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A Distributed Scalable Cross-chain State Channel
Scheme Based on Recursive State Synchronization

Xinyu Liang, Ruiying Du, Jing Chen, Yu Zhang, Meng Jia, Shuangxi Cao, Yufeng Wei, Shixiong Yao

Abstract—As cross-chain technology continues to advance,
the scale of cross-chain transactions is experiencing significant
expansion. To improve scalability, researchers have turned to the
study of cross-chain state channels. However, most of the existing
schemes rely on trusted parties to support channel operations. To
address this issue, we present Interpipe: a distributed cross-chain
state channel scheme. Specifically, we propose a real-time cross-
chain synchronization scheme to ensure consistent operations be-
tween two blockchains to a cross-chain state channel. Moreover,
we propose a batch transaction proof scheme based on recursive
SNARK to meet the cross-chain verification needs of large-scale
users. Based on the above designs, Interpipe offers protocols for
opening, updating, closing, and disputing operations to cross-
chain state channels. Security analysis shows that Interpipe has
consistency and resistance, and experimental results demonstrate
that a cross-chain state channel can be nearly as efficient as an
existing intra-chain state channel.

Index Terms—Blockchain, Cross-chain Technology, State
Channel

I. INTRODUCTION

Blockchain [1] offers a secure and transparent way to record
and verify transactions without the need for a central authority.
In recent years, distributed trust systems centered around
blockchains have been forming at an unprecedented pace. The
application areas [2] of blockchain have expanded from the
traditional cryptocurrency domain [1] [3] to various fields
such as healthcare [4], supply chain [5], and cloud service
[6]. However, while enriching the blockchain ecosystem, these
blockchains are isolated from each other, hindering the flow of
information and value. To solve the isolation problem, cross-
chain technology [7] enables different blockchain networks to
communicate and interact with each other, which is invaluable
for connecting the decentralized Web 3.0.

The existing cross-chain schemes can be classified into
two categories, which are non-relay-based scheme and relay-
based scheme. The non-relay-based scheme appeared in the
early stage of cross-chain technology. It relies on external
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components to achieve cross-chain operations, such as decen-
tralized exchanges [8] based on notaries, and atomic cross-
chain swaps [9] based on hashed time-lock contract [10].
However, non-relay-based schemes do not have the transfer
of state information between blockchains, therefore limiting
their functionality to relatively simple cross-chain operations.
In a relay-based scheme [11] [12] [13] [14] [15] [16] [17],
blockchains transfer their state information to each other by
using a cluster of relay nodes. Based on the state information,
a party of a blockchain can directly verify the transactions
in another blockchain to support more complex cross-chain
operations, leading to the emergence of cross-chain platforms
such as Polkadot [15] and Cosmos [16]. With the number
of users on the platform increasing, the daily cross-chain
transactions have extended to a considerable scale, which
will eventually exceed the blockchain throughput limit [18],
resulting in a scalability issue.

In previous intra-chain scenarios, the scalability issue can
be solved by state channel [19] [20] [21] [22] [23] [24] [25]
[26] [27]. In the most recent years, concerning the idea of
state channel, researchers have begun to study the potential of
cross-chain state channel between two blockchains, and move
most cross-chain transactions into the channel for executions
to share the blockchain throughput pressure. As far as we
know, there are currently two papers [28] [29] that provide
detailed designs. Specifically, Jia et al. propose cross-chain
virtual payment channel [28] to achieve off-chain interactions
between Ethereum and Bitcoin. Guo et al. propose Cross-
Channel [29] to support cross-chain operations in both syn-
chronous and asynchronous networks. However, these schemes
rely on trusted parties to support channel operations, which
are vulnerable in a distributed environment. To achieve a
distributed cross-chain state channel, we are still facing two
critical challenges.

1) Consistent Operation: Two blockchains must synchro-
nize their state information to ensure consistent op-
erations within a cross-chain state channel. However,
in most existing schemes, cross-chain synchronizations
are non-real-time, leaving room for third parties or
intermediaries to arbitrarily delay or interrupt the syn-
chronization process. This can lead to situations where
two blockchains have different operations within one
cross-chain state channel, posing a security threat.

2) Scalable Verification: Operations within cross-chain
state channels require blockchain nodes to efficiently
verify transactions on another blockchain. However,
most of the existing schemes focus on verifying specific
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individual transactions. When the scale of the transac-
tions becomes large, the cross-chain verifications will
incur significant costs, which cannot satisfy the growing
demands of users.

In this paper, we present Interpipe: a distributed cross-
chain state channel scheme. To ensure consistent operations,
we introduce a real-time cross-chain synchronization scheme.
Specifically, our approach involves the adoption of a state
pulling strategy to retrieve the latest state from one blockchain
and generate the corresponding state proof to be recorded in
another blockchain. This process operates recursively in the
background as the blockchain expands, a method we refer to
as recursive state synchronization. As a result, two blockchains
can synchronize their real-time state proofs with each other.
Based on state synchronization, we achieve transaction syn-
chronization. It enables the recording of one transaction ct into
two blockchains, while maintaining their consistency based
on the real-time state proofs of each other. In the subsequent
discussion, ct is referred to as a cross-chain transaction. Sub-
sequently, cross-chain transactions can be published on both
blockchains to facilitate the operations of opening, updating,
closing, and disputing within a cross-chain state channel.

To facilitate scalable verification, we propose a batch trans-
action proof scheme based on recursive SNARK. Specifically,
within the system of blockchain Pi, a prover aggregates every
cross-chain transaction in Pi into a one-way accumulator
and binds this accumulator with the current state proof of
Pi using zk-SNARK. Notably, we leverage the recursively
generated data structure of the blockchain to implement re-
cursive SNARK, thereby reducing the computational cost of
generating the state proof. On the other hand, within the
blockchain system Pj , a verifier first verifies the correctness of
the accumulator based on the state proof of Pi. Subsequently,
each cross-chain transaction in Pi can be efficiently verified
based on the accumulator. Therefore, the batch proof system
caters to the verification needs of any cross-chain transaction,
meeting the large-scale requirements of users.

In general, we have the following contributions.

1) Interpipe represents the first distributed cross-chain state
channel scheme. To the best of our knowledge, existing
cross-chain state channel schemes rely on trusted parties
to support channel operations, which introduces security
vulnerabilities.

2) To achieve consistent operations, we propose a real-time
cross-chain synchronization scheme. This enables us to
record one cross-chain transaction into two blockchains
and ensure their consistency. Subsequently, we carry out
operations of opening, updating, closing, and disputing
within a cross-chain state channel.

3) To achieve scalable verification, we propose a batch
transaction proof scheme based on recursive SNARK.
This approach allows a verifier within a blockchain
system to efficiently verify any cross-chain transaction
in another blockchain.

4) We conduct a security analysis of Interpipe. Addition-
ally, we implement a proof-of-concept prototype and
evaluate the performance of Interpipe.

This paper is organized as follows. In Section II, we review
the existing works related to cross-chain scheme, state channel,
and transaction verification. We describe the building blocks
of our scheme in Section III, and give a description about the
system model, threat model, and design goals in Section IV.
We illustrate the batch transaction proof in Section V, and
describe the details of Interpipe in Section VI. We analyze the
security properties of our scheme in Section VII, and describe
the implementation of our prototype in Section VIII. Finally,
we conclude in Section IX.

II. RELATED WORK

A. Cross-chain Scheme

As illustrated in Fig. 1, the existing cross-chain schemes
can be classified into two categories: non-relay-based schemes
and relay-based schemes. In a non-relay-based scheme, two
blockchains do not transfer their state information to each
other but rely on external components to achieve cross-chain
operations. For example, decentralized exchanges [8] use a
notary committee as a third party to exchange users’ tokens
in one blockchain for tokens in another blockchain. Moreover,
atomic cross-chain swaps [9] are achieved by using hashed
time-lock contract [10]. However, as a non-relay-based scheme
does not transfer blockchain state information, the scheme can
only support simple cross-chain operations with a low security
guarantee.

In a relay-based scheme, two blockchains transfer their state
information to each other by using a cluster of relay nodes.
The relay-based scheme was first illustrated by Back et al. [11]
in 2014. BTC Relay [12] is a representative implementation.
It sends the Bitcoin block headers to the Ethereum smart con-
tract, achieving cross-chain verification of Bitcoin transactions.
Based on BTC Relay, Alexei et al. [13] propose XClaim. It
achieves trustless cross-chain exchanges using cryptocurrency-
backed assets and employs collateralization and punishments
to enforce the correct behavior of participants. To further im-
prove efficiency, Xie et al. [14] propose zkBridge. It introduces
zk-SNARK to generate the state proof of blockchain. By this
act, the state information can be compressed into a small proof
to be transferred between blockchains, reducing the overhead
of transmission and storage.

The early relay-based schemes mainly focus on the inter-
action between two blockchains, which is also called one-
to-one framework. If a blockchain intends to interact with
n blockchains, it has to establish n cross-chain connec-
tions, which is inefficient. To solve this problem, the relay
nodes cluster begins to establish connections with multiple
blockchains, called parachains (parallel blockchains). Besides,
the relay nodes maintain a blockchain, called relay chain,
by themselves to record the state information from every
parachain. At the same time, relay chain is published to every
parachain system. Subsequently, a parachain can obtain the
states of other parachains by only accessing relay chain. Based
on this relay-chain-parachain framework, a parachain only
needs to establish one cross-chain connection with relay chain
to interact with n parachains that also connect with relay chain,
to improve efficiency.
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Fig. 1: Categories of cross-chain schemes

The existing cross-chain platforms such as Polkadot [15]
and Cosmos [16] are constructed following the relay-chain-
parachain framework. As mentioned in Section I, these plat-
forms are required to support the cross-chain needs of large-
scale users with numerous cross-chain transactions per day.
However, in previous cross-chain platforms, the cross-chain
synchronizations between blockchains are non-real-time. It re-
sults that a blockchain cannot learn the latest states of another
blockchain on the platform within a certain time limit, as the
blockchain features a dynamically growing data structure with
continuously updating states. To solve the problem, Liang et al.
[17] propose a cross-chain state pulling scheme, called XPull.
The relay nodes cluster will periodically pull the latest state
information from parachains, and forward the state information
to other parachain systems, which achieves real-time state
transfer to ensure timeliness.

B. State Channel

In 2016, Joseph et al. proposed payment channel [19] to
improve the scalability of Bitcoin. In the following works, the
payment channel is beginning to develop in two directions, as
shown in Fig. 2. The first direction is payment channel network
[19], noted PCN. It enables the delivery of assets between two
users U1 and Un by using a path of payment channels in PCN.
In the following works, researchers have further improvements
to payment channel network from various perspectives. For
example, Giulio et al. [20] propose Fulgor to ensure privacy
by using multi-hop hashed time-lock contract. Christoph et al.
[21] propose the protocol AMCU for atomic multi-channel
updates by jointly creating a multiple-input-multiple-output
(MIMO) transaction. Lukas et al. [22] further propose Thora
to refine atomicity, in which Thora is compatible with a
number of cryptocurrencies having arbitrary payment channel
topologies. Lukas et al. [23] propose Sleepy Channel, which
does not require either of the channel users to be persistently
online. Papadis et al. [24] propose single-hop scheduling
(SHS), which provides a decision-making scheme for the users
in payment channel network to maximize channel throughput.

The second direction is virtual payment channel [25]. Based
on the current two channels, noted as (U1, U2) and (U2, U3),
the users U1 and U3 can establish a virtual payment channel
(U1, U3) to have direct interaction. Next, virtual payment
channel technology has derived the design of multi-party
virtual channel (MPVC) [26]. It means that more than two
users can interact within a channel, supporting more com-
plex off-chain operations. Furthermore, Lukas et al. propose
bitcoin-compatible virtual channel (BCVC) [27] to improve
the compatibility. In the most recent work, Jia et al. propose a
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Fig. 2: Categories of payment channel

scheme (CCVPC) [28] to achieve cross-chain virtual payment
channel (U1, U3), based on (U1, U2) and (U2, U3) in different
blockchain systems. However, this design cannot resist the
conspiracy attack of U1, U2, and U3, posing a security threat.

Moreover, with the extension of blockchain application sce-
narios from cryptocurrencies to other fields, the operations of
transferring tokens within a channel have been generalized into
a channel’s state change [30], in which the previous “payment
channel” has evolved into “state channel”. Nowadays, state
channels have been applied in various fields, such as log audit
[31], data sharing [32], and video streaming [33].

C. Transaction Verification

The transaction verification schemes of blockchain can be
classified into two categories. The first category is based on
the well-known Merkle tree [34], applied by Bitcoin. Sub-
sequently, researchers improve the Merkle tree and propose
Merkle Patricia tree, applied by Ethereum [3]. It introduces
prefix tree to enhance the efficiency of data storage and
retrieval.

The second category is based on one-way accumulator. In
1993, Benaloh et al. [35] first constructed the accumulator
based on the one-way hash function which satisfies a quasi-
commutative property. An accumulator allows a prover to
hash the transactions in a blockchain into one short value,
which supports efficient cross-chain transfer. Niko et al.
[36] further generalize the definition of accumulators and
construct a collision-free subtype. Jan et al. [37] propose
dynamic accumulator that allows a prover to dynamically
add and delete an element in the accumulator. In recent
works, Boneh et al. [38] propose batching techniques for
cryptographic accumulators, which achieve membership proof
and non-membership proof of transactions in blockchain. As
the accumulators are well compatible with zk-SNARK, the
existing anonymous cryptocurrency schemes, such as Zcash
[39] [40], adopt accumulators for transaction retrieval.

III. PRELIMINARY

A. Notation

To facilitate the understanding, we summarize the main
notations in this paper in TABLE I.

B. Cross-chain State Transfer

The relay-chain-parachain framework is widely used in
cross-chain platforms [15] [16] to meet the cross-chain needs
of multiple blockchains.
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TABLE I: Notations

Notation Meaning

R relay chain
Pi i-th parachain
n number of parachains on a cross-chain platform
NR set of nodes which maintain relay chain
NP

i set of nodes which maintain the i-th parachain
NR∼

i subset of NR to interact with NP
i

πi zero knowledge proof of the state of Pi

Ai accumulator for every cross-chain transaction in Pi

ct cross-chain transaction
wct,i membership witness of ct in Pi

There are n parachains {P1, . . . ,Pn} and one relay chain
R in the framework. Each parachain Pi (i ∈ [n]) is maintained
by a set of parachain nodes NP

i and the relay chain R
is maintained by a set of relay nodes NR. Moreover, NR

are divided into n relay node groups {NR∼
1 , . . . ,NR∼

n } and
∀{i, j} ⊆ {1, . . . , n}∧i ̸= j,NR∼

i ∩NR∼
j = ∅. The relay node

group NR∼
i establish network connections with NP

i to start
the cross-chain state transfer, which includes two processes of
state reception and state forwarding.

In the state reception process, the relay node groups NR∼
i

(i ∈ [n]) receive the state information of Pi from NP
i , and

record the information into R to be published to every entity
on the cross-chain platform. In the state forwarding process,
NP

j (j ∈ [n], i ̸= j) extract the state information of Pi from
R, and record the information into Pj . Therefore, by only
accessing Pj , any entity in Pj system can obtain the state
information of Pi, supporting cross-chain operations.

Furthermore, to ensure the timeliness of Pi state infor-
mation in R, the relay node group NR∼

i adopts a state
pulling strategy [17]. NR∼

i periodically send the state pulling
instructions to NP

i to pull the latest state information of
Pi, and subsequently record the state information into R.
Moreover, when an adversary has corrupted NR∼

i to interrupt
the state pulling, a new relay node group N∗R∼

i will be
randomly selected from NR based on distributed randomness
[41] generated by NR. N∗R∼

i will replace NR∼
i to continue

the state pulling, ensuring Pj to record the real-time state
information of Pi.

C. One-way Accumulator

An accumulator [35] [36] [38] enables one to encode a set
into a short digest and prove that an element is in the set.
Let D be the domain of an accumulator. An accumulator
ACC = (Setup,Commit,Add,CreateMemWit,VerifyMem)
consists of the following five algorithms.

• Setup(1λ)→ pp: Given a security parameter λ, this setup
algorithm outputs a public parameter pp.

• Commit(pp, S) → AS : Given the public parameter pp
and a set S ⊆ D, this committing algorithm outputs an
accumulator digest AS to the set S.

• Add(AS , ct) → AS∪{ct}: Given an accumulator digest
AS to a set S and an element ct ∈ D \ S, this adding
algorithm outputs a new accumulator digest AS∪{ct} to
the set S ∪ {ct}.

• CreateMemWit(S,AS , ct) → wct,S : Given a set S, an
accumulator digest AS to the set S, and an element
ct ∈ S, this witness creation algorithm outputs the
membership witness wct,S of ct ∈ S.

• VerifyMem(AS , ct, wct,S) → b: Given an accumulator
digest AS to a set S, an element ct, and a membership
witness wct,S , this membership verification algorithm
outputs a bit b ← 1 to indicate that wct,S is a valid
witness for proving ct ∈ S; otherwise outputs b← 0.

D. Zero-knowledge Proof

The zero-knowledge proof (ZKP) scheme [42] [14] enables
one to prove a statement without exposing other information.
The ZKP scheme ZKP = (Setup,Prove,Verify) consists of
the following three algorithms.

• Setup(1µ, R) → crs: Given a security parameter µ and
a relationship R, this setup algorithm outputs a common
reference string crs.

• Prove(crs, x, w)→ π: Given a common reference string
crs, a statement x, and a witness w, this proving algo-
rithm outputs a proof π for the relationship R(x,w).

• Verify(crs, x, π) → b: Given a common reference string
crs, the statement x, and the proof π, this verification
algorithm outputs a bit 1/0 to indicate whether R(x,w)
holds or not.

ZKP satisfies three properties. Completeness: if the witness
being proved is true, the verifier will be convinced of this fact
with high probability. Soundness: if the witness being proved
is false, no cheating prover can convince the verifier that it is
true, except with a negligible probability. Zero-knowledge: the
proof does not reveal any information about the witness being
proved, except for the fact that it is true.

IV. PROBLEM STATEMENT

A. System Model

Interpipe includes one relay chain R, and two parachains Pl

and Pr called left parachain and right parachain. Pl and Pr

have established cross-chain connections with R on a cross-
chain platform, following relay-chain-parachain framework.
The state information of Pl and Pr is synchronized into
each other in the following way (see Fig. 3): ① NR∼

l and
NR∼

r divided from NR pull the latest state information of
Pl and Pr from NP

l and NP
r using state pulling strategy;

② NR∼
l and NR∼

r generate the state proofs of Pl and Pr,
and record the state proofs into R; ③ as R is public on the
cross-chain platform, NP

r and NP
l extract the Pl and Pr state

proofs from R, and record them into Pr and Pl, achieving a
synchronization.

There are two users Alice and Bob. On the one side,
Alice belongs to Pl system. She can access the network
of NP

l to obtain the full blockchain data of Pl, or publish
new transactions on Pl via NP

l . Since the state proof of
Pr has been recorded into Pl, Alice can verify the state or
transactions in both Pl and Pr by only accessing Pl. In the
same way, Bob belongs to Pr system, and he can verify the
state or transactions in both Pl and Pr by only accessing
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Fig. 3: System model of Interpipe

Pr. Additionally, a communication connection is established
between Alice and Bob to transmit signatures and membership
witnesses of transactions. This communication connection is
off-chain, which does not require the use of any blockchain
network. Based on the above configurations, a cross-chain state
channel is established between Alice and Bob.

It is worth noting that among the n parachains on the cross-
chain platform, any two parachains can establish cross-chain
state channels in the same way as parachain Pl and Pr.
For convenience, we specifically discuss a cross-chain state
channel between Pl and Pr in the following content.

B. Threat Model
• Hard fork: Hard fork can occur in a blockchain to result

in a split from the original chain and the creation of a
new separate chain.

• Denial-of-service attack: With a sufficiently long period
of time, an adversary can control every node in a relay
node group to interrupt the information synchronization
between parachains.

• Replay attack: An adversary can replay cross-chain trans-
actions and state proofs, attempting to have duplicate
operations to cross-chain state channel.

• Counterfeiting: An adversary can tamper the contents in
cross-chain transactions and state proofs, attempting to
synchronize false information between parachains.

• Eclipse attack: An adversary can create a fake network
environment around a user, attempting to prevent the user
from learning the new states of blockchains.

• Conspiracy attack: Alice and Bob can collude to publish
different cross-chain transactions to Pl and Pr, attempt-
ing to create parachain data out of thin air.

• Noncooperation: One of Alice and Bob can refuse to
cooperate with the other one, attempting to terminate the
cross-chain transaction publication to Pl and Pr.

We assume the cryptographic primitives, including hash
function and digital signature, of relay chain and parachains

are secure. Moreover, the zero-knowledge proof algorithms
can be deployed in distributed environment without trusted
setup [42] [14].

As Interpipe establishes cross-chain state channels by the
cooperation of three blockchains R, Pl, and Pr, we assume
the proportion of the corrupted consensus participators in each
blockchain system is bounded by the threshold to ensure
security. In the existing PoW [43] and PoS [44] protocol, it
requires the proportion α < 1/3.

Moreover, we assume that an adversary is mildly adap-
tive [44]. Specifically, for a group of honest nodes
{node1, . . . , nodex}, the adversary cannot instantly corrupt
every node in {node1, . . . , nodex}, and the corruption may
only succeed after a sufficiently long period of time. Oth-
erwise, the adversary possesses enough power to effortlessly
control the majority of blockchain nodes, and overthrows the
proportion α < 1/3 or the security threshold in any node
group.

Based on the above assumption, we can ensure persistence
and liveness [45] of blockchain transactions. Moreover, we
ensure a stable block time, as the block generation process
is controlled by mining difficulty [46] in PoW consensus
protocol or consensus slot [44] in PoS consensus protocol.

• Transaction persistence states that once a transaction goes
more than k blocks deep into the blockchain of one honest
consensus participator, it will be included in every honest
participator’s blockchain with overwhelming probability.

• Transaction liveness states that every transaction origi-
nating from an honest user will eventually end up at a
depth of more than k blocks in an honest consensus par-
ticipator’s blockchain, and an adversary cannot perform a
selective denial-of-service attack against the honest user.

• Stable block time states that the average time it takes
for new blocks to be added to a blockchain remains
consistent and predictable over an extended period.

C. Design Goals

• Consistency: Parachain Pl and Pr can synchronize the
real-time state proofs of each other. A cross-chain trans-
action ct can be recorded into both Pl and Pr, with their
consistency being kept.

• Resistance: It is hard for an adversary to interrupt the
cross-chain synchronization between Pl and Pr. Resis-
tance relies only on the security guarantees in R, Pl, and
Pr systems.

• Liveness: Any two users respectively located in Pl and
Pr systems can have opening, updating, closing, and
disputing to a cross-chain state channel.

• Efficiency: Any user in R, Pl, and Pr systems can have
cross-chain verification to the state and transactions in R,
Pl and Pr with low storage and computation overhead.

V. BATCH TRANSACTION PROOF

Batch transaction proof enables verifiers in Pl or Pr system
to have verification to any cross-chain transaction in Pr or Pl

with low storage and computation overhead. This scheme has
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three processes, which are initialization, recursive proving, and
verification.

Initialization: The initialization is executed when relay
chain R and parachains Pi (i ∈ [n]) first establish cross-
chain connections on cross-chain platform. Specifically, the
blockchain protocols of relay chain and parachains including
data structure, encryption algorithm, and consensus mecha-
nism are published to every entity on the cross-chain platform.
Second, the identity information including public keys and
blockchain addresses of blockchain nodes NR, NP

i (i ∈ [n])
are also published on the cross-chain platform, which will be
used as the public statement x to verify new blocks and state
proofs following the scheme in [42]. Moreover, the blockchain
nodes generate public parameter pp ← ACC.Setup(1λ) and
crs ← ZKP.Setup(1µ, R) for accumulator and zero knowl-
edge proof in distributed environment.

Then, the group NR∼
l is divided from relay node set NR to

establish cross-chain connections with NP
l , and pull the data of

Pl from NP
l . NR∼

l generate the initial accumulator Al
0, which

can be the generator without adding elements. Moreover, NR∼
l

generate the zero knowledge proof πl
0 of Pl, which can be

achieved by the existing scheme [14]. The tuple (Al
0, π

l
0) is

called the initial state proof of Pl.
Noted, in the following content, we only illustrate the batch

transaction proof of Pl for convenience, while the proof of
Pr is generated by the same method of Pl.

Recursive proving: Recursive proving is executed in
rounds, which are a continuous series of time intervals with
fixed length. The proving process in the u-th round includes
three steps, which are updating accumulator, generating proof
of new block, and updating state proof. The proof generation
process is shown in Fig. 4.

① Updating accumulator. In the u-th round, there are
multiple new Pl blocks generated, noted as Bl

u. The relay
node group NR∼

l pull Bl
u from NP

l , extract all cross-chain
transactions Tl

u from Bl
u, and add Tl

u into accumulator Al
u−1

to generate Al
u ← ACC.Add(Al

u−1,T
l
u), where Al

u−1 is the
accumulator in the (u-1)-th round. Noted, the ordinary intra-
chain transactions in Bl

u which do not need to be cross-
chain synchronized will not be extracted or added into the
accumulator.

② Generating proof of new blocks. NR∼
l generate the zero-

knowledge proof π∗r
u ← ZKP.Prove(crs, x,Al

u−1, A
l
u,B

l
u).

The witness to be proved includes the following.
• There is a set of new parachain blocks Bl

u. Every block
in Bl

u has the correct format with valid proof of work (in
PoW protocol) or proof of stake (in PoS protocol). Every
block in Bl

u has a valid hash pointer pointing to the last
block.

• Every cross-chain transaction in Bl
u has been correctly

included in the Merkle tree of the block in Bl
u.

• Every cross-chain transaction in Bl
u has been added in

Al
u−1 to output Al

u.
The above witness will be transformed into arithmetic

circuits to be substituted into the proof process of zk-SNARK
to output the proof π∗r

u .
③ Updating state proof. We have a recursive proof by

using the recursive SNARK in Nova [42] to further generate

u-th round(u-1)-th round(u-2)-th round

Parachain Pr

r

uΒ1

r

u−B2

r

u−B

r

uT

*r

u
*

1

r

u −

*

2

r

u −

r

u1
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u −2
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uA
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uA −2
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uB
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r

uB

r
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      : ZKP of Pr in 
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r

u

     : accumulator including 
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*r

u

① Updating accumulator

② Generating proof of new blocks

③ Updating state proof

Fig. 4: Recursive proof of parachain

πl
u ← ZKP.Prove(crs, x, πl

u−1, π
∗l
u ), in which πl

u−1 is the
proof generated in the (u-1)-th round. By this step, the
zero knowledge proof of Pl is updated from πl

u−1 to πl
u.

Subsequently, we call (πl
u, A

l
u) as the state proof of Pl in the

u-th round. More importantly, to obtain πl
u, the prover only

needs to calculate the arithmetic circuits in the new blocks
Bl

u and the proof πl
u−1 in the last round. The old blocks Bl

x

(0 < x < u) generated in the previous rounds do not need
to be recalculated, as the witness of Bl

x have been proved
by πl

u−1. Because the number of new blocks in a round is
relatively small, the calculation to the arithmetic circuits can
be completed in a short time.

Verification: On the side of Pr, without accessing the
original data of Pl, verifiers will confirm the correctness of
(πl

u, A
l
u) by ZKP.Verify(crs, x,Al

u−1, A
l
u, π

l
u). Specifically,

there is a valid parachain Pl, and every cross-chain transaction
in Pl has been added into Al

u. The identities of the verifiers
are Pr node set NP

r and any user in Pr system including
Alice.

Based on Al
u, verifiers in Pr system can further verify

that a certain cross-chain transaction ct has been recorded
in Pl. This requires a prover connecting with Pl system
to create the membership witness wct,l

u of ct in Al
u, where

wct,l
u ← ACC.CreateMemWit(Pl, A

l
u, ct), and send wct,l

u to
the verifiers. Based on wct,l

u , the verifiers have verification
by ACC.VerifyMem(Al

u, ct, w
ct,l
u ) to confirm that ct has been

added into Al
u, and consequently, ct has been recorded in Pl.

By the above method, verifiers first need to have one ver-
ification to (πl

u, A
l
u) to confirm the correctness of Al

u. Then,
based on Al

u, the verifiers can verify any cross-chain transac-
tions in Pl. Each verification of a cross-chain transaction only
requires one calculation of ACC.VerifyMem(Al

u, ct, w
ct,l
u ),

which can satisfy the demands of scalable cross-chain trans-
action verification.

VI. INTERPIPE

In this section, we first have an illustration of cross-
chain synchronization (see Section VI-A), which enables two
parachains Pl and Pr to have consistent operations. Based on
cross-chain synchronization, we provide designs for the cross-



7

Relay Chain R

R System

Relay node group

Parachain Pl

Parachain

Nodes

Pl System

Parachain Pr

Pr System

Pull       
Record (     ,     )

Pull        
u-th

round

NP

l

~NR

l

Relay node group
~NR

r

Parachain

Nodes

NP

r

l

u
l

uA

Forward (     ,     )
l

u
l

uA

Record (     ,     )
r

u
r

uA

Forward (     ,     )
r

u
r

uA

l

uB r

uB

Fig. 5: One round of state synchronization

chain state channel operations of opening, updating, closing,
and disputing (see Section VI-B).

A. Cross-chain Synchronization

Cross-chain synchronization has two parts, which are state
synchronization and transaction synchronization. First, state
synchronization is the underlying design. It is recursively
executed in rounds, enabling two parachains to keep real-time
records of the state proofs of each other. Based on the real-
time state proofs, we achieve transaction synchronization. It
means that users can record one cross-chain transaction ct into
the two parachains Pl and Pr, and keep their consistency.

1) State synchronization: First, state synchronization fol-
lows the initialization of batch transaction proof to generate
the initial state proof (Al

0, π
l
0) of Pl (see line 2-11 in Pro-

tocol 1). Then, NR∼
l record (Al

0, π
l
0) into R to start state

synchronization. Because Pl continues to grow over time, the
Pl state keeps updating. To keep the real-time Pl state proof
synchronized into Pr, the state synchronization repeats at
regular time intervals called rounds (see line 12-17 in Protocol
1). In the u-th round, the state information of Pl and Pr

will be transferred and recorded into each other based on
cross-chain state transfer [15] [16] with two processes of state
reception and state forwarding. In the following content, we
further design the two processes, and illustrate the information
transfer from Pl to Pr, where the information transfer from
Pr to Pl follows the same way.

In state reception process (see line 18-25 in Protocol 1),
NP

l transfer the state information of Pl to NR∼
l . The state

information is in the form of newly generated Pl blocks in the
u-th round, noted as Bl

u. Then, NR∼
l extract all cross-chain

transactions Tl
u which need to be cross-chain synchronized

from Bl
u, and add Tl

u into Al
u−1 to generate Al

u, where Al
u−1

is the accumualtor in the (u-1)-th round. Next, NR∼
l generate

the zero-knowledge proof πl
u of the current Pl by recursive

proving (see Section V), where Al
u is binded with πl

u to have
(πl

u, A
l
u) as the state proof of Pl. Then, NR∼

l will record
(πl

u, A
l
u) into relay chain R to be published on cross-chain

platform.
Moreover, in the u-th round, NR∼

l use state pulling strategy
[17] to pull Bl

u from NP
l . Therefore, every time there are new

blocks generated in Pl, the new blocks will be obtained by
NR∼

l within a certain number of rounds. Subsequently, the
time between the moment in which new blocks are generated
and the moment in which new state proof is recorded into Pr

Prototol 1. State Synchronization
1 StateSynchronization
2 // Initialization

3
NR, NP

i (i ∈ [n]) : publish blockchain protocols
and identity information

4 NR, NP
i (i ∈ [n]) : ZKP.Setup, ACC.Setup, u← 1

5 for i← l, r do
6 NR → NR∼

i : NR divide groups
7 NR∼

i ⇔ NP
i : NR∼

i establish connections with NP
i

8 NR∼
i ⇐ NP

i : NR∼
i pull Pi from NP

i
9 NR∼

i : NR∼
i set the initial accumulator Ai

0
10 NR∼

i : ZKP.Prove(crs, x,Pi, A
i
0)→ πi

0
11 NR∼

i : NR∼
i record (πi

0, A
i
0) into R

12 // Synchronization in rounds
13 for true do
14 for i← l, r do
15 NR∼

i : NR∼
i have StateReception

16 NP
j : NP

j have StateForwarding
17 NR : Round number u increases by one

18 StateReception
19 for i← l, r do

20
NR∼

i ⇐ NP
i : NR∼

i pull the new parachain blocks Bi
u

generated in the u-th round from NP
i

21 NR∼
i : NR∼

i extract all cross-chain trans Ti
u from Bi

u

22 NR∼
i : ACC.Add(Ai

u−1,T
i
u)→ Ai

u

23 NR∼
i : ZKP.Prove(crs, x,Ai

u−1, A
i
u,B

i
u)→ π∗i

u

24 NR∼
i : ZKP.Prove(crs, x, πi

u−1, π
∗i
u )→ πi

u

25 NR∼
i : NR∼

i record (πi
u, A

i
u) into R

26 StateForwarding
27 for i← l, r and j ← r, l do
28 NP

j : NP
j extract (πi

u, A
i
u) from R

29 NP
j : ZKP.Verify(crs, x, πi

u, A
i
u)

30 NP
j : NP

j record (πi
u, A

i
u) into Pj

will not exceed a certain limit, which ensures the timeliness
of state synchronization.

In state forwarding process (see line 26-30 in Protocol 1),
R is published to Pr system to reach consensus among NP

r .
Then, NP

r extract (πl
u, A

l
u) from R, verify the correctness of

(πl
u, A

l
u), and record (πl

u, A
l
u) into Pr. We say that the Pl

state proof (πl
u, A

l
u) is synchronized into Pr. Furthermore,

based on (πl
u, A

l
u), Pr system can verify that a certain cross-

chain transaction ct has been recorded into Pl, with the help
of a prover in Pl system to provide the membership witness
wct,l

u of ct.



8

Alice Bob

Extract ct
Record

Forward

Extract ct

Forward ct and
(u+1)-th

round

Publish ct
u-th

round

Record ct and

(u+2)-th

round

UITS

(v+1)-th

round

Publish ct
v-th

round
Publish ct

Exchange         and

Publish Publish

JITS

●
  ●

  ●

●
  ●

  ●

●
  ●

  ●

●
  ●

  ●

●
  ●

  ●

●
  ●

  ●

Relay Chain R

R System

Relay node group

Parachain Pl

Parachain

Nodes

Pl System

Parachain Pr

Pr System

NP

l

~NR

l

Relay node group
~NR

r

Parachain

Nodes

NP

r

,ct r

uw
,ct r

uw

,

1

ct l

uw + ,

1

ct l

uw +

,ct l

vw ,ct r

vw
,ct l

vw
,ct r

vw

Fig. 6: Transaction synchronization

Using the same method of state reception and state for-
warding, (πr

u, A
r
u) is generated by NR∼

r to be recorded into
R, and then (πr

u, A
r
u) is extracted by NP

l to be recorded into
Pl. Therefore, in the same round, Pl and Pr have their state
proofs synchronized to each other. Fig. 5 shows one round of
state synchronization.

2) Transaction synchronization: Based on state synchro-
nization, we further achieve transaction synchronization to
record one cross-chain transaction ct into two parachains Pl

and Pr, and keep their consistency. Classified by the initiator,
transaction synchronization can be divided into two categories,
which are unilaterally initiated transaction synchronization
(UITS) and jointly initiated transaction synchronization (JITS).

UITS: UITS is initiated by any single party belonging to
Pl system or Pr system. For example, if Bob in Pr system
wants to unilaterally record ct into Pl and Pr, he needs to go
through the following steps.

1) In the u-th round of state synchronization, Bob attaches
a UITS label to ct, and publishes ct to NP

r . Then, NP
r

record ct into Pr. (see line 3-5 in Protocol 2)
2) In the (u+1)-th round of state synchronization, NR∼

r

additionally generate the membership witness wct,r
u of

ct in Pr. ct and wct,r
u will be recorded into R. Then,

ct and wct,r
u are extracted by NP

l to be recorded into
Pl. Subsequently, by verifying ct, wct,r

u , and (πr
u, A

r
u),

Pl system will confirm that ct has been recorded in Pr.
(see line 6-12 in Protocol 2)

3) In the (u+2)-th round of state synchronization, NR∼
l

additionally generate the membership witness wct,l
u+1 of

ct in Pl. w
ct,l
u+1 will be recorded into R, Then, wct,l

u+1 is
extracted by NP

r to be recorded into Pr. Subsequently,
by verifying wct,l

u+1 and (πl
u+1, A

l
u+1), Pr system will

confirm that ct has been recorded in Pl. (see line 13-19
in Protocol 2)

It is worth noting that Alice does not participate in UITS
with Bob, but she can monitor that ct is recorded in Pl, as Pl

is public to the members in Pl system. The monitoring will

Prototol 2. Transaction Synchronization
1 UITS
2 // i← l or r // j ← r or l // U i ← Alice or Bob
3 // u-th round
4 U i ⇒ NP

i : U i publishes ct to NP
i

5 NP
i : NP

i record ct into Pi

6 // (u+1)-th round
7 NR∼

i : NR∼
i extract ct from Pi

8 NR∼
i : ACC.CreateMemWit(Pi, A

i
u, ct)→ wct,i

u

9 NR∼
i : NR∼

i record (ct, wct,i
u ) into R

10 NP
j : NP

j extract (ct, wct,i
u ) from R

11 NP
j : ACC.VerifyMem(Ai

u, ct, w
ct,i
u )

12 NP
j : NP

j record (ct, wct,i
u ) into Pj

13 // (u+2)-th round
14 NR∼

j : NR∼
j extract ct from Pj

15 NR∼
j : ACC.CreateMemWit(Pj , A

j
u+1, ct)→ wct,j

u+1

16 NR∼
j : NR∼

j record wct,j
u+1 into R

17 NP
i : NP

i extract wct,j
u+1 from R

18 NP
i : ACC.VerifyMem(Aj

u+1, ct, w
ct,j
u+1)

19 NP
i : NP

i record wct,j
u+1 into Pi

20 JITS
21 // U l ← Alice // Ur ← Bob
22 // v-th round
23 U l / Ur ⇒ NP

l / NP
r : U l / Ur publish ct to NP

l / NP
r

24 NP
l / NP

r : NP
l / NP

r record ct into Pl / Pr

25 // (v+1)-th round

26
U l / Ur : ACC.CreateMemWit(Pl, A

l
v , ct)→ wct,l

v /
ACC.CreateMemWit(Pr, Ar

v , ct)→ wct,r
v

27 U l ⇔ Ur : U l and Ur exchange wct,l
v and wct,r

v

28 U l / Ur : U l / Ur publish wct,r
v / wct,l

v to NP
l / NP

r

29
NP

l / NP
r : ACC.VerifyMem(Ar

v , ct, w
ct,r
v ) /

ACC.VerifyMem(Al
v , ct, w

ct,l
v )

30 NP
l / NP

r : NP
l / NP

r record wct,r
v / wct,l

v into Pl / Pr

enable Alice to learn the malicious behavior of Bob when he
publishes an outdated transaction by UITS. This feature will be
applied in the disputing operation to cross-chain state channel
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(see Section VI-B).
JITS: If Alice and Bob intend to jointly record ct into Pl

and Pr by using JITS, they need to go through the following
steps. To facilitate the description, the roles on both sides of
the slash “/” will perform the operation simultaneously in the
following content.

1) In the v-th round of state synchronization, Alice / Bob
attaches a JITS label to ct, and publishes ct to NP

l / NP
r .

Then, NP
l / NP

r records ct into Pl / Pr. (see line 22-24
in Protocol 2)

2) In the (v+1)-th round of state synchronization, Alice /
Bob generates the membership witness wct,l

v / wct,r
v of

ct in Pl / Pr, and sends the membership witness to Bob
/ Alice. Then, Alice / Bob publishes wct,r

v / wct,l
v to NP

l

/ NP
r . NP

l / NP
r verify the correctness of wct,r

v / wct,l
v ,

and record it into Pl / Pr. Pl system / Pr system will
confirm that ct has been recorded in Pr / Pl. (see line
25-30 in Protocol 2)

Fig. 6 shows the process of UITS and JITS.
Comparison: We have a comparison between UITS and

JITS. For the same points, UITS and JITS have the same result.
Specifically, one cross-chain transaction ct is recorded into two
parachains Pl and Pr, and Pl and Pr confirm the recording
of ct in each other.

For the different points, JITS does not need relay chain R
to record ct, wct,l, and wct,r. For a cross-chain platform with
numerous users, there will be a mass of ct, wct,l, and wct,r

generated per day, which may occupy the throughput of R. If
the users use JITS to have transaction synchronization, JITS
will greatly reduce the throughput pressure of R, which is
more efficient than UITS.

However, compared with UITS, the prerequisite of JITS is
more stringent. JITS requires Alice and Bob to cooperate to
publish ct, wct,l and wct,r. If one of Alice and Bob refuses to
cooperate, Pl and Pr have to enable R again to accomplish
transaction synchronization, in which JITS degrades to UITS.
(see Section VII-G)

B. Cross-chain State Channel

1) Opening operation: By using JITS, Alice and Bob
jointly publish an opening transaction ctopen to Pl and Pr

to achieve an opening operation. ctopen will lock a part of
Alice’s and Bob’s data in Pl and Pr, and move the data into
the cross-chain state channel as its initial state. The data can
be tokens, assets, or private records of Alice and Bob. Then,
the data can be processed in the channel without touching
blockchains. Technically, it is also feasible to record ctopen to
Pl and Pr by using UITS. However, we suppose that Alice
and Bob are cooperative at the beginning of the cross-chain
state channel. Therefore, only the ctopen published by JITS
can open a cross-chain state channel. (see line 1-4 in Protocol
3)

2) Updating operation: Updating operation includes two
steps. Alice and Bob first draft an updating transaction
ctupdatem , and exchange the signatures of ctupdatem . Second,
Alice and Bob draft a punishment transaction pctupdatem−1 to
invalidate ctupdatem−1 , and exchange the signatures of pctupdatem−1

Prototol 3. Channel Operation
1 Opening
2 // U l ← Alice // Ur ← Bob
3 U l ⇔ Ur : Cosign→ ctopen

4 U l ⇔ Ur : JITS(ctopen)

5 Updating
6 // U l ← Alice // Ur ← Bob
7 U l ⇔ Ur : U l and Ur exchange signatures of ctupdatem

8 U l ⇔ Ur : U l and Ur exchange signatures of pctupdatem−1

9 Closing
10 if Joint closing then
11 // U l ← Alice // Ur ← Bob
12 U l ⇔ Ur : Cosign→ ctclose

13 U l ⇔ Ur : JITS(ctclose)
14 else
15 // U i ← Alice or Bob
16 U i : UITS(ctupdatem )
17 U i : U i waits for ∆t

18 U i : UITS(cctupdatem )

19 Disputing
20 // Uj ← Bob or Alice
21 repeat
22 Uj : Uj monitors Pj

23 until ctupdatex (0 < x < m) is recorded in Pj

24 Uj : UITS(pctupdatex )

(see line 5-8 in Protocol 3). The two steps are consistent with
the existing intra-chain state channel [19]. We do not have
further illustrations.

3) Closing operation: There are two categories of closing
operations, which are joint closing and unilateral closing. In
joint closing, Alice and Bob will publish closing transaction
ctclose to Pl and Pr by using JITS. According to the state in
ctclose, Alice’s and Bob’s data in the channel will be returned
back to their accounts in Pl and Pr. Then, the cross-chain
state channel is closed.

In unilateral closing, we assume that Bob attempts to
unilaterally close the channel. He will publish the latest
updating transaction ctupdatem to Pl and Pr by using UITS.
After a waiting time of ∆t, Bob will publish the confirmation
transaction cctupdatem of ctupdatem to Pl and Pr by using UITS.
cctupdatem will return the data of Alice and Bob in ctupdatem

back to their accounts in Pl and Pr. Then, the cross-chain
state channel is closed. (see line 9-18 in Protocol 3)

Noted, if Bob publish cctupdatem within the waiting time of
∆t, cctupdatem is invalid. Besides, if Alice notices that Bob has
published ctupdatem by UITS, she can also publish cctupdatem by
using UITS, and cctupdatem takes effect immediately without
waiting a time of ∆t.

4) Disputing operation: In the process that Bob unilaterally
closes the cross-chain state channel, there may be a malicious
behavior that Bob publishes outdated transaction ctupdatex (0 <
x < m) to Pl and Pr, attempting to deny the latest transaction
ctupdatem . For example, when ctupdatex contains more tokens
for Bob, compared with ctupdatem , Bob may choose to close
the channel by ctupdatex instead of ctupdatem , attempting to get
more tokens back to his account. In this condition, a dispute
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occurs.
If Bob has the malicious behavior, ctupdatex will be cross-

chain transferred within a certain number of state synchro-
nization rounds by UITS. Alice needs to remain online in Pl

system to monitor whether a ctupdatex is recorded into Pl. If
yes, Alice will have UITS to publish pctupdatex to Pl and Pr

within the time of ∆t. pctupdatex rejects ctupdatex in Pl and Pr,
and closes the channel in the most favorable channel state for
Alice, such as returning all the tokens in the channel to Alice’s
account, as a punishment to Bob. (see line 19-24 in Protocol
3)

VII. SECURITY ANALYSIS

This section offers an informal security analysis to support
the designs presented in Sections VI and V. We will explore
attack vectors, potential impacts, and ways to mitigate them.

A. Hard Fork

A hard fork is a non-backward-compatible upgrade to a
blockchain network that fundamentally changes its protocol,
resulting in a split from the original chain and the creation of
a new separate chain.

1) Hard fork in parachain: When a hard fork occurs in left
parachain Pl to create two separate parachains P∗

l and P∗∗
l .

Bob in the Pr system may attempt to establish two cross-
chain state channels to P∗

l and P∗∗
l by only publishing one

cross-chain transaction ct. Consequently, Bob’s data in Pr

can be used twice. (Alice may also have the same attempt
when Pr has a hard fork.) To solve the problem, NR need to
select the main chain in P∗

l and P∗∗
l . For example, it follows

the chain with the most accumulated proof-of-work. Relay
chain R only has cross-chain synchronization with the main
chain. Subsequently, Bob can only establish a cross-chain state
channel with Alice’s account in one of P∗

l and P∗∗
l .

2) Hard fork in relay chain: There is another possibility
that a hard fork occurs in relay chain R to create R∗ and
R∗∗. The original cross-chain platform maintained by NR is
divided into two platforms respectively maintained by N∗R

and N∗∗R. Surprisingly, the relay chain hard fork has little
impact on cross-chain state channel. Because relay chain is
only an intermediary to transfer parachain state information,
and it does not generate new information. If N∗R or N∗∗R have
sufficiently large scale to ensure the security of R∗ system or
R∗∗ system with α < 1/3, the cross-chain synchronization can
continue to support the operations in cross-chain state channel.

B. Denial-of-service Attack

The existing cross-chain platform divides the relay node
cluster NR into n relay node groups NR∼

i . This division was
intended to reduce communication and calculation overhead,
as NR∼

i only needs to process information from one parachain.
However, this design also reduces the number of nodes in each
NR∼

i , making it vulnerable to potential attacks. An adversary
may attempt to take control of every node in NR∼

i . The
corrupted nodes may deny to pull the parachain state or gen-
erate state proof. Consequently, relay chain R cannot receive

the real-time state information of a parachain Pi, which in
turn affects the other parachains, causing a synchronization
interruption.

To address the denial-of-service attack, NR adopt the ran-
dom scheduling mechanism in XPull [17] (see Section III-B)
to randomly select a new group N∗R∼

i to replace NR∼
i . There

is a high possibility that N∗R∼
i contains a portion of normal

nodes to continue the cross-chain synchronization. To break
the random scheduling mechanism, the adversary needs to
control the majority of relay nodes NR. We assume it is
hard to achieve. Moreover, if the adversary attempts to regain
control of N∗R∼

i , another random scheduling can be executed
to respond to it. We assume that the adversary is mildly
adaptive [44], i.e. the adversary cannot instantly corrupt every
node in N∗R∼

i , and the corruption may only succeed after
a sufficiently long period of time. Therefore, between each
random scheduling, there is a time interval in which N∗R∼

i

includes at least one normal relay node to have cross-chain
synchronization. Therefore, the interruption is only temporary,
and the cross-chain synchronization can continue.

C. Replay Attack

Without adequate protection, a malicious party may attempt
to replay cross-chain transactions. Specifically, the party pub-
lishes duplicate opening transaction ctopen to open two cross-
chain state channels without permission; the party publishes
duplicate updating transaction ctupdatem or closing transaction
ctclose to close the channel, attempting to return duplicate data
to its account. A simple method to solve the problem is to add
a unique identifier to each cross-chain transaction to prevent
duplication.

D. Counterfeiting

A node in NP
i may submit tampered parachain blocks

to NR∼
i , and a corrupted NR∼

i may generate counterfeit
zero-knowledge proofs of the parachain state, attempting to
synchronize the false state proofs into other blockchains.
However, when Pi first established a cross-chain connection
with relay chain R, the parachain protocols and parachain
node identities were made public to the cross-chain platform.
Based on the tamper-proof property of blockchain, the tam-
pered blocks or state proofs violate the parachain protocol
or parachain node signature, which can be easily detected.
Moreover, we assume the proportion of corrupted parachain
nodes have α < 1/3. Therefore, the adversary does not process
enough hash rate (in PoW) or stake (in PoS) to create a replica
of parachain, and consequently, the counterfeiting is hard to
achieve.

E. Eclipse Attack

Bob may unilaterally close the cross-chain state channel by
publishing an outdated updating transaction ctupdatex , attempt-
ing to deny the latest updating transaction ctupdatem (0 < x <
m) (see Section VI-B). At the same time, an adversary may
create a fake network environment around Alice to prevent her
from learning the publication of ctupdatex through accessing
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Pl, attempting to let Alice miss the opportunity to solve the
dispute. For this problem, Alice needs to keep updating her
local state of Pl by receiving new Pl blocks. If the new blocks
cannot be received, she needs to find new P2P connections to
ensure that at least one honest node of Pl can provide the
service to prevent eclipse attacks.

F. Conspiracy Attack

Alice and Bob having a cross-chain state channel may
attempt to collude to create blockchain data out of thin air. For
example, between parachain Pl and Pr, Alice and Bob each
contribute 50 tokens to open a cross-chain state channel, noted
(50, 50), which includes 100 tokens in total. Next, Alice and
Bob attempt to publish ctupdatex to Pl to close the channel in a
state of (100, 0), by which Alice has 100 tokens returned to her
account in Pl. Then, Alice and Bob attempt to publish ctupdatey

to Pr to close the channel in a state of (0, 100), by which Bob
has 100 tokens returned to his account in Pr. Finally, Alice
and Bob have 200 tokens in total, with 100 tokens created
out of thin air. The timeliness of cross-chain synchronization
ensures that Pl and Pr learn the real-time states of each other.
When a cross-chain transaction ct is recorded in one of Pl and
Pr, ct will be definitely recorded in the other one. Therefore,
the ctupdatex and ctupdatey closing the same channel can be
detected to conflict, and they will be refused by both Pl and
Pr, in which the conspiracy attack is hard to succeed.

G. Noncooperation

The noncooperation may occur during JITS, in which one
of Alice and Bob refuses to cooperate with the other one.
For example, Alice may refuse to publish ct to Pl, send the
membership witness wct,l to Bob, nor publish wct,r to Pl.
In these conditions, NR∼

l or NR∼
r will detect that Pl or Pr

has only recorded ct without recording ct membership witness
in the other parachain. If the problem persists for a long
enough time, NR∼

l or NR∼
r will switch to UITS to have the

synchronization of ct, using relay chain R to transfer ct and
its membership witnesses. Therefore, the noncooperation can
only degrade JITS to UITS. The transaction synchronization
can still be finished.

VIII. EXPERIMENT AND EVALUATION

A. Implementation

We develop a prototype implementation of Interpipe. The
main process is written in Golang, Rust, and C++. In addition,
the recursive proof algorithm utilizes Nova [42], and the hash
algorithm adopts SHA-256. The blockchains, including a relay
chain and two parachains, are based on Ouroboros consensus
protocol [44]. We adjust the consensus slot to keep the block
generation rate at 18 seconds per block. The system of relay
chain R includes 120 relay nodes, denoted as NR. They
are implemented with Intel Xeon Platinum 8280 @2.7GHz,
256GB DDR4 ECC DIMMs, and Windows Server operation
system. In the initialization phase of relay chain system, two
groups NR∼

l and NR∼
r , each including 8 nodes, are randomly

selected from NR using a distributed randomness beacon based

on Drand [47]. The system of two parachains Pl and Pr

respectively include 100 parachain nodes, denoted as NP
l and

NP
r . They are deployed on two hosts with Intel Core i9-

13900K @3.0GHz, 64G DDRS 5200MHz XMP, and Windows
operation system. Then, we deploy Protocol 1, 2, and 3 to
Interpipe.

In each round of state synchronization, the state proofs of
Pl and Pr are generated and transferred by relay nodes. The
individuals within Interpipe will not have direct operations
to state synchronization, as it automatically continues in the
background to keep the consistency between parachains. We
evaluate the proof generation efficiency in this process, and
compare it with the existing work zkBridge [14], which
is illustrated in Section VIII-B. In the next process, two
operators, respectively situated in Pl and Pr systems, first
achieve the synchronization of a blank cross-chain transaction
ct by using UITS and JITS. Then, ct is replaced by ctopen,
ctupdate, ctclose, and pctupdate to achieve the opening, up-
dating, closing, and disputing operations to cross-chain state
channel. We evaluate the throughput occupancy and time cost
with different round duration, and compare the performance
between Interpipe and the previous intra-chain state channel,
which is illustrated in Section VIII-C.

B. Proof Generation Efficiency

We compare the proof generation time cost of Interpipe with
the most recent work zkBridge [14] by the blockchain length
as a variable. Based on the strategy of zkBridge, we divide
the arithmetic circuits in the parachain into M copies, and
distribute the M copies to M relay nodes for calculation,
thereby increasing the proof generation speed by M times.
In our experiment (see Fig. 7), we set the value of M to be 8
and 4, although this value can be larger in practical situations.
However, zkBridge is only designed for one-round proof and
does not make use of the proof generated in the previous
round. Consequently, the arithmetic circuits in old blocks have
to be recalculated in every round. It results in an increase in
proving time as the blockchain length grows. In contrast, we
use recursive SNARK to generate the state proof in Interpipe.
To facilitate proof generation, the cross-chain transactions are
included in a subtree of the Merkle tree in each parachain
block. It takes about 7 seconds to finish the calculation of
the arithmetic circuits in one block. The processes of proof
generation and proof transfer can be carried out in parallel,
with minimal impact on the time costs of each other. The
experiment result shows that Interpipe’s proving time remains
relatively constant, as it does not require the recalculation of
old blocks, and the number of new blocks generated in each
round is almost constant.

We also evaluate the proof generation time cost with dif-
ferent cross-chain transaction proportions q (see Fig. 8). For
a parachain, each parachain block includes about 55 transac-
tions, with a proportion of cross-chain transactions denoted as
q where (0 < q < 1). In a practical situation, the value of q
depends on the preferences of all users in a parachain system.
Considering most of the transactions in existing blockchains,
such as Bitcoin and Ethereum, primarily focus on the internal
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Fig. 7: Proof generation time cost with different blockchain length

Fig. 8: Proof generation time cost with different cross-chain
transaction proportion

affairs within the system, we set a relatively small value for
q, in which 0 < q < 0.1. The result shows that the time
cost of Interpipe increases with q. Because batch transaction
proof needs to prove every cross-chain transaction in the new
block, leading to increased computation with a higher number
of cross-chain transactions. In comparison, the time cost of
zkBridge does not exhibit significant changes, as zkBridge is
designed to prove individual cross-chain transactions. How-
ever, the time cost of Interpipe is still lower than the time cost
of zkBridge, as the scale of cross-chain transactions in new
blocks is much smaller than the scale of old blocks.

C. Comparison to Intra-chain State Channel

We begin by evaluating the performance of state synchro-
nization. The duration of each round of state synchronization
can be adjusted. Its value must be sufficiently large to prevent
an excessively high frequency of state synchronization, which
could lead to an accumulation of redundant state proofs in
R, thereby occupying its throughput (see Fig. 9). Conversely,
a longer round duration results in increased wait times for
users (see Fig. 10). The time costs associated with opening,
closing, and disputing operations all rise with longer durations,
while the time cost of updating operations remains constant,
given that updates are executed off-chain. Consequently, there
exists a trade-off between minimizing throughput occupancy
and ensuring better service quality. The maintainers of a cross-
chain platform need to find an appropriate balance in practical
situations.

Adhering to our threat model, we maintain that a transaction
within a blockchain achieves persistence when it reaches a
depth of k blocks, where k = 9. Concerning the trade-
off in round duration, we have selected 240 seconds as

Fig. 9: Throughput occupancy with different round duration

Fig. 10: Operation time cost with different round duration

the suitable duration for state synchronization. To compare
the performance of the cross-chain state channel (CCSC) in
Interpipe with the existing intra-chain state channel (ICSC)
operating within a blockchain system, we deploy the ICSC
protocol [19] to a parachain system. The comparison of their
performance is outlined in Table II. The opening, closing, and
disputing operations to CCSC indeed have a larger time cost
than the same operations to ICSC. Because each operation to
CCSC needs to have a transaction synchronization including
2 or more steps. A step refers to a cross-chain transaction
or membership witness being recorded into a blockchain
and becoming stable over time, with StepsJITS = 2 and
StepsUITS = 5. Moreover, each transaction synchronization
needs to wait for the state synchronization to enable cross-
chain verification to the cross-chain transaction or membership
witness, thereby incurring additional time costs. However, in
updating operation, CCSC and ICSC exhibit similar time costs
with relatively small values. As the updating operations play
the main roles in off-chain interactions, if there are no urgent
needs or malicious behaviors to close the channel, CCSC can
be nearly as efficient as ICSC in most cases.

IX. CONCLUSION

In this paper, we present a distributed cross-chain state
channel scheme, called Interpipe. To meet the cross-chain ver-
ification needs of large-scale users, we propose a batch trans-
action proof scheme based on recursive SNARK. To achieve
consistent operations between two blockchains, we propose
a real-time cross-chain synchronization scheme. Based on
the above designs, Interpipe offers protocols for opening,
updating, closing, and disputing to cross-chain state channels.
We have a security analysis of Interpipe, in which Interpipe
can keep consistency, and withstand various existing attacks.
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TABLE II: Comparison between ICSC and CCSC

Operation Steps Time Cost

ICSC

Opening 1 3.6 min
Updating 0 62 ms
Closing (Joint) 1 3.7 min
Closing (Unilateral) 1 3.7 min
Disputing 1 5.5 min

CCSC

Opening 2 12.5 min
Updating 0 105 ms
Closing (JITS) 2 13.4 min
Closing (UITS) 5 29.5 min
Disputing 5 36.9 min

The experimental results show that cross-chain state channels
can be nearly as efficient as existing intra-chain state channels.
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