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The standard approach to test for deviations from General Relativity on cosmological scales is to
combine measurements of the growth rate of structure with gravitational lensing. In this study, we
show that this method suffers from an important limitation with regard to these two probes: models
of dark matter with additional interactions can lead to the very same observational signatures found
in modified gravity (and viceversa). Using synthetic data of redshift-space distortions, weak lensing,
and cosmic microwave background, we demonstrate that this degeneracy is inevitable between mod-
ifications of gravity and a dark fifth force. We then show that the coming generation of surveys, in
particular the Square Kilometer Array, will allow us to break the degeneracy between such models
through measurements of gravitational redshift. Performing a Markov Chain Monte Carlo analysis
of the synthetic data set, we quantify the extent to which gravitational redshift can distinguish be-
tween two representative classes of models, Generalized Brans-Dicke (modified gravity) and Coupled
Quintessence (fifth force).

I. INTRODUCTION

The standard Λ Cold Dark Matter (ΛCDM) cosmolog-
ical model consists of two elusive components, dark en-
ergy and dark matter, whose properties remain unknown.
Dark energy, which is postulated to drive the observed ac-
celerated expansion of the Universe [1, 2], takes the form
of a cosmological constant Λ within the standard model
and accounts for approximately 70% of the total cosmic
density [3]. The lack of understanding of its properties
has motivated the search for alternative explanations of
the accelerated expansion, most notably the possibility
that there are modifications to General Relativity (GR)
on scales larger than individual galaxies. In many pop-
ular modified gravity scenarios, this is attributed to the
presence of a new dynamical degree of freedom mediat-
ing the gravitational interaction, e.g. a scalar field in the
so-called scalar-tensor theories [4, 5], or a vector field in
Einstein-Aether theories [6–8].

In addition to dark energy, several observations have
strongly suggested the presence of another obscure com-
ponent, dark matter, based on its gravitational influence
on visible matter and light. In the standard cosmologi-
cal model, dark matter takes the form of a slow-moving
(“cold”), non-interacting, non-baryonic species. Since
such a particle has not been detected yet, several ex-
tensions to the simple CDM paradigm have been pro-
posed. These include scenarios where dark matter inter-
acts weakly with particles of the Standard Model [9, 10],
with the dark sector (e.g. dark radiation) [11, 12], or
through self-interactions via a fifth (non-gravitational)
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force [13–16].

To test for gravity modifications and dark matter in-
teractions, the standard approach is to employ mea-
surements of the growth rate of cosmic structure ob-
tained through redshift-space distortions (RSD) (see e.g.
Refs. [17–20]). Since gravity governs the way cosmic
structure evolves with time, deviations from GR generi-
cally modify the growth rate. Similarly, the growth rate
would also be affected by any new force acting on the
dark matter particles, as this would have an impact on
structure formation.

A modification of gravity would involve a deviation in
the Poisson equation affecting the evolution of all cos-
mic components, whereas a fifth force would only modify
the Euler equation for dark matter. Current analyses are
testing these two scenarios separately. The community
working on gravity modifications usually assumes that
dark matter is a cold non-interacting particle and uses
the growth rate of structure to test theories beyond GR,
see e.g. Ref. [21]. By contrast, the community working on
non-standard dark matter models typically assumes the
validity of GR and uses the growth rate to constrain the
strength of dark matter interactions [22–24]. As we do
not know which scenario (if any) is correct, it is impor-
tant to ask whether it is possible to test for both kinds
of modifications at the same time and disentangle them
from one another.

In Ref. [25], it was shown that this cannot be achieved
with current observables. The growth rate of structure
is affected by the modifications in both scenarios, poten-
tially in the very same way. On the other hand, weak
lensing, which is sensitive to the sum of the two gravi-
tational potentials describing the geometry of the Uni-
verse, is also generically unable to discriminate between
the two cases. The degeneracy can however be broken by
considering measurements of an observable accessible by
the coming generation of galaxy surveys: gravitational
redshift [26, 27]. This effect, originally predicted by Ein-
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stein [28], directly probes the gravitational potential en-
coding the distortion of time and entering the Euler equa-
tion. This yields an immediate test of modified gravity
and provides a way to distinguish it from the presence of
a fifth force acting on dark matter.

In this work, we quantify the capability of gravitational
redshift to break the degeneracy between gravity modifi-
cations and a dark fifth force, performing a Markov Chain
Monte Carlo (MCMC) analysis on synthetic data, based
on the survey specifications of the Square Kilometer Ar-
ray Phase 2 (SKA2) [29]. We consider two specific mod-
els: the Symmetron modified gravity model [30], which is
a scalar-tensor theory of Generalized Brans-Dicke (GBD)
type, and a Coupled Quintessence (CQ) model [31, 32]
with exactly the same form of the coupling and the po-
tential as the Symmetron, but with only dark matter
coupled to the scalar field. We show that the parame-
ters of the two models are fully degenerate in an analy-
sis including RSD, weak lensing and Cosmic Microwave
Background (CMB) data. We then demonstrate that in-
cluding gravitational redshift into the analysis breaks the
degeneracy, and we determine how large the deviations
from ΛCDM need to be for this observable to be effective.

The rest of this paper is organized as follows. In Sec. II,
we present the GBD and CQ models considered in our
analysis, highlighting their degeneracies in RSD and weak
lensing data. We then describe the galaxy clustering,
weak lensing and CMB observables included in the anal-
ysis in Sec. III, and discuss the details of the numerical
investigation in Sec. IV. Finally, we present the results in
Sec. V and conclude in Sec. VI. We include some addi-
tional details on the GBD and CQ models in Appendix
A and on the specifications for the galaxy clustering ob-
servables in Appendix B.

II. THE TWO DEGENERATE SCENARIOS

A. GBD and CQ

In order to illustrate the disentangling power of grav-
itational redshift, we compare a modified gravity model
with a scenario involving a dark fifth force acting on dark
matter. The argument that follows is fully general and
applicable to any model belonging to these categories,
but for the sake of concreteness, we focus on a GBD
scalar-tensor theory and a CQ model, following Ref. [25].
Both scenarios involve an additional scalar field, accord-
ing to the actions given in Appendix A. In the GBD case,
the scalar field has the same conformal coupling to all
cosmic components, whereas in CQ the coupling only in-
volves dark matter (in the form of CDM) and propagates
a dark force of non-gravitational origin. We denote the
coupling strengths with β1 and β2 and the scalar field
masses with m1 and m2 in the GBD and CQ models,
respectively.

We work within linear perturbation theory and as-
sume that the Universe is described by a perturbed flat

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
in the conformal Newtonian gauge, with line element

ds2 = a2[−(1 + 2Ψ)dτ2 + (1− 2Φ)dx2] , (1)

where τ denotes conformal time and a the scale fac-
tor. The two metric potentials Ψ and Φ encode per-
turbations in the geometry of the Universe. The matter
content can be described by two fields: the density con-
trast δ = δρ/ρ and the velocity divergence θ. These
contain contributions from both CDM (c) and baryons
(b), ρδ = ρbδb + ρcδc and ρθ = ρbθb + ρcθc. The relations
among these fields, listed in Appendix A, are provided by
the chosen theory of gravity and the energy-momentum
conservation. In particular, we notice that the GBD sce-
nario involves a nonzero anisotropic stress and modifica-
tions in the Poisson equation, whereas the CQ case only
includes modifications in the Euler equation for CDM.

B. Impact on the growth of cosmic structure

Let us analyze the implications of the GBD and CQ
scenarios on the growth of cosmic structure. In either sce-
nario, combining the Einstein and conservation equations
yields an equation for the growth of density fluctuations
in the linear regime of the form

δ̈ +Hδ̇ = 4πGeffa
2ρδ . (2)

Here, overdots indicate derivatives with respect to con-
formal time, H is the conformal Hubble parameter and
Geff is the effective Newton constant that encodes the
effective gravitational coupling. The latter takes the fol-
lowing form in the two models:

GGBD
eff = G

[
1 +

2β̃2
1k

2

a2m2
1 + k2

]
, (3)

GCQ
eff = G

[
1 +

2β̃2
2k

2

a2m2
2 + k2

(
ρc
ρ

)2(
δc
δ

)]
, (4)

where G is the Newton constant and we have defined
β̃2
i = β2

i /(8πG), for i = 1, 2. We remark that the
only difference between the two expressions is the term
(ρc/ρ)

2
(δc/δ) suppressing the value of Geff in the CQ

case, due to the fact that the coupling only affects CDM
in this scenario. However, such a difference can be ab-
sorbed into the unknown value of the coupling β2. There-
fore, measurements of the growth of cosmic structure that
only constrain Geff cannot distinguish between a scenario
where β1 = 0 (GR is valid) and β2 ̸= 0 (CDM experi-
ences a fifth force), and a scenario where β1 ̸= 0 (gravity
is modified) and β2 = 0 (there is no dark fifth force). In
general, if we analyze the data allowing for both β1 and
β2 to vary, we see from Eqs. (3) and (4) that one can only

constrain the combination β2
1 + (ρc/ρ)

2
(δc/δ)β

2
2 . While

the shape of the degeneracy depends on the specific mod-
els considered, deviations in the Poisson and the Euler
equations are generically indistinguishable through mea-
surements of the growth of structure [33].
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C. Impact on weak lensing

The other key large-scale structure observable is weak
lensing, measured in cosmic shear, magnification of high-
redshift galaxies, and the lensing of the CMB. Weak lens-
ing is directly sensitive to the Weyl potential, i.e. the sum
of the two gravitational potentials Φ and Ψ [34]. How-
ever, as shown in Ref. [25], measurements of the Weyl
potential cannot disentangle GBD from CQ, as in both
scenarios we have the following Poisson-like relation1,

k2(Φ + Ψ) = −8πGρδ . (5)

This shows that the Weyl potential is directly related to
the evolution of density fluctuations and is consequently
subject to the same degeneracy found with measurements
of the growth of structure. Note that modified grav-
ity models other than GBD can lead to modifications in
Eq. (5) and consequently can be distinguished from a
dark fifth force through measurements of weak lensing.
However, the opposite statement is not true: models with
a dark fifth force always leave Eq. (5) unchanged and
thus cannot be distinguished from a GBD modification
of gravity using weak lensing.

D. The setup for the analysis

In the following, we will show that the two types
of modifications can be disentangled using gravitational
redshift, which provides a direct measurement of the po-
tential Ψ appearing in the Euler equation. For the pur-
pose of this demonstration, we adopt the Symmetron
model [30, 36–38], in which the modifications become
important only at late cosmological times, above a given
value of the scale factor a⋆. The time evolution of β̃1,2
and m1,2 in this model is given by

β̃(a) = β⋆

√
1−

(a⋆
a

)3
, (6)

m(a) = m⋆

√
1−

(a⋆
a

)3
, (7)

for a > a⋆. We fix a⋆ = 0.5 for both scenarios and study
the constraints on the parameters β∗1 and β∗2 for differ-
ent values of the masses that set the Compton wavelength
of the scalar field.

III. OBSERVABLES

We consider three observables to constrain the GBD
and CQ models: galaxy clustering, weak lensing and the
CMB.

1 This assumes that A2 ≈ 1 in the GBD action in Eq. (A1), which
is required for the screening mechanism to be effective [35]. As
discussed in Appendix A, this assumption has no impact on the
arguments presented.

A. Galaxy clustering

Spectroscopic galaxy surveys provide a measurement
of the galaxy number counts fluctuations,

∆(n̂, z) ≡ N(n̂, z)− N̄(z)

N̄(z)
, (8)

where N is the number of galaxies in a pixel centered in
direction n̂ and at redshift z, and N̄ denotes the average
number of galaxies inside the pixel. The observable ∆ can
be expressed within linear perturbation theory as [39–41]

∆(n̂, z) = bδ − 1

H
∂r(V · n̂) + 1

H
∂rΨ+

1

H
V̇ · n̂

+

(
1− 5s+

5s− 2

Hr
− Ḣ

H2
+ f evol

)
V · n̂ ,

(9)

where r denotes the comoving distance to the galaxies, b
is the galaxy bias, s is the magnification bias and f evol

is the evolution bias. The dominant contribution to ∆
arises from the first two terms, which respectively encode
the effect of matter density perturbations and RSD [42].
These are the only two contributions that are measurable
with current data. The other terms are relativistic cor-
rections suppressed on sub-horizon scales by a factor of
H/k, including the Doppler terms and the gravitational
redshift effect given by the radial derivative of Ψ.2

We can extract information from ∆(n̂, z) by measuring
its two-point correlation function ξ ≡ ⟨∆(n̂, z)∆(n̂′, z′)⟩.
The density and RSD terms in Eq. (9) generate three
even multipoles in the correlation function: a monopole,
a quadrupole and a hexadecapole. Relativistic correc-
tions to these three multipoles have been shown to be
negligible, being suppressed by (H/k)2 relative to the
density and RSD contributions [43]. One can however
exploit the anti-symmetry generated by relativistic ef-
fects. This is manifested in the presence of odd multi-
poles, most notably a dipole, when cross-correlating two
different populations of galaxies [45–49]. Since the dipole
is sensitive to the effect of gravitational redshift, which
is suppressed by only a single power of H/k, measuring
it can help to disentangle modified gravity from a dark
fifth force, as we show below.

The cross-correlation between two populations of
galaxies with different luminosities—a bright and faint
sample labelled B and F, respectively—generates the fol-

2 Note that ∆ is also affected by other relativistic effects sup-
pressed by (H/k)2 and by gravitational lensing, whose impact is
negligible in the redshift range considered in this work [43, 44].
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lowing even multipoles in the flat-sky approximation:

ξBF
0 (z, d) =

1

2π2

∫
dk k2

[
bBbFPδδ +

1

5

(
1

H

)2

Pθθ

− 1

3
(bB + bF)

(
1

H

)
Pδθ

]
j0(kd) , (10)

ξBF
2 (z, d) = − 1

2π2

∫
dk k2

[
− 2

3
(bB + bF)

(
1

H

)
Pδθ

+
4

7

(
1

H

)2

Pθθ

]
j2(kd) , (11)

ξBF
4 (z, d) =

1

2π2

∫
dk k2

[
8

35

(
1

H

)2

Pθθ

]
j4(kd) . (12)

Here, jℓ denotes the spherical Bessel function of order ℓ
and Pδδ, Pθθ and Pδθ are the auto- and cross-power spec-
tra, which depend on k and z. The velocity divergence θ
is defined in Fourier space by V = i(k/k2) θ. The dipole
is given by

ξBF
1 (z, d) = − 1

2π2

∫
dk k2

[
(bB − bF)

H

(
kPδΨ −

Pδθ̇

k

)
−(bBαF − bFαB)

Pδθ

k
+

3

5
(αB − αF)

Pθθ

Hk

]
j1(kd)

− 1

5π2

∫
dk k2

d

r

(
1

H

)
(bB − bF)Pδθ(k, z)j2(kd) , (13)

where as a shorthand we have defined

αB,F ≡ 1− 5sB,F +
5sB,F − 2

rH
− Ḣ

H2
+ f evolB,F . (14)

The first term in Eq. (13), proportional to PδΨ, is the
contribution from gravitational redshift. This key term is
not present in the even multipoles and provides the infor-
mation needed to disentangle the GBD and CQ scenar-
ios. The last term in Eq. (13) is a wide-angle correction,
which is needed for a consistent treatment of the dipole
[50].3 Note that anti-symmetry can only be probed by
cross-correlating distinct populations, meaning that the
dipole signal is nonzero only for B ̸= F.

B. Weak lensing

Weak lensing can be measured through cosmic shear.
Here, we consider both shear-shear correlations and
shear-clustering correlations (also called galaxy-galaxy
lensing), both of which can be written in terms of the
density power spectrum Pδδ by employing Eq. (5). We

3 Note that wide-angle corrections also enter the even multipoles,
but can be neglected since they are more suppressed compared
to those in the dipole [45, 51].

can safely neglect the covariance between the lensing ob-
servables and the spectroscopic galaxy clustering sample,
since the lensing correlations are largely insensitive to the
small radial modes from which the growth of structure
and gravitational redshift are measured [52].

C. CMB

We consider the CMB temperature and polarization
angular power spectra (TT, TE and EE). We are inter-
ested in scenarios in which the deviations from ΛCDM
appear at late cosmological times, leaving the physics at
the time of last scattering unchanged. Therefore, the role
of the CMB observables in this analysis is primarily to
constrain the standard cosmological parameters.
In addition to this, there are also the secondary CMB

anisotropies. In particular, we note that late-time modi-
fications to the growth of cosmic structure can impact the
CMB on large scales through the integrated Sachs-Wolfe
(ISW) effect. Moreover, the temperature and polariza-
tion spectra we employ in this analysis are affected by
gravitational lensing. Since both ISW and gravitational
lensing depend on the Weyl potential, we can use Eq. (5)
to relate these terms to the density power spectrum Pδδ,
thus providing constraints on β∗1 and β∗2. However, this
does not give any contribution in discriminating between
the two types of modifications, and, for this reason, we do
not include separate measurements of the CMB lensing
potential.

IV. NUMERICAL ANALYSIS

A. The general approach

In order to quantify the degeneracy between the GBD
and CQ scenarios and assess the ability of gravitational
redshift to break it, we use mgcamb [38, 53–55], a mod-
ified gravity patch of the Boltzmann code camb [56, 57].
We employ Cobaya [58, 59] to carry out an MCMC anal-
ysis of the mock data set consisting of the observables
described in Sec. III. As a first step, we generate the
mock data for a given fiducial model involving one kind
of modification only, for example CQ with β∗2 = 1 and
fixed mass m∗2. We then perform a fit of the data allow-
ing for both β∗1 and β∗2 to vary, fixing m∗1 = m∗2.

4 The
resulting constraints will either indicate the presence of
a degeneracy or the lack thereof: if the two configura-
tions {β∗1 = 0, β∗2 ̸= 0} and {β∗1 ̸= 0, β∗2 = 0} provide

4 Note that by simultaneously varying both β∗1 and β∗2, we are
not claiming that we live in a universe where both gravity mod-
ifications and a dark fifth force are present. This approach is
necessary to determine which models can be constrained by the
data, without arbitrarily excluding one of the modifications.
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an equally good fit, we can conclude that the data can-
not distinguish between the two scenarios. On the other
hand, if the case {β∗1 ̸= 0, β∗2 = 0} is excluded, the
two kinds of modifications can be disentangled from one
another, breaking the degeneracy.

For each data vector, we perform two types of anal-
ysis to assess the degeneracy between the two models:
one where we do not include the dipole in the cluster-
ing data in Eq. (15), i.e. there are no constraints from
gravitational redshift, and another one where the dipole
is included. We build a multivariate Gaussian likelihood
for the combination of the three observables and adopt
wide uniform priors on the free parameters.

In each analysis, we have 11 free parameters: 5 cos-
mological parameters, with fiducial values ωb = 0.02242,
ωc = 0.12, h = 0.677, As = 2.105 × 10−9, and ns =
0.9665; 4 bias parameters related to the galaxy popula-
tions (defined in Appendix B); and 2 parameters associ-
ated with GBD and CQ, β∗1 and β∗2, see Eq. (6). Since
the mass of the scalar field is strongly degenerate with the
coupling and thus cannot be separately constrained [38],
we fix it to the same value in both scenarios, m∗1 = m∗2,
and run our analysis for different choices of the Compton
wavelength λ∗ ≡ 1/m∗.

B. Data vector specifications

1. Galaxy clustering

The galaxy clustering data vector consists of the fol-
lowing eight multipoles:

D =
(
ξBB
0 , ξBF

0 , ξFF0 , ξBF
1 , ξBB

2 , ξBF
2 , ξFF2 , ξTT

4

)
. (15)

This includes the usual even multipoles of RSD and im-
portantly, also the dipole ξBF

1 . Note that we only con-
sider the hexadecapole in the total population of galaxies
(labelled T), as Eq. (12) does not contain a dependence
on population-specific biases so that considering differ-
ent galaxy samples does not provide additional informa-
tion. We compute the multipoles in Fourier space from
power spectra generated using mgcamb, and perform
the transform to configuration space using the FFTLog
method [60].

Since the dipole is too small to be measured from
current data [47], we perform the forecasts assuming a
SKA2-like survey, for which the dipole is expected to
reach a signal-to-noise ratio of 80 [61]. We consider the
specifications of Ref. [29] for the number density, sky cov-
erage and galaxy bias. The separations considered in this
work range from d = 20h−1Mpc to d = 160h−1Mpc,
an interval where nonlinear corrections were found to
be negligible for the dipole [62]. Furthermore, we as-
sume a bias difference of 1 between the bright and faint
galaxy populations, in agreement with that measured in
Ref. [47]. More details on the modelling of the galaxy bias
and the magnification bias can be found in Appendix B.

We use the data vector covariance calculated in Ap-
pendix C of Ref. [63], which includes both shot noise and
cosmic variance. We account for the covariance between
different separations and different multipoles, but neglect
the one between different redshift bins, since the bins are
quite wide and do not overlap thanks to the spectroscopic
precision of the redshift measurements.

2. Gravitational lensing

For gravitational lensing, we consider the specifica-
tions of the Dark Energy Survey (DES) Year 1 [64, 65]
and compute the shear-shear correlations and the galaxy-
galaxy lensing correlations using mgcamb. Since mg-
camb is based on linear perturbation theory, we impose
the “aggressive” scale cut implemented in Ref. [55] to ef-
fectively remove the data in the nonlinear regime. This
is more restrictive than the cut used in the DES analysis
for the ΛCDM model [64], since in our case it would be
incorrect to follow the same approach and assume the va-
lidity of GR to model the observables on mildly nonlinear
scales. All nuisance parameters, including intrinsic align-
ment, lens photo-z shift, source photo-z shift and shear
calibration are fixed according to the DES Year 1 stan-
dard values [64, 65].
Note that by the time SKA2 data will be available,

more precise measurements of weak lensing will have been
performed by Euclid5 and LSST6. However, we do not
include these in our forecasts, since weak lensing cannot
break the degeneracy between GBD and CQ, as discussed
in Sec. II C.

3. CMB

For the CMB power spectra, we consider the Planck
specifications introduced in Ref. [66], using the 143 GHz
channel parameter values to compute the noise of the
measurement [53]. The cosmic variance is computed ac-
cording to Refs. [67, 68].

V. RESULTS

A. Breaking the degeneracy

In Fig. 1, we show the marginalized constraints on β∗1
and β∗2 for a CQ fiducial model with β∗2 = 1, λ∗ = 10
Mpc, a combination that is not excluded by current data,
see Ref. [38]. The blue contours correspond to the analy-
sis without the dipole, i.e. without gravitational redshift,

5 https://www.esa.int/Science_Exploration/Space_Science/

Euclid
6 https://www.lsst.org/

https://www.esa.int/Science_Exploration/Space_Science/Euclid
https://www.esa.int/Science_Exploration/Space_Science/Euclid
https://www.lsst.org/
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while the red contours include it. As expected, when the
dipole is not present, we obtain a perfect elliptic degen-
eracy between β∗1 and β∗2, which matches the analyti-
cal expectation discussed in Sec. II B. This means that
even though no gravity modifications were included in
the mock data vector, the data (RSD, weak lensing, and
CMB) are equally well described using either the (cor-
rect) CQ model or the GBD one.

In the GBD case, the best fit is around β∗1 = 0.84
and not β∗1 = 1. This reflects the fact that the im-
pact of a dark fifth force with coupling strength β∗2 = 1
on the growth of cosmic structure can be mimicked by
a modification of gravity with smaller coupling β1 =
(ρc/ρ)(δc/δ)

1/2β2 ≃ (ρc/ρ)
3/2β2 ≃ 0.84β2, as can be

seen from Eqs. (3)-(4) with our choice of fiducial cos-
mological parameters. This degeneracy has important
consequences when jointly analyzing RSD, weak lensing
and CMB data: if CDM is subject to additional inter-
actions, such modifications in the dark sector could be
incorrectly interpreted as evidence for modified gravity,
even though GR remains valid.

The inclusion of gravitational redshift into the analysis
decisively breaks the degeneracy between the two models.
Indeed, we can clearly see that the blue contours exclude
the case β∗2 = 0, indicating that a pure modification of
gravity no longer fits the data. Even with the dipole,
a large portion of the parameter space is still allowed,
implying that models with both a dark fifth force and a
modification of gravity are not excluded. However, such
scenarios involving both kinds of modifications would be
disfavoured according to the Occam’s razor.

B. Varying the coupling strength

As a next step, we investigate how small the CQ pa-
rameter β∗2 can be for the two models to be distinguish-
able with a SKA2-like survey. In Fig. 2, we present
the constraints on various fiducial models with fixed
λ∗ = 10Mpc and different values of β∗2. To reduce
the computational cost of the analysis, we fix the cos-
mological parameters to their fiducial values, and per-
form a likelihood minimization analysis only considering
the spectroscopic galaxy sample. The CMB and weak
lensing data are essential in constraining the cosmolog-
ical parameters, but the constraints on β∗1 and β∗2 are
driven by RSD and gravitational redshift.

We show the results including the RSD data only (in
blue), the dipole only (in yellow) and the combination of
the two (in red). Since the cosmological parameters are
fixed, the contours are now artificially much tighter than
in Fig. 1, but the degeneracy is perfectly captured and we
obtain a very good qualitative agreement with Fig. 1 for
the corresponding fiducial model. We notice that the case
β∗2 = 0.7 is at the edge of the region where the addition
of the dipole can exclude a pure GBD scenario, whereas
this observable does not give any additional information
for the fiducial model with β∗2 = 0.6. This means that if

0.0 0.2 0.4 0.6 0.8 1.0 1.2
*1

0.0

0.2

0.4

0.6

0.8

1.0

*2

Standard RSD+WL+CMB
RSD+Gravitational redshift+WL+CMB

FIG. 1. Marginalized 1σ and 2σ contours on β∗1 and β∗2,
with and without gravitational redshift. Here, the fiducial
model is CQ and is specified by β∗2 = 1 and λ∗ = 10 Mpc
(with β∗1 = 0). The inclusion of gravitational redshift allows
us to exclude GBD and thus break the degeneracy between
modified gravity and a fifth force.

0.0 0.2 0.4 0.6 0.8 1.0
*1

0.0

0.2

0.4

0.6

0.8

1.0

*2

Standard RSD analysis
RSD + Gravitational redshift
Gravitational redshift only
Fiducial models

FIG. 2. The 1σ confidence regions for four different CQ cou-
plings β∗2. For all fiducial models (indicated by stars) we set
λ∗ = 10 Mpc. All other parameters, except for β∗1 and β∗2,
have been fixed to their fiducial values.

there is a fifth force acting on CDM with a coupling β∗2 ≤
0.6, we will clearly detect the modifications with a survey
like SKA2, but we will not be able to determine whether
they are due to a dark fifth force or a modification of
gravity. On the other hand, if the coupling is larger,
the dipole will be able to discriminate between the two
scenarios.
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FIG. 3. Marginalized 1σ and 2σ contours on β∗1 and β∗2,
with and without gravitational redshift. Here, the fiducial
model is CQ and is specified by β∗2 = 0.6 and λ∗ = 100 Mpc
(with β∗1 = 0). The inclusion of gravitational redshift allows
us to exclude GBD (at 1σ) and thus break the degeneracy
between modified gravity and a fifth force.

C. Varying the Compton wavelength

In Figs. 1 and 2, we have fixed the value of λ∗ to
10Mpc. Since λ∗ governs the Compton wavelength of
the force mediated by the scalar field, a larger value of
this parameter would generate modifications in the clus-
tering observables at larger scales. In Fig. 3, we show
the constraints on mock data generated for a CQ fiducial
model with β∗2 = 0.6 and λ∗ = 100Mpc, where we see
that the dipole is able to break the degeneracy between
the two models at the 1σ level. This is due to the fact
that, for λ∗ = 100Mpc, this observable is significantly
modified at large scales when β∗2 = 0.6, contrary to the
previous case with λ∗ = 10Mpc, where the modifications
are very small for this value of β∗2.

D. The range of validity of our results

All the results presented so far concern GR models
with a dark fifth force acting on CDM. Since the situa-
tion is symmetric, the same conclusions also apply in the
case of GBD modified gravity with no CDM interactions.
In this case, the elliptic degeneracy without gravitational
redshift will be such that mock data generated by a GBD
model with β∗1 = 1 can be well described by a CQ sce-
nario with β2 ≃ (ρc/ρ)

−3/2 ≃ 1.19. Including gravita-
tional redshift allows us to distinguish between the two
scenarios down to β∗1 ≃ 0.7 for λ∗ = 10 Mpc.

Finally, for the dipole to be helpful in this analysis, let
us briefly discuss two quantities that impact the afore-
mentioned thresholds in β∗1 and β∗2. First, the bias
difference between the correlated galaxy populations di-
rectly governs the amplitude of the gravitational redshift
contribution, which in turn determines the ability of the
dipole to discriminate between the models. Here, we have
assumed a bias difference of 1, consistent with the mea-
surements from BOSS [47]. The population of galaxies
detected by SKA2 may significantly differ from that of
BOSS, possibly leading to a smaller bias difference. How-
ever, it is possible to boost this difference by exploring
different ways to divide the galaxies into two populations,
for example performing density splits based on their en-
vironment, which can increase the amplitude of the grav-
itational redshift contribution [69, 70].
Secondly, the range of scales considered in the anal-

ysis also has an influence on the role played by the
dipole. Here, we have adopted a minimum separation
of 20h−1Mpc, since at such scales nonlinear effects are
expected to have a small impact on the dipole in GR [62].
The situation may be slightly different in modified grav-
ity. We checked that if the minimum separation is
raised to 32h−1Mpc, the constraining power of the dipole
slightly decreases, leading to wider contours. As a con-
sequence, the limiting values for β∗1 and β∗2 obtained in
Sec. VB would become somewhat larger, but the main
message of our work would remain unchanged.

VI. CONCLUSIONS

Combining RSD with gravitational lensing is generally
regarded as the optimal way to test for deviations from
GR. Since RSD probe the evolution of structure, while
gravitational lensing is sensitive to the geometry of the
Universe, their combination would test for the gravita-
tional slip [71–75], which in a modified gravity scenario
is due to an additional degree of freedom mediating a
force on all non-relativistic matter. However, as we have
shown in this paper, these two observables cannot dis-
tinguish a modification of gravity from additional forces
acting on CDM. By performing an MCMC analysis, we
have demonstrated that mock data generated by a cou-
pled quintessence model with a fifth force acting on CDM
is equally well fitted by a GBD modified gravity scenario.
This means that, in the future, we may wrongly claim
to have discovered a deviation from GR on cosmologi-
cal scales, whereas in reality the modifications are due to
new interactions in the dark sector (or viceversa).
This ambiguity can be resolved by including the ef-

fect of gravitational redshift into the analysis. Thanks to
its sensitivity to the temporal distortion Ψ of the met-
ric, gravitational redshift combined with RSD directly
probes the validity of the Euler equation for CDM. This
provides an efficient way to discriminate between dark
interactions and modifications of gravity. Here, we have
quantified the constraining power of gravitational red-
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shift by comparing a GBD modification of gravity with
a CQ model, finding that modifications that are still in
agreement with current constraints will be distinguish-
able by a future survey like SKA2. This is particularly
remarkable, since measuring gravitational redshift does
not require new data, but can be simply achieved by
augmenting the standard RSD analysis with the dipole
generated in the cross-correlation of different galaxy sam-
ples.

Depending on the size of the deviation from ΛCDM,
the dipole may not be able to distinguish between the
GBD and CQ scenarios. However, since this signal is
directly related to the bias difference between the two
populations of galaxies being correlated, it is worth ex-
ploring strategies on how to boost this difference so as
to achieve the best possible constraints. This indicates a
promising avenue to shed light on the cosmological dark
sector in an unambiguous way.
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Appendix A: Generalized Brans Dicke and Coupled
Quintessence scenarios

Below we provide the relevant equations in the GBD
and CQ models, following the notations and conventions
of Ref. [25]. In particular, we work in the baryon frame,
i.e. the frame where Standard Model (SM) particles fol-
low the geodesics of the metric. The action for the GBD
model is given by

SGBD =

∫
d4

√
−g
[
A−2(ϕ)

16πG
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

+ Lm(ψCDM, ψSM, gµν)

]
,

where G is the Newton constant, g is the determinant of
the baryon frame metric gµν and R is the associated Ricci
scalar. The scalar field is denoted with ϕ, V is its poten-
tial and A is a generic function of ϕ. The contributions

of SM and CDM particles, denoted by ψSM and ψCDM

respectively, are included in the matter Lagrangian den-
sity Lm. The scalar field is conformally coupled to all
matter, such that also CDM follows the geodesics of the
baryon frame metric gµν .
On the other hand, in the CQ scenario, the scalar

field is conformally coupled to CDM only. In the baryon
frame, the action is given by

SCQ =

∫
d4

√
−g
[

1

16πG
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

+ LSM(ψSM, gµν) + LCDM(ψCDM, A
2(ϕ)gµν)

]
,

where the gravitational part of the action is not modified
and CDM particles follow geodesics of A2(ϕ)gµν .
We adopt the line element in Eq. (1) and work under

the quasi-static approximation, neglecting time deriva-
tives of the metric and the field perturbations over spa-
tial ones [77]. For GBD, this leads to the following sets
of equations in Fourier space on sub-horizon scales:

k2Φ = −4πGa2 (ρbδb + ρcδc)− β1k
2δϕ (A1)

k2(Φ−Ψ) = −2β1k
2δϕ (A2)

δ̇b + θb = 0 (A3)

θ̇b +Hθb = k2Ψ (A4)

δ̇c + θc = 0 (A5)

θ̇c +Hθc = k2Ψ (A6)

δϕ = −β1(ρcδc + ρbδb)

m2 + k2/a2
(A7)

□ϕ = V,ϕ + β1(ρc + ρb) ≡ V eff ,ϕ (A8)

δ̈ +Hδ̇ = 4πGa2ρδ

[
1 +

2β̃1
2
k2

a2m2
1 + k2

]
. (A9)

Here, □ ≡ ∇µ∇µ and the scalar field coupling strength is
given by β1 = A,ϕ/A, where a comma indicates a deriva-

tive, and β̃1 = β1/
√
8πG.

For CQ, the analogous set of equations is

k2Φ = −4πGa2 (ρbδb + ρcδc) (A10)

k2(Φ−Ψ) = 0 (A11)

δ̇b + θb = 0 (A12)

θ̇b +Hθb = k2Ψ (A13)

δ̇c + θc = 0 (A14)

θ̇c + (H+ β2ϕ̇)θc = k2Ψ+ k2β2δϕ (A15)

δϕ = − β2ρcδc
m2

2 + k2/a2
(A16)

□ϕ = V,ϕ + β2ρc ≡ V eff ,ϕ (A17)

δ̈ +Hδ̇ = 4πGa2ρδ

[
1 +

2β̃2
2
k2

a2m2 + k2

(
ρc
ρ

)2(
δc
δ

)]
,

(A18)

alliancecan.ca
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where β̃2 is defined in the same way as β̃1. The effective
potential V eff is defined via Eqs. (A8) and (A17) for the
two scenarios and related to the scalar field mass via
m2 = V eff

,ϕϕ.

Following Ref. [62], we assume A−2 ≈ 1, with no im-
pact on the arguments presented in our analysis. For
GBD, this implies that the Newton constant G appearing
in the equations always corresponds to the present-time
value, which is a robust assumption since the redshift
evolution of the gravitational coupling is constrained to
be very small in screened GBD theories [78]. In the case
of CQ, allowing for A−2 ̸= 1 simply corresponds to a
rescaling of the coupling β2.

Appendix B: Galaxy clustering survey specifications

We adopt the SKA2 specifications from Ref. [29], as-
suming measurements of the clustering correlation func-
tion multipoles in 15 spectroscopic redshift bins centered

at z = 0.15, 0.25, . . . , 1.55, each with width ∆z = 0.1.
In each bin, we evaluate the multipoles at 35 separations
from d = 20h−1Mpc to d = 160h−1Mpc in increments
of 4h−1Mpc.

We model the galaxy bias according to the fitting func-
tion from Ref. [29],

bP(z) = bP,1 exp(bP,2z)±∆b/2, (B1)

where P indicates the bright (B) or faint (F) galaxy
population. We let the parameters bP,1 and bP,2 free
with fiducial values 0.554 and 0.873 respectively, and set
∆b = 1, in agreement with the bias difference measured
in Ref. [47].

For the purpose of our forecasts, we fix the magnifica-
tion bias according to Appendix B in Ref. [33] and set
the evolution bias to 0. Both quantities will be directly
measurable from the average number of galaxies once the
data become available.
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