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In this article, we present an interpolative separable density fitting (ISDF) based algorithm to
calculate exact exchange in periodic mean field calculations. In the past, decomposing the two-
electron integrals into tensor hypercontraction (THC) form using ISDF was the most expensive
step of the entire mean field calculation. Here we show that by using a multigrid-ISDF algorithm
both the memory and the CPU cost of this step can be reduced. The CPU cost is brought down
from cubic scaling to quadratic scaling with a low computational prefactor which reduces the cost
by almost two orders of magnitude. Thus, in the new algorithm, the cost of performing ISDF is
largely negligible compared to other steps. Along with the CPU cost, the memory cost of storing
the factorized two-electron integrals is also reduced by a factor of up to 35. With the current
algorithm, we can perform Hartree-Fock calculations on a Diamond supercell containing more than
17,000 basis functions and more than 1,500 electrons on a single node with no disk usage. For this
calculation, the cost of constructing the exchange matrix is only a factor of four slower than the
cost of diagonalizing the Fock matrix. Augmenting our approach with linear scaling algorithms can
further speed up the calculations.

I. INTRODUCTION

Much of modern ab initio computational chemistry and materials science is based on Kohn-Sham (KS) density
functional theory (DFT)1. The inclusion of exact Hartree-Fock (HF) exchange within this framework2 has been
instrumental to the success of DFT for molecular systems to the point that almost all modern molecular calculations
rely on these “hybrid” density functionals3. Hybrid functionals can outperform their semi-local counterparts for some
properties of periodic solids4–9, but, in contrast to molecular calculations, the cost of evaluating the non-local exchange
contribution may be prohibitive.

Methods for the efficient evaluation of exact exchange are well-developed in the context of molecular calculations.
Such calculations typically use a relatively small set of small, local basis functions such that the ratio of basis
functions to electrons, N/n, is often less than ten. Computing every element of the fourth-order tensor of electron
repulsion integrals, which one might naively expect to be necessary for both the Coulomb and exchange contributions,
would scale like O(N4). However, the locality of the basis functions implies that there are asymptotically only a
linear number of significant basis function pairs, which means that the Coulomb and exchange contributions can be
computed in O(N2) time10. The scaling of the Coulomb contribution can be reduced to linearithmic, O(N lnN),
using the multipole expansion and fast multipole method11–13. The exchange contribution can also be computed
in asymptotically linear time for non-metallic systems by leveraging locality in the density matrix14–17. For most
practical molecular calculations, these asymptotically linear methods come with a large prefactor, and it is preferable
to reduce the cost of higher-scaling algorithms with tensor factorization. The resolution of the identity (RI) method
is one such tensor factorization technique that is commonly applied to both Coulomb and exchange contributions
with the RI-J18,19 and RI-K20–23 algorithms respectively. These RI methods are also called “density fitting;” and
Dunlap showed how a “robust” fit can be used to make the error in the fitted two-electron integral quadratic in the
error for basis function pairs.24–26 RI approaches usually rely on predetermined, atom-centered basis sets of fitting
functions. Circumventing this requirement, local-RI using numerical basis27,28 and Cholesky decomposition approach
yields a factorization of the same form without the need for pre-optimized fitting basis sets.29,30 The pseudospectral
(PS) method is an alternative factorization that uses a partial real-space quadrature to factorize the two-electron
integrals31, and the chain of spheres algorithm for exchange (COSX)32 is a commonly used implementation of the PS
idea. In recent years, the tensor hypercontraction (THC) method of Martinez and coworkers took the idea of tensor
factorization to the logical limit33–35. The THC method factorizes the four-index tensor of two-electron integrals into
a product of two-index tensors—a drastic factorization. But obtaining an accurate THC factorization is generally
difficult so initial applications to correlated methods are limited. However, the “interpolative separable density fitting”
(ISDF) method36 can provide a factorization of THC form with only cubic, O(N3), scaling, and it has since been
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used in various algorithms for exact exchange37–42.
On the other hand, calculations on periodic solids often use a large basis set of Ng plane waves. In these calculations,

the action of the Coulomb operator on just the occupied space is determined by solving n Poisson equations, which leads
to quadratic scaling, O(nNg lnNg), or linear scaling when using translational (k-point) symmetry. Unfortunately, the
action of the exchange operator on the occupied space is cubic, O(n2Ng lnNg), or quadratic with k-point symmetry.
So, in a plane-wave basis set, the exchange contribution is higher scaling than the Coulomb part, and there have
been many efforts to reduce this cost. Linear scaling methods have been developed for both the Coulomb and
exchange16,43. As in the molecular case, traditional linear scaling exchange algorithms rely on locality in the density
matrix for insulating systems44. An exception is stochastic density functional theory (sDFT), which can reduce the
prefactor and scaling of the exchange calculation by using the stochastic resolution of identity method45–47. For
typical calculations, asymptotically linear scaling methods are not practical, and methods to improve the efficiency
without addressing the scaling can result in useful speedups48. Additional examples include the adaptively compressed
exchange (ACE) method49 and the auxiliary density matrix method50. Methods that use ISDF-THC for exact
exchange in solids37,38,40–42, including the method presented in this work, fall into this category.

Since its introduction by Lu and Ying in 2015,36 ISDF has been quickly adopted to speed up the exchange calcula-
tions in codes that use Gaussian orbitals40,41, numerical atomic orbitals51, and plane wave basis sets37,38,42. Although
the computational scaling of performing ISDF is cubic with the system size (the same as the ultimate computation
of the exchange matrix), the computational prefactor is high, making it one of the most expensive steps of the entire
calculation. Furthermore, the memory requirements are high, which limits its applicability to small systems unless
massively parallel computers are used. Recently, it has been realized that the memory cost can be reduced if one
performs interpolative decomposition of the occupied molecular orbitals rather than the entire atomic orbital basis
set41. This does reduce the memory requirement but this comes at an additional cost of having to perform this
decomposition at every self-consistent field (SCF) iteration. There is also additional computational overhead related
to constructing the exchange matrix (for details we refer the reader to Ref. 41).

In this work, we perform the interpolative decomposition on the atomic integrals, which is only done once, and
simultaneously reduce the computational and memory cost of performing this step using ideas from so-called “multi-
grid” approaches52–57. As we will show in the results, the computational cost of this step is no longer the leading
cost of the algorithm and we can perform calculations on systems with > 10000 basis functions on a single node
without running out of memory. Along with reduced memory requirements, we also show that the cost of performing
ISDF calculations is nearly eliminated. The key ingredient of the algorithm is to use multiple local grids of varying
resolutions, each of which supports only a subset of atomic orbitals (Fig. 1). This idea has been used in the past to
significantly speed up the calculation of the Coulomb operator in CP2K53,57, and here we extend this approach to
accelerate exchange evaluation within the ISDF-THC framework.

In the rest of the paper, we will focus on periodic calculations with Gaussian basis functions in the presence of Pseu-
dopotentials, although the ideas can be extended to mixed Gaussian/plane-wave basis and all-electron calculations.
We will begin the paper by recalling how the interpolative decomposition is typically performed to obtain integrals
in the THC form. This will be followed by our updated algorithm that shows how the memory and CPU cost of
performing this step can be significantly reduced. We end the paper with some results and prospects for future work.

II. THEORY

TABLE I: Notation used in paper.

Ng Number of grid points

Nξ Number of fitting functions

N Number of basis functions

n Number of electrons

natom Number of atoms

µ, ν, · · · Indices of atomic orbitals

i, j, · · · Indices of the occupied molecular orbitals

p, q, · · · Indices of any molecular orbital

A major bottleneck in a simple implementation of hybrid-DFT calculations is the need to evaluate the two-electron
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integrals,

(µν|λσ) =
∫ ∫

µ(r1)ν(r1)
1

r12
λ(r2)σ(r2)dr1dr2

Instead of calculating the entire four-index quantity one can decompose it into a product of several two-index quan-
tities. We begin by noting that the product of the orbitals µ(R)ν(R) = (µν|R) can be viewed as a matrix with two
indices, the first index being a composite index consisting of a pair of orbitals, µν, and the second being a set of
suitably chosen grid points with a sufficiently high density, R. This matrix (µν|R) is low-rank and can be decomposed
as,

(µν|R) =
∑
ξ

(µν|ξ)ξ(R)

where the size of the index ξ is smaller than both the square of the number of basis functions (N) and the number of
grid points (Ng). An optimal decomposition that minimizes the Frobenius norm of the error is given by SVD. However,
with SVD we lose the separability of the original matrix (note that while (µν|R) = µ(R)ν(R), (µν|ξ) ̸= µ(ξ)ν(ξ)).
One can instead perform interpolative decomposition that ensures that the indices ξ in the matrix (µν|ξ) are just
a subset of grid points R. The disadvantage of interpolative decomposition is that one does not have an optimal
algorithm to find it and the Frobeius norm of the error is guaranteed to be greater than that from SVD, but the
separability of the resulting matrix is retained, i.e. (µν|ξ) = µ(ξ)ν(ξ), which more than makes up for the shortcomings.
After having performed the interpolative decomposition of the orbital products one can then write the two-electron

integrals as,

(µν|λσ) =
∑
ξξ′

µ(ξ)ν(ξ)(ξ|ξ′)λ(ξ′)σ(ξ′)

where the matrix (ξ|ξ′) can be evaluated numerically as,

(ξ|ξ′) =
∫ ∫

ξ(r1)
1

r12
ξ′(r2)dr1dr2 (1)

using fast Fourier transform (FFT).
Typically, THC requires more fitting functions ξ(r) than RI—while the error in the two-electron integrals is quadratic

in the RI fitting error, it is linear in the THC error. One can use robust tensor hypercontraction, also known as the
robust pseudospectral (rPS) method, to make the error from two-electron integrals quadratic in the fitting errors
(similar to RI) and use fewer functions, as in RI. rPS is known to produce non-positive definite two-electron integrals
that can cause variational collapse of the SCF cycles58,59. But we have never seen this in our previous work because
we never use rPS to evaluate the Coulomb matrix—only the exchange matrix, which is itself negative definite.

A. Interpolative decomposition

As mentioned in the previous section, one needs to perform an interpolative decomposition of the two-electron
integrals. The most common way of doing this is to perform pivoted-QR decomposition of the (µν|R) matrix. A
simple algorithm would lead to a computational cost of O(N4), making the entire algorithm prohibitively expensive.
Lu and Ying36 in their original paper introduced a randomized algorithm where one first obtains two random matrices
G1 and G2 of size N × p each, with p =

√
Nξ + δ orthogonal columns, where Nξ is the number of THC functions and

δ is a small number usually around 560,61. A randomized density matrix is constructed from these matrices according
to,

ρmn,R =

(∑
µ

G1
µmµ(R)

)(∑
ν

G2
νnν(R)

)

One can then perform a pivoted-QR decomposition on the matrix ρmn,R to obtain the pivots. The pivots from the
randomized matrix will be of similar quality to those obtained from the full matrix (µν|R) as long as its singular
values decay sufficiently quickly, as they do here. The overall cost of the randomized algorithm is O(N3) which is a
significant improvement over the deterministic algorithm.
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Matthew suggested62 that one can improve the efficiency of the algorithm by first forming a matrix

M(R,R′) =
∑
µν

(µν|R)(µν|R′) (2)

and then perform a pivoted-Cholesky decomposition on it to obtain the pivots ξ. The methods give the same pivot
points (when randomization is not introduced), and pivoted Cholesky is typically significantly faster than pivoted
QR. This algorithm is extremely efficient especially if the matrix M can be stored in memory. Later we will show
that for our purposes these matrices are indeed small enough to be stored in memory. It is also worth mentioning
that a third approach called centroid-Voronoi-tesselation (CVT) is also widely used in this context37,39.
Having obtained the pivot points ξ, a least square algorithm obtains the functions ξ(R) that minimize the error,

min
ξ(R)

∣∣∣∣∣∣(µν|R)−
∑
ξ

(µν|ξ)ξ(R)

∣∣∣∣∣∣ (3)

This can be done with an O(NNξNg +N3
ξ +N2

ξNg) cost, dominated by O(N2
ξNg). As mentioned in the introduction,

this algorithm has a rather steep memory requirement because one has to store the fitting functions ξ(R) at the cost
of Ng ×Nξ. The value of Ng can become significant even if there is a single sharp function in the basis set.

There are a few ways of overcoming the high cost of ISDF calculation:

1. In a previous publication,40 we have shown that one can reduce both the memory and CPU cost of ISDF by
using a robust fitting procedure, which reduces the number of ISDF functions needed to get an accurate result
by about a factor of two (for instance, compare THC and rPS in Figure 5). Although the cost of ISDF is
reduced, it remains the dominant cost of the calculation.

2. The cost of doing ISDF can be eliminated by not doing ISDF but instead by solely relying on FFT and using
the occ-RI (occ refers to occupied orbitals) trick of Manzer et al.23 occ-RI relies on the fact that the value
and gradient of the DFT energy can be obtained simply by knowing the occupied-virtual block of the exchange
matrix Kip, which is given by

Kip =
∑
p

∫ ∫
ϕi(r1)ϕj(r2)

1

r12
ϕj(r1)ϕp(r2)dr1dr2 (4)

where we have assumed that the orbitals are real.

If all the orbitals are representable on an FFT grid of size Ng then this entire matrix can be evaluated by
performing n2 Poisson solves, and matrix multiplications with the cost equal to O(n2Ng ln(Ng)) and O(nNNg),
respectively. Out of the two steps, we find that the cost of Poisson solves O(n2Ng ln(Ng)) dominates. Because
the ISDF calculation is not used, the memory requirement for storing the fitting functions ξ(R) (Ng × Nξ) is
eliminated.

3. Instead of performing ISDF on the products of atomic orbitals once at the start of the calculation, one can
perform a new ISDF calculation on the product of molecular orbitals at each SCF iteration. The two dominant
costs of this algorithm are the same as that of AO-based ISDF—O(N2

ξNg) for matrix multiplications and

O(NξNg ln(Ng)) for Nξ Poisson solves. The potential advantage is that the Nξ required is independent of the
basis set, it only depends on the number of electrons, and it is expected to be smaller than the Nξ from ISDF
on atomic orbital pairs. The disadvantage is that one has to perform an ISDF at each SCF iteration and ISDF
remains the dominant cost of the calculation. This approach, of performing ISDF on the molecular orbitals, was
first pointed out by Hu et al.37 It was recently extended to use with Gaussian basis sets and k-point sampling
by Rettig et al.41 where they pointed out a few terms that were missing in the gradient of the exchange energy
in37.

For Γ-point calculations we expect the CPU cost of the FFT-based approach and rPS to be lower than that of the
MO-based ISDF calculations. The memory cost of the FFT-based approach is superior to the other two because one
does not have to store the ISDF fitting functions.

In this work, we introduce a third approach that relies on the use of multiple grids of varying resolutions. Our
algorithm uses both a single-shot ISDF by using pivoted Cholesky on atomic orbitals and an iterative FFT-based
Poisson solution at each SCF cycle. The ISDF is only performed for products of atomic orbitals where at least one
of the orbitals is sharp and the FFT is only used to solve the Poisson equation for products where both orbitals are
diffuse, as described in more detail below.
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B. Using multiple grids for exchange

In this section we describe the basic idea of our multigrid algorithm for calculating exchange and go into more
technical details in the next section. We begin with an uncontracted Gaussian-type orbital (GTO) basis and partition
it into two sets. The first set contains sharp Gaussian basis functions with large exponents and the second set
contains diffuse basis functions with small exponents. The product of sharp-sharp and sharp-diffuse atomic orbitals
are approximated using ISDF on a grid centered around the atom on which the sharp function is centered (see
Figure 1). Because the functions are sharp here, they require the grid to have a high point density, though for the
same reason they do not span the full unit cell. Notice that the sharp functions with large exponents decay rapidly
and their product with any other function is only expected to be non-zero in the local spatial region where it is itself
non-zero. The rest of the products between diffuse-diffuse functions are treated using the iterative FFT approach
outlined in the second bullet point of Section IIA. This does not use ISDF but is solely based on Poisson solves using
FFT. Our algorithm can reduce both the memory and CPU cost compared to usual ISDF-based calculations because:

1. We only need to perform ISDF calculations once, before the SCF iterations, instead of at each SCF iteration. We
perform natom (the number of atoms) independent local ISDF calculations and each calculation is cheap. The
cost of each local ISDF calculation scales linearly with the size of the system. After the ISDF fitting functions
are obtained one has to construct the two-center Coulomb matrix (ξ|ξ′) which scales quadratically with the size
of the system, making the entire ISDF calculation quadratic in system size. In this algorithm, we do not need
to use the randomized algorithm and the overall cost of ISDF is negligible.

2. The memory cost of our algorithm is largely independent of the size of the basis set and the overall memory
requirement is quite low. This is because all of the diffuse-diffuse products, which represent the largest fraction
of the non-negligible basis set pairs, are treated using an FFT grid that is independent of the basis set size. A
key point is that the number of grid points needed to represent diffuse functions can be fairly small and thus
the Poisson solves are cheap. Furthermore, for these pairs of basis functions, we do not store ISDF functions.

Because we use multiple grids of different resolutions, we have called our method “multigrid” inspired by the
approach of the same name used to speed up the Coulomb matrix formation52–57. Although currently we only employ
grids of two resolutions, one for sharp and one for diffuse functions, this approach is readily extended to include a
larger number of grids. This can become important when all-electron calculations are performed without the use of
Pseudopotentials, where a larger range of resolutions is needed due to the presence of extremely sharp basis functions.
The approach here also has similarities to that of Füsti-Molnár and Pulay63,64 in which the basis functions are
partitioned into sharp and diffuse and different approaches are used to evaluate the contributions from various pairs.
Recently, a similar approach has been used in the context of stochastic density functional theory where contributions
of sharp functions are evaluated exactly while for diffuse functions stochastic resolution of identity is used47.
In the next section, we describe in more detail how the various grids are formed and how the entire exchange matrix

is calculated.

III. COMPUTATIONAL DETAILS

To illustrate the algorithm let us imagine we have an atom, A, with uncontracted GTOs with exponents α1, α2, · · ·
in decreasing order of magnitude. A user-defined value, αmin, divides the GTOs into sharp functions that have
exponents larger than αmin and diffuse functions with exponents smaller than αmin. Although the sharp functions
require a high-resolution grid, the spatial extent of this grid is relatively small because the function decays rapidly in
real space. The real space and Fourier space representation of an s-type function of exponent α are exp(−αr2) and
exp(−G2/(4α)) up to a multiplicative factor. If we want to represent the functions in real space up to an accuracy of
εr then we have a local atom-centered grid of radius,

rmax =

√
− ln(εr)

αmin

(5)

All exponents greater than αmin are supported by local grids with grid points RA,RB , · · · respectively, centered on
atoms A,B, · · · , respectively (see the upper panel of Fig 1). The remaining functions are represented on a sparse
grid of lower resolution that spans the entire unit cell (U in the lower panel of Fig 1). The sparse universal grid is
truncated in the Fourier space with a wave number GU,max such that,

GU,max =
√
−4α ln(εK) (6)
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U

B

C

A

FIG. 1: Example of the grid structure used for building the exchange matrix. The most dense grid is only defined on spherical,
atom-centered regions (colored circles, A, B, C; top). The volume of each atom-centered grid is determined by a cutoff radius
beyond which the local GTOs (L) with exponents larger than αmin (colored lines) are expected to go to zero (see Equation 5).
A sparse universal grid (U) spans the full supercell and supports all global GTOs (G) but is only required by exponents smaller
than αmin.

where εK is a threshold that one can decrease continuously to increase the overall accuracy of the calculation.
For all systems considered in this article, we have found that using εr = 10−5 gives an overall error that will be

below 50 µ Ha per atom. The optimal value of αmin from a computational cost point of view can be system-dependent.
There is a trade-off between the cost of the exchange evaluation and the memory requirement for storing the functions
on the dense grid. A higher αmin speeds up the ISDF calculation because fewer functions are considered sharp but it
also increases the memory cost for storing µ(RU ) because the universal grid U requires more points. We have found
that an αmin value of 2.8 Bohr−2 is a reasonable choice for the systems studied here.

Now one performs a local interpolative decomposition on each atom-centered grid A such that the equality,

µL
A(RA)ν

G
A (RA) ≈

∑
ξA

µL
A(ξA)ν

G
A (ξA)(ξA|RA) (7)

is satisfied up to sufficient accuracy, determined by an ISDF threshold εISDF. In the equation, the subscripts indicate
the grid centered on atom A and the superscript L stands for local, indicating all sharp functions that are atom-A
centered. νGA are all functions (superscript G stands for global) that have a non-zero value on the grid around atom
A, these include both the sharp and diffuse functions on atom A and also functions on other atoms. ξA are ISDF
fitting points (functions) on the grid around A. At this point, it is also useful to define the set of functions µN

A that
are present in the global list (G) but are not in the set (L), i.e. functions that have a non-zero value on at least one
of the grid points RA of local grid centered on A but are not one of the sharp functions centered on atom A.
For the dense atom-centered grids, the ISDF fitting is done using pivoted Cholesky without randomization because,

unlike on a full grid, it is inexpensive to build the product density matrix M(RA,R
′
A) (Eq. 2) on local grids. After

selecting the points using pivoted Cholesky we use a least square minimization (Eq. 3) to obtain the fitting functions
ξA(RA). These functions are fully supported on the local grids and are relatively inexpensive to store in memory.
This local ISDF procedure is carried out for each local grid and the number of fitting functions chosen on each
grid is controlled by the user-specified tolerance εISDF . The cost of performing the local ISDF calculation for each
atom-centered grid is system size-independent.

Once the fitting functions are formed we calculate the two-centered Coulomb integral (ξA|ξB) for all pairs of atom-
centered ISDF functions and (ξA|RU ), between ISDF functions on atom centered grids and each grid point on the
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Symbol Meaning

αmin Gaussians with exponents greater than αmin are sharp and others are diffuse

εr Threshold that determines the extent of the local grid (see Equation 5 and upper panel of Figure 1)

εISDF Threshold used during pivoted-Cholesky decomposition that determines the number of ISDF functions

εK Determines the number of grid points that make up the universal sparse grid (see Equation 6)

TABLE II: The accuracy of the exchange calculation is determined by four different thresholds as outlined above. For all the
calculations in the paper we fix εr to be 10−5 and αmin is chosen to be 2.8 Bohr−2. The parameters εK and εISDF are varied
to obtain the desired accuracy.

universal grid. The cost of constructing these matrices is equal to O(Nξ,LNg ln(Ng)) + O(N2
ξ,L), where Nξ,L are the

total number of ISDF functions from all atom-centered grids. The first term comes from having to perform an FFT
for each local ISDF fitting function and the second term comes from evaluating the matrix (ξA|ξB). Notice that
because each ISDF function is local the cost of this matrix evaluation is only quadratic as opposed to cubic with fully
non-local ISDF functions. Finally, the calculation of the matrix (ξA|RU ) only requires the potential due to the fitting
function on the universal grids and does not require any matrix multiplications. One can readily evaluate the entire
matrix (RU |R′

U ) using a single FFT, using the fact that this is a circulant matrix. In our algorithm, we avoid storing
this matrix and use FFT to calculate the exchange matrix.

The analysis here shows that the entire cost of the ISDF calculation is quadratic in the system size which is lower
than the cubic cost of forming the exchange matrix. Therefore, the overhead of performing these ISDF calculations
is negligible. Table II summarizes the various thresholds used to construct the exchange matrix.

A. Building the exchange matrix

(μ |ξ )G

A
B
C

U

A B C U

(μ |ξ )L

A
B
C

U

A B C U

(μ |ξ )N

A
B
C

U

A B C U

FIG. 2: Graphical representations of the matrices (µ|ξ)G, (µ|ξ)L, and (µ|ξ)N . The colors here follow from Figure 1 and represent
sets of atom-centered GTOs that are local to atom-centered grids. The white blocks correspond to zeros in the matrix and the
shaded blocks represent non-zero entries. The columns of the matrices correspond to ISDF functions for atom-centered grids
(A, B, C) or all the grid points on the universal grid U .

In the multigrid approach, the expressions of the two-electron integrals have the THC form, however, there are now
four terms,

(µν|λσ) =
∑
ξξ′

(µ|ξ)L(ν|ξ)G(ξ|ξ′)(λ|ξ′)G(σ|ξ′)L +
∑
ξξ′

(µ|ξ)N (ν|ξ)L(ξ|ξ′)(λ|ξ′)L(σ|ξ′)N

=
∑
ξξ′

(µ|ξ)L(ν|ξ)G(ξ|ξ′)(λ|ξ′)L(σ|ξ′)N +
∑
ξξ′

(µ|ξ)N (ν|ξ)L(ξ|ξ′)(λ|ξ′)G(σ|ξ′)L (8)

The various matrices with superscripts L, N , and G are described in Figure 2. The four terms arise to ensure that
products of basis functions are only evaluated on the appropriate grid. For example, there are diffuse functions that
are non-zero on local grids of various atoms and also on the diffuse grid. The equation ensures that the product
of diffuse functions is only evaluated on the most sparse grid; on the sharp grids, only products of sharp-sharp and
sharp-diffuse are evaluated.

We use occ-RI and only the occupied-virtual part of the exchange matrix is constructed using the two-electron
integrals in Eq. 8. We would like to reemphasize that in Eq. 8 one needs the two-electron integrals (RU |R′

U ) because
all points on the sparse universal grids are included as ISDF points. However, this matrix is never stored and we rely
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on the fact that this matrix is diagonal in the Fourier space and the action of this matrix on any function is evaluated
using FFTs.

It is worth pointing out that one can potentially speed up the calculations by utilizing the block structure of
the various matrices. However, in our current work, the entire code is implemented in Python and we find that
implementing block multiplication by using for loops incurs an overhead that nullifies any benefit of reducing the
computations. In a future publication, this can be remedied by implementing some of these matrix multiplications in
an optimized C-code.

IV. RESULTS AND DISCUSSION

The algorithm described above was implemented in Python, with a small portion that allows for the direct cal-
culation of atomic orbitals in C. The one-electron integrals comprising the core Hamiltonian are calculated using a
multigrid branch of PySCF.65 We benchmark the performance of the multigrid ISDF method with occ-RI using two
systems: diamond, with a conventional unit cell containing eight carbon atoms, and lithium hydride, with a conven-
tional unit cell containing four lithium and four hydrogen atoms. For all calculations the Goedecker-Teter-Hutter
(GTH) pseudopotentials66–68 and uncontracted GTH-CC-XZVP basis sets69 of Ye are used throughout. We use a
Kinetic energy cutoff of the plane waves in FFT of 70 Eh for diamond and 130 Eh for lithium hydride to ensure that
the error from the finite plane-wave cutoff is less than 5 µHa per atom. For all calculations shown in this section, we
fix εr = 10−5 and αmin = 2.8 Bohr−2.

A. Accuracy of multigrid ISDF
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FIG. 3: The error per atom incurred from the ISDF approximation for diamond (C8) and lithium hydride (Li4H4) supercells
with an increasing number of local fitting functions for fixed εK of 10−2 and 10−3 for diamond and lithium hydride, respectively.
The four points on each curve are obtained by using εISDF = 10−2, 10−3, 10−4, 10−5.

In multigrid ISDF there are two types of fitting functions, the first set is local and is supported on a dense grid
(their number is denoted by Nξ,1). These functions are obtained through ISDF. The memory and CPU cost of using
these functions increases quadratically with Nξ,1. The second type of ISDF functions are Sinc functions uniformly
placed throughout the unit cell (their number is denoted by Nξ,2). The memory and CPU cost of the calculation
increases only linearly with the number of these functions.

In Figure 3 we show how the number of local ISDF functions changes as one reduces the εISDF threshold and
the accompanying reduction in the error of the calculation. As shown, the number of local ISDF functions needed is
relatively small and the number of these functions does not change significantly with the size of the basis set. The
error stops decreasing exponentially because we have kept εK fixed which fixes the number of ISDF functions on the
diffuse grid.
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Basis Nξ,1 Nξ,2 α1 α2 N Nsharp

Diamond (C4)8

DZ 3240 17576 4.3 – 4.3 1.3 – 0.1 1344 256

TZ 4128 27000 5.4 – 5.4 2.0 – 0.1 2368 256

QZ 5256 39304 6.2 – 6.2 2.6 – 0.1 3968 256

Lithium hydride (Li4H4)8

DZ 1728 74088 8.4 – 7.3 2.1 – 0.1 896 160

TZ 4568 39304 10.9 – 3.1 1.4 – 0.1 1696 320

QZ 6120 74088 12.5 – 4.5 2.3 – 0.1 3136 320

TABLE III: The basis functions and ISDF fitting functions for 2× 2× 2 super cell of diamond ( (C8)8) and lithium hydride (
(Li4H4)8). Nξ,1: the number of ISDF functions on the dense grid, Nξ,2: the number of uniformly placed Sinc functions on the
diffuse grid, α1: the range of exponents local to the dense grid, α2: the range of exponents supported by the diffuse grid, N :
the total number of basis functions, and Nsharp: the number of sharp basis functions.

The number of uniform ISDF functions (Nξ,2) depends on two settings: the largest GTO exponent that is less than
the threshold αmin and the threshold εK . These functions constitute the majority of the ISDF fitting functions and
often far exceed the number of ISDF functions on the dense grid. Nξ,2 can vary with the system and basis set. For
example, in the TZ basis set of lithium hydride there are no exponents between 3.1 and 1.4 (see Table III), thus with
the αmin of 2.8 we find that the Nξ,2 for the TZ basis set is smaller than that for the DZ basis set. Table III gives
detailed information on the number of basis functions and ISDF functions supported on the dense and sparse grids,
along with the range of exponents for the basis functions on each grid.
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FIG. 4: The results in the two graphs are obtained using the TZ basis set. Nξ in the graph includes ISDF basis functions
from both the dense and sparse grids. The number of ISDF functions on the sparse grid was Nξ,2/N ≈ 11 for diamond, and
23 for lithium hydride. The accuracy is independent of system size so smaller systems may be used when choosing an ISDF
threshold. The data here can be reproduced with the following settings: εK = 10−2 and εISDF = 10−2, 10−3, and 10−4 for
diamond, and εK = 10−3 and εISDF = 10−3, 10−4, and 10−5 for lithium hydride.

Next, we show that once the various thresholds are selected for a unit cell, the error per atom does not increase with
the size of the system. Figure 4 shows the error per atom with increasing Nξ/N for the diamond conventional unit cell
C8 and supercells of increasing sizes: (C8)2, (C8)4, and (C8)8; it also shows the lithium hydride conventional unit cell
Li4H4 and supercells of increasing sizes: (Li4H4)2, (Li4H4)4, and (Li4H4)8. Here the uncontracted GTH-CC-TZVP
basis is used with εK = 10−2 and 10−3 for diamond and lithium hydride, respectively, which determine the number of
grid points in the sparse universal grid. Three different ISDF thresholds are used, εISDF = 10−2, 10−3, 10−4, which
increase the number of ISDF fitting functions used on the dense grids. One can see that with decreasing thresholds
the errors in the calculations exponentially decrease. The number of fitting functions Nξ includes the ISDF functions
from the atom-centered grids and also all the grid points in the universal sparse grid.

The Nξ/N in these calculations is larger than in conventional AO-based ISDF by almost a factor of two. It is worth
remembering that the ISDF functions on the sparse grid most greatly contribute to Nξ/N . For these functions, we do
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not store or calculate the two-center Coulomb integrals and thus, the overall CPU and memory cost is significantly
lower than AO-based ISDF as we show in the next subsection.

B. Cost of the multigrid calculations
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FIG. 5: Wall times for a single exchange build using the AO-based ISDF (THC), robust pseudospectral method (rPS), single-
grid with no ISDF (FFT), and multigrid ISDF (MG) methods on a single core of Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
processor. The wall time for the full ISDF procedure (red) is divided by the number of iterations to evaluate the per-iteration
cost. The systems reported are a 2×2×2 supercell of C8 (diamond) and a 1×2×2 supercell of Li4H4 (lithium hydride). For an
accuracy of ≈ 50 µHa/atom, we used εK = 10−2 and εISDF = 10−4 for diamond and εK = 10−3 and εISDF = 10−5 for Li4H4

in the multigrid calculations. The ISDF parameters Nξ/N = 13 and 6 for Li4H4 and 7 and 4 for diamond were used for the
THC and rPS methods, respectively, to get a similar accuracy. For the MG method, the wall times for building the exchange
(dark blue) and Coulomb (Direct, light blue) matrices are nearly equivalent. They are also comparable to the times for the
THC and rPS methods. The ISDF wall time, however, is one to two orders of magnitude faster using the MG method.

Figure 5 compares the wall times of single Coulomb and exchange builds and the ISDF wall time that includes the
time to find ISDF functions ξ and build the matrix (ξ|ξ′) (Eq. 1). The ISDF times here are weighted by a factor of
1/7. A major hurdle overcome by the multigrid method is the cost of ISDF. The wall times from the multigrid ISDF
are one to two orders of magnitude faster than the single-grid THC and rPS methods (with occ-RI) from Ref.40. In
the multigrid ISDF method, this is reduced because only small subsets of product densities are fit on regions of the
most dense grids (Eq. 2). The most significant efficiency gain comes from not fitting the universal sparse grid and
calculating the matrix (ξ|ξ′) (Eq. 1) in a direct fashion during the exchange build.
The memory requirement for the largest arrays is significantly reduced in the multigrid builds. For the multigrid

method, the matrix (ξ|ξ′) for the 2×2×2 diamond TZ data shown here is about 1 GB, and the orbital matrices (µ|ξ)
require less than 1 GB. For the LiH data shown here, the total memory required by the MG method is less than 2
GB. For diamond, the THC method requires about 53 GB and rPS 28 GB. For 1 × 2 × 2 LiH supercell , THC and
rPS require about 54 and 36 GB, respectively. Compared to the single grid methods, the MG method requires up to
about 35 times less memory for the data here. The smaller system is used for LiH as the 2×2×2 supercell required
more than 128 GB of memory when using the THC method.

Next, we calculate the scaling of the various steps with increasing system size. Figure 6 shows the cost of single
Coulomb and exchange builds, the total ISDF times (as in Fig. 5 are weighted by 1/7), and the wall time per SCF
iteration for diagonalizing the Fock matrix for diamond supercells of up to 80 unit cell copies, depending on the basis,
and lithium hydride supercells of up to 48 copies. Calculations using GTH-CC-DZVP (DZ, left), GTH-CC-TZVP
(TZ, middle), and GTH-CC-QZVP (QZ, right) are shown. The thresholds used are the same as reported in Fig. 5.
The following conclusions can be drawn from the graphs:

1. The multigrid ISDF scales quadratically N2, which is due to the local nature of the fitting. For errors under 50
µHa, we used an ISDF threshold εISDF of 10−4 for diamond and 10−5 for lithium hydride which corresponds
to Nξ/N of 9 to 84, depending on the system and basis used. The majority of these fitting functions are Sinc
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FIG. 6: Wall times for performing ISDF (weighted by 1/7, dark blue), a single build of the Coulomb (Direct, light blue) and
exchange (purple) matrices, and diagonalizing the Fock matrix (red) on a single core of Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz processor. The calculations were performed using the uncontracted GTH-CC-DZVP (DZ, left), GTH-CC-TZVP (TZ,
middle), and GTH-CC-QZVP (QZ, right) basis sets. The systems used are diamond supercells (top) of 1, 4, 8, 12, 18, 27, 36,
48, 64, and 80 unit cell copies (DZ), 1, 4, 8, 12, 18, 27, 36, and 48 copies (TZ), and 1, 4, 8, 12, 18, 27 and 36 copies (QZ), and
lithium hydride supercells (bottom) of 1, 4, 8, 12, 18, 27, 36, and 48 unit cell copies (DZ), 1, 4, 8, 12, 18, 27, and 36 copies
(TZ), and 1, 4, 8, 12, 18, and 27 copies (QZ). The settings used here are the same as in Figure 5.

functions on the sparse grid. A large value of 84 is sometimes needed for smaller basis set such as DZ because
the number of Sinc functions can be quite large relative to the size of the basis set.

2. The scaling of the exchange matrix is cubic with the system size. The cost of the calculation for the largest
basis set is only about a factor of 4 more expensive than the cost of performing diagonalization.

3. The cost of Coulomb is nearly linear with the size of the system. There is some deviation from linearity because
in these calculations we only use 2-4 Coulomb grids. By adding more grids, linear scaling is possible; doing so
comes with additional CPU cost but no additional memory requirement.

4. The cost of the exchange is cheaper than the cost of Coulomb calculations for fairly large systems containing
up to 3,000 basis functions in the case of diamond with the QZ basis set and for around 1,000 basis functions
in the case of lithium hydride with the QZ basis set.

5. The largest calculation, in terms of the number of basis functions, was a 3×3×4 diamond supercell with the QZ
basis set containing 17,856 basis functions and 1,152 electrons. Because we use tighter thresholds, both εISDF

and εk, for lithium hydride the largest calculation for it was a 3× 3× 3 supercell containing 431 electrons and
10,584 basis functions; this was also with the QZ basis. The number of electrons per unit cell are also smaller
in LiH than in Diamond.
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V. CONCLUSIONS

In this paper, we have shown that efficient calculations of exchange matrices can be performed using our multigrid
ISDF algorithm. The multigrid ISDF is significantly more efficient than the usual ISDF algorithm both in terms of
memory and CPU cost. With this algorithm, relatively large calculations (containing > 17, 000 basis functions) can
be performed without running out of memory on a single node. With this technique, the exchange calculation is more
efficient than Coulomb calculations for systems with up to about 1,000 basis functions for TZ and QZ basis sets in
diamond and lithium hydride systems. For large basis sets, such as QZ, the cost of exchange evaluation is only a
factor of 4 more expensive than the cost of diagonalization and because the scaling of the two steps is similar we
expect that this result will hold for even larger systems.

In our current implementation, we have not parallelized the calculations, although it should be possible to do so
with high efficiency because most of the operations involve a series of FFTs that can be embarrassingly parallelized,
or matrix multiplications that are also amenable to parallelization. We have also not made use of linear scaling
approaches to leverage the fact that the exchange matrix is near-sighted, which can be used to further improve the
efficiency of the calculations, particularly for systems with large band gaps. The approach we have outlined here
has many extensions that we are actively exploring, including the ability to perform all-electron calculations, use of
mixed Gaussian–plane-wave basis set, use for molecular calculations, the calculation of nuclear gradients, and also
use of k-point symmetry at a nearly linear cost (O(Nk log(Nk))) with the number of k-points Nk. Given that the cost
of the exchange evaluation is cheaper than Coulomb for systems containing up to 1,000 basis functions and around
100 electrons (these numbers are larger for diamond with the QZ basis set), one can likely perform hybrid DFT
calculations with a similar cost as pure DFT calculations if the unit cells contain 100 or fewer electrons (because the
scaling with Nk is similar for both Coulomb and exchange).
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10 J. Almlöf, K. Faegri, and K. Korsell. Principles for a direct SCF approach to LICAO-MO ab-initio calculations. Journal of
Computational Chemistry, 3(3):385–399, 1982.

11 C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon. The continuous fast multipole method. Chemical Physics
Letters, 230(1-2):8–16, 1994.
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