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Using the tight-binding model, a multi-terminal superconductor(S) device is proposed, where
the structures of the center region are primitive grpahene(G) and Y-shaped Kekulé graphene su-
perlattice(GS), respectively. The intravalley Andreev reflection is studied in this model through
the utilization of the non-equilibrium Green’s function method. In the G/S device, due to the
time-reverse symmetry the dominant process of Andreev reflection is intervalley reflection. In a
three-terminal GS/S device, it has been observed that the coefficient of intravalley Andreev reflec-
tion can surpass that of intervalley reflection in crossed Andreev reflection. This is attributed to the
coupling between valleys K and -K within the first Brillouin zone, resulting in enhanced intervalley
scattering. The valley-dependent transport of Andreev reflection can be influenced by the phase
difference between superconductor terminals. The valley polarization of the local Andreev reflection
and the crossed Andreev reflection could be controlled by adjusting the structure of the central
region.

PACS numbers:

I. INTRODUCTION

Since graphene(G)1–9 was successfully exploited in the
laboratory, which is essentially a single layer of pure car-
bon atoms bonded together in a honeycomb lattice, it
has been the most interesting two-dimensional material
in the research community due to its special properties.
As is known, the unit cell of graphene consists of two
structure-different carbon A and B atoms. The six cor-
ners of the hexagonal Brillouin zone are divided into two
inequivalent groups, labeled as the K and −K valleys.
The two valleys are related by the time reversal symme-
try and the spatial inversion symmetry, so electrons in
graphene have extra pseudo-spin and valley degrees of
freedom besides the usual charge and spin ones.

The large momentum difference between the two val-
leys in clean graphene samples effectively suppresses in-
tervalley scattering, thereby conserving the valley degree
of freedom as a quantum number in electron transports.
This conservation can be harnessed to utilize the valley
degree of freedom as an information carrier10,11, which
is similar to how the spin of the electron is utilized.
Recently, the valley-dependent transport of electron has
drawn much attention in graphene-like materials, where
the valley of the electron can be detected and manipu-
lated. One kind of graphene superlattice(GS) structures
can be constructed by the Kekulé distortion12–15. In the
Kekulé GS, the unit cell is enlarged by

√
3×

√
3 so that

the points K and −K of the pristine graphene are folded
into the point Γ of the GS structure in the first Bril-
louin zone, which is shown in Fig. 1 (a). In G/GS and
GS/G/GS structures, valley inverse effect16 and valley
supercurrent17 have been predicted and studied in the-
ory, respectively.

In a conductor-superconductor(C/S) heterojunction,

the conductance is determined by the Andreev
reflection18–29 when the bias is less than the supercon-
ductor gap. The process of Andreev reflection30–32 is
that incident electrons from the conductor are reflected
as holes back to the conductor at the interface between
the conductor and superconductor. Due to the time-
reversal symmetry, the incident electron and the reflected
hole belong to the different valleys in the graphene-
superconductor structure. In some conditions, the valley
degrees of freedom of the electron and the hole can be
manipulated33–37. For example, when the time reversal
is broken, the electron and the hole can come from the
same valley38,39.

In our model shown in Figs. 1 (b), it is a four-terminal
device. The central region is the Y-shaped Kekulé su-
perlattices, which are connected with two graphene ter-
minals and two superconductor terminals. For a three-
terminal device there is only one superconductor termi-
nal. Assuming that incident electrons from terminal 1
travel into the center region and flow to the supercon-
ductor terminal, there are holes reflected back to the
graphene terminal 1 and 2. The valley degrees of freedom
of the electron and the hole can exhibit either identical or
opposite characteristics due to the intervalley scattering
effect. When incident electrons and reflected holes have
the opposite valley degree of freedom, it is intervalley An-
dreev reflection. Conversely, for the intravalley Andreev
reflection electrons and holes have the same valley degree
of freedom.

The present paper discusses the Andreev reflection in
the multi-terminal device for different valley degrees of
freedom, with a particular focus on intravalley Andreev
reflection. For the Y-shaped Kekulé graphene superlat-
tice structure, whose energy band are shown in Fig. 2
(b), the two valleys couple together, and the chirality of
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FIG. 1: (Color online) (a) The diagram of the Y-shaped
Kekulé graphene superlattice and the Brillouin zone(green
hexagon). The two basis vectors for the graphene (superlat-
tices) are labeled as a1(b1) and a2(b2). (b) The four-terminal
graphene-superconductor device with the Y-shaped Kekule
superlattice. The incident electrons travel into the super-
conductors, which are represented by the solid arrow lines
(black lines), and the reflected holes travel back to the ter-
minal 1(blue lines) or terminal 2 (brown lines), respectively.
Terminal 1 and 2 are the primitive graphene ribbons. L = 2
(W = 3) is the length(width) of the center region of the
graphene-superconductor junction.

them are unchanged. After adjusting the on-site energy
of one of six atoms in the unit cell of the superlattice,
the chirality of one valley is broken and the one of the
other valley is unbroken, which is showed in Fig. 2 (c).
The coefficients of Andreev reflection, which include the
local Andreev reflection and the crossed Andreev reflec-
tion represented as TA11 and TA12, are calculated in our
works. Comparing the coefficients of Andreev reflection
in the G/S structure and the GS/S structure, it is found
that the intravalley Andreev reflection can be enhanced
in the GS/S structure due to the intervalley scattering
effect. The valley polarization of the Andreev reflection
can be controlled by adjusting the incident energy of elec-
trons in a three-terminal or a four-terminal model. As a
consequence, the results we received provide a new way
to the design and development of electronic components.

The rest of this paper is arranged as follows. In Sec.II,
the model Hamiltonian for the system is presented and
the formalisms for calculating the Andreev reflection
coefficients and the valley polarization are derived. Our

main results are shown and discussed in Sec.III. Finally,
a brief conclusion is presented in Sec.IV.

II. MODEL AND FORMULA

The superconductor heterojunction investigated here
is a Y-shaped Kekulé graphene superlattice in the central
region, which connects with the graphene terminals and
the superconductor terminals. The Hamiltonian of the
junction is

H = HGS +HS +HT , (1)

where HGS , HS and HT are the Hamiltonians of the
graphene superlattices ribbon, superconductor terminals,
and coupling of the center region and the superconductor
terminals, respectively.
In the tight-binding representation, HGS is given by2

HGS =
∑
m,n

∑
α=1,2,3

[EAαa
†
m,nam,n + EBαb

†
m,nbm,n]

− tα[a
†
m,nbm,n + a†m,nbm-1,n + a†m,nbm,n-1 +H.c.],

(2)
where a†m,n (am,n) and b†m,n (bm,n) are the creation (anni-
hilation) operator of the sublattices Aα and Bα. EAα

and
EBα

stand for the energy of the superlattice site, where
EAα/Bα

= E0 + UAα/Bα
and E0 is the primitive on-site

energy and UAα/Bα
is the modification of the on-site en-

ergy. The second term in the Hamiltonian stands for the
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FIG. 2: (Color online) The energy band for E0 = −0.05t. The
structure are (a) Graphene ribbon, (b) Kekulé superlattice
with UAα/Bα = 0 and (c) Kekulé superlattice with only UA3 =
0.5t. The red dashed line represents the Fermi level Ef = 0.
The width is W = 80.
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nearest-neighbor hopping, where tα is the hopping en-
ergy. For the Y-shaped Kekulé superlattice the hopping
energy is restructured as t1/2 = t(1−δ) and t3 = t(1+2δ),
where t is the hopping energy in the primitive graphene.
It is considered that the region of the graphene superlat-
tice is directly coupled to the superconductor terminals.
Described by a continuum model the superconductor ter-
minal is represented by BCS Hamiltonian,

HS =
∑
k ,σ

εkC
†
kσCkσ +

∑
k

(∆0Ck↓C−k↑ +∆∗
0C

†
-k↑C

†
k↓),

(3)
where ∆0 = ∆eiθ. Here ∆ is the superconductor gap
and θ is the superconductor phase. The coupling be-
tween the superconductor terminal and the center region
is described by

HT =
∑
m,n,σ

ta†m,nσCσ(xi) + h.c.. (4)

Here xi is the position of the carbon atom i coupling to
the superconductor terminal and Cσ(x) =

∑
kx

eikxxCkσ.
The process of the Andreev reflection is that an inci-

dent electron with the energy ε flows from the graphene
terminal into the superlattice region, then it is reflected
as a hole at the interface between the center region and
the superconductor. The reflected hole can flow out of
the center region to either of the two graphene termi-
nals. Using the nonequilibrium Green function method,
we can calculate the retarded and advanced Green func-
tion Gr(ε) = [Ga]† = 1/(εI−HC −Σr), where HC is the
Hamiltonian of the center region in the Nambu represen-
tation and I is the unit matrix with the same dimension
as HC . The center region is the rectangular region sur-
rounded by the dashed line in Fig. 1 (b). Σr are the
retarded self-energy due to the coupling to the terminal
α and the superconductor terminals23,26,38.

In the Nambu representation, the retard Green func-
tion can be described by

Gr =

(
Gr

↑↑ Gr
↑↓

Gr
↓↑ Gr

↓↓

)
, (5)

where the subscripts ⇈, ⇈,↑↓ and ↓↑ represent the 11, 22,
12 and 21 matrix elements, respectively. Marking the val-
ley degree of freedom of the incident electron and the re-
flected hole as α and β respectively, the valley-dependent
transport of Andreev reflection is that the incident elec-
tron with velocity ναj from terminal 1 is reflected back as

the hole with velocity µβ
i to terminal 1 or 2, namely the

local Andreev reflection or the crossed Andreev reflec-
tion. We obtain the Andreev reflection coefficients40,41:

Tα,β
A11(ε) =

∑
ij

µβ
i

ναj
|Γ11

ij |2,

Tα,β
A12(ε) =

∑
ij

µβ
i

ναj
|Γ12

ij |2,
(6)
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FIG. 3: (Color online) In three-terminal GS/S junction TA,11

and TA,12 vs the incident energy ε with E0 = −5∆ when
W = 80 and L = 50. The structure of the center region are
primitive graphene in (a) and (b), Y-shaped Kekulé super-
lattices with UA3 = 0 in (c) and (d), and superlattices with
UA3 = 0.5t in (e) and (f).

where

Γ11 = ϕ−1
h (−)Gr

↓↑11Veϕe(+),

Γ12 = ϕ−1
h (+)Gr

↓↑L1Veϕe(+).
(7)

In the equations, α(β) represents the valley degree of free-
dom, which is K or −K. ϕe(±) and ϕh(±) are the wave
function of electron and hole in the graphene terminals,
respectively. +(−) represents that the direction of the
wave function is forward(backward). χe(±) and χh(±)
are the matrixes of the eigenvalue of the wave functions,
so here is the expression Ve = tI(ϕe(+)χ−1

e (+)ϕ−1
e (+)−

ϕe(−)χ−1
e (−)ϕ−1

e (−)). From the equations above, the
polarization of the Andreev reflection is defined as

PA11 =
TK,K
A11 + T−K,K

A11 − TK,−K
A11 − T−K,−K

A11∑
α,β T

α,β
A11

,

PA12 =
TK,K
A12 + T−K,K

A12 − TK,−K
A12 − T−K,−K

A12∑
α,β T

α,β
A12

.

(8)

III. RESULTS AND DISCUSSION

In the numerical calculation, we set the hopping en-
ergy t = 2.75 eV . The length of the nearest-neighbor C-
C bond is set to be a0 = 0.142 nm as in the real graphene
sample. The superconductor gap is set to be ∆ = 0.01t.
For the structure of the central region, there are three
different cases. When δ = 0, the center region is prim-
itive graphene. When δ = 0.1, the center region is the
Y-shaped Kekulé superlattice. For the superlattice struc-
ture, there are two scenarios: one where all modifications
of the on-site energy are set to zero, and another where
only one modification of the on-site energy is non-zero,
such as UA3

= 0.5t. To facilitate the discussion on valley
polarization, we set the Fermi energy at Ef = 0.
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FIG. 4: (Color online) In the three-terminal device the valley
polarization of the Andreev reflection vs ε when E0 = −5∆
for three different center regions.

In Fig. 2 (a), we observe that incident electrons can
originate from two distinct valleys, exhibiting different
degrees of freedom in terms of valley states. Due to
|E0| = 0.05t > ∆, the process of the Andreev reflec-
tion in our study is an intraband reflection18,26,38. Due
to the time-reversal symmetry, in the primitive graphene,
electrons and holes taking parting into the Andreev re-
flection have the opposite valley degree of freedom, which
is intervalley Andreev refleciton. In Figs. 2 (b) and (c),
the energy band structures of the superlattices are pre-
sented, where the two valleys are coupled together. In the
superlattices, due to the coupling valleys and the stronger
intervalley scattering effect, it is possible that electrons
and holes have the same valley degree of freedom, which
is intravalley Andreev reflection.

Figure 3 depicts the coefficients of Andreev reflection
in the three-terminal device at E0 = −5∆. When the
structure of the central region is primitive graphene, it
is clear that electrons taking part in local Andreev re-
flection mainly come from the valley K, and most of
them are reflected as holes belonging to the valley −K,
which showed in Fig. 3 (a). For TA11, the values of the
coefficients of the intravalley Andreev reflection are al-
ways tiny. In other words, in the local Andreev reflection
the intravalley Andreev refleciton is suppressed when the
structure of the central region is primitive graphene, and
the dominant contribution comes from the coefficients of
intervalley Andreev reflection. The maximum value of

TK,−K
A11 reaches its peak at 1.35 in Fig. 3 (a). It reduces

to 0.9 in Fig. 3 (c), where the structure is superlattices.
When the modification UA3

= 0.5t is introduced into

the superlattices, the peak value of TK,−K
A11 in Fig. 3 (e)

undergoes a reduction to 0.45. The decrease in TK,−K
A11

can be attributed to the heightened impact of interval-
ley scattering, which is significantly more pronounced in
the superlattice configuration than in primitive graphene.
As depicted in Fig. 3 (e), a comparison with Figs. 3 (a)
and (c) reveals an augmentation of intravalley Andreev
reflection.

For TA12, in the primitive graphene, the intervalley
reflection is the dominant process, and the intravalley re-
flection is nearly suppressed, which are shown in Fig. 3
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- 5
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5
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- 0 . 5 0

0 . 0

0 . 5 0

1 . 0
P

FIG. 5: (Color online) The valley polarization of the Andreev
reflection in the three-terminal device for Y-shaped Kek su-
perlattices with UA3 = 0. The dashed lines corresponds to
the value E0 = −5∆.

(b). When the central region adopts a Y-shaped Kekulé
superlattice structure, with ε varying within the range

of (−∆,∆), the curve value TK,K
A12 consistently surpasses

that of the other three curves depicted in Fig. 3 (d).
This implies that a significant portion of incident elec-
trons originating from valleyK are reflected as holes back
into valley K, ultimately flowing towards terminal 2. It

explains why the peaks of TK,−K
A11 reduce clearly in the

Figs. 3 (c) and (e). In Fig. 2 (b), we can see that the chi-
rality of the two coupling valley is unbroken although the
two valleys couple together. Due to the coupling valleys,
there are more intense intervalley scattering in the cen-
tral region. In Fig. 3 (d), the intravalley reflection in the
crossed Andreev reflection is significantly enhanced due
to intervalley scattering, while the intervalley reflection
is effectively suppressed, exhibiting a distinct deviation
from the curves observed in Fig. 3 (b). After introducing
UA3

the chirality of one valley is broken, which is showed
in Fig. 2 (c). The breaking of chiral symmetry results
in an intensified intervalley scattering effect. Therefore,
in Fig. 3 (f), although the primary contribution to TA12

originates from TK,K
A12 , it is crucial not to overlook the

contribution of intervalley reflections.

According to the coefficients of valley-dependent An-
dreev reflection mentioned above, the valley polariza-
tions of three distinct structures in the central region
are calculated and depicted in Fig. 4. For PA11, small
plateaus can be observed around ε = 0, while as |ε| in-
creases, the curves exhibit oscillations with consistently
positive polarization values. From Fig. 4(a), it is evi-
dent that when transitioning from primitive graphene to
a Y-shaped Kekulé superlattice structure in the central
region, PA11 increases from 0.7 to 0.85 at ε = 0. How-
ever, upon introducing UA3

= 0.5t, PA11 decreases back
to 0.7 again. This indicates that modulation of the cen-
ter region’s structure can effectively control the valley
polarization of Andreev reflection.

The curves in Fig. 4 (b) are the valley polarization of
the crossed Andreev reflection with ε changing. When
the central region consists of primitive graphene, it ex-
hibits a distinct behavior compared to PA11, as PA12 can
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FIG. 6: (Color online) TA11 vs the incident energy ε in the
four-terminal device for three different center region. The
phase difference between the superconductor terminals are
∆θ = 0 in (a) (c) and (e), and ∆θ = π in (b) (d) and (f).
The structure of the center region are primitive graphene in
(a) and (b), Y-shaped Kekulé superlattices with UA3 = 0 in
(c) and (d), and superlattices with UA3 = 0.5t in (e) and (f).
The length of the centre region is L = 50 and the width is
W = 80.

transition from a negative to positive value within the
range of ε changing from −0.5∆ to 0.5∆. In the case
of crossed Andreev reflection in primitive graphene, the
sign of valley polarization is dependent on the incident
energy. By modifying the structure into superlattices,
PA12 maintains its negative value regardless of ε, with
values reaching as low as −0.9 for |ε| < 0.5∆. Introduc-
ing UA3

into these superlattices results in an increase in
PA12 to approximately −0.25 at ε = 0, while still retain-
ing its negative nature throughout. This suggests that
manipulating the structure of the central region may of-
fer potential control over valley polarization in Andreev
reflection.

In order to investigate the variation of valley polariza-
tion in Andreev reflection within a three-terminal device
featuring a Y-shaped Kekulé superlattice, both the inci-
dent energy ε and on-site energy E0 are simultaneously
adjusted. As shown in Fig. 5, distinct boundaries can
be observed for both PA11 and PA12, dividing the im-
age into two regions with positive and negative values of
valley polarization, respectively. In proximity to these
boundaries, PA11 and PA12 can attain extreme values of
±1. By manipulating the on-site energy E0, it becomes
possible to control the distance between the Dirac point
and Fermi energy within the energy band. In Fig. 2 (a),
when the Fermi level intersects only with the first band,
both the incident electron and the reflected hole possess a
fixed valley degree of freedom, resulting in maximum val-
ley polarization. By increasing |E0| to sufficiently large
values, such as E0 = −5∆, due to intervalley scattering
in the Y-shaped Kekulé superlattice, the reflected hole
can have either K or −K as its valley degree of freedom
when it flows into the graphene terminals. It is reason-
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FIG. 7: (Color online) TA12 vs the incident energy ε in the
four-terminal device for three different center region. The
phase difference between the superconductor terminals are
∆θ = 0 in (a) (c) and (e), and ∆θ = π in (b) (d) and (f).
The structure of the center region are primitive graphene in
(a) and (b), Y-shaped Kekulé superlattices with UA3 = 0 in
(c) and (d), and superlattices with UA3 = 0.5t in (e) and (f).
The length of the center region is L = 50 and the width is
W = 80.

able for a slight decrease in valley polarization for large
|E0|. In Fig. 5, it is evident that the sign of valley po-
larization primarily depends on the on-site energy E0 in
devices with Y-shaped Kekulé superlattices.
In previous works26,32,38, Andreev reflection can be af-

fected by the phase difference between the two supercon-
ductor terminals in the four-terminal device. In the four-
terminal device, the coefficients of Andreev reflection,
namely TA11 and TA12, exhibit variations with incident
energy under different superconductor phase differences
∆θ, as depicted in Fig. 6 and Fig. 7 respectively. By
comparing the coefficients at ∆θ = 0 and ∆θ = π, it be-
comes evident that the superconductor phase difference
significantly impacts Andreev reflection. Considering a
primitive graphene structure for the central region, we
calculate the coefficients of TA11 presented in Fig. 6 (a)
and (b). Regardless of the magnitude of the superconduc-

tor phase difference, TK,−K
A11 consistently surpasses other

coefficients. Within the range of 0.5∆ < |ε| < 1.0∆,

there is a remarkable decrease in TK,−K
A11 when adjusting

from ∆θ = 0 to ∆θ = π. By comparison, the adjustment
of the superconductor phase difference has little effect on

the intravalley reflection TK,K
A11 and T−K,−K

A11 , whose val-
ues are always tiny. Then, the central region undergoes a
structural transformation into a Y-shaped Kekulé super-
lattice, as depicted in Figs. 6 (c) and (d). It is observed
that within the range of 0.5∆ < |ε| < 1.0∆, adjusting
the phase difference of the superconductors from ∆θ = 0

to ∆θ = π enhances TK,−K
A11 . However, upon introduc-

ing UA3
= 0.5t into the superlattice, there is a decrease

in the peak value of TK,−K
A11 and its dependence on the

superconductor phase difference becomes limited. Com-
paring Figs. 6 (e) and (f), it can be observed that both
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FIG. 8: (Color online) In the four-terminal device PA12 vs
the incident energy ε for three different center regions. The
difference of the superconductor phase are (a) ∆θ = 0 , and
(b) ∆θ = π, respectively. The length of the centre region is
L = 50 and the width is W = 80.

coefficients for intravalley reflections, namely TK,K
A11 and

T−K,−K
A11 , are consistently lower than TK,−K

A11 . Neverthe-
less, when the superconductor phase difference is set at
∆θ = π, these coefficients no longer exhibit symmetry
about ε = 0.

Under the different superconductor phase difference
∆θ the variation of TA11 has been discussed in the four-
terminal device. In Fig. 7 it shows how the coefficients
of TA12 change with the incident energy ε under different
superconductor phase difference. When the central re-
gion consists of primitive graphene, TA12 exhibits distinct
characteristics compared to the three-terminal device.
Specifically, irrespective of the phase difference between

the superconductors, the intravalley reflection TK,K
A12 ex-

hibits a greater intensity compared to that observed in
the three-terminal device. Moreover, for ∆θ = π, there is

an enhancement in the intervalley reflections TK,−K
A12 and

T−K,K
A12 . However, when we consider a Y-shaped Kekulé

superlattice as the structure of the central region in a
four-terminal device, we observe that intravalley reflec-
tion remains as the dominant process for crossed Andreev
reflection, similar to its behavior in a three-terminal de-

vice. The curves depicting TK,K
A12 can be seen in Fig. 7

(c) and (d). Around ε = 0, there exists a minimum value

of TK,K
A12 when ∆θ = 0. Conversely, TK,K

A12 exhibits a peak
value around ε = 0 when ∆θ = π. It is evident that the
strength of the crossed Andreev reflection coefficients can
be controlled by adjusting the phase difference in the su-
perconductors. Upon introducing UA3 = 0.5t into the
superlattice, the impact of the superconductor phase dif-
ference on TA12 diminishes. The curves depicted in Fig.
7 (e) resemble those in Fig. 7 (f). From Figs. 6 and
7, it can be observed that the phase difference between
two superconductor terminals influences Andreev reflec-
tion; however, this influence weakens due to broken chiral
symmetry.

The curves in Fig. 8 illustrate the valley polarization
of crossed Andreev reflection in a four-terminal device for
two different phase differences between the superconduc-
tors, namely ∆θ = 0 and ∆θ = π. In Fig. 8 (a), except
for the black curve, the values of PA12 are consistently

negative within the range of |ε| < ∆. For the black curve,
as ε varies from 0.2∆ to 0.6∆, the valley polarization ex-
hibits a plateau-like behavior approaching -1, indicating
that this corresponds to a primitive graphene structure
in the central region. However, when transitioning to a
Y-shaped Kekulé superlattice structure in the central re-
gion, there is an increase in plateau value around -0.9 for
the red curve. After incorporating UA3

= 0.5t into the
superlattice, for −0.5∆ < ε < 0.5∆, the value of PA12

increases up to -0.5 as depicted by the blue curve. By set-
ting the phase difference between the superconductors as
∆θ = π, Fig. 8 (b) illustrates that the black curve ex-
hibits a positive value within the range of −∆ < ε < 0
and transitions to a negative value for 0 < ε < ∆. No-
tably, there is a plateau with a positive value around 0.5
observed for −0.9∆ < ε < −0.5∆. Interestingly, within
this same range, the red curve displays a plateau with
a negative value around −0.5, indicating an inversion of
valley polarization due to changes in the structure of the
central region.

IV. CONCLUSIONS

In this study, we calculate the coefficients of interval-
ley and intravalley Andreev reflection in a multi-terminal
device that we propose. The central region of the device
consists of primitive graphene and a Y-shaped Kekulé
graphene superlattice. From the energy band structure
of the Y-shaped Kekulé graphene superlattice, it is evi-
dent that the two valleys are coupled together, resulting
in enhanced intervalley scattering. Consequently, it is
possible for both electrons and holes involved in Andreev
reflection to originate from the same valley. In the three-
terminal device, the coefficient of intravalley reflection

TK,K
A12 is greater than that of intervalley reflection when

employing a Y-shaped Kekulé graphene superlattice as
the structure in the center region. The valley polariza-
tion of Andreev reflection can be controlled by adjusting
both the structure and on-site energy. In a four-terminal
device, the valley-dependent transport of Andreev reflec-
tion can be influenced by manipulating the phase differ-
ence between superconductor terminals. To summarize,
it is possible to manipulate the degree of freedom asso-
ciated with valleys during Andreev reflection, providing
novel ideas for designing and developing electronic com-
ponents.
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