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Colloids dispersed in nematic liquid crystals form topological composites in which colloid-associated
defects mediate interactions while adhering to fundamental topological constraints. Better realising
the promise of such materials requires numerical methods that model nematic inclusions in dynamic
and complex scenarios. We employ a mesoscale approach for simulating colloids as mobile surfaces
embedded in a fluctuating nematohydrodynamic medium to study the kinetics of colloidal entangle-
ment. In addition to reproducing far-field interactions, topological properties of disclination loops are
resolved to reveal their metastable states and topological transitions during relaxation towards ground
state. The intrinsic hydrodynamic fluctuations distinguish formerly unexplored far-from-equilibrium
disclination states, including configurations with localised positive winding profiles. The adaptabil-
ity and precision of this numerical approach offers promising avenues for studying the dynamics of
colloids and topological defects in designed and out-of-equilibrium situations.

I. Introduction

Dispersions of colloidal particles in liquid crystals [1] are
of interest to physicists because they provide a pathway
to realise soft materials with interesting target properties,
such as photonic crystals [2], cloaks and metamaterials [3],
or self-quenched glasses [4]. This versatility is due to the
fact that topology and elastic distortions in the liquid crys-
talline host lead to long-range interactions which can be
tuned by varying particle size, shape and liquid crystalline
properties, even in a simple nematic. When combined with
a suitable kinetic protocol, these interactions can be har-
nessed to self-assemble different types of materials [5].

To understand the physical mechanisms underlying the
self-assembly of different structures, a useful and popular
starting point is that of two colloidal particles in a nematic,
with normal anchoring at the colloidal surface. On the one
hand, analysing this geometry leads to an estimate of the
effective pair potential between particles, which includes
elasticity and defect-mediated interactions, and which is
important for self-assembly in many-particle systems [6–
8]. On the other hand, the problem of a colloidal dimer
in a liquid crystal is interesting from a fundamental point
of view, due to the central role played by topology [9]. In-
deed, the liquid crystalline pattern needs to be topologi-
cally trivial overall [6, 7], but this can be realised in a num-
ber of possible ways. For instance, each colloid can be sur-
rounded by a topologically charged Saturn ring [10, 11],
as the total topological charge in the system only needs to
equal 0 modulo 2 in three dimensions [6, 12]. However,
another topologically allowed configuration is one where
a single writhed disclination loop wraps around both col-
loids. Configurations such as these are referred to as en-
tangled disclinations, and the writhe in the loop cancels the
topological charge which would otherwise be present [7].
The relation between writhe and topological charge can be
understood by introducing the self-linking number [6, 13],
which describes the topology of a disclination loop, in the
case where the local director field profile (in the plane per-
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pendicular to the loop tangent) is topologically equivalent
to that of a planar defect with winding number −1/2, or a
triradius. In such cases, the loop possesses the same topol-
ogy as a ribbon [7]. In this way, colloids dispersed in liq-
uid crystals can act as probes for fundamental questions of
topology.

Colloidal dispersions in nematics have mainly been stud-
ied with continuum models, either via free energy min-
imisation techniques [4, 7], or by means of hybrid lat-
tice Boltzmann simulations [14]. In this work, we em-
ploy a different methodology to study a single colloid
or a pair of colloids in a nematic host, based on multi-
particle collision dynamics (MPCD). Though it was tra-
ditionally applied to moderate-Péclet number situations
within isotropic fluids, the MPCD algorithm has recently
been extended to simulate fluctuating, linear nematohy-
drodynamics [15, 16] or to be hybridized with continuum
descriptions of the nematic [17–20]. Importantly, this ne-
matic algorithm (N-MPCD) captures the competing influ-
ences of thermal fluctuations, elastic interactions, and hy-
drodynamics, and hence can be used to study the topo-
logical evolution of defect structures over time. The nat-
ural inclusion of noise makes it possible to consider the
case of small particles, where the free energy profile of
the system is rid of large barriers, which otherwise dom-
inate the colloidal kinetics [3]. The fact that N-MPCD pro-
vides a particle-based description of the nematic fluid also
simplifies the treatment of boundary conditions, and hence
makes it easier to extend this algorithm to complex surface
geometries, such as rodlike particles [21] or wavy chan-
nels [22]. Additionally, MPCD can be readily extended to
study active nematics [23, 24] and systems with many col-
loids, thereby providing a powerful package to study the
hydrodynamics of topological composite materials [25].

Here, the N-MPCD algorithm is validated by computing
the elastic force between a colloid and a wall, or between
two colloids. These follow scaling laws in agreement with
previous theoretical predictions and numerical estimates.
The topological patterns are studied, both over time and
in steady state with a single colloidal particle or a colloidal
dimer. The steady-state patterns broadly confirm the set of
structures predicted in the literature by elastic energy min-
imisation [26]. Thus, a pair of Boojums for colloids with
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tangential anchoring are found. With normal anchoring, a
Saturn ring and a dipolar halo are found. A colloidal dimer
with normal anchoring results in either two topologically
charged loops or an uncharged but writhed loop with non-
trivial self-linking numbers. However, thermal fluctuations
and boundary influences can lead to tilted and non-ideal
versions of these entangled structures. Although disclina-
tion loops are always associated with local director field
patterns with −1/2 profiles in steady state, a wider variety
of states are observed en route to equilibrium. These are
found to differ substantially in their geometric features. Ex-
amples of transient patterns include longer loops with twist
and even +1/2 local director profiles, as well as skewed
rings.

II. Methods

Multi-Particle Collision Dynamics is a coarse-grained
mesoscopic particle-based hydrodynamic solver that is ver-
satile for simulating a wide variety of Newtonian [27],
complex [28] and active fluids [23, 24]. It has found
particular utility simulating suspensions of polymers [29],
colloids [30, 31] and bacteria [32, 33], because its in-
trinsic thermal noise makes it ideal for moderate Péclet
numbers. Since N-MPCD can support elastic and hydro-
dynamic interactions, combined with thermal diffusivity,
this offers a promising avenue for studying topological
microfluidics [34, 35], design principles for self assem-
bly kinetics, defect interactions with active fields [23, 24],
and microfluidic transport through harnessing energy land-
scapes [22, 36].

A. Bulk nematohydrodynamic evolution

Nematic Multi-Particle Collision Dynamics discretises
continuous hydrodynamic fields for mass, momentum and
orientational order into N point particles, indexed by i,
with mass mi, position xi, velocity vi and orientation ui in d
dimensions. N-MPCD is a two-step algorithm, in which par-
ticles evolve through (i) streaming and (ii) collision steps,
dictating how the particles move and interact with their
local environment [27].

The streaming step controls the spatial evolution of each
particle position, defined as ballistic streaming over the
time interval δ t

xi(t +δ t) = xi(t)+vi(t)δ t. (1)

The collision step represents inter-particle interactions that
have been coarse-grained into a lattice of cells, indexed by
c, each containing Nc particles. Particles interact only with
their local cell environment via collision operators, which
avoid the demanding computational cost of explicitly cal-
culating all pair-wise interactions, and are shown to re-
produce hydrodynamic fields over sufficiently long length-
and timescales. Hydrodynamic-scale fields are extracted
through cell-based averaging, φc(t) = ⟨φi⟩c = ∑

Nc
i φi(t)/Nc.

The evolution equations for vi and ui have contributions
from cell-based momentum-conserving collision operators.
First considering the translational momentum collision

vi(t +δ t) = vc(t)+ΞΞΞ
vel
i,c (t). (2)

The collision operator ΞΞΞ
vel
i,c (t) = ΞΞΞ

vel,iso
i,c + ΞΞΞ

vel,nem
i,c has two

contributions: an isotropic part ΞΞΞ
vel,iso
i,c , and a nematic back-

flow contribution ΞΞΞ
vel,nem
i,c , the latter of which will be dis-

cussed after the orientation contributions. The isotropic
collision uses the Andersen locally thermostatted collision
operator [37, 38]

ΞΞΞivel,iso
i,c = ξξξ i −ξξξ c +(I−1 ·δLvel)×x′i, (3)

where ξξξ i are randomly generated from a Gaussian distri-
bution with variance kBT/m, and ξξξ c = ⟨ξξξ i⟩c is a residual
term, designed to conserve the net linear momentum from
the noise. The third term is a correction to conserve an-
gular momentum, for particles located about the center of
mass x′i = xi − xc with a moment of inertia tensor I and
angular momentum Lvel about xc. Since the collision oper-
ator is applied to lattice-based cells, a random grid shift is
included to preserve Galilean invariance [39, 40].

A cell-based collision operation is also applied to orien-
tations

ui(t +δ t) = nc(t)+Ξ
ori
i,c (t). (4)

about the cell’s local director nc(t). Constructing a cell-
based nematic tensor order parameter, Q

c
= 1

d−1 ⟨duiui −
1⟩c, allows the local scalar order parameter Sc and director
nc to be found as the largest eigenvalue and corresponding
eigenvector. Treating the cell’s orientational order param-
eters as a mean field, the orientation collision Ξori

i,c stochas-
tically draws orientations from a local Maier-Saupe distri-
bution fori = f0 exp

(
USc(ui ·nc)

2/kBT
)
, centered about nc

with a normalisation constant f0 and a mean field interac-
tion constant U . The interaction constant is linearly pro-
portional to the one-constant approximation of Frank elas-
ticity K [15]. For large U , the particle orientations are deep
in the nematic phase, aligning close to the free energy min-
imum, with small thermal fluctuations.

Nematohydrodynamics requires coupling terms in
Eq. (2) and Eq. (4) to account for velocity gradients rotat-
ing orientations and orientational motion generating ne-
matic backflows. This can be cast in terms of an over-
damped bulk-fluid torque equation for each particle i

ΓΓΓ
col
i +ΓΓΓ

HI
i +ΓΓΓ

diss
i = 0. (5)

The torques from the orientational collision (ΓΓΓ
col) and hy-

drodynamic flows (ΓΓΓ
HI) can be written as ΓΓΓ

col
i + ΓΓΓ

HI
i =

γRui × (δucol
i /δ t + δuHI

i /δ t), where γR is a rotational friction
coefficient. From Eq. (4), the collisional contribution is
δucol

i /δ t =
(
nc(t)+Ξori

i,c (t)
)
/δ t. The hydrodynamic contribution ap-

plies Jeffery coupling between the orientation and veloc-
ity gradient, δuHI/δ t = X

[
viW +λ

(
ui ·E −uiuiui : E

)]
, where

X is a shear coupling coefficient that influences the re-
laxation time of alignment relative to δ t, λ is the flow
tumbling parameter, and E and W are the symmetric and
skew-symmetric components of the velocity gradient ten-
sor. The remaining contribution is the dissipative torque
ΓΓΓ

diss, which is converted into backflow in the velocity evo-
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lution equation through an angular momentum correction
Ξ

vel,nem
i,c =−I−1 ·δLori ×x′i, where δLori = ∑

Nc
i ΓΓΓ

diss
i δ t, which

goes into Eq. (2).

B. Boundary conditions

The bulk fluid domain is maintained by (i) defining sur-
face equations representing boundaries, and (ii) setting
rules on N-MPCD particles that violate the surface equa-
tion. Each boundary, with index b, has a surface equation
with an implicit form Sb(x) = 0, where x satisfy the set of
points on the surface. Particles violate a surface equation if

Sb(xi)≤ 0, (6)

corresponding to particles streaming inside. Particles are
ray-traced back to the surface boundary at position x∗i , at
time t∗ < δ t (found where particle path and Sb(xi) = 0 in-
tersect). Boundary rules are then applied, and the particle
resumes streaming for remaining time δ t − t∗.

Boundary rules operate on the particle’s generalised co-
ordinates, xi, vi and ui. For periodic boundary condi-
tions, xi → xi + Dνννbνννb where Dνννb is a scalar shift in the
surface normal direction νννb of boundary b. Operators
on the velocity are required for solid impermeable walls,
vi → Mνννbproj(vi;νννb) + Mtbproj(vi; tb), where Mνννb and Mtb
are scalar multipliers on the projection of vi in the sur-
face normal νννb and tangent tb directions. The surface
normal projections have the form proj(f;ννν) = (ννν · f)ννν and
surface tangent projections, proj(f; t) = f − (ννν · f)ννν . No-
slip boundary conditions require bounce-back multipliers
Mνννb = Mtb = −1. Additionally ghost particles are required
to ensure that vc extrapolates to zero in cells that are
intersected by boundaries [29, 41]. Anchoring condi-
tions operate on the particle’s orientation through ui →
Mνννbproj(ui;νννb)+Mtbproj(ui; tb), with the constraint that ui
maintains unit magnitude (ui ·ui = 1). Homeotropic (nor-
mal) anchoring is achieved with Mνννb = 1 and Mtb = 0, and
planar (tangential) anchoring with Mνννb = 0 and Mtb = 1.

Despite Mνννb and Mtb setting the orientation of any par-
ticles that violate Eq. (6), the anchoring is not infinitely
strong. This is because, of the Nc particles in any cell that
intersects Sb only some fraction N∗

c /Nc would have collided
with the surface. Although those N∗

c particles have their ori-
entation set, the collision operation (Eq. (4)) stochastically
exchanges orientations between all Nc particles, effectively
weakening the anchoring condition. To strengthen the an-
choring, the orientational boundary condition is applied to
all Nc particles within cells that are intersected by the sur-
face Sb (§ V A).

C. Mobile colloids

One way to incorporate colloids is to include them as
embedded molecular dynamics particles, with radial inter-
action potentials [21, 30]. In contrast, the present work
treats each colloid as a mobile surface that interacts with
the hydrodynamic fields via conserving the linear and an-
gular impulse generated by each of the incremental particle
transformations. The surface equation

Sb(x) = [x−qb(t)]
2 −R2 = 0, (7)

defines spherical colloids featuring a temporally-varying
centre coordinate qb(t) and constant radius R.

Analogous to the particle streaming Eq. (1), the colloid
coordinate translates assuming ballistic streaming qb(t +
δ t) = qb(t)+ vb(t)δ t, where vb(t) is the colloid’s centre of
mass velocity, which is sufficient under the viscously over-
damped assumption. Since spheres have inherent rota-
tional symmetry, Eq. (7) is invariant under colloid rotation
with angular velocity wb, defined relative to qb. Each col-
loidal vb(t) and wb(t) are determined by the incremental
sum over all N∗

b particles that violate Eq. (6) in the current
timestep

vb(t +δ t) = vb(t)+
N∗

b

∑
i

δvvel
b,i +

Nc

∑
i

δvori
b,i (8)

wb(t +δ t) = wb(t)+
N∗

b

∑
i

δwvel
b,i +

Nc

∑
i

δwori
b,i , (9)

where vel superscript corresponds to changes from the ve-
locity boundary conditions, and ori, from the orientation
rules. The orientation contributions sum over all Nc parti-
cles within cells that intersect a colloid boundary (§ V A).
The contributions from velocity rules, enter as an impulse
created by the change in momentum of the particle’s veloc-
ity Ji = mivi(t +δ t)−mivi(t) [31]. Balancing by an impulse
on the colloid Jb =−Ji leads to

δvvel
b,i = proj(Jb;νννb)/mb (10)

δwvel
b,i = I−1

b ·
(
rb,i ×proj(Jb; tb)

)
, (11)

where mb is the mass of the colloid, Ib is the moment of
inertia and rb,i is the vector from the centre of the colloid to
the collision point on the boundary. The contributions from
orientation rules are calculated from conserving a torque
balance due to anchoring

ΓΓΓ
anch
i +ΓΓΓ

anch
b,i = 0, (12)

where ΓΓΓ
anch
i corresponds to the particle reorientation to

prescribed anchoring condition and ΓΓΓ
anch
b,i is the torque felt

by the boundary to balance the particle reorientation event.
The anchoring torque to align either with homeotropic or
planar anchoring can be written in terms of the initial ori-
entation and surface normal

ΓΓΓ
anch
i =

γR

δ t
Mb(ui ·νννb)(ui ×νννb), (13)

where Mb =
(
Mνννb −Mtb

)(
M 2

νννb
+M 2

tb

)−1/2
= +1 for

homeotropic, and Mb = −1 for planar anchoring (§ V B).
The denominator ensures that the final particle orientation
has unit magnitude. By defining the angle cosαi = ui · νννb,
the torque magnitude can be written in terms of a single
variable ΓΓΓ

anch
i = γR

2δ t Mb sin2αi. The odd nature of ΓΓΓ
anch
i with

respect to αi, means that the torque balance can be satis-
fied by introducing a virtual particle, oriented initially at
−αi to νννb (with orientation unit vector ub,i). Over the time
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Figure 1. Steady-state defect configurations associated with a single colloid in N-MPCD. (a) Boojum defects. (b) Saturn ring. (c)
Hyperbolic hedgehog opened into a halo-like ring. (d) Dynamics of a near-colloid disclination loop relaxing into a Saturn ring. The
disclination rotation vector ΩΩΩ and tangent vector T are shown as red and navy blue arrows. Each frame is shown with the corresponding
simulation time t. In (a)-(d), each defect is visualised as an isosurface of s(x)= 0.9 (§ V F). The disclinations are coloured by cosβ =ΩΩΩ ·T.
Purple represents a −1/2 wedge profile, yellow a +1/2 wedge profile and green twist type.

δ t, the virtual particle reorients to align with νννb through
application of the torque −ΓΓΓ

anch
i . The initial orientation of

the virtual particle ub,i is related to the N-MPCD particle ui
by a mirror reflection about νννb.

Torque is converted to a force acting on the boundary via

Fanch
b,i =

ΓΓΓ
anch
b,i ×ub,i

ℓu/2
, (14)

neglecting the colinear terms (§ V C). In determining the
rotation effect, ℓu is required to represent the lengthscale of
the MPCD nematogens and control the rotational suscepti-
bility. The head-tail symmetry of the particle orientation
ub,i provides ambiguity on the sign of Fanch

b,i , which is cho-
sen to be oriented towards the boundary as Fanch

b,i · νννb < 0.
For spherical colloids, the force at the boundary can be
converted into linear and angular velocity contributions,
through projecting Fanch

b,i in the surface normal and tangen-
tial directions

δvori
b,i = proj(Fb,i;νννb)δ t/mb (15)

δwori
b,i = I−1

b ·
(
rb,i ×proj(Fb,i; tb)δ t

)
. (16)

D. Units and parameters

Values are given in MPCD units of cell size a = 1, particle
mass m = 1 and thermal energy kBT = 1. This results in

units of time τ = a
√

m/kBT = 1. Simulation time iterates
with time-step size δ t = 0.1. Simulations are performed in
two (d = 2) and three (d = 3) dimensions with system sizes
[Lx,Ly] and [Lx,Ly,Lz] respectively, aligned with a Carte-
sian basis ex,ey,ez. The average particle density per cell is
⟨Nc⟩= 20. The nematic mean field potential is set to U = 20,
corresponding to deep in the nematic phase [15]. Other ne-
matohydrodynamic parameters include the rotational fric-
tion γR = 0.01, shear susceptibility X = 0.5 and tumbling pa-
rameter set to be in the shear aligning regime with λ = 2.
Unless otherwise stated, colloids with radii R = 6 are used
in three-dimensions, and R= 10 in two-dimensions. The ef-
fective particle rod-length ℓu = 0.006, tunes the strength of
the interaction between nematic bulk elasticity and colloid
mobility. In all simulations, MPCD particles start with ran-
domly generated positions and velocities. While the bulk
fluid properties remain constant between simulations, the
boundary conditions vary between studies, in addition to
initial particle orientations. Additional system specific pa-
rameters are given in the Appendix.

III. Results

A. Defects around a single colloid

To examine the defect structures around isolated ne-
matic colloids, a single sphere is initialised within a thermal
quench (randomised orientations) in an Lx = Ly = Lz = 40
domain with periodic boundary conditions on all walls.
The simulations are run for a duration of TS = 1400, with
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Figure 2. Elastic interaction forces between quadrupolar colloids of radius R and a homeotropic anchored wall. (a) Two-dimensional
elastic repulsion force Fwall measured at equilibrium colloid-wall separation distances heq. Distances are scaled by the colloid radius
R. (b) Same as (a) but for three-dimensions. The black lines, shown for comparison with the expected scaling (Eq. (17)), represent
decaying power laws of -5 (2D) and -6 (3D). Errorbars represent the standard error between independent runs.

data recorded for t ≥ 400. After long times (t ∼ 600), the ne-
matic field approaches its equilibrium state, which includes
static defects that accompany the colloidal particle (Fig. 1a-
c). For the case of planar anchoring (Fig. 1a), the inability
for a tangential vector field to continuously coat a sphere
necessitates two surface defects at the colloidal antipodes,
known as Boojums [42, 43]. Their two opposite surface
defects give the colloid/Boojums complex a quadrupolar
structure. For spherical surfaces, these can either be hyper-
bolic point defects split in half by the mirror plane of the
colloid, or separated into handle-shaped semi-loops that
connect two +1/2 closely separated surface defects [43],
with the latter case being observed for simulations from a
quench (Fig. 1a).

Colloids with homeotropic anchoring supply the bulk
fluid with a hedgehog charge (point charge) of p = 1
(Fig. 1b-c). This nucleates one of two configurations, each
of which has an odd point charge to conserve topolog-
ical charge. The first configuration is a Saturn ring —
a closed −1/2 disclination loop surrounding the equato-
rial axis [10, 11] (Fig. 1b). The Saturn ring results in a
quadrupolar far-field character. The second configuration
is a hyperbolic hedgehog, forming a topological dipole with
the colloid [44], which in N-MPCD manifests as a dipo-
lar halo (Fig. 1c). Of the 20 independent simulations, 17
ended with a Saturn ring, and 3 with a dipolar halo. In ex-
periments, topological dipoles are the stable state when the
ratio of colloid radius to Kleman-de Gennes extrapolation
length R/ξ is large (see § V A), while Saturn rings are pre-
ferred in confinement and for smaller colloids with weaker
anchoring (larger extrapolation length) [1, 45]. Generally,
simulations predominantly reproduce Saturn rings [46, 47]
and this is shown to be true in N-MPCD as well. For
the three dimensional colloids considered here, R/ξ ≈ 40
(§ V A).

As a fluctuating nematohydrodynamic solver, N-MPCD
can also simulate the coarsening dynamics of the disclina-

tion loops (Fig. 1d). Soon after the quench, the nematic
field far from the colloid has ordered, but a single, large
loop remains, relaxing into a Saturn ring configuration.
The loop is free to sample disclination profiles outside of
purely trefoil-like −1/2. This is demonstrated by colouring
the disclinations with cosβ = ΩΩΩ · T where ΩΩΩ is the rota-
tion vector [48] and T is the tangent vector of the line.
Where cosβ = 1, ΩΩΩ is parallel to T and the disclination
line has a local +1/2 wedge profile. On the other hand,
where cosβ = −1, ΩΩΩ is antiparallel to T and the disclina-
tion locally has a −1/2 wedge profile. The director can also
rotate out of this plane passing through cosβ = 0, which
represent twist-type profiles. Visualising disclinations in
this way has been particularly insightful for interpreting
disclination behaviours during phase transitions [49] and
in three-dimensional active nematics [50–52]. The loop
in Fig. 1d is charged, requiring ΩΩΩ to make a full revolu-
tion. However, the rotation is not homogeneous and ΩΩΩ re-
mains largely uniform for large segments of the disclination
that are distant from the colloid. Conversely, the segments
of the disclination closest to the colloidal surface support
nearly the entire variation of ΩΩΩ. At later times (t ∼ 600),
the loop reduces in size and the anchoring constraint on the
colloid enforces ΩΩΩ to rotate into the expected anti-parallel
configuration ΩΩΩ ·T =−1, forming the Saturn ring.

B. Elastic interactions

Colloid-defect complexes with homeotropic anchoring
can have a quadrupolar (Saturn ring; Fig. 1b) or dipo-
lar (dipolar halo; Fig. 1c) nature [53]. These configu-
rations correspond directly to the form of far-field elas-
tic interactions between pairs of nematic colloids. N-
MPCD reproduces elastic forces that are long ranged, with
power laws dictated by the dominant multipole moment
(§ III B 1), as well as anisotropic, with attraction and re-
pulsion zones with angular variation between interacting
colloids (§ III B 2).
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field expectation for interacting quadrupoles (Eq. (18)).

1. Power-law forces

To quantify the power-law nature of nematic interac-
tions in N-MPCD, a colloid interacting with a wall with
strong homeotropic anchoring is considered. This setup
is preferred over a pair of mobile colloids because it re-
moves additional complexities arising from the relative ori-
entation of a pair of nematic colloids. In the proximity of
the wall, the colloid experiences a strong elastic repulsive
force, Fwall, that decays with distance h [54, 55]. This can
be represented as a quadrupole-quadrupole interaction be-
tween the colloid and its mirror image on the other side of
the wall [8, 54, 56, 57]

Fwall ∼ K
R2d

hd+3 νννwall, (17)

in d dimensions and νννwall is oriented normal to the
wall. For determining the repulsive elastic force be-
tween a homeotropic-anchored colloid and a homeotropic-
anchored wall, measurements are performed in both two
and three dimensions. A constant (gravitational-like) force
FG is applied to the colloid, pushing it towards the an-
chored wall. This acts as a probe of the strength of the
elastic force via the resulting equilibrium height heq that
results from the balance with elastic repulsion (simulation
details provided in § V D).

Elastic forces are largest at smaller colloid separations
from the wall, with magnitudes Fwall ≈ 10 for heq/R ≈ 1.5
in 2D (Fig. 2a) and Fwall ≈ 50 for heq/R≈ 1.6 in 3D (Fig. 2b).
At increasing separations, these forces rapidly decay. Com-
paring with predictions (Eq. (17); black slope), N-MPCD
elastic forces decay with the expected power laws. In
two-dimensions, Fwall ∼ h−5 holds well for all sampled

colloid radii. In three-dimensions, the repulsion matches
Fwall ∼ h−6 for R = 6, but experiences a smaller power law
for R = 4. This indicates that N-MPCD elastic interactions
are most accurately resolved for colloid radii R > 4. These
force measurements demonstrate that N-MPCD accurately
simulates long-range quadrupolar deformation in the bulk
nematic order and that the colloids dynamically respond to
elastic stresses on their surface.

2. Force anisotropy

While the interactions between quadrupolar colloid-
defect complexes and walls are purely repulsive, the long-
range interactions between pairs of quadrupolar colloids
are more complicated and can alternate between repulsive
and attractive depending on relative quadrupole orienta-
tion [54, 58]. To explore this, a 2D colloid is fixed in place
(Fig. 9a) while a second mobile colloid is allowed to ex-
plore different relative configurations. The director is ini-
tialised with n = ey which forms two −1/2 defects beside
each colloid and establishes the quadrupole orientations.
Various initial separations and angles are considered (§ V E
for system and measurement details) and the early time
dynamics of mobile colloids are measured.

The N-MPCD mobile colloid does indeed exhibit regions
of both repulsion and attraction. The repulsive regions
are clearest for pole-to-pole orientations and exist in the
far-field limit of small-angle defect-to-defect orientations
(Fig. 2c). Configurations with intermediate relative an-
gles exhibit attractive interactions. Far-field interactions
between two quadrupolar colloids separated by a distance
h with a relative angle θ are predicted to have the form

Fpair ∼ K
R4

h5 cos(4θ) , (18)

in 2D [56, 57]. The sign of the expected interaction force
from Eq. (18) show agreement to the simulations, espe-
cially in the far-field (Fig. 2c).

The expectation breaks down at small angles and dis-
tances (Fig. 2c). The N-MPCD algorithm produces attrac-
tion at these sampled points, in contrast with the idealised
prediction (Eq. (18)). This is partly because the far-field as-
sumptions are less valid but, more importantly, is related to
the mechanics of self-assembly: The dimer pair quickly self-
assembles into a linear chain [8, 59], causing the colloids
to become attractively bound (Fig. 10c). Unlike 3D [60],
two-dimensional nematic colloids have a pair of −1/2 point
defects (Fig. 9c), which can be freely shared between col-
loids (Fig. 10c). While this section has demonstrated the
far-field elastic interactions and a self-assembled 2D chain
within N-MPCD, the next section will explore disclination
line entanglements between colloidal pairs in 3D.

C. Entangled defect lines around colloidal dimers

Extending into systems with two or more colloids in 3D
brings a rich topological interplay between point defects
and disclination loops [9, 61], resulting in a range of defect
structures including disclination lines that surround mul-
tiple colloids [62, 63]. Entangled states are metastable,
and can be induced by a thermal quench [26], laser ma-
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Figure 4. Defect states accompanying colloidal dimers. (a) Saturn rings. (b) Dipolar halos. (c) Figure-of-theta. (d) Tilted-figure-of-
theta. (e) Figure-of-omega. (f) Tilted-figure-of-omega. (g) Figure-of-eight. (h) Tilted-figure-of-eight. Disclinations are visualised as in
Fig. 1, confirming each configuration is associated with −1/2 disclination loops.

nipulation [64], chiral ordering [65], or high colloidal vol-
ume fractions [4]. In this study, these states are reached
by initialising the bulk fluid from a thermal quench. Two
mobile colloids are initialised at q1 = [20,20,13] and q2 =
[20,20,27], each with homeotropic anchoring in a Lx = Ly =
Lz = 40 domain with periodic boundary conditions on all
walls. A warmup phase is applied (TW = 200) where ne-
matic order forms and no data is collected. Simulations are
then run for the duration TS = 1000. Loops are identified via
the disclination density tensor (§ V F [66]). Eight discli-
nation states are observed from the N-MPCD simulations
with either one or two −1/2 disclination loops (Fig. 4). Of
these, the two states that are not considered entangled are
extensions of the single colloid case, with either two Sat-
urn rings or two dipolar halos that assemble into a chain.
The others are entangled with at least one loop (n ≥ 1)
that wraps around the colloidal dimers. These states de-
rive their names from the shape of their disclinations. In
the case of the figure-of-theta (Fig. 4c), two loops exist
(n = 2): one large ring that encircles both colloids, and an-
other smaller ring positioned between them. The figure-of-
omega (Fig. 4e) and figure-of-eight (Fig. 4g) are single loop
entanglements (n= 1). Each of these states have been well-
documented in experiments and simulations [26, 64, 67].

Additionally, the N-MPCD algorithm reveals the exis-
tence of tilted analogues of the figure-of-theta (Fig. 4d),
figure-of-omega (Fig. 4f) and figure-of-eight ((Fig. 4h).
These are tilted with respect to the axis the colloids re-
side in. While rare, these tilted entangled dimer states
emerge when the director field does not form a uniform
alignment axis away from the colloids (see Fig. 11). This
generates modulated order that cannot relax to the ground
state. In these simulations, the combination of colloids, pe-
riodic boundary conditions and quenched disorder are able
to trap these tilted entangled states.

With the disclination states identified, we next charac-
terise their topological and geometric properties. To ob-
tain these, the framework by Čopar and Žumer is followed
[6, 7]. Since colloidal anchoring enforces a geometric con-
straint for the local director to lie in a plane perpendicular
to T (cosβ =−1, in this case), the disclination loop can be

assigned a framing vector w that is everywhere perpendic-
ular to the tangent (Fig. 5a; see § V G). A convenient choice
of w is one of the three radially pointing director orienta-
tions of the −1/2 disclination (Fig. 5a). The framing vec-
tor allows the topological properties of the −1/2 disclina-
tion loop to be found via the self-linking number Sl, which
counts the number of times the framing turns around the
tangent on traversing the loop. The self-linking number
can be calculated from geometric properties of the discli-
nation through the Cǎlugǎreanu-White-Fuller theorem

Sl = Wr+Tw, (19)

where Wr is the writhe and Tw is the twist (§ V H). Due
to the three-fold symmetry of −1/2 disclinations, Sl takes
fractional, third-integer values. The self-linking number is
related to the topological classification of −1/2 disclination
loops through [68]

ν = 3Sl+2 (mod 4), (20)

where ν is the topological index of a disclination loop [69].
Index values of ν = 0 correspond to unlinked and charge
neutral (p =even), ν = 2 unlinked and charged (p =odd)
and ν = 1,3 are linked loops. In this way, the relationship
between Wr, Tw,Sl and point charge p can be understood
for the N-MPCD −1/2 disclination states in Fig. 4.

First, the properties for the entangled single loop (n = 1)
states are examined. For the figure-of-eight, figure-of-
omega and their tilted analogues, the self-linking number is
found to be Sl≈ 2/3 (Table I). Additionally, the Sl≈ 2/3 can
be visualised for the two figure-of-eight states by tracking
the orientation of the −1/2 profile (Fig. 5b,c). In choos-
ing a reference and tracking the profile rotations along
the loop (orange ribbon curve), the orientation is rotated
by ±2π/3 over the entire contour of the loop. For each
n = 1 state, the Sl is composed entirely from writhe, while
the twist remains essentially zero in each state (Table I).
Self-linkings composed entirely of writhe were previously
observed for the figure-of-eight and figure-of-omega [6],
since the strong radial constraint on the disclination profile
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Table I. Classification of the eight identified nematic disclination states in terms of topological and geometric information. Disclination
properties include the writhe (Wr) and twist (Tw), which combine to give the topologically-protected self-linking number Sl = Wr+Tw.
Topological point charge p associated with colloidal dimers combine to give a trivial nematic texture (even), allowing even contributions
from each n = 1 or two odd contributions for states with n = 2 loops. The properties are calculated directly from the frames shown in
Fig. 4.

n Wr Tw Sl p
Saturn rings 2 0.014 0.001 0.029 0.053 0.044 0.054 odd odd
Dipolar halos 2 0.009 0.003 0.048 0.003 0.057 0.005 odd odd
Figure-of-Theta 2 0.035 0.002 0.025 -0.011 0.060 -0.008 odd odd
Figure-of-Eight 1 0.699 -0.027 0.673 even
Figure-of-Omega 1 0.652 0.009 0.661 even
Tilted-Figure-of-Theta 2 0.005 0.005 -0.008 0.013 -0.003 0.018 odd odd
Tilted-Figure-of-Eight 1 -0.705 0.051 -0.654 even
Tilted-Figure-of-Omega 1 0.618 0.065 0.683 even

penalises twisting of the orientation. We show the same
writhe/twist balance also hold when the disclinations are
in tilted conformations. The ± sign on the Sl relates only
to the chirality of the conformation and does not influence
the topological classification of the loop. Indeed, mapping
to the disclination loop index reveals that all four states
are topologically trivial ν = 0 (uncharged with p = even).
The n = 1 disclination line balances the two point charges
provided by the colloids by forming a state with net writhe
Wr.

Next, the disclination states with n = 2 are examined.
Each state has a self-linking of Sl ≈ 0 (Table I). This is the
case for the individual rings (Saturn rings and dipolar ha-
los) and the entangled figure-of-theta structures, each pre-
senting Wr ≈ 0 and Tw ≈ 0. We visualise the ribbon (or-
ange curve) for the two figure-of-theta states in Fig. 5d,e,
which confirm the calculated properties. The reference ori-
entation smoothly connects to the final orientation, with
no local (or global) twisting or coiling over the circuit. The
Sl = 0 properties finds that each loop carries a hedgehog
charge p = odd (ν = 2), balancing the global charge neu-
trality between the two loops (modulo 2). These results
show that each n = 2 state is topologically equivalent with
identical geometric decomposition into Wr = 0 and Tw = 0.
Therefore, the tilted states are simply smooth transforma-
tions of their non-tilted counterparts.

D. Entanglement kinetics

With each of the disclination states identified and char-
acterised, we study the relaxation pathways that lead to
the formation of these states. As already demonstrated
for a single colloid (Fig. 1d), disclinations contour lengths
generally decrease as the system relaxes from the thermal
quench. For dimers, the temporal evolution of the discli-
nation contour lengths eventually leads to the long-time
configurations from Fig. 4. Since N-MPCD simulates fluc-
tuating nematohydrodynamics, the simulations stochasti-
cally sample states as they relax towards accessible lower
free energy configurations.

Four instances of the stochastic relaxation of the entan-
gled dimers are shown in Fig. 6. An example of the relax-
ation passing through a figure-of-theta is shown in Fig. 6a.
At early times (Fig. 6a.1), a small loop exists sandwiched
between the colloids with a contour length L comparable-

to-but-less-than the circumference of the colloids. Simulta-
neously, a large disclination loop rapidly collapses around
the colloids, forming the figure-of-theta state (Fig. 6a.2).
The number of loops is n = 2 throughout. In N-MPCD, the
figure-of-theta is only sampled transiently, passing rapidly
through loop-reconnections to form two Saturn ring col-
loids (Fig. 6a.3). Despite sharp transitions in the individual
loop lengths (Fig. 6a), the total contour length has a neg-
ligible change between the two states — with two equal-
sized Saturn rings that sum to the total disclination length
of the two figure-of-theta loops.

Another kinetic trajectory observed in N-MPCD is a sin-
gle (n = 1) quenched disclination loop (Fig. 6b.1) that col-
lapses to form a figure-of-omega state (Fig. 6b.2). The
figure-of-omega entangled state is found to be metastable
with a constant contour length for t ≈ 100, after which
time the entangled loop transitions to two Saturn rings
(Fig. 6b.3). Unlike the transition from the figure-of-theta
state in Fig. 6a, the transition from the figure-of-omega
state involves a topological conversion from Sl≈ 2/3 to two
rings with Sl≈ 0 (Table I). Equivalently, this corresponds to
a transition from a single uncharged loop, to two charged
loops.

The tilted entanglements can show somewhat differ-
ent trajectories because of their non-uniform global di-
rector alignment (Fig. 6c). The tilted state arises be-
cause the disclination collapses at an off-set to the col-
loidal axis (Fig. 6c.1), passing into the tilted-figure-of-theta
(Fig. 6c.2). The tilted figure-of-theta state endures for an
extended time (100 ≤ t ≤ 200) with minimal changes to the
conformation, until a segment of the disclination line re-
connects into a fleetingly brief tilted-figure-of-omega state
(Fig. 6c.3). Finally, the disclination divides into two dipo-
lar halos with orientations tilted with respect to each other
(Fig. 6c.4).

An n = 1 tilted relaxation trajectory can also occur, start-
ing with a larger loop (Fig. 6d.1) that encloses the colloid
pair to form the tilted-figure-of-omega state (Fig. 6d.2). As
in Fig. 6c, this tilted-figure-of-omega state is short lived
and, in this case, transitions to the tilted-figure-of-eight
without transitioning through n = 2 (Fig. 6d.3). Inter-
estingly, the tilted-figure-of-eight is observed to be the
most stable of any of the entangled states observed in N-
MPCD simulations, remaining in the same configuration
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Figure 5. Minus-half disclination loops as ribbons with self-linking
numbers Sl. (a) Figure-of-eight presented as ribbons constructed
through identifying the disclination line tangent T (navy blue ar-
rows) and local framing vector w (orange arrows). Disclination
loops are as in Fig. 1. (b) Figure-of-eight from (b) as viewed from
second perspective. (c) Tilted-figure-of-eight. (d) Figure-of-theta.
(e) Tilted-figure-of-theta. In each of (b)-(e), the orange framing
curve smoothly connects the -1/2 wedge orientations denoted by
orange cylinders. Silver cylinders illustrate the other two radially
outward pointing orientations. In (b)-(c), the end points do not
meet the starting points of the orange framing curve, which in-
dicates a net rotation and implies Sl ̸= 0. On the other hand, the
orange framing curve is continuous and Sl= 0 in (d)-(e).

for the entire simulation, with minimal variation in con-
tour length. This parallels experimental observations [70],
albeit for different states and surrounding order, where chi-
rality or modulated order can offer protection from reach-
ing the global free energy minimum [71]. In addition,
figure-of-eights have been associated with the greatest sta-
bility of all entangled structures [64]. Despite the intrinsic
stochasticity of the numerical approach, the tilted-figure-
of-eight was not observed to relax into states with n = 2
rings.

Infrequently, less conventional entangled-dimer relax-
ation dynamics are revealed by N-MPCD, such as the sit-
uation shown in Fig. 7. Similar to the tilted structures, this
trajectory eventually relaxes into a modulated global direc-
tor field (Fig. 11). However, at early times, an unexpected
entangled state emerges in which the disclination loop has
a localised segment with a +1/2 wedge profile (Fig. 7a).
The +1/2 profile is smoothly connected by fleeting twist
to a majority −1/2 loop. This wedge-twist state necessar-
ily contains p =even to balance the charge of the dimers.
Generally, such +1/2 wedge profiles are discouraged since
the global director alignment cannot coexist with the low-
symmetry of the +1/2 wedge and out-of-plane twist is pe-
nalised by the radial colloidal anchoring. In this case,
the penalty against twist is resolved by a rapid reorien-

tation of the rotation vector ΩΩΩ, which rotates by π rela-
tive to the global basis over a small disclination segment
(Fig. 7a). The +1/2 segment of the disclination gradually
approaches the colloids (Fig. 7b.2) until it combines with
a −1/2 profile, facilitating a topological transition from a
single loop (n = 1) to a state with a pair of −1/2 dipolar
halos (Fig. 7b.3).

IV. Conclusions

This work has utilised Nematic Multi-Particle Collision
Dynamics (N-MPCD) to simulate nematic colloids as mo-
bile surfaces that can resolve stresses at the interfaces. In
three-dimensions, N-MPCD reproduces the experimentally
observed and theoretically predicted colloid-disclination
complexes for solitary colloids. These include (i) Boojums
with handle-shaped semi-loops, (ii) Saturn rings and (iii)
dipolar halos. Furthermore, N-MPCD mediates elastic in-
teractions between colloidal inclusions. The elastic forces
in N-MPCD are seen to decay with the expected power-laws
in two- and three-dimensions. Likewise, the anisotropy
of quadrupoles interacting in the far-field-limit has been
demonstrated for colloids and their accompanying pairs
of free point defects in 2D. If the colloids are too near to
each other, the far-field approximation breaks down and
N-MPCD predicts that dimer structures are formed through
shared point defects. For nearby colloidal dimers subjected
to a 3D thermal quench, N-MPCD reproduces expected de-
fect structures, including disclination loops that entangle
both colloids. In addition to the expected defect structures,
previously unobserved analogous tilted entanglements are
revealed by N-MPCD in systems with periodic boundary
conditions. In these tilted states, the far-field directors are
not uniform compared to the previously obsserved states.

Despite being a noisily fluctuating algorithm, N-MPCD
not only respects topological constraints but also resolves
details of defect topology and disclination structure, such
as self-linking numbers or localised wedge/twist profiles.
Furthermore, as a linearised nematohydrodynamic ap-
proach, N-MPCD simulates the entanglement kinetics. This
allows the algorithm to explore relaxation from a quench
— revealing that topological point charge is not evenly dis-
tributed around the loop, but instead carried by segments
of the disclination loop closest to the colloidal surface. This
illustrates that N-MPCD is ideal for accessing and explor-
ing metastable states, owing to the intrinsic thermal noise
and dynamics beyond overdamped free-energy steepest de-
scent. In particular, the simulations produced an early-time
charge-neutral disclination state that does not conform to
an entirely -1/2 disclination loop.

This study demonstrates that the N-MPCD algorithm is
well-suited for studies on topological kinetics, field-driven
assembly and colloidal self-assembly. The versatility of
combining complex embedded [21] or confining geome-
tries [22], fluctuating nematohydrodynamic flows and out-
of-equilibrium dynamics [23] makes N-MPCD highly suit-
able coarse-grained approach for studying dynamics of
topological phenomena. Further work could apply the N-
MPCD algorithm to study the interactions and defect struc-
tures surrounding nematic colloids in active nematic sys-
tems, or topological features of the percolated -1/2 discli-
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Figure 6. Relaxation pathways for dimer-associated disclination loops following a thermal quench, as measured via the disclination
contour lengths L scaled by colloid radus R = 6. (a) Figure-of-theta transitioning to Saturn rings. (b) Figure-of-omega transitioning to
Saturn rings. (c) Tilted figure-of-theta transitioning to dipolar-halo pair, passing briefly through a tilted figure-of-omega state. (d) Tilted
figure-of-omega transitioning to tilted figure-of-eight. Topological transitions via loop reconnection or splitting events are indicated by
vertical dashed lines. In each panel, the time t = 0 corresponds to the first recorded timestep for which the largest disclination loop is
entirely contained within the periodic system. Circles denote a single loop (n = 1) and two loops (n = 2) are shown as square markers,
while the total contour length is shown as the navy blue line. Example snapshots are shown directly below each panel.

nation loops in colloid nematic gels [4]. The control over
complex surfaces could be used to explore colloids in com-
plex geometries, including the possibility of kinetics and
fluctuations in non-trivial knotted fields [72]. This work
contributes to a numerical approach to study the relation-
ship between topology and rheological properties.
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colouring the same as Fig. 6. Example snapshots are shown di-
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Figure 8. Extrapolation length. (a) A hybrid-aligned nematic cell
of size L = 50 with planar anchoring on the bottom surface and
homeotropic on the top, and periodic boundaries on the sides.
The director field is shown as the white line field. For finite
strength anchoring, the anchoring starts an effective distance ξK
behind each surface. (b) Director orientation ⟨φ(y)⟩ with vertical
height y, averaged over horizontal position x, time t, and N = 20
simulation runs. Red squares present orientation when only the
N∗ ≤ Nc particles that directly violate Eq. (6) have the anchoring
conditions applied. Dark blue circles are for for transformations
applied to all particles within a cell Nc.

V. Appendix

A. Kleman–de Gennes extrapolation length

The extrapolation length is a length scale that mea-
sures the competing influence of elasticity against anchor-
ing strength ξK = K/W , where K is the elastic constant
under the one constant approximation, and W is the an-
choring strength [73]. To compare the influence of anchor-
ing applied only to proportion of particles N∗

c /Nc against
the stronger anchoring method described in § II B, ap-
plied to all Nc particles in cells that intersect the surface,
the extrapolation length is measured in a two-dimensional
hybrid-aligned-nematic cell with homeotropic anchoring
on the top boundary y = L and planar anchoring on the
bottom boundary y = 0 (Fig. 8a). In the ex direction, pe-
riodic boundary conditions are applied. The system size
is Lx = Ly = L = 50, with 20 simulation runs of 104 time
steps, outputted every 100 timesteps to establish an aver-
age for the orientation angle φ(y) (defined from the posi-
tive ex axis) over all runs and timesteps.

Assuming that the anchoring condition begins a small

distance ξK beyond each boundary, so that the nematic ori-
entation φ(−ξK) = 0◦ and φ(L+ ξK) = 90◦, the extrapola-
tion length can be found from

ξK =
1
2

(
90
mg

−L
)
, (21)

where mg is the gradient of the linear fit in degrees per
unit length. This gives ξK = 0.147±0.0002 for the Nc case,
and ξK = 1.700 ± 0.001 for the N∗

c case (Fig. 8b). For a
colloid with radius R, the strength of the anchoring is given
by the dimensionless ratio of the surface free energy WR2

cost against elastic energy KR, which produces a reduced
colloid size, RW/K = R/ξK . All simulations use the strong
anchoring method (Nc case). Three-dimensional colloids in
this paper have a radius of R = 6 in simulation units, giving
R/ξK = 40.8. In two-dimensions, R = 10 gives R/ξK = 68.0.

B. Anchoring torque

The particle orientation transformations described in
§ II C are implemented as hard anchoring conditions that
align MPCD particle i. The initial orientation of the par-
ticle prior to colliding with the surface is ui. The change
in nematogen orientation due to the collision is δui. This
orientational change must be converted into a force on the
colloid. We infer the torque ΓΓΓ

anch
i = γRui × δui

δ t as the rota-
tion through the fluid with rotational friction coefficient γR.
The final particle orientation, post anchoring, can be writ-
ten in terms of the scalar multipliers as ufinal = (Mνννbνννb +

Mtb tb)
(
M 2

νννb
+M 2

tb

)−1/2
. Taking the cross product gives

Eq. (13). One caveat to inferring the torque in this man-
ner, is that the periodicity of (ui · νννb)(ui × νννb) only infers
the correct torque magnitude for angles −π/4 ≤ α ≤ π/4.
In the N-MPCD simulations presented here, reorientations
greater than π/4 are rare.

C. Torque to force

The elastic force exerted on a colloid (mobile bound-
ary), due to the anchoring transformation of a single N-
MPCD particle, is determined by the torque on a virtual
N-MPCD particle (§ II C). This torque conserves angular
impulse (Eq. (12)). Since the torque is a pseudovector,
converting a torque into a force is not generally possible
— there can be colinear contributions between the force F
and radial vector r that return the same value of torque ΓΓΓ.
The non-unique nature of the force is demonstrated by the
identity

F =
r(r ·F)− r×ΓΓΓ

r2 . (22)

Since the anchoring torque is a purely rotational effect, we
assume that the colinear contribution of the force is zero
(r ·F = 0). Under this assumption of orthogonality between
r,F,ΓΓΓ, the first term in the numerator of Eq. (22) vanishes
and so force can be inferred from torque. In Eq. (14), the
force is F = Fb,i, the torque is ΓΓΓ = ΓΓΓb,i and the radial vector
is r=(ℓu/2)ub,i which corresponds to half of the nematogen
rod length.
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Figure 9. Measurements for determining the force-distance relation (Fig. 2). (a) Schematic of colloid (navy circle) with radius R,
initialised within the far-field director n, forming equatorial -1/2 defects (blue trefoil symbols). The colloid experiences an elastic
repulsion force due to the wall Fwall, which is probed by a gravitational-like external force FG =−McGνννwall. The distance h between the
colloid’s centre of mass and the wall is heq when FG = ⟨Fwall⟩. (b) An example of 30 colloidal trajectories (grey) for a two-dimensional
colloid with radius R = 10. The time-dependent ensemble mean is shown by the dark blue curve, which fluctuates about the time-
averaged mean (red horizontal line). The red shading is the standard error about the time-averaged mean. (c) An example snapshot
of a colloid interacting with the homeotropic anchored wall (black horizontal line). The white line field is the director and background
colouring is the scalar order parameter S.

D. Methods for colloid-wall repulsion

Systems in two-dimensions have Lx = Ly = L with peri-
odic boundary conditions in ex, and solid walls in ey. Both
upper and lower solid walls have no-slip boundary condi-
tions, but only the lower boundary has anchoring condi-
tions applied, with strong homeotropic alignment (§ V A).
Four colloid radii are sampled R ∈ [6,8,10,12] with system
sizes L ∈ [50,55,60,80] respectively, to adjust for system-
size effects. The director field is initialised from n(t = 0) =
ey, which produces a pair of near-surface point defects with
−1/2 charge in 2D. A simulation warmup time of TW = 1000
is applied, during which the colloid is held fixed and the
director relaxes to the equilibrium configuration. Simula-
tions are then performed for TS = 30000, with the colloid
mobile and responsive to the nematic environment. A to-
tal of 40 independent simulation runs are performed for
each R. In three-dimensions, two colloid radii are used.
The first is R = 4 with Lx = Ly = Lz = 30, and the second is
R = 6 with Lx = Ly = 30,Lz = 35. Simulations have periodic
boundary conditions in ex and ey, and impermeable no-slip
walls in ez. Similar to two-dimensions, only the lower plate
has homeotropic anchoring conditions. The director field
is intialised along n(t = 0) = ez, leading to a quadrupolar
Saturn ring. The simulations run for TS = 4000 following
a warmup period of TW = 1000, where the colloid is held
static. Statistics are generated from 30 independent mea-
surements for each R.

The decaying power-law nature of the elastic forces are
determined by measuring the interaction forces of a ne-
matic colloid with a centre of mass distance h away from a
homeotropic anchored wall. In the proximity of the wall,
the colloid experiences a strong elastic repulsive force,
Fwall, that decays with distance. This can be represented
as a quadrupole-quadrupole elastic interaction between the
colloid and its mirror image on the other side of the wall

(Eq. (17)). In addition, the motion of the colloid through
the fluid experiences a drag force due to viscosity Fdrag and
a fluctuating force Ffluc that enters due to the stochasticity
of the collision operators. To measure Fwall, we apply an
external gravitational-like body force to the colloid

FG = McG, (23)

where Mc =
4
3 πR3⟨Nc⟩ is the mass of the colloid in 3D or

Mc = πR2⟨Nc⟩ in 2D. The constant acceleration G=−Gνννwall
is directed towards the homeotropic wall with surface
normal νννwall and magnitude G. The applied body force
(Eq. (23)) probes the elastic force by introducing an equi-
librium distance heq at which Fwall+FG = 0 (Fig. 9a). When
the elastic and applied forces balance, the colloid only fluc-
tuates about heq (grey trajectories in Fig. 9b). Therefore,
the fluctuating and drag forces can be neglected in the
force measurements provided there is statistical certainty
on heq. For this reason, the simulations are iteratively re-
initialised from new start positions h ≈ heq (example direc-
tor configuration in Fig. 9c), so that when data collection
begins, the mean of all runs at time t > TW (blue solid line)
has unbiased fluctuations about the time-averaged mean
(red solid line). The equilibrium position heq is taken as
the time-independent mean, with the standard error as the
statistical uncertainty (red shading).

E. Methods for attraction and repulsion zones

The force anisotropy measurements are obtained in two-
dimensions for simplicity. The angular dependence of
the interaction between two colloids is determined by
fixing one colloid, placing a mobile probe colloid in its
vicinity and measuring the response of the probe colloid
(Fig. 10a). The far-field director alignment is initialised
along ey, which preferentially positions two −1/2 defects
on either side of the colloids, establishing consistent initial
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Figure 10. Measurements for determining the two-dimensional attraction-repulsion between a fixed and mobile colloid. (a) Schematic
with colloids (navy circles) initially separated by r0

s with polar angle θs relative to ex. The far-field director is initialised along n, which,
at short times, fixes the orientation of the −1/2 defects (blue trefoil symbols) to the colloids’ equators. At time t, the mobile colloid
moves to a new position with displacement vector rt

mob. (b) Example trajectories for 15 simulations (grey) at a starting separation
r0

s = 50 and angle θs = 45◦. The trajectories are measured as the projection magnitude of the mobile displacement onto the axis of the
initial separation r0

s · rt
mob. The attraction-repulsion behaviour is measured over the time interval t = 200 to t = 500, as indicated by the

red shaded region. The mean is shown as the solid dark blue line, and standard error as blue shading. (c) Snapshot of self-assembly
into a chain. Defects are shared between the colloidal disks, influencing an attractive response at small angles and separations.

quadrupole orientations. A short warmup period of TW = 5
allows the defects to form but not reorient away from align-
ment in ey. The two colloids are placed, one fixed at (40,40)
and the other mobile initialised from (40 + ∆x,40 + ∆y),
where ∆x = rs cosθs and ∆y = rs sinθs with separation mag-
nitude rs ∈ [40,50,55,60] and orientation angle, relative
to ex, of θs ∈ [0◦,6◦,11◦,17◦,22◦,33◦,45◦,56◦,68◦,79◦,90◦].
Simulations have periodic boundary conditions on all
walls, with system size Lx = 80 + 40cosθs and Ly = 80 +
40sinθs. The simulation time is TS = 3000.

Two vectors are measured to determine the attractive or
repulsive behaviour of the mobile colloidal probe placed
at varying separations rs and angular positions θs relative
to a fixed colloid (Fig. 10a). The first is the initial sep-
aration vector between the colloids r0

s = r0
2 − r0

1 (blue ar-
row). This establishes a constant reference to measure the
response of the mobile colloid. The second rt

mob = rt
2 − r0

2
is a temporally varying separation vector, which records
the displacement of the mobile colloid at time t from the
start position (red arrow). Individual mobile colloids are
regarded to have repulsive or attractive behaviour if the
projection of rt

mob on r0
s is positive or negative respectively.

The individual trajectories are noisy (grey trajectories in
Fig. 10b) and, after some time, the −1/2 defects reorient to
aid self-assembly into chains (Fig. 10c). This reorientation
misaligns the relative quadrupole orientations. Therefore,
N = 15 simulation runs are performed for each combina-
tion of rs and θs, and the response behaviours are measured
from the early time dynamics chosen to be 200 ≤ t ≤ 500.
The minimum time of t = 200 is chosen to establish suf-
ficient statistical certainty on the attraction-repulsion tra-
jectories. Ensemble averages of the projection magnitude
r0

s · rt
mob are performed, extracting the mean µ and stan-

dard error σM = σ/
√

N. The nature of each colloidal site
(rs cosθs,rs sinθs) is calculated as attractive if µ ≤−σM, re-

pulsive if µ ≥ σM and neutral otherwise.

F. Defect analysis

Disclination loops are identified using the disclination
density tensor, proposed by Schimmings and Vinals [66].
Using Einstein-index summation convention for clarity, the
tensor is conveniently constructed from derivatives of the
nematic Q−tensor

Di j = εiµν ε jlk∂lQµα ∂kQνα , (24)

where i, j,k,α,µ,ν are tensor indices corresponding to
ex,ey,ez. The disclination density tensor D can be directly
interpreted as the dyad

D = s(x)ΩΩΩ⊗T, (25)

composed of the tangent vector T of the disclination line
and the rotation vector ΩΩΩ, which defines the winding plane
of the director in the vicinity of the disclination [48]. The
relative angle between them cosβ = ΩΩΩ ·T illustrates if the
local disclination has a wedge profile (with cosβ = +1 for
+1/2 defect profiles and cosβ = −1 for −1/2 defect pro-
files) or a twist profile (with cosβ ≈ 0).

The scalar field s(x) is non-negative, and is maximum at
the core of the disclination – therefore providing a useful
quantity for identifying disclinations, with an appropriately
defined lower bound. Throughout this study, disclinations
are identified as s(x) ≥ 0.9, which was found to produce
smoother disclinations than using isosurfaces of the ne-
matic scalar order parameter S(x). Extracting s(x), ΩΩΩ and
T from Eq. (25) utilises the methods outlined in [66]. The
vectors ΩΩΩ and T are ensured to be continuous and have
the correct relative sign by: 1) applying a clustering algo-
rithm that groups disclination cells into disclination lines,
2) ensuring the tangent vector smoothly varies along the
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Figure 11. Director field slices around standard and tilted figure-of-eight colloidal-dimer states. (a) Standard figure-of-eight structures
are associated with a uniaxial far-field director field. (b) Tilted-figure-of-eight entanglements have a director field that modulates away
from the dimer. The director is shown in grey. Disclinations are visualised as in Fig. 1.

line and 3) fixing the sign using sgn [ΩΩΩ ·T] = sgn
[
tr
[
D
]]

.
A second clustering algorithm groups disclination cells

into an ordered sequence of larger points, that combines
together a group of nearest neighbours, without reusing
cells from other groups. The start and end point of the se-
quence connect together to form a loop. The T and ΩΩΩ of
composite cells are averaged over to return a single dyad
per point. This construction into points enables geometric
properties of the loop to be established, particularly those
required to calculate the ribbon properties of the disclina-
tion line.

G. Ribbon framing

To construct the ribbon, a framing vector w perpendic-
ular to T is required that varies continuously along the
disclination loop. In the proximity of the disclination, n
is oriented in a plane with normal vector ΩΩΩ, which is anti-
parallel to T as confirmed by the colouring ΩΩΩ ·T = cosβ =
−1. We therefore make an arbitrary choice to track one of
the three radially pointing orientations of the −1/2 profile
along the disclination. To extract the three radial orien-
tations, w1,w2,w3, we construct a small cube of 5× 5× 5
lattice cells centred on each of the ordered points. For
each of these cubes, a rotation matrix R is constructed
and applied to the director field within the cube, which
aligns the local disclination tangent T with ez. This en-
ables the director radial orientation to be identified on the
transformed exey plane, on which we construct a test vec-
tor rtest = (cosθtest,sinθtest) oriented radially outwards from
the core. On a circuit of points xl surrounding the core,
rtest is compared with the local director n(xl). Determined
over all points xl and test orientations θtest, w1 is chosen
as the rtest that maximises the absolute value |rtest · n(xl)|.
The inverse rotation transform R−1 is applied to w1 to re-
vert back to the original basis, and w2,w3 are determined
as orientations 2π/3 rotated relative to each other about
T. The framing vector is initialised as w = w1 for the first
point along the loop, and subsequent points choose from

one of the three w1,w2,w3 orientations that minimise the
rotation angle compared with w from the previous point in
the sequence.

H. Calculating the self-linking number

The self-linking number is calculated through the geo-
metric writhe Wr and twist Tw properties of the disclina-
tion via Eq. (19). Twisting is the local winding of the fram-
ing vector around the tangent curve, which gives Tw when
integrated. Writhe is a non-local geometric property that
describes the coiling of the curve, through tracking the rel-
ative rotation of locally parallel tangent bundles along the
loop [7]. Writhe and twist are calculated as

Wr =
1

4π

∮
C

ds
∮

C
ds′ T(s)×T(s′) · R(s)−R(s′)

|R(s)−R(s′)|3 (26)

Tw =
1

2π

∮
C

ds T(s) ·
(

w(s)× dw(s)
ds

)
, (27)

where R(s) are position vectors for points along the loop,
T(s) = dR(s)

ds is the local tangent vector [74], and C is a
closed curve composing the disclination loop. The framing
vector w(s) is everywhere perpendicular to T(s) and sets up
the local framing direction (§ V G).



16

[1] Holger Stark. Physics of colloidal dispersions in nematic
liquid crystals. Phys. Rep., 351(6):387–474, 2001.

[2] Ivan I Smalyukh. Liquid crystal colloids. Annu. Rev. Condens.
Matter Phys., 9:207–226, 2018.

[3] Oleg D. Lavrentovich. Liquid crystals, photonic crystals,
metamaterials, and transformation optics. Proc. Natl. Acad.
Sci. USA, 108(13):5143–5144, 2011.

[4] Tiffany A. Wood, Juho S. Lintuvuori, Andrew B. Schofield,
Davide Marenduzzo, and Wilson C.K. Poon. A self-quenched
defect glass in a colloid-nematic liquid crystal composite.
Science, 334(6052):79–83, 2011.
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