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ABSTRACT

Integrating and processing information from various sources or modalities are
critical for obtaining a comprehensive and accurate perception of the real world in
autonomous systems and cyber-physical systems. Drawing inspiration from neu-
roscience, we develop the Information-Theoretic Hierarchical Perception (ITHP)
model, which utilizes the concept of information bottleneck. Different from most
traditional fusion models that incorporate all modalities identically in neural net-
works, our model designates a prime modality and regards the remaining modalities
as detectors in the information pathway, serving to distill the flow of information.
Our proposed perception model focuses on constructing an effective and compact
information flow by achieving a balance between the minimization of mutual infor-
mation between the latent state and the input modal state, and the maximization
of mutual information between the latent states and the remaining modal states.
This approach leads to compact latent state representations that retain relevant
information while minimizing redundancy, thereby substantially enhancing the
performance of multimodal representation learning. Experimental evaluations
on the MUStARD, CMU-MOSI, and CMU-MOSEI datasets demonstrate that
our model consistently distills crucial information in multimodal learning scenar-
ios, outperforming state-of-the-art benchmarks. Remarkably, on the CMU-MOSI
dataset, ITHP surpasses human-level performance in the multimodal sentiment
binary classification task across all evaluation metrics (i.e., Binary Accuracy, F1
Score, Mean Absolute Error, and Pearson Correlation).

1 INTRODUCTION

Perception represents the two-staged process of, first (i), understanding, mining, identifying critical
and essential cues, and translating multimodal noisy sensing (observations) into a world model.
Second (ii), defining the premises and foundations for causal reasoning, cognition, and decision-
making in uncertain settings and environments. Consequently, a major focus in neuroscience refers
to elucidating how the brain succeeds in quickly and efficiently mining and integrating information
from diverse external sources and internal cognition to facilitate robust reasoning and decision-
making (Tononi et al., 1998). Promising breakthroughs in understanding this complex process
have emerged from exciting advancements in neuroscience research. Through a method of stepwise
functional connectivity analysis (Sepulcre et al., 2012), the way the human brain processes multimodal
data has been partially elucidated through recent research. The research outlined in Pascual-Leone
& Hamilton (2001); Meunier et al. (2009); Zhang et al. (2019); Raut et al. (2020) suggests that
information from different modalities forms connections in a specific order within the brain. This
indicates that the brain processes multimodal information in a hierarchical manner, allowing for
the differentiation between primary and secondary sources of information. Further research by
(Mesulam, 1998; Lavenex & Amaral, 2000) elucidates that synaptic connections between different
modality-receptive areas are reciprocal. This reciprocity enables information from various modalities
to reciprocally exert feedback, thereby influencing early processing outcomes. Such a sequential
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and hierarchical processing approach allows the brain to start by processing information in a certain
modality, gradually linking and processing information in other modalities, and finally analyzing and
integrating information effectively in a coordinated manner.

The brain selectively attends to relevant cues from each modality, extracts meaningful features,
and combines them to form a more comprehensive and coherent representation of the multimodal
stimulus. To exemplify this concept, let us consider sarcasm, which is often expressed through
multiple cues simultaneously, such as a straight-looking face, a change in tone, or an emphasis on a
word (Castro et al., 2019). In the context of human sarcasm detection, researchers have observed
significant variation in sensitivity towards different modalities among individuals. Some are more
attuned to auditory cues such as tone of voice, while others are more responsive to visual cues
like facial expressions. This sensitivity establishes a primary source of information unique to each
individual, creating a personalized perception of sarcasm. Simultaneously, other modalities aren’t
disregarded; instead, they reciprocally contribute, serving as supportive factors in the judgment
process. In fact, researchers employ various experimental techniques, such as behavioral studies,
neuroimaging (e.g., fMRI, Glover, 2011; PET, Price, 2012), and neurophysiological recordings, to
investigate the temporal dynamics and neural mechanisms underlying multimodal processing in the
human brain. The insights gained from these areas of neuroscience have been instrumental in guiding
our novel approach to information integration within the scope of multimodal learning.

In multimodal learning, integrating different information sources is crucial for a thorough understand-
ing of the surrounding phenomena or the environment. Although highly beneficial for a wide variety
of autonomous systems and cyber-physical systems (CPS) Xue & Bogdan (2017), effectively under-
standing the complex interrelations among modalities is difficult due to their high-dimensionality
and intricate correlations(Yin et al., 2023). To tackle this challenge, advanced modeling techniques
are needed to fuse information from different modalities, enabling the discovery and utilization of
rich interactions among them. Existing works have employed various approaches to fuse information
from different modalities, treating each modality separately and combining them in different ways
(Castro et al., 2019; Rahman et al., 2020). However, it has been seen that these fusion approaches
deviate from the information-processing mechanism of neural synapses in the human brain. The
above neuroscience research inspired us to devise a novel fusion method that constructs a hierarchical
information perception model. Unlike conventional approaches that directly combine various modal
information simultaneously, our method treats the prime modality as the input. We introduce a
novel biomimetic model, referred to as Information-Theoretic Hierarchical Perception (ITHP), for
effectively integrating and compacting multimodal information. Our objective is to distill the most
valuable information from multimodal data, while also minimizing data dimensions and redundant
information. Drawing inspiration from the information bottleneck (IB) principle proposed by Tishby
et al. (Tishby et al., 2000), we propose a novel strategy involving the design of hierarchical latent
states. This latent state serves to compress one modal state while retaining as much relevant informa-
tion as possible about other modal states. By adopting the IB principle, we aim to develop compact
representations that encapsulate the essential characteristics of multimodal data.

1.1 OUR CONTRIBUTIONS

In this paper, we propose the novel Information-Theoretic Hierarchical Perception (ITHP) model,
which employs the IB principle to construct compact and informative latent states (information flow)
for downstream tasks. The primary contributions of this research can be summarized as follows:

• We provide a novel insight into the processing of multimodal data by proposing a mecha-
nism that designates the prime modality as the sole input, while linking it to other modal
information using the IB principle. This approach offers a unique perspective on multimodal
data fusion, reflecting a more neurologically-inspired model of information processing.

• We design ITHP model on top of recent neural network architectures, enhancing its accessi-
bility and compatibility with most existing multimodal learning solutions.

• Remarkably, our ITHP-DeBERTa1 framework outperforms human-level benchmarks in
multimodal sentiment analysis tasks across multiple evaluation metrics. The model yields
an 88.7% binary accuracy, 88.6% F1 score, 0.643 MAE, and 0.852 Pearson correlation,

1DeBERTa is an advanced variant of the BERT model for natural language embedding.
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outstripping the human-level benchmarks of 85.7% binary accuracy, 87.5% F1 score, 0.710
MAE, and 0.820 Pearson correlation.

1.2 BACKGROUND AND RELATED WORK

Information bottleneck. Information bottleneck (IB) has emerged as a significant concept in the
field of information theory and machine learning, providing a novel framework for understanding the
trade-off between compression and prediction in an information flow. The IB principle formulates the
problem of finding a compact representation of one given state while preserving its predictive power
with respect to another state. This powerful approach has found numerous applications in areas such
as speech recognition (Hecht & Tishby, 2005), document classification (Slonim & Tishby, 2000),
and gene expression (Friedman et al., 2001). Moreover, researchers have successfully applied the IB
principle to deep learning architectures (Shwartz-Ziv & Tishby, 2017; Tishby & Zaslavsky, 2015),
shedding light on the role of information flow and generalization in these networks. In this paper, we
employ the principles of IB to construct an effective information flow by designing a hierarchical
perception architecture, paving the way for enhanced performance in downstream tasks.

Multimodal learning. Multimodal learning has been particularly instrumental in understanding
language across various modalities - text, vision, and acoustic - and has been applied extensively
to tasks such as sentiment analysis (Poria et al., 2018), emotion recognition (Zadeh et al., 2018d),
personality traits recognition (Park et al., 2014), and chart understanding (Zhou et al., 2023). Work in
this domain has explored a range of techniques for processing and fusing multimodal data. These
include tensor fusion methods (Liu et al., 2018; Zadeh et al., 2017; 2016), attention-based cross-modal
interaction methods (Lv et al., 2021; Tsai et al., 2019), and multimodal neural architectures (Pham
et al., 2019; Hazarika et al., 2018), among others. Such explorations have given rise to advanced
models like Tensor Fusion Networks (Zadeh et al., 2018a), Multi-attention Recurrent Network
(Zadeh et al., 2018b), Memory Fusion Networks (Zadeh et al., 2018a), Recurrent Memory Fusion
Network (Liang et al., 2018), and Multimodal Transformers (Tsai et al., 2019). These models utilize
hierarchical fusion mechanisms, attention mechanisms, and separate modality-specific Transformers
to selectively process information from multiple input channels. Despite significant strides in this
domain, challenges persist, particularly when dealing with unaligned or limited and noisy multimodal
data occurring in multi-agent systems navigating in uncertain unstructed environments. To surmount
these obstacles, researchers have started exploring data augmentation methods and information-
theoretic approaches to enrich multimodal representations and boost overall system performance.

2 MULTIMODAL LEARNING BASED ON INFORMATION BOTTLENECK

Figure 1: Constructing two latent states, B0 and B1, fa-
cilitates the transfer of pertinent information among three
modal states X0, X1, and X2.

In this section, we introduce a novel method,
called Information-Theoretic Hierarchical
Perception (ITHP), for integrating and com-
pressing multimodal noisy data streams. Tak-
ing inspiration from neuroscience research,
our approach models the fusion and distilla-
tion of the information from multimodal in-
formation sources as a hierarchical structure,
with a designated prime modality serving as
the input. To link the input information with
information from other modalities, we apply
the principle of Information Bottleneck (IB), ensuring an optimized compact representation of rel-
evant information between modalities. Here, we begin by presenting a concise overview of the IB
principle, followed by the construction of the hierarchical structure for multimodal information fusion.
A typical example in multimodal information integration problems is the 3-modalities problem. We
use this case as a practical illustration of the efficacy of our proposed model. To provide a detailed
explanation, we initially formulate an optimization problem that delineates the specific question.
Following this, we leverage the concept of the information bottleneck to build the structure of the
ITHP model, which is then trained through the application of neural networks. Importantly, the ITHP
model possesses the flexibility to be expanded to handle a multimodal context encompassing N
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modalities. The exact model for this extension, along with a step-by-step derivation process, can be
found in Appendix C for reference.

Information Bottleneck (IB) approach. The IB approach compresses a state X into a new latent
state B, while maintaining as much relevant information as possible about another state of interest
Y . The latent state B operates to minimize the remaining information of the compression task and
to maximize the relevant information. Provided that the relevance of one state to another is often
measurable by an information-theoretic metric (i.e., mutual information), the trade-off can be written
as the following variational problem:

min
p(B|X)

I (X;B)− βI (B;Y ) . (1)

The trade-off between the tasks mentioned above is controlled by the parameter β. In our model of
ITHP, the latent states, solving the minimization problem (1), encodes the most informative part from
the input states about the output states. Building upon this concept, we extend this one level of IB
structure to create a hierarchy of bottlenecks, enabling the compact and accurate fusion of the most
relevant information from multimodal data.

2.1 PROBLEM FORMULATION

From an intuitive perspective, fusing the multimodal information in a compact form is an optimization
between separating the irrelevant or redundant information and preserving/extracting the most relevant
information. The multimodal information integration problem for 3 modalities is shown in Fig. 1.
In the information flow, we can think that X0, X1 and X2 are three random variables that are not
independent. We assume that the redundancy or richness of the information contained in the three
modal states X0, X1, and X2 is decreasing. Therefore, the system can start with the information
of X0 and gradually integrate the relevant information of X1 and X2 according to the hierarchical
structure. In this configuration, we aim to determine the latent state B0 that efficiently compresses the
information of X0 while retaining the relevant information of X1. Moreover, B0 acts as a pathway
for conveying this information to B1. Next, B1 quantifies the meaningful information derived from
B0, representing the second-level latent state that retains the relevant information of X2. Instead
of directly fusing information based on the original dX0-dimensional data, we get the final latent
state with a dimension of dB1 as the integration of the most relevant parts of multimodal information,
which is then used for accurate prediction of Y .

The trade-off between compactly representing the primal modal states and preserving relevant
information is captured by minimizing the mutual information while adhering to specific information
processing constraints. Formally, we formulate this as an optimization problem:

I(X0;X1)− I(B0;X1) ≤ ϵ1

min
p(B0|X0),p(B1|B0)

I(X0;B0) subject to I(B0;B1) ≤ ϵ2

I(X0;X2)− I(B1;X2) ≤ ϵ3,

(2)

where ϵ1, ϵ2, ϵ3 > 0. Our goal is to create hidden states, like B0 and B1, that condense the data
from the primary modal state while preserving as much pertinent information from other modal
states as possible. Specifically, we hope that the constructed hidden state B0 covers as much relevant
information in X1 as possible, so I(X0;X1)− ϵ1 is a lower bound of I(B0;X1). Similarly, B1 is
constructed to retains as much relevant information in X2 as possible, with I(X0;X2) − ϵ3 as a
lower bound. Additionally, we want to minimize I(B0;B1) to ensure that we can further compress
the information of B0 into B1.

2.2 INFORMATION-THEORETIC HIERARCHICAL PERCEPTION (ITHP)

This section takes the 3-modalities information integration problem as an example to illustrate ITHP
as shown in Fig. 2. It introduces a hierarchical structure of IB levels combined with a multimodal
representation learning task. Inspired by the deep variational IB approach proposed in Lee & van der
Schaar (2021), we formulate the loss function incorporating the IB principle.
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Figure 2: An illustration of the proposed model architecture. In each encoder, we have two MLP layers:
the initial layer extracts the feature vectors from input states, while the second layer generates parameters for
the latent Gaussian distribution. The Venn diagrams illustrate the information constraint from the optimization
problem (2).

To address the optimization problem (2), we construct a Lagrangian function, incorporating the
balancing parameters β, λ, and γ to impose information processing constraints. Consequently, we
solve the problem by minimizing the following function, which serves as the overall system loss
function for training the network:

F [p(B0|X0), p(B0), p(X1|B0), p(X2|B0), p(B1|B0), p(B1)] =

I(X0;B0)− βI(B0;X1) + λ (I(B0;B1)− γI(B1;X2)) . (3)

We derive the loss function in Eqn. (3) based on the IB principle expressed in Eqn. (1) as a two-
level structure of the Information Bottleneck. By minimizing the mutual information I(X0;B0)
and I(B0;B1), and maximizing the mutual information I(B0;X1) and I(B1;X2), based on the
optimization setup in Eqn. (2) and given balancing parameters, we ensure that this loss function is
minimized during the neural network training process.

The ITHP model dealing with 3-modalities problems contains two levels of information bottleneck
structures. We define B0 as a latent state that compactly represents the information of the input X0

while capturing the relevant information contained in X1. The latent state B0 is obtained through a
stochastic encoding with a Neural Network, denoted as qθ0 (B0|X0), aiming to minimize the mutual
information between X0 and B0. Given the latent state representation B0 obtained from the encoding
Neural Network, the outputting MLP plays the role of capturing the relevant information of X1

through qψ0
(X1|B0). Similarly, we have the latent state B1 as a stochastic encoding of B0, achieved

through qθ1 (B1|B0), and an output predictor to X2 through qψ1
(X2|B1). Throughout the rest of the

paper, we denote the true and deterministic distribution as p and the random probability distribution
fitted by the neural network as q. Here, θ0 and θ1 denote the parameters of encoding neural networks
while ψ0 and ψ1 denote the parameters of the output predicting neural networks. The following loss
functions are defined based on the IB principle:

Lθ0,ψ0

IB0
(X0;X1) = I (X0;B0)− βI (B0;X1)

≈ EX0∼p(X0)KL (qθ0 (B0|X0) ||q (B0))

− β · EB0∼p(B0|X0)EX0∼p(X0) [log qψ0
(X1|B0)] ,

(4)

Lθ1,ψ1

IB1
(B0;X2) = I (B0;B1)− γI (B1;X2)

≈ EB0∼p(B0)KL (qθ1 (B1|B0) ||q (B1))

− γ · EB1∼p(B1|B0)EB0∼p(B0) [log qψ1
(X2|B1)] ,

(5)

where β, γ ≥ 0 are balancing coefficients chosen to reflect the trade-off between two information
quantities. Here, KL (p (X) ||q (X)) is the Kullback-Leibler (KL) divergence between the two
distributions p (X) and q (X). Detailed derivations of the Eqns. (4) and (5) are presented in Appendix
C.1, while the extension from the 3-modalities problem to N -modalities has been elaborated in
Appendix C.2.
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2.3 TRAINING METHOD OF ITHP

We train the consecutive two-level hierarchy ITHP with an overall loss function labeled with X0 and
X2. To minimize the overall loss, we introduce the hyper-parameter λ > 0 that balances the trade-off
between the losses of the two-level hierarchy:

Lθ,ψoverall (X0, X2) = Lθ0,ψ0

IB0
(X0;X1) + λ · Lθ1,ψ1

IB1
(B0;X2) . (6)

In the context of multimodal learning, we apply the final fused latent state Bk+1 to the processing of
representation learning tasks. Specifically, the final loss function combines the two-level hierarchy
loss with a task-related loss function:

L =
2

β + γ
· Lθ,ψoverall (X0, X2) + α · Ltask−related (B1, Y ) . (7)

The Eqn. (7) introduces a new parameter α ≥ 0 to weigh the loss function of multimodal information
integration and the loss function of processing downstream tasks. The pseudo-code of the ITHP
algorithm is provided in Appendix D.

3 EXPERIMENTS

In this section, we evaluate our proposed Information-Theoretic Hierarchical Perception (ITHP)
model on three popular multimodal datasets: the Multimodal Sarcasm Detection Dataset (MUStARD;
Castro et al., 2019), the Multimodal Opinion-level Sentiment Intensity dataset (MOSI; Zadeh et al.,
2016), and the Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI; Zadeh et al.,
2018d). Detailed descriptions of the datasets can be found in Appendix F. We demonstrate that the
ITHP model is capable of constructing efficient and compact information flows. In the sentiment
analysis task, we show that the ITHP-DeBERTa framework outperforms human-level benchmarks
across multiple evaluation metrics, including binary accuracy, F1 score, MAE, and Pearson correlation.
All experiments were conducted on Nvidia A100 40GB GPUs. Detailed information regarding the
model architecture and training parameters used in each experiment can be found in Appendix E.

3.1 SARCASM DETECTION

In the sarcasm detection task, to ensure a fair comparison, we utilize the same embedding data
as provided in Castro et al. (2019). The embedding data was produced through multiple methods.
Textual utterance features were derived from sentence-level embeddings using a pre-trained BERT
model (Devlin et al., 2018), which provides a representation of size dt = 768. For audio features,
the Librosa library (McFee et al., 2018a) was utilized to extract low-level features such as MFCCs,
Mel spectrogram, spectral centroid, and their deltas (McFee et al., 2018b), which are concatenated
together to compose a da = 283 dimensional joint representation. For video features, the frames
in the utterance are processed using a pool5 layer of an ImageNet (Deng et al., 2009) pre-trained
ResNet-152 model (He et al., 2016), which provides a representation of size dv = 2048.

In addition to providing the multimodal embedding data, Castro et al. (2019) also conducted experi-
ments using their own fine-tuned multimodal sarcasm detection model (referred to as “MSDM” in this
paper). These experiments demonstrated that the integration of multimodal information can enhance
the automatic classification of sarcasm. The results of their sarcasm detection task, as reported in
Table 1 (MSDM), serve as a benchmark for comparing the performance of our proposed model. The
classification results for sarcasm detection, obtained with different combinations of modalities (Text -
T , Audio - A, Video - V ), provide a basis for the comparative analysis conducted in our study.

Varying combinations of modalities: To test for the unimodal data, we initially established a
two-layer neural network to serve as a predictor for the downstream task. The binary classification
results are evaluated by weighted precision, recall, and F-score across both sarcastic and non-sarcastic
classes. The evaluation is performed using a 5-fold cross-validation approach to ensure robustness and
reliability. When evaluating each individual modality using the predictor, the results are comparable
to those of the MSDM, with metrics hovering around 65%. This finding indicates that the embedding
data from each modality contains relevant information for sarcasm detection. However, depending
solely on a single modality appears to restrict the capacity for more accurate predictions. Considering
the binary classification results across the three modalities and taking into account the size of the
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Figure 3: A schematic representation of our proposed ITHP and its information flow. The diagram illustrates
the process of feature extraction from multimodal embedding data including video frames, text, and audio
patterns. These modalities pass through a “Feature Extraction” phase, where they are embedded to get modal
states X0, X1, and X2. The derived states are then processed to construct latent states B0 and B1. This
processing includes reciprocal information exchange between X1 and B0, as well as between B1 and X2. The
resulting information from this process is then used to make a determination about the presence of sarcasm.

Algorithm Metrics Modalities
T A V T-A V-T V-A V-T-A

MSDM
Precision 65.1 65.9 68.1 66.6 72.0 66.2 71.9

Recall 64.6 64.6 67.4 66.2 71.6 65.7 71.4
F-Score 64.6 64.6 67.4 66.2 71.6 65.7 71.5

ITHP
Precision 65.0 65.1 67.6 69.7 72.1 70.5 75.3

Recall 64.8 64.9 67.5 69.1 71.7 70.3 75.2
F-Score 64.7 64.8 67.5 69.1 71.6 70.3 75.2

Table 1: Results of sarcasm detection on the MUStARD dataset. The table presents the weighted Precision,
Recall, and F-Score across both sarcastic and non-sarcastic classes, averaged across five folds. Underlined values
indicate the best results for each row, while bold data represents the optimal results overall. The modalities are
denoted as follows: T represents text, A stands for audio, and V signifies video.

embedding features for each modality (dv = 2048, dt = 768, da = 283), we designate V as
the prime modality and construct the consecutive modality states of V (X0) − T (X1) − A(X2).
During the evaluation of two-modal combinations, MSDM utilizes concatenated data to represent the
combination, whereas we employ the single-stage information theoretical perception (ITP) approach,
which involves only one latent state, denoted as B0.

For the two-modal learning, there are three different combinations T (X0)−A(X1), V (X0)−T (X1),
and V (X0) − A(X1). In the case of T (X0) − A(X1) and V (X0) − T (X1), both MSDM and
ITHP improved performance compared to using a single modality, indicating the advantages of
leveraging multimodal information. However, it is worth noting that the result of the combination
V (X0) − A(X1) is even lower than the result on V (X0) from MSDM, suggesting that the model
struggled to effectively extract meaningful information by combining the embedding features from
video and audio. In contrast, ITP successfully extracts valuable information from these two modalities,
resulting in higher metric values. For the combination V (X0)− T (X1)−A(X2), when considering
the metrics of weighted precision, recall, and F-score, compared to the best-performing unimodal
learning, MSDM’s improvements are 5.58%, 5.93%, and 6.08%, respectively; whereas our ITHP
model shows the improvements of 11.39%, 11.41% and 11.41% respectively. These results indicate
that our ITHP model succeeds to construct the effective information flow among the multimodality
states for the sarcasm detection task. Compared to the best-performing 2-modal learning, MSDM
shows lower performance in the 3-modal learning setting, while our ITHP model demonstrates
improvements of 4.44% in precision, 4.88% in the recall, and 5.03% in F-score, highlighting the
advantages of the hierarchical architecture employed in our ITHP model as shown in Fig. 3.

Varying Lagrange multiplier: To conduct a comprehensive analysis, we explore the mutual informa-
tion among these modalities. In the IB method, the Lagrange multiplier controls the trade-off between
two objectives: (i) maximizing the mutual information between the compressed representation B
and the relevant variable Y to ensure that the pertinent information about Y is retained in B, and (ii)
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minimizing the mutual information between the compressed representation B and the original data
X to eliminate redundant details in X .

A high value of the Lagrange multiplier encourages the model to retain more relevant information
about Y . In our ITHP model learning for 3 modalities, we have two Lagrange multipliers β and γ to
regulate the balance between the mutual information of the latent states and multimodal states. Here,
we adjust the values of the Lagrange multipliers to observe their influence on the overall performance
of the ITHP model for the sarcasm detection task, and the results are shown in Fig. 4. When β = 2
and γ = 2, the model shows the worst performance with a weighted precision of 0.619 and a recall of
0.607, which indicates that the model cannot retain the relevant information from the other modalities
while losing the information from the input state with a low Lagrange multiplier, leading to even
worse performance than the unimodal learning.

2 4 8 16 32 64

2

4

8

16

32

64

Precision

2 4 8 16 32 64

Recall

0.65

0.70

0.75

Figure 4: Weighted precision and recall for the binary
classification task under varying Lagrange multipli-
ers. The graph shows the impact of varying the Lagrange
multipliers (β and γ). For each plot, the Red (Orange)
color denotes the highest (lowest) value, respectively.

The best performance with a precision of 0.753
and recall of 0.752 comes when β = 32 and
γ = 8. The region around the point is also the
brightest 3×3 square with all values above 0.74,
which indicates an optimal balance to construct
the most effective information flow among the
varying values of β and γ. It is worth noting
that the upper right triangular part is brighter
than the lower left triangular part, which shows
that the model benefits more from a higher β
than a higher γ. It suggests that retaining more
relevant information from Text (X1) is more
important for sarcasm detection, which is also
verified by the best performance of the combi-

nation V (X0)− T (X1) among all the two modality combinations.

3.2 SENTIMENT ANALYSIS

CMU-MOSI
Task Metric BA↑ F1↑ MAE↓ Corr↑

BERT
Self-MMb 84.0 84.4 0.713 0.798
MMIMb 84.1 84.0 0.700 0.800
MAGb 84.2 84.1 0.712 0.796
Self-MMd 55.1 53.5 1.44 0.158
MMIMd 85.8 85.9 0.649 0.829
MAGd 86.1 86.0 0.690 0.831
UniMSE 85.9 85.8 0.691 0.809
MIB 85.3 85.3 0.711 0.798
BBFN 84.3 84.3 0.776 0.755
ITHP 88.7 88.6 0.643 0.852
Human 85.7 87.5 0.710 0.820

Table 2: Model performance on CMU-MOSI dataset.
The table presents the performance of other BERT-based
(indicated with subscript “b”) and DeBERTa-based (in-
dicated with subscript “d”) pre-trained models. Models
developed by us are highlighted in bold, and optimal re-
sults are underlined.

Sentiment Analysis (SA) has undergone sub-
stantial advancements with the introduction of
multimodal datasets, incorporating text, images,
and videos Gandhi et al. (2022). Our study
concentrates on two pivotal datasets: the Mul-
timodal Corpus of Sentiment Intensity (MOSI)
and Multimodal Opinion Sentiment and Emo-
tion Intensity (MOSEI). Notably, the MOSI
dataset employs a unique feature extraction pro-
cess compared to sarcasm detection, with em-
bedding feature sizes of dt = 768, da = 74,
and dv = 47 for text, audio, and video, re-
spectively. We hypothesize that the text em-
bedding features T hold the most substantial
information, followed by A, leading to the
formulation of consecutive modality states of
T (X0)−A(X1)− V (X2) for this task.

In evaluating the versatility of our approach
across diverse multimodal language datasets,
experiments are also conducted on the CMU-
MOSEI dataset (Zadeh et al., 2018d). The
CMU-MOSEI dataset, while resembling MOSI in annotating utterances with sentiment intensity,
places a greater emphasis on positive sentiments. Additionally, it provides annotations for nine
discrete and three continuous emotions, expanding its applicability for various affective computing
tasks Das & Singh (2023); Liang et al. (2023).
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Our analysis encompasses a range of prominent models, including Self-MM (Yu et al., 2021), MMIM
(Han et al., 2021b), MAG (Rahman et al., 2020), MIB (Mai et al., 2022), BBFN (Han et al., 2021a),
and UniMSE (Hu et al., 2022). Please refer to Appendix B for details.

Delving into framework integration, this research incorporates ITHP with pre-trained DeBERTa
models, optimizing textual data processed by DeBERTa’s Embedding and Encoder layers, unlike the
MAG model which utilizes embedding data from BERT’s middle layer. A significant development
introduced is ITHP-DeBERTa, integrating the Decoding-enhanced BERT with Disentangled Attention
(DeBERTa; He et al., 2020; 2021). This advanced model enhances BERT and RoBERTa (Liu et al.,
2019) through disentangled attention and a sophisticated mask decoder.

The results on the CMU-MOSI dataset are reported in Table 2. Additionally, Table 4 in Appendix F.1
provides reference results for more DeBERTa-based baseline models. As shown in the results, our
ITHP model outperforms all the SOTA models in both BERT and DeBERTa incorporation settings.

CMU-MOSEI
Task Metric BA↑ F1↑ MAE↓ Corr↑
Self-MMb 85.0 85.0 0.529 0.767
MMIMb 86.0 86.0 0.526 0.772
MAGb 84.8 84.7 0.543 0.755
Self-MMd 65.3 65.4 0.813 0.208
MMIMd 85.2 85.4 0.568 0.799
MAGd 85.8 85.9 0.636 0.800
ITHP 87.3 87.4 0.564 0.813

Table 3: Model performance on CMU-MOSEI dataset.
Models developed by us are highlighted in bold, and
optimal results are underlined.

It is noteworthy that significant strides in per-
formance were observed with the integration
of DeBERTa with the ITHP model, surpassing
even human levels. This integration with De-
BERTa resulted in a 3.5% increase in Binary
Classification Accuracy (BA), 1.3% improve-
ment in F1 Score (F1), a reduction of 9.4%
in Mean Absolute Error (MAE), and a 3.9%
increase in Pearson Correlation (Corr). To ex-
plore the applicability of our approach to var-
ious datasets, we perform experiments on the
extensive CMU-MOSEI dataset. The results
in Table 3 demenstrate that our ITHP model
consistently surpasses the SOTA, thereby con-
firming its robustness and generalizability. In contrast, it is worth noting that Self-MM itself heavily
relies on the feature extraction process performed by BERT, resulting in a significant degradation
of DeBERTa-based Self-MM on both CMU-MOSI and CMU-MOSEI datasets, which restricts its
applicability in certain scenarios.

4 CONCLUSION

Drawing inspiration from neurological models of information processing, we build the links between
different modalities using the information bottleneck (IB) method. By leveraging the IB principle, our
proposed ITHP constructs compact and informative latent states for information flow. The hierarchical
architecture of ITHP enables incremental distillation of useful information with applications in
perception of autonomous systems and cyber-physical systems. The empirical results emphasize the
potential value of the advanced pre-trained large language models and the innovative data fusion
techniques in multimodal learning tasks. When combined with DeBERTa, our proposed ITHP model
is the first work, based on our knowledge, to outperform human-level benchmarks on all evaluation
metrics (i.e., BA, F1, MAE, Corr).

5 LIMITATIONS AND FUTURE WORK

A potential challenge of our model is its reliance on a preset order of modalities. We’ve illustrated this
aspect with experiments showcasing various modalities’ orders in Appendix Table 11 in Appendix
F.5. Typically, prior knowledge is utilized to select the primary modality and rank others. Without
any knowledge, addressing this challenge by adjusting the Lagrange multipliers or iterating through
all possible modality orders can be very time-consuming. Another potential challenge emerges
when the primary modality lacks sufficient information independently, necessitating complementary
information from other modalities for optimized performance. Nonetheless, we believe that the
integration of deep learning architecture into the hierarchical perception can mitigate this issue.
For a more detailed discussion, please refer to Appendix H. Future work will focus on addressing
the identified challenges by exploring how to utilize deep learning frameworks to achieve efficient
neuro-inspired modality ordering.
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A CODE AVAILABILITY

Our codebase can be found in [https://github.com/joshuaxiao98/ITHP]. Our code
uses assets from MAG-BERT (Rahman et al., 2020), BERT (Devlin et al., 2018)
[https://github.com/google-research/bert, Apache License 2.0], and DeBERTa (He et al.,
2020; 2021) [https://github.com/microsoft/DeBERTa, MIT License].

B RELATED WORK

Multimodal sentiment analysis has been a prominent research area, focusing on the integration of
verbal and nonverbal information across different modalities such as text, acoustics, and vision.
Prior studies in this field have primarily concentrated on representation learning and multimodal
fusion approaches. For representation learning, Wang et al. (Wang et al., 2019) proposed a recurrent
attended variation embedding network to learn the shifted word representations, while Hazarika et al.
(Hazarika et al., 2020) introduced modality-invariant and modality-specific representations. In terms
of multimodal fusion, models can be categorized into early fusion and late fusion methods. Early
fusion models incorporate delicate attention mechanisms for cross-modal fusion, as demonstrated
by Zadeh et al. (Zadeh et al., 2018a) who developed a memory fusion network for cross-view
interactions, and Tsai et al. (Tsai et al., 2019) who proposed cross-modal transformers to enhance a
target modality through cross-modal attention. Late fusion methods, on the other hand, prioritize
intra-modal representation learning before inter-modal fusion. For instance, Zadeh et al. (Zadeh
et al., 2017) utilized a tensor fusion network to compute the outer product between unimodal
representations, while Liu et al. (Liu et al., 2018) introduced a low-rank multimodal fusion method to
reduce computational complexity.

In recent years, the fusion methods, combined with advanced Transformer-based large language
models such as BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019), have achieved remark-
able progress in multimodal sentiment analysis. These methods have reached near-human level
performance on the CMU-MOSI dataset in the task of multimodal sentiment binary classification
(Rahman et al., 2020). Innovations such as Self-MM (Yu et al., 2021) have introduced self-supervised
strategies that refine unimodal label learning, while MMIM (Han et al., 2021b) utilizes mutual
information to enhance sentiment discernment from multimodal data. The MAG approach (Rahman
et al., 2020) integrates affective gaps between modalities, and MIB (Mai et al., 2022) focuses on
isolating essential data features, filtering out the extraneous for purer multimodal fusion. BBFN (Han
et al., 2021a) reimagines the fusion process by merging and differentiating between modal inputs.
The current SOTA model presents novel insights, UniMSE (Hu et al., 2022) innovatively integrates
multimodal sentiment analysis and emotion recognition in conversations into a unified framework,
enhancing prediction accuracy by leveraging the synergies and complementary aspects of sentiments
and emotions. The SPECTRA(Yu et al., 2023) is pioneering in spoken dialog understanding by
pre-training on speech and text, featuring a unique temporal position prediction task for precise
speech-text alignment.The DynMM (Xue & Marculescu, 2023) creates the possibility of reducing
computing resource consumption. By introducing dynamic multi-modal fusion, which fuses input
data from multiple modalities adaptively, leading to reduced computation, improved representation
power, and enhanced robustness.

Additionally, the latest work in the field of sarcasm detection has expanded our research horizons. The
HFM (Cai et al., 2019a) utilizes early fusion and representation fusion techniques to refine feature
representations for each modality. It integrates information from various modalities to better utilize
the available data and enhance sarcasm detection performance. The DIP(Wen et al., 2023) creatively
adopts dual incongruity perception at factual and affective levels, enabling effective detection of
sarcasm in multi-modal data. Aside from multimodal sentiment analysis, numerous applications
involve the integration of multiple modal inputs (Tian et al., 2022; 2024; Huang et al., 2023; 2024;
Xiao et al., 2022), making the management of inter-modal interactions a significant area of ongoing
research interest.
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C DERIVATION OF THE VARIATIONAL IB LOSS FOR ITHP

C.1 3-MODALITIES SCENARIO

In the realm of multimodal learning, which usually involves three useful modalities, we outline a
loss function for a 3-modalities setting in our study. This scenario incorporates three consecutive
modalities, X0, X1, and X2, these three modalities are ranked according to the richness of main
information. In this section, we derive the formula of the two-level information bottleneck hierarchy
in the three-modal problem in detail, as shown in Eqn. (4) and Eqn. (5).

Equation (4) represents the loss of the input-level Information Bottleneck as (X0 − B0 − X1) in
the system, while the Eqn. (5) represents a general expression of the subsequent-level Information
Bottleneck as (B0 − B1 − X2), as shown in Fig. (1) . In this section, we first show the detailed
derivation of the IB loss function (4) and then give the derivation of Eqn. (5) in a concise manner.
Firstly, the loss function of the first input-level Information Bottleneck can be given as:

Lθ0,ψ0

IB0
(X0;X1) = I (X0;B0)− βI (B0;X1) , (8)

where β > 0 is a trading-off parameter chosen to balance between the two mutual information
quantities. Here, I (X0;B0) and I (B0;X1) can be derived using variational approximations, i.e.,
qθ0 (B0|X0) and qψ0

(X1|B0), as follows:

I (X0;B0) =

∫
dX0dB0p (X0, B0) · log

p (X0, B0)

p (X0) · p (B0)

=

∫
dX0dB0p (X0, B0) · log

p (B0|X0)

p (B0)

=

∫
dX0dB0p (X0, B0) · log p (B0|X0)−

∫
dB0p (B0) · log p (B0)

≤
∫
dX0dB0p (X0, B0) · log qθ0 (B0|X0)−

∫
dB0p (B0) · log q (B0)

≈
∫
dX0dB0p (X0) · qθ0 (B0|X0) · log

qθ0 (B0|X0)

q (B0)

=EX0∼p(X0) [KL (qθ0 (B0|X0) ||q (B0))] ,

(9)

where qθ0 (B0|X0) is used as the variational approximation for p (B0|X0) and q (B0) ∼ N (0, 1) is
the probability distribution over the latent states based on the assumption.

I (B0;X1) =

∫
dB0dX1p (X1, B0) · log

p (X1, B0)

p (X1) · p (B0)

=

∫
dB0dX1p (X1, B0) · log

p (X1|B0)

p (X1)

≥
∫
dB0dX1p (X1, B0) · log

qψ0
(X1|B0)

p (X1)

≈
∫
dB0dX1p (X1, B0) · log qψ0 (X1|B0)−

∫
dX1p (X1) · log q (X1)

=

∫
dB0dX1p (X1, B0) · log qψ0

(X1|B0) +H (X1) ,

(10)

where H (X1) is the entropy of X1, which is determined only by the distribution of X1 itself, so this
can be ignored in the loss function. Since we cannot derive the distribution of p (B0|X1) directly, we
have to introduce the modal X0 with the relationship that B0 is independent of X1 given X0 :

p (X1, B0) =

∫
dX0p (X0, X1, B0) =

∫
dX0p (X0) · p (X1|X0) · p (B0|X0) . (11)
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Figure 5: N latent states are constructed for extracting and transferring the most relevant information of a set of
N + 1 modal states. The modal states are represented by X0, X1, ..., XN−1, and XN . This order is determined
by the richness of the amount of information contained in the modalities. The latent states B0, B1, ..., BN−1

represent the pathway for transferring the relevant information among X . Through the hierarchical structure, the
most relevant information from X0 to XN is gradually retained and distilled.

Therefore, I (B0;X1) can be given by

I (B0;X1) =

∫
dX0dB0dX1p (X0) · p (X1|X0) · p (B0|X0) · log qψ0 (X1|B0)

=EB0∼p(B0|X0)EX0∼p(X0) [log qψ0
(X1|B0)] ,

(12)

where qψ0
(B0|X0) are used as the variational approximation for p (B0|X0). Then we have the

derivation of the Eqn. (4) as

Lθ0,ψ0

IB0
(X0;X1) = I (X0;B0)− βI (B0;X1)

≈ EX0∼p(X0)KL (qθ0 (B0|X0) ||q (B0))

− β · EB0∼p(B0|X0)EX0∼p(X0) [log qψ0 (X1|B0)] .

(13)

And we can easily get the derivation of the Eqn. (5) in similar steps as above. The loss function of
the subsequent-level Information Bottleneck is shown as:

Lθ1,ψ1

IB1
(B0;X2) = I (B0;B1)− γI (B1;X2) . (14)

The results of I (B0;B1) and I (B1;X2) are shown as:

I (B0;B1) =

∫
dB0dB1p (B0, B1) · log

p (B0, B1)

p (B0) · p (B1)

≈
∫
dB0dB1p (B0) · qθ1 (B1|B0) · log

qθ1 (B1|B0)

q (B1)

=EB0∼p(B0) [KL (qθ1 (B1|B0) ||q (B1))] ,

(15)

I (B1;X2) =

∫
dB1dX2p (X2, B1) · log

p (X2, B1)

p (X2) · p (B1)

≈
∫
dB1dX2p (X2, B1) · log qψ1

(X2|B1) +H (X2)

=EB1∼p(B1|B0)EB0∼p(B0) [log qψ1
(X2|B1)] .

(16)

Then we have the derivation of the Eqn. (5) as

Lθ1,ψ1

IB1
(B0;X2) = I (B0;B1)− γI (B1;X2)

≈ EB0∼p(B0)KL (qθ1 (B1|B0) ||q (B1))

− γ · EB1∼p(B1|B0)EB0∼p(B0) [log qψ1 (X2|B1)] .

(17)

C.2 GENERAL SCENARIO FOR N MODALITIES

In what follows, we present the loss function for scenarios involving more than 3 modalities, thus, a
framework for a more general multimodal learning case. Let’s consider a multi-modalities learning
system with N informative modalities, as shown in Fig. 5. According to the difference in information
richness in N modalities, we sort the information of these N modalities, and ranked from high to low
according to information richness as X0, X1, · · · · · · , XN−1, XN . Therefore, we start integrating the
multimodal information from the modal state X0 with the highest information richness. The input
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level Information Bottleneck loss can be derived from Eqn. (4), which is the same as 3-modalities
scenario. The loss function is shown as:

Lθ0,ψ0

IB0
(X0;X1) = I (X0;B0)− βI (B0;X1)

≈ EX0∼p(X0)KL (qθ0 (B0|X0) ||q (B0))

− β · EB0∼p(B0|X0)EX0∼p(X0) [log qψ0 (X1|B0)] .

(18)

Then, the subsequent level IB loss can be given as:

Lθk+1,ψk+1

IBk+1
(Bk;Xk+2) = I (Bk;Bk+1)− γkI (Bk+1;Xk+2)

≈ EBk∼p(Bk)KL
(
qθk+1

(Bk+1|Bk) ||q (Bk+1)
)

− γk · EBk+1∼p(Bk+1|Bk)EBk∼p(Bk)

[
log qψk+1

(Xk+2|Bk+1)
]
,

(k = 0, 1, · · · · · · , N − 2).

(19)

Then, we train the overall network using N modal states. It is worth mentioning that in our
model (ITHP), only X0 with the highest information richness is used as the model input, and
X1, · · · · · · , XN−1, XN act as detectors in the information flow. To minimize the overall loss, we
introduce a series of Lagrange multipliers λk > 0 that balance the trade-off between the losses of the
input-level IB and all subsequent IB levels in the whole hierarchical structure. Therefore, the overall
loss function mentioned in Eqn. (6) can be generalized to the form with N modal states as:

Lθ,ψoverall (X0, XN ) = Lθ0,ψ0

IB0
(X0;X1) +

N−2∑
k=0

λk · L
θk+1,ψk+1

IBk+1
(Bk;Xk+2) . (20)

With the overall loss derived here, we can further get the expression of the loss function considering
the downstream task, so the Eqn. (7) can be generalized to the form with N modal states as:

Ltask−related =
N − 1

β +
∑N−2
k=0 γk

· Lθ,ψoverall (X0, XN ) + α · Ltask−related (BN−1, Y ) . (21)

D ALGORITHM: PSEUDO-CODE FOR TRAINING ITHP

D.1 3-MODALITIES SCENARIO

We provide the pseudo-code for ITHP in a 3-modalities problem (please refer to Algorithm 1), which
we used in our experiments including both sarcasm detection and sentiment analysis. As mentioned
in C.1, we have (X0 − X1 − X2) as the three modal states. Here, we present the algorithm for
training ITHP in a 3-modalities scenario.

D.2 GENERAL SCENARIO FOR N MODALITIES

We additionally provide the pseudo-code and the training method for ITHP in a general form involving
N modalities (please refer to Algorithm 2). This broader algorithmic representation extends from the
3-modalities example delineated in D.1.

E MODEL ARCHITECTURE AND HYPERPARAMETERS

In this section, we provide a detailed description of our model architecture and the hyperparameter
selection in different tasks for reproducibility purposes. For the ITHP, as depicted in Figure 2, to
get the latent state’s distribution of B0, we directly use two fully connected linear layers to build the
encoder, where the first layer extracts the feature vectors of input X0 and the second layer outputs
parameters for a latent Gaussian distribution - a mean vector and the logarithm of the variance vector.
By sampling from this distribution, we obtain a latent state that represents the input state further used
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Algorithm 1 Pseudo-code for training ITHP in 3-modalities scenario

Input: Dataset D = {(X0, X1, X2) , Y }; Coefficient: α, β, γ, λ; Learning rate η; Mini-batch size
nmb; Assumed distribution of latent states : {B0, B1} = ε ∼ N (0, 1);

Output: ITHP parameters ({θk}k=0,1 , {ψk}k=0,1); Task-related prediction ŷ;
Initialize the parameters in the Neural Networks ({θk}k=0,1 , {ψk}k=0,1)
repeat

Sample a mini-batch: {(Xn
0 , X

n
1 , X

n
2 ) , Y

n}nmb

n=1 ∼ D
for n = 1, 2, . . . . . . , nmb do

µn0 ,Σ
n
0 ←− fθ0 (Xn

0 )
zn0 ←− µn0 + ε · Σn0
X̂n

1 ←− fψ0 (Z
n
0 )

µn1 ,Σ
n
1 ←− fθ1 (zn0 )

zn1 ←− µn1 + ε · Σn1
X̂n

2 ←− fψ1
(Zn1 )

end for
if X0, X1, X2 are categorical data then
Lθ0,ψ0

IB0
= KL (N (µn0 ,Σ

n
0 ) ||N (0, 1))+β· 1

nmb

∑nmb

n=1

(
−
∑C
C=1X

n
1 [C] · log

(
X̂n

1 [C]
))

Lθ1,ψ1

IB1
= KL (N (µn1 ,Σ

n
1 ) ||N (0, 1))+γ· 1

nmb

∑nmb

n=1

(
−
∑C
C=1X

n
2 [C] · log

(
X̂n

2 [C]
))

else if X0, X1, X2 are continuous data then

Lθ0,ψ0

IB0
= KL (N (µn0 ,Σ

n
0 ) ||N (0, 1)) + β · 1

nmb

∑nmb

n=1

(
Xn

1 − X̂n
1

)2

Lθ1,ψ1

IB1
= KL (N (µn1 ,Σ

n
1 ) ||N (0, 1)) + γ · 1

nmb

∑nmb

n=1

(
Xn

2 − X̂n
2

)2

end if
Lθ,ψoverall = L

θ0,ψ0

IB0
+ λ · Lθ1,ψ1

IB1

Ltask−related = 2
β+γ · L

θ,ψ
IBoverall

+ α · 1
nmb

∑nmb

n=1 (z
n
1 − Y n)

2

(θk, ψk)←− (θk, ψk)− η · ▽(θk, ψk)Ltask−related, (k = 0, 1)
until convergence

to (1) feed into the multilayer perceptron (MLP) layer to predictX1; (2) feed into the next hierarchical
layer for another modality information. Note that this is a serial structure, and the remaining layers
share the same design. The predictor is chosen specifically by the downstream tasks. For the task
of sarcasm detection, we elect to use an MLP with two layers as the predictor. For the sentiment
analysis task, the model ITHP-DeBERTa is trained in an end-to-end manner. The raw features of
acoustic and visual modalities are pre-extracted from CMU-MOSI (Zadeh et al., 2016). The textual
features are extracted by pre-trained DeBERTa (He et al., 2020; 2021). The textual features serve
as input to our ITHP module while the pre-extracted acoustic and visual act as the detectors. The
distilled representations that capture the information from multimodalities are generated from the
ITHP module. Additionally, we incorporate residual connections for enhanced information flow.
Finally, a 1-layer Transformer encoder and several fully-connected layers are designed as predictor to
make sentiment predictions.

For the task of sarcasm detection, unless otherwise specified, we set the hyperparameters as follows:
β = 32, γ = 8, λ = 1. We perform a 5-fold cross-validation, and for each experiment, we
train the ITHP model for 200 epochs using an Adam optimizer with a learning rate of 10−3. For
the task of sentiment analysis, unless otherwise specified, we set the hyperparameters as follows:
β = 8, γ = 32, λ = 1. We run each experiment for 40 epochs using an Adam optimizer with a
learning rate of 10−5. We repeat each experiment 5 times to calculate the mean value of the metrics.
All experiments are done on an Nvidia A100 40GB GPUs.

F DATASETS DESCRIPTION AND ADDITIONAL RESULTS

By integrating DeBERTa into the highly successful fusion models of recent years, we establish
new baselines for DeBERTa-based models on both the CMU-MOSI and CMU-MOSEI datasets.
Our ITHP-DeBERTa model achieves state-of-the-art (SOTA) performance on both datasets. In
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Algorithm 2 Pseudo-code for training ITHP in general scenario

Input: Dataset D = {(X0, X1, . . . . . . , XN ) , Y }; Coefficient: α, β, {γk}N−2
k=0 , {λk}N−2

k=0 ; Learning
rate η; Mini-batch size nmb; Assumed distribution of latent states : {Bk}N−1

k=0 = ε ∼ N (0, 1);
Output: ITHP parameters ({θk}N−2

k=0 , {ψk}
N−2
k=0 ); Task-related prediction ŷ;

Initialize the parameters in the Neural Networks ({θk}N−2
k=0 , {ψk}

N−2
k=0 )

repeat
Sample a mini-batch: {(Xn

0 , X
n
1 , . . . . . . , X

n
N ) , Y n}nmb

n=1 ∼ D
for n = 1, 2, . . . . . . , nmb do

µn0 ,Σ
n
0 ←− fθ0 (Xn

0 )
zn0 ←− µn0 + ε · Σn0
X̂n

1 ←− fψ0
(Zn0 )

for k = 0, 1, 2, . . . . . . , N − 2 do
µnk+1,Σ

n
k+1 ←− fθk+1

(znk )
znk+1 ←− µnk+1 + ε · Σnk+1

X̂n
k+2 ←− fψk+1

(
Znk+1

)
end for

end for
if X0, X1, . . . . . . , XN are categorical data then
Lθ0,ψ0

IB0
= KL (N (µn0 ,Σ

n
0 ) ||N (0, 1))+β· 1

nmb

∑nmb

n=1

(
−
∑C
C=1X

n
1 [C] · log

(
X̂n

1 [C]
))

for k = 0, 1, 2, . . . . . . , N − 2 do
Lθk+1,ψk+1

IBk+1
= KL

(
N

(
µnk+1,Σ

n
k+1

)
||N (0, 1)

)
+

γk · 1
nmb

∑nmb

n=1

(
−
∑C
C=1X

n
k+2 [C] · log

(
X̂n
k+2 [C]

))
end for

else if X0, X1, . . . . . . , XN are continuous data then

Lθ0,ψ0

IB0
= KL (N (µn0 ,Σ

n
0 ) ||N (0, 1)) + β · 1

nmb

∑nmb

n=1

(
Xn

1 − X̂n
1

)2

for k = 0, 1, 2, . . . . . . , N − 2 do

Lθk+1,ψk+1

IBk+1
= KL

(
N

(
µnk+1,Σ

n
k+1

)
||N (0, 1)

)
+γk · 1

nmb

∑nmb

n=1

(
Xn
k+2 − X̂n

k+2

)2

end for
end if
Lθ,ψoverall = L

θ0,ψ0

IB0
+
∑N−2
k=0 λk · L

θk+1,ψk+1

IBk+1

Ltask−related = N−1
β+

∑N−2
k=0 γk

· Lθ,ψIBoverall
+ α · 1

nmb

∑nmb

n=1

(
znk+1 − Y n

)2
(θk, ψk)←− (θk, ψk)− η · ▽(θk, ψk)Ltask−related, (k = 0, 1, 2, . . . . . . , N − 2)

until convergence

the case of Self-MM, we utilize the raw data and codebase provided in the self-mm repository
[https://github.com/thuiar/Self-MM, MIT License] and modify the feature extraction method to
employ DeBERTa, replacing the original requirement for BERT. However, we note that Self-MM
itself heavily relies on the feature extraction process performed by BERT, resulting in a significant
degradation of DeBERTa-based Self-MM, which restricts the applicability of Self-MM in certain
scenarios.

F.1 CMU-MOSI

The MOSI dataset comprises 2,199 video clips from YouTube movie reviews, annotated with
sentiment intensity on a -3 to +3 scale. This multimodal dataset integrates transcriptions, visual
gestures, and audio-visual features, facilitating comprehensive sentiment analysis research. Its unique
structuring allows nuanced sentiment interpretation at opinion level Gandhi et al. (2022).
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Task Metric BA↑ F1↑ MAE↓ Corr↑
BERT

TFN (Zadeh et al., 2017) 74.8 74.1 0.955 0.649
MARN (Zadeh et al., 2018c) 77.7 77.9 0.938 0.691
MFN (Zadeh et al., 2018a) 78.2 78.1 0.911 0.699
RMFN (Liang et al., 2018) 79.6 78.9 0.878 0.712
LMF (Liu et al., 2018) 79.1 77.3 0.899 0.701
MulT (Tsai et al., 2019) 81.5 80.6 0.861 0.711
Self-MMb (Yu et al., 2021) 84.0 84.4 0.713 0.798
MMIMb (Han et al., 2021b) 84.1 84.0 0.700 0.800
MAGb (Rahman et al., 2020) 84.2 84.1 0.712 0.796

DeBERTa
MAGd 86.1 86.0 0.690 0.831
ITHP 88.7 88.6 0.643 0.852

Human 85.7 87.5 0.710 0.820

Table 4: Model performance on CMU-MOSI. The table presents the performance of different BERT-based
pre-trained models. Models developed by us are highlighted in bold, and optimal results are underlined. ITHPd

consistently outperforms other models. The metrics used include Binary Accuracy (BA), F1 Score (F1), Mean
Absolute Error (MAE), and Pearson Correlation (Corr).

Task Metric BA↑ F1↑ MAE↓ Corr↑
BERT

Self-MMb (Han et al., 2021b) 85.0 85.0 0.529 0.767
MMIMb (Han et al., 2021b) 86.0 86.0 0.526 0.772
MAGb (Han et al., 2021b) 84.8 84.7 0.543 0.755

DeBERTa
Self-MMd 65.3 65.4 0.813 0.208
MMIMd 85.2 85.4 0.568 0.799
MAGd 85.8 85.9 0.636 0.800
ITHP 87.3 87.4 0.564 0.813

Table 5: Model performance on CMU-MOSEI dataset. Models developed by us are highlighted in bold, and
optimal results are underlined. The metrics used include Binary Accuracy (BA), F1 Score (F1), Mean Absolute
Error (MAE), and Pearson Correlation (Corr).

F.2 CMU-MOSEI

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset stands as
the most extensive dataset available for multimodal sentiment analysis and emotion recognition. It
encompasses over 23,500 sentence utterance videos derived from more than 1000 YouTube speakers,
ensuring a diverse and gender-balanced collection. The sentence utterances, sourced from a variety
of topics and monologue videos, are randomly selected, transcribed, and appropriately punctuated.
This dataset represents an expanded version of MOSI, which contained 3,228 videos and 23,453
utterances, offering a richer resource for research and development in sentiment analysis and emotion
recognition.
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F.3 MUSTARD

MUStARD is a dataset constructed to support the exploration of automated sarcasm detection.
Comprised of 690 annotated video utterances from various TV shows like Friends and The Big
Bang Theory, it offers a diverse range of sarcastic and non-sarcastic instances. The utterances,
spanning video, audio, and text modalities, are each associated with speaker identifiers and contextual
information.

We benchmarked against another state-of-the-art (SOTA) Hierarchical Fusion Model (HFM) (Cai
et al., 2019b), which employs a task-oriented hierarchical fusion approach. This approach integrates
early fusion, representation fusion, and modality fusion techniques to augment the understanding
and representation of individual modalities. To maintain consistency in our comparative framework,
we integrated HFM’s modality fusion module into our experimental setup. The subsequent tests on
our dataset yielded results that facilitate a direct performance comparison between HFM and our
proposed model.

Model Precision Recall F-Score

MSDM 71.9 71.4 71.5
HFM 69.4 68.8 68.9
ITHP 75.3 75.2 75.2

Table 6: Results of sarcasm detection on the MUStARD dataset. This table displays the weighted Precision,
Recall, and F-Score for the V-T-A (video, text, audio) modality, averaged across five folds. Bold figures represent
the highest scores achieved.

F.4 VARYING HYPERPARAMETERS

The sizes of the latent states (B0 and B1) have an impact on the performance of the model. The
small size may not capture sufficient information, whereas a large size may introduce redundancy and
hinder the goal of compactness. To investigate the impact of different sizes, we vary the dimensions
of the latent states and evaluate the model’s performance. The results are depicted in Fig. 6.

In Table 6, we present the comparative results of ITHP, MSDM, and HFM for sarcasm detection on
the MUStARD dataset. For the HFM model, we adopted the Modality Fusion structure mentioned
in its original publication to facilitate multimodal integration. As stated in the HFM paper, the
modalities they employed were image, attribute, and text modalities. In our implementation, these
were substituted with video, audio, and text modalities, corresponding to the MUStARD dataset’s
specifications. Regarding parameter settings, we retained all original configurations of the HFM
model, making adjustments only to the input channel numbers of certain layers to align with the input
data requirements of the MUStARD dataset.

The results indicate that when the sizes of B0 and B1 are both set to 8, the model exhibits the poorest
performance, suggesting that this size may be insufficient for effectively capturing and conveying
the information. On the other hand, when B0 size is set to 128 and B1 size is set to 64, we observe
optimal performance with a weighted precision of 0.754. This finding suggests that a latent space
dimension of 64 is adequate for representing the multimodal information, while the dimensions of
the embedding features of the modalities are dv = 2048, dt = 768, and da = 283.

The specific values of the weighted precision and recall shown in Fig. 4 are provided in Table 7 and
Table 8, respectively. Similarly, the specific values of the weighted precision and recall shown in Fig.
6 are presented in Table 9 and Table 10, respectively.
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Figure 6: Weighted precision and recall for the binary classification task under varying sizes of latent
states. The graph shows the impact of varying the sizes of latent states (B0 and B1). For each figure, the Red
(Orange) color denotes the highest (lowest) value, respectively.

Precision

γ
β 2 4 8 16 32 64

2 0.619 0.632 0.702 0.735 0.742 0.739
4 0.621 0.655 0.715 0.742 0.749 0.744
8 0.637 0.658 0.734 0.745 0.753 0.746

16 0.693 0.686 0.736 0.746 0.749 0.740
32 0.705 0.714 0.734 0.747 0.746 0.748
64 0.710 0.728 0.729 0.743 0.747 0.741

Table 7: Weighted precision for the binary classification task under varying Lagrange multipliers. The
table shows the corresponding values of weighted precision of Lagrange multipliers (β and γ). The optimal
result is underlined.

Recall

γ
β 2 4 8 16 32 64

2 0.607 0.627 0.696 0.737 0.742 0.736
4 0.619 0.650 0.706 0.740 0.747 0.742
8 0.622 0.649 0.736 0.742 0.752 0.742

16 0.681 0.672 0.726 0.745 0.747 0.735
32 0.692 0.698 0.722 0.745 0.741 0.748
64 0.703 0.721 0.723 0.740 0.745 0.738

Table 8: Weighted recall for the binary classification task under varying Lagrange multipliers. The table
shows the corresponding values of weighted recall for different combinations of Lagrange multipliers (β and γ).
The optimal result is underlined.
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Precision

B0 size
B1 size 8 16 32 64 128 256

8 0.617 - - - - -
16 0.637 0.654 - - - -
32 0.659 0.692 0.719 - - -
64 0.667 0.714 0.738 0.740 - -
128 0.683 0.721 0.747 0.754 0.728 -
236 0.714 0.727 0.731 0.734 0.745 0.739

Table 9: Weighted precision for the binary classification task under varying sizes of latent states B0 and
B1. The table shows the corresponding values of weighted precision for different combinations of B0 and B1.
The optimal result is underlined.

Recall

B0 size
B1 size 8 16 32 64 128 256

8 0.605 - - - - -
16 0.624 0.631 - - - -
32 0.643 0.678 0.711 - - -
64 0.649 0.701 0.725 0.733 - -
128 0.678 0.714 0.745 0.749 0.725 -
236 0.711 0.723 0.730 0.732 0.740 0.735

Table 10: Weighted recall for the binary classification task under varying sizes of latent states B0 and
B1. The table shows the corresponding values of weighted recall for different combinations of B0 and B1. The
optimal result is underlined.

F.5 VARYING ORDERS OF MODALITIES

Our research includes varying the order of modalities to assess the impact on our model’s performance.
The detailed results are catalogued in Table 11, which shows the effects of different modality
sequences on weighted precision, recall, and F-score.

The results reveals that the modality sequence significantly affects performance metrics. Specifically,
positioning video as the primary modality (V→T→A) yielded the highest scores, with all metrics
around 75%. In contrast, sequences starting with audio (A→T→V) registered the lowest, with scores
near 71%. This evidence underscores the importance of strategic modality ordering, which can be
guided by domain expertise to enhance model efficiency for specific tasks.

Metrics Order of Modalities

V→T→A V→A→T T→V→A T→A→V A→V→T A→T→V

Precision 75.3 73.7 73.0 72.0 71.4 70.8
Recall 75.2 73.5 72.8 71.8 71.2 70.6
F-Score 75.2 73.4 72.9 71.7 71.5 70.6

Table 11: Varying Orders of Modalities. The table showcases the impact of changing the order of modalities
on the weighted Precision, Recall, and F-Score across both sarcastic and non-sarcastic classes, averaged across
five folds. Underlined values highlight the best results for each metric. The modalities are denoted as: T for text,
A for audio, and V for video.
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G ASSESSMENT OF INFERENCE LATENCY

Our study included a comparative analysis of inference latency, utilizing a simplified multi-layer
perceptron (MLP) as a benchmark. The MLP head, consisting of 64 neurons, served as the predictor
within our ITHP model framework. In this setup, we concatenated modalities M0, M1, and M2
and subjected them to the MLP head. The resulting inference latency was approximately 0.00221
milliseconds (ms) per sample. By comparison, the complete ITHP model, which features a more
complex hierarchical structure, exhibited an inference latency of 0.0120 ms per sample.

It is important to note that the detectors within our ITHP model remain inactive during the inference
phase, which contributes to the model’s efficiency. Despite the inherent latency increment attributable
to the hierarchical design, the ITHP model demonstrates commendable performance efficiency. The
observed slight increase in latency is a testament to the model’s capability to balance the demands of
complex multimodal learning tasks with the necessity for swift processing times.

H LEARNING COMPLEMENTARY INFORMATION FROM SECONDARY
MODALITIES

Here, we provide additional elaboration on the potential limitations that may arise when the primary
modality lacks sufficient information. It’s essential to highlight that our selection criteria for determin-
ing the primary modality have been designed to encapsulate the most pertinent information. However,
it’s equally vital to acknowledge that depending solely on the primary modality might not always
suffice, necessitating the inclusion of information from secondary modalities. By harnessing the ca-
pabilities of our deep learning framework, our model has a certain ability to learn the complementary
information from auxiliary modalities. To achieve a harmonious representation, we’ve incorporated
specific terms in the loss function. Specifically, taking the 3-modalities learning problem in Eqn. (3)
as an example, term L1 = −βI (B0;X1) is tasked with supervising the knowledge transfer from X1

to B0, while term L2 = −γI (B1;X2) is responsible for supervising the knowledge dissemination
from X2 to B1. Through this framework, the ITHP model is primed to discern and incorporate
complementary information from non-input modalities. Our model, therefore, endeavors to strike
a balance between mutual information, irrelevant data, and task-essential information, ensuring an
optimized flow of information.

I METRICS FOR EVALUATION

We employ a variety of metrics for evaluating the performance of models in binary classification:
weighted precision for different tasks. These metrics include weighted precision, weighted recall,
weighted F score, Binary Accuracy (BA), F1-Score (F1), Mean Absolute Error (MAE), and Pearson
Correlation (Corr). We consider the following notations: TP (True Positive); TN (True Negative);
FP (False Positive); and FN (False Negative).

I.1 SARCASM DETECTION

To ensure a fair comparison with the model performance outlined in (Castro et al., 2019), we have
utilized the same evaluation metrics: weighted precision, weighted recall, and weighted F-score,
following the guidelines provided by (Castro et al., 2019). The weighted average precision, recall,
and F-score are determined by incorporating the support (number of true instances for each label) as
weights. The support for class i is denoted as Si. Here are the calculations for these metrics:

Weighted Precision Pw: It measures the proportion of correct positive predictions, adjusting for
class prevalence. The formula is given as:

Pw =

∑n
i=1(Si ∗ precisioni)∑n

i=1 Si
, (22)

where precisioni = TPi

(TPi+FPi)
.

25



Published as a conference paper at ICLR 2024

Weighted Recall Rw: This metric estimates the model’s ability to identify all positive instances,
accounting for the frequency of each class. It is computed as:

Rw =

∑n
i=1(Si ∗ recalli)∑n

i=1 Si
, (23)

where recalli = TPi

(TPi+FNi)
.

Weighted F-score Fw: This balances precision and recall, weighting based on the true instances for
each label. The formula for this metric is:

Fw =

∑n
i=1(Si ∗ Fi)∑n

i=1 Si
, (24)

where Fi =
2∗(precisioni∗recalli)
(precisioni+recalli)

.

In these formulas, TPi represents the true positives for class i, FPi represents the false positives for
class i, FNi represents the false negatives for class i, and Si represents the number of true instances
for each label (class i).

I.2 SENTIMENT ANALYSIS

We adopt the well-acknowledged metrics in sentiment analysis, specifically, Binary Accuracy (BA),
F1-Score (F1), Mean Absolute Error (MAE), and Pearson Correlation (Corr), to evaluate our model’s
performance and contrast it with the benchmark models on CMU-MOSI and CMU-MOSEI datasets.
The formulas for these metrics are as follows:

Binary Accuracy (BA): It’s a straightforward measure calculated as the number of correct predictions
divided by the total number of predictions. Here’s the formula:

BA =
TP + TN

TP + TN + FP + FN
. (25)

F1-Score (F1): The F1 Score is a metric that seeks to strike a balance between Precision and Recall.
Here’s the formula:

F1 = 2 ∗ (Precision ∗Recall)
(Precision+Recall)

, (26)

where Precision = TP
TP+FP and Recall = TP

TP+FN .

Mean Absolute Error (MAE): The MAE quantifies the average magnitude of errors in a set of
predictions, disregarding their direction. Here’s the formula:

MAE(ŷ, y) =
∑n
i=1 |ŷi − yi|

n
, (27)

where yi is the true label, ŷi is the predictive value and n is the total number of predictions.

Pearson Correlation (Corr): Pearson Correlation (Corr) assesses the linear association between
predicted probabilities and true labels. Here’s the formula:

Corr(x, y) =
∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2 ∑n

i=1 (yi − ȳ)
2
, (28)

where xi refers to predicted probabilities for the positive class, and yi is the true label. The x̄ and ȳ
are the means of the predicted probabilities and actual labels, respectively.

J ALGORITHMS FOR RANKING MODALITIES

J.1 ADAPTING SAMPLE ENTROPY (SAMPEN) FOR DATASETS

Sample Entropy (SampEn) is a method traditionally used for time-series data to quantify their
complexity by evaluating the predictability of patterns within the data. When adapting SampEn for
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feature datasets, especially those resembling time-series data in structure, the same principles are used
to analyze the distribution and regularity of features within individual samples in a multidimensional
feature space.

For a dataset represented as a set of feature vectors, where each vector can be considered as a
sequence, the information richness can be quantified by measuring the regularity and unpredictability
of these sequences. SampEn in this context measures the likelihood that subsequences of features
within a given vector that are close (within a certain tolerance) remain close when one additional
dimension is considered. This approach evaluates the diversity and distribution of the patterns within
each individual sample, reflecting the intrinsic information richness of the feature data.

The SampEn of a dataset is calculated as follows:

1. Choose an embedding dimension m = 2 and a tolerance r = 0.2 ×
standard deviation of the data.

2. For each sample in the dataset, form vectors Umi for i = 1, . . . , D −m where D is the
number of features.

3. Define Bm(r) as the count of times when two vectors Umi and Umi+1 within the same sample
are within r of each other.

4. Define Am(r) similarly for m+ 1.
5. SampEn is given by:

SampEn(m, r,N) = − ln

(
Am(r)

Bm(r)

)

Algorithm 3 Ranking Modalities Based on SampEn

function SAMPLEENTROPY(data,m, r)
N ← number of samples in data
Bm ← 0
Am ← 0
for each sample in data do

for i← 1 to number of features −m do
if norm(sample[i : i+m]− sample[i+ 1 : i+m+ 1]) < r then

Bm ← Bm + 1
if i < number of features −m−1 and norm(sample[i : i+m+1]−sample[i+1 :

i+m+ 2]) < r then
Am ← Am + 1

end if
end if

end for
end for
return − log(Am/Bm) ▷ SampEn value

end function

function RANKMODALITIES(modalities,m, r)
ModalityList← [ ]
for each modality in modalities do

entropy ← SAMPLEENTROPY(modality,m, r)
Append (modality, entropy) to ModalityList

end for
Sort ModalityList based on entropy in descending order
return ModalityList ▷ List of modalities ranked by entropy

end function
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J.2 RANKING MODALITIES USING SUBMODULAR FUNCTIONS

Given a set of N different modalities M = {m1,m2, . . . ,mN}, the goal is to find a subset of
modalities S ⊆M that maximizes the predictive performance in a given downstream task.

Submodular Function Definition: Let f : 2M → R be a submodular function that maps a set of
modalities to a real number indicating their performance in a predictive task. For any A ⊆ B ⊆M
and x /∈ B, the function f satisfies:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)

Greedy Algorithm: The greedy algorithm starts with an empty set and iteratively adds a modality
that maximizes the function f(S):

Si+1 = Si ∪ {argmax
x/∈Si

f(Si ∪ {x})}

Performance Guarantee: The greedy algorithm provides an approximation guarantee of (1− 1
e ) for

maximizing a submodular function, where e is the base of the natural logarithm.

Assuming a function ‘evaluatePerformance’ that assesses the performance of a given set of
modalities.

Algorithm 4 Greedy Algorithm for Ranking Modalities

function GREEDYSUBMODULARSORT(modalities, evaluatePerformance)
S ← empty set
ModalityList← empty list
while |S| < |modalities| do

bestImprovement← −∞
bestModality ← null
for each modality in modalities− S do

newPerformance← evaluatePerformance(S ∪ {modality})
improvement← newPerformance− evaluatePerformance(S)
if improvement > bestImprovement then

bestImprovement← improvement
bestModality ← modality

end if
end for
if bestModality is null then

break
end if
S ← S ∪ {bestModality}
ModalityList.append(bestModality)

end while
return ModalityList

end function

28



Published as a conference paper at ICLR 2024

K DEFAULT NOTATION

X0 The input modal state with the highest information richness

{Xk}Nk=1 The other modal states for information fusion

{Bk}N−1
k=0 Latent states constructed for ITHP

Y Task-related labels or values

dXk
/dBk

The dimensions for modal states/ latent states

p (·) Deterministic distribution of random variables

q (·) Random probability distribution fitted by the neural network

N Total number of modal states

β Lagrange multiplier for the first level IB

γk Lagrange multipliers for the subsequent level IBs

λk Coefficients for integrating the first and sebsequent level IBs

α Coefficient for balancing the ITHP loss and the task-related loss

θk Parameters for the encoding-level Neural Networks

ψk Parameters for the predicting-level Neural Networks

µk Mean value learned by the encoding neural networks

Σk Covariance value learned by the encoding neural networks

ε Assumed distribution of latent states

nmb Mini-batch size for training the ITHP

η Learning rate for training the ITHP
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