metric deformations. More generally, it can be argued
that for sufficiently large values of R/t solid domains
should be fairly free to adopt zero Gaussian curvature
shapes with non-zero mean curvature, known as devel-
opable surfaces [18]. This class of shapes was shown to be
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relevant to fluid-solid vesicles in which the solid possesses
highly-elaborate, non-convex flower-like shapes[38]. Sur-
face Evolver simulations showed that for sufficiently high
inflation, when the vesicles are subject to large positive
tensions, the outer periphery of solid domains tends to
bend cylindrically before conforming to the gross spher-
ical shape of the fluid vesicle. Notably, the geometric
rules for developable folding of non-zero Gaussian cur-
vature shapes are fairly restrictive[41], requiring straight
foldlines (known as generators) that extend through the
entire domain and without crossing. Even for circular
domains, therefore, it can be expected that optimal de-
formations consist of quasi-polygonal fold patterns cir-
cumscribed by the boundary of the solid domain itself.
This suggests an entirely distinct, and currently unex-
plored, mechanism for breaking axisymmetry in ground
state shapes of fluid-solid composite vesicles whose opti-
mal patterns will be controlled by both solid area fraction
and vesicle inflation.
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Appendix A: Axisymmetric shape equations

The axisymmetric expression of the bending energy
reads[3]

Eb = 2π

∫
ds

B

2
X

(
ψ′ +

sinψ

X

)2

, (A1)

and the elastic free energy and shape equation become

F = 2πB

∫
ds

[1
2
X

(
ψ′ +

sinψ

X

)2

+ Σ̄X

− P̄

2
X2 sinψ + γ(X ′ − cosψ)

]
(A2)

and

ψ′′ = −ψ
′

X
cosψ +

cosψ sinψ

X2
+
γ

X
sinψ − P̄X

2
cosψ

γ′ =
ψ′2

2
− sin2 ψ

2X2
− P̄X sinψ + Σ̄

X ′ = cosψ

(A3)

respectively, where prime(′) denotes a derivative with re-
spect to s, P̄ ≡ P/B and Σ̄ ≡ Σ/B are rescaled Lagrange

multipliers, and γ is another Lagrange multiplier intro-
duced to impose the geometric relations amongX,Z, and
ψ;

X ′ = cosψ

Z ′ = sinψ
(A4)

The boundary conditions are as follows

X(0) = 0, ψ(0) = 0

X(smax) =
D

2
, ψ(smax) = π

(A5)

where D is the diameter of the circular inclusion. The
conditions on ψ are to prevent diverging bending energy
along the boundary and at the bottom. At the maxi-
mum inflation v̄max, the boundary angle doesn’t satisfy
eq. (A5), i.e., ψ(smax) = π − θiso ̸= π and therefore the
bending energy diverges.

We numerically evaluated eq. (A3) with the boundary
conditions eq. (A5) changing Φ and v̄ to find the equilib-
rium shapes and their elastic energies.

Appendix B: Surface Evolver minimization

The computations and simulations were performed in
the computational software SE. The mesh was made with
≈ 44, 000 vertices, and the planar inclusion was im-
posed by spatially freezing the vertex positions. The
bending energy was computed by the built-in function
“star_perp_sq_mean_curvature”, and the fluid mem-
brane configuration was optimized by using gradient de-
scent and Hessian method until it got fully equilibrated
for given sets of physical constraints; Φ and v̄. Some
auxiliary commands such as vertex averaging and jiggle
were done as needed[33, 34]. The detailed protocol is as
follows

1) Prepare a spherical mesh with unit volume (in SE
units) centered at the origin. One can start from
“cube.fe" in the Surface Evolver program direc-
tory [34] and minimize the area at constant volume,
using steepest decent (“g") and “hessian_seek",
while sequentially refining the mesh (“r") and ver-
tex averaging (“g"), until target mesh resolution
is reached and energy is fully relaxed to spherical
shape. Meshes used in these simulations these re-
quired 6 iterations of refinement.

2) Next, the isoperimetric perimetric intial state is
prepared by “flattening” a portion of that mesh
above a target height h (relative to centroid of the
sphere) down to a plane at that constant verti-
cal position. For a given target value of planar
fraction Φtarget this corresponds to a target value,
h(Φtarget)/R0 = (1− 3Φtarget)/(1−Φtarget), where
R0 is the initial spherical radius. For each vertex
coordinate whose vertical position zα > h(Φtarget),
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FIG. 13. Schematic of local mesh geometry used in discrete
curvature calculations.

its vertical position is reset to zα = h(Φtarget) us-
ing the “set” command. Due to discreteness, the
edge of this projected region does not conform to a
circle. To improve the resolution at the boundary,
vertices in this planar region close to the circular
edge, are displaced to exactly a radial distance D/2
from the pole. This is done by defining a the con-
straint that x2α + y2α = (D/2)2 for those vertices
with zα = h(Φtarget) and x2α+ y2α− (D/2)2 < 0.005
(i.e. within a narrow distance from the edge).

3) We identify the planar inclusion and the fluid mem-
brane, by setting the “color" attribute of facets in
the planar inclusion (e.g. to “green”), while remain-
ing facets in the are set to a different color (e.g.
to “white”), in the Surface Evolver mesh file. In
practice, a facet is in the planar region if all three
vertices satisfy zα = h(Φtarget). Using this color at-
tribute, quantities are defined to measure the areas
of solid and fluid portions from the facets belong-
ing to these color categories. For the planar faces
vertices are set to “fixed”.

4) Set the target fluid area and total volume to match
Φtarget and v̄target.

5) Relax the fluid bending energy using 100 “conju-
gate_grad” and “hessian_normal” relaxation steap
followed by “hessian_seek" until step size falls be-
low threshold (10−9), followed by “saddle” check
operation. This is repeated three times, followed
by relaxation without “conjugate_grad”.

The bending energy of SE models is given in eq. (14)
where

Hα =
1

2

Fα ·Nα

Nα ·Nα
(B1)

is approximated mean curvature at vertex v̄α. Here

Fα =
∑
β

∇vα
Aα,β

=
∑
β

1

4Aα,β

[
− ℓβ,1|ℓβ,2|2 − |ℓβ,1|2ℓβ,2

+ (ℓβ,1 · ℓβ,e)(ℓβ,1 + ℓβ,2)
]

(B2)

is the area gradient,

Nα =
∑
β

1

3
Aα,βNα,β (B3)

is the average normal, and

∆Aα =
∑
β

Aα,β (B4)

is effective area at vertex vα, where Aα,β and Nα,β are
the area and unit normal at the adjacent facets fβ [35, 36]
[See Figure 13].

Appendix C: Formation and imaging solid-fluid
states of DOPC:DPPC vesicles

Here we summarize the methods used to generate and
image fluid-solid composite vesicles, each containing a
single, compact 2D solid domain within its otherwise fluid
membrane. Methods to produce the giant unilamellar
vesicles are previously described in detail [16, 38].

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine),
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine),
and fluorescent tracer lipids Rh-DOPE (1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-(lissamine rhodamine
B sulfonyl)) were purchased from Avanti Polar Lipids
(Alabaster, AL). Vesicles having a 30/70 (Fig. 1A
and Fig. 12B,C) and 20/80 (Fig. 12A) weight ratio
DPPC/DOPC plus 0.1 mol% Rh-DOPE were elec-
troformed on platinum wires. The 10 mM sucrose
electroforming solution was preheated and the elec-
troforming temperature was maintained in the range
55–70◦C to ensure vesicles were formed in the one
phase region of the phase diagram, all having the same
membrane composition. After electroformation, the
stock vesicle suspension was harvested and allowed to
cool to room temperature for later use, within 2-3 days.
Single solid domains were formed by dilution into a
closed chamber made from two coverslips and parafilm
spacers, reheating to 55◦C for 5 minutes, and imposing
controlled cooling at 0.3◦C /min from 45◦C to room
temperature.

Vesicles having solid domains were observed using a
Nikon Eclipse TE 300 inverted epifluorescence micro-
scope equipped with a 40× long working distance air
fluorescence objective. Images were recorded with a
pco.panda 4.2 sCMOS monochrome camera and analyzed
using Nikon NIS Elements imaging software.
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