
1

Predicting Accurate Hot Spots in a More Than Ten-

Thousand-Core GPU with a Million-Time Speedup over

FEM Enabled by a Physics-based Learning Algorithm

Lin Jian1, Yu Liu, Ming-Cheng Cheng*

Department of Electrical and Computer Engineering, Clarkson University, Potsdam

NY 13699-5720, USA

{jiangl2, yuliu, mcheng}@clarkson.edu

1Current affiliation: Department of Electronic and Computer Engineering,

The Hong Kong University of Science and Technology, Kowloon, Hong Kong

jiangwilbert72@gmail.com

Abstract—The classical proper orthogonal decomposition

(POD) with the Galerkin projection (GP) has been revised for

chip-level thermal simulation of microprocessors with a large

number of cores. An ensemble POD-GP methodology (EnPOD-

GP) is introduced to significantly improve the training

effectiveness and prediction accuracy by dividing a large number

of heat sources into heat source blocks (HSBs) each of which may

contains one or a very small number of heat sources. Although

very accurate, efficient and robust to any power map, EnPOD-GP

suffers from intensive training for microprocessors with an

enormous number of cores. A local-domain EnPOD-GP model

(LEnPOD-GP) is thus proposed to further minimize the training

burden. LEnPOD-GP utilizes the concepts of local domain

truncation and generic building blocks to reduce the massive

training data. LEnPOD-GP has been demonstrated on thermal

simulation of NVIDIA Tesla Volta™ GV100, a GPU with more

than 13,000 cores including FP32, FP64, INT32, and Tensor Cores.

Due to the domain truncation for LEnPOD-GP, the least square

error (LSE) is degraded but is still as small as 1.6% over the entire

space and below 1.4% in the device layer when using 4 modes per

HSB. When only the maximum temperature of the entire GPU is

of interest, LEnPOD-GP offers a computing speed 1.1 million

times faster than the FEM with a maximum error near 1.2oC over

the entire simulation time.

Keywords— Hot sports, thermal simulation, Proper orthogonal

decomposition, Galerkin projection, physics-based learning, GPUs

I. INTRODUCTION

Demands for high performance computing have drastically

increased in recent years due to the needs for scientific and

engineering computing and the explosion of machine learning,

data science, and artificial intelligence [1]-[3]. The integration

of a large number of cores in microprocessors enabling massive

parallelism and the reduction in technology nodes enhancing

the operation frequency have been a viable solution to continue

improving the computing performance. Both approaches to

satisfy the computing demands have inevitably increased power

density in microprocessors [4], and thus led to temperature

escalation and hot spot formation. Higher power dissipation

degrades not only the computing performance but also the

reliability of microprocessors and thus shortens their lifespan

[5], [6]. To minimize the serious thermal issues, effective

thermal management techniques are needed, which require

efficient and accurate thermal simulation tools for

microprocessors.

Among the conventional thermal simulation approaches,

popular models based on thermal circuits [7]-[9] and the

Green’s function [10]-[12] are considerably more efficient than

direct numerical simulation (DNS) that requires a large number

of degrees of freedom (DoF). Assumptions are however needed

in these efficient approaches at the cost of accuracy and/or

spatial resolution. For example, the Green’s function is a spatial

impulse response of a unit point heat source, which is not able

to account for effects of various boundary conditions (BCs)

except the adiabatic BC that can be included using the method

of image [13]. In addition, the Green’s function is limited to 2D

steady state simulations of a single layer with a heat flux

dissipation on the substrate to account for effects of 3D thermal

flow from the device layer to the substrate boundary.

Although approaches based on thermal circuits are more

efficient than the Green’s function, hot-spot temperatures may

not be captured accurately unless the RC thermal elements are

taken smaller than sizes of hot spots, which are as small as the

grid size in DNSs. Use of small elements in thermal circuits,

however, leads to a large-dimension matrix equation (i.e., a

large DoF), which then becomes as time consuming as DNSs.

It has been observed that thermal circuits usually offer an

accurate prediction over a small interval in time or near steady

state [13]-[19] due to inaccurate distributed heat transfer

resulting from approximation of lumped elements. To correct

the limit, HotSpot [8] includes one scaling factor for all lumped

thermal elements in the entire domain to adjust the time scale.

Taking an unconventional path, proper orthogonal

decomposition (POD) [20], [21] of solution data, together with

the Galerkin projection (GP) of the heat transfer equation, has

recently been applied successfully to thermal simulations of

microprocessors to achieve high efficiency and accuracy with
This work was supported by the National Science Foundation under

Grant Nos: ECCS-2003307 and OAC- 2118079.

2

fine resolution [22], [23]. Using POD-GP, the thermal problem

is projected from a physical domain onto a POD space

represented by a finite set of optimal basis functions (or POD

modes) trained by temperature data obtained from DNSs of the

problem. The GP of the heat transfer equation onto the POD

space is further applied to close the model, which incorporates

heat transfer principles into the model. The training has

previously been performed globally for POD-GP (hereafter

named GPOD-GP) in the entire processor subjected to variation

of dynamic power maps (PMs) to generate a set of global POD

modes, where the dynamic PM provides the strengths and

locations of dynamic heat sources in the processor induced by

real-time workload. This classical POD-GP approach offers an

accurate prediction of the dynamic thermal profile in a multi-

core processor using a small number of modes if the dynamic

power map (PM) is within the training range [22], [23]. In

situations slightly outside the bounds of the training settings,

the accuracy deteriorates; however, good accuracy can still be

reached with more modes included [22]. This effective learning

ability of GPOD-GP stems from the GP of the heat transfer

equation, which enforces the physical (heat transfer) principles

as a guidance to reach a good prediction. This is very different

from the mainstream machine learning methods based on neural

networks, whose predictions usually fail for situations beyond

the training [24].

To generate effective POD modes for GPOD-GP to achieve

efficiency and accuracy, dynamic PMs applied in the training

must cover enough spatial variations in dynamic power source

locations. This can be easily achieved for processors with a

small number of cores. For processors with hundreds of cores,

the intensive training effort become prohibitive, and an

ensemble POD-GP model (EnPOD-GP) is proposed, which

drastically simplifies the training to generates good quality data

and enhances the accuracy of the model. For processors with

considerably more cores, domain truncation is applied to data

collection to develop a local EnPOD-GP model (LEnPOD-GP),

together with generic building blocks, to further minimize the

training effort.

II. CLASSICAL PROPER ORTHOGONAL DECOMPOSITION WITH

GALERKIN PROJECTION

Spatiotemporal temperature ���⃑, �� can be represented by a

linear combination of a set of basis functions �	 (or modes),

���⃑, �� = �
	����	��⃑��
	�� , �1�

where
	��� is the weighting coefficient of ����⃑ � and M is the

selected number of modes (i.e., the DoF). The modes in the

classical POD-GP reduced order model (or GPOD-GP) are

trained globally by temperature data collected from the entire

domain in dynamic DNSs subjected to parametric variations.

By maximizing the mean square of the temperature data

projection onto the POD modes over the entire simulation

domain, the maximization process leads to an eigenvalue

problem,

� 〈���⃑, �� ⊗ ���⃑�, ��〉 ���⃑���ΩΩ = ����⃑�, �2�

where ����⃑ � is the eigenfunction, λ is the eigenvalue, ⊗ is the

tensor operator and 〈∙〉 denotes the average over the training

data sets.

To determine
	���, one can perform the GP of the heat

transfer equation onto each POD mode,

� ��	 � !��� + ∇�	 ∙ $∇�% �ΩΩ = � �	&'�ΩΩ + � �	$∇� ∙ �(⃗* , �3�
where , $ and ! are the density, thermal conductivity and

specific heat, respectively, and &'��⃑, �� is the interior power

density and �(⃗ is the outward differential surface vector. A set

of M-dimensional ordinary differential equations (ODEs) for
	��� can be shown as,

� ,	,- �
	���
	�� + � .	,-
	

�
	�� = /- , 0 = 1 �1 2, �4�

where ,	,-, .	,- and /- are elements of the thermal capacitance

matrix, the thermal conductance matrix and the power vector in

the POD space. These elements are defined in terms of integrals

of � and ∇�, and their expressions are given in [23]. /-��� in (4)

accounts for the interior power dissipation and boundary heat

flux in the POD space defined on the right hand side of (3).

These elements in the POD space can be pre-evaluated from

POD modes and save in a library. ���⃑, �� in the simulation

domain can be determined via (1) once
	��� are solved from (4)

with a selected DoF of M.

III. ENSEMBLE POD-GP MODEL

A. EnPOD-GP Background

To minimize the intensive computing effort needed in POD

mode training for GPOD-GP, the number of heat sources in a

training domain needs to be small enough. For processors with

many cores, one can divide the heat sources (provided by FUs

and cores) into several heat source blocks (HSBs), where each

block consists of a small number of heat sources (e.g., 1 to 4).

An individual POD-GP model (IPOD-GP) can be built for each

HSB; i.e., POD modes for each IPOD-GP are trained separately

from others for the entire processor, responding to random

dynamic power excitations in each source block. Thus, each

IPOD-GP offers the temperature solution induced by the power

dissipated by the corresponding HSB. An ensemble POD-GP

model (EnPOD-GP) can then be constructed by summing

temperatures resulting from all IPOD-GPs in the entire

processor using the superposition principle. ���⃑, �� in the

processor is then given as,

3

���⃑, �� = � �
4,	����4,	��⃑��5
	��

678
4�� , �5�

where the indices represent the :th mode of the ;th HSB, <= is

the total number of HSBs in the processor and the weighting

coefficients for the the ;th HSB can be expressed in a vector

form as
⃗4 = >
4,�,
4,?,
4,@, … ,
4,	 , … ,
4,�5BC . In this study,

Mn = M; i.e., the number of ODEs for each HSB is identical.

The equivalent ith-mode eigenvalue for the entire processor is

defined as,

�	EF = � �4,	G4
678
4�� , �6�

where G4 is the area fraction of the ;th HSB. Using EnPOD-

GP,
4,	 in (5) is solved from the nth set of ODEs in (4) induced

by nth HSB. Although <I= sets of ODEs needed to be solved

when using EnPOD-GP, each set is independent, i.e., the

system matrix of the ODEs is highly sparse unlike GPOD-GP

where none of the elements in the ODE system matrix is zero.

Eigenvalues represent the mean squared temperature

information captured by � . Since Mn = M in this study, the

relative least square error (LSE) of the solution predicted by

EnPOD-GP can be theoretically estimated as

J(KLIEM = N � �	EF6O
	��P� � �	EF6O

	��Q , �7�

where <S is the number of temperature data sets for generating

POD modes and there are same number of data samples in each

HSBs in this study. Numerically, the LSE induced by EnPOD-

GP with respect to DNS can be estimated from the predicted

temperature as

J(K = N� � T?��⃗, �	��ΩU

6V

	��
� � W�(�⃗, �) X �MY?

U

6V

	��
Q �Ω , (8)

where T(�⃗, �) is the temperature difference between the DNS

and EnPOD-GP at the ith time step, <L is the total number of

time steps, and �M is the ambient temperature.

Note that the number of heat sources in an HSB needs to be

small enough to generate a set of robust POD modes. One can

have the following choices: (i) each HSB representing one heat

source induced by only one FU, (ii) each HSB consisting of a

few FUs each having an individual power source, or (iii) each

HSB represented by one heat source with a total power of

several FUs. Among these 3 choices, the first two offer more

localized power excitations to capture more realistic hot spots.

The first choice leads to more sets of ODEs while each set

includes a small number of modes. The second one requires

fewer sets of ODEs; however, each set needs more modes to

reach a similar accuracy. The last one offers more efficient

training and fewer sets of ODEs but may estimate

unrealistically low hot-spot temperatures. To optimize both

accuracy and efficiency, combinations of these 3 choices can

be applied over the entire chip, depending on the power levels

of the heat sources and their sizes. To simplify the

demonstration, only one heat source is used in each HSB in this

investigation.

It should be pointed out that post processing via (5) in

general takes considerably more time than solving ODEs in (4).

Unlike any DNSs or thermal circuits that need to perform

simulation over the entire simulation time and domain to be

able obtain dynamic thermal solution, for POD-GP based

approaches �(�⃑, �) in (5) can be selectively determined at any

point in time and space. Most thermally related applications in

microprocessors only need thermal information near high

temperature regions, such as the device layer or the high-power

FUs (e.g., cores). Some applications (e.g., thermal-aware

tasking scheduling and reliability assessment) may only need

the peak temperature distribution in high-power FUs or even

just the peak temperature of the entire processors. In these

situations, the EnPOD-GP computing speed could be improved

by one or 2 orders of magnitude.

Fig. 1. Floorplan of the quad-core CPU, AMD ATHLON II X4 610e [25], with

an area of 14 [12 \\?.

B. Demonstration of EnPOD-GP in a Quad-Core CPU

EnPOD-GP is demonstrated in dynamic thermal simulation

of a quad-core CPU, AMD ATHLON II X4 610e CPU with its

floorplan given in Fig. 1 [25]. To train the POD modes,

temperature data are collected from the FEM simulation tool,

FEniCS [26] with resolution of 0.093 [0.08 [0.042 \\@ (a

mesh of 150 [150 [17). There are 13 FUs in this CPU,

including four Cores, four L2 Caches, one Northbridge, one

DDR3 Channels and three I/Os. PMs in this demonstration are

generated from gem5 [27] and McPAT [28] using several

benchmarks [29], where one uniform dynamic power source is

generated in each FU. Due to the limit of gem5 that does not

generate power in three I/O’s and one DDR3 Channels, there

are thus 9 FUs with power dissipation implemented in EnPOD-

GP as HSBs. The EnPOD-GP system thus includes 9 sets of

ODEs (thus 9 sets of POD modes with each set for an IPOD-

GP), and the number of ODEs (i.e., the number of modes) in

each set can be determined by the eigenvalue spectrum

generated from thermal data, based on the desired accuracy

4

estimated from (7), as described below.

Fig. 2. LSE of EnPOD-GP vs. the number of modes per IPOD-GP for thermal

simulation of the quad-core CPU. The inset includes the equivalent eigenvalue

spectrum estimated in (6) using the eigenvalues for all 9 IPOD-GPs.

Fig. 3. (a) Dynamic temperature at the intersection of Paths A and B shown in

Fig. 1. (b) and (c) Temperature distributions in x along Path A and in y along

Path B. EnPOD-GP results are presented as the number of modes per IPOS-GP.

Using IPOD-GP to construct EnPOD-GP, each IPOD-GP is

independent of each other. Each of the 9 sets of POD modes is

thus trained separately by random dynamic power excitation.

The equivalent eigenvalue of EnPOD-GP given in (6) for the

processor is displayed in the inset of Fig. 2. The rapid

eigenvalue reduction for EnPOD-GP observed in Fig. 2 thus

leads to an J(KLIEM near 2.2%, 0.58% and 0.1% with just 2, 3

and 5 modes per HSB, respectively. Moreover, the LSE

evaluated from (8) in EnPOD-GP thermal simulations of the

processor induced by 3 different PMs generated from gem5

[27], McPAT [28] and benchmarks [29] are nearly identical and

accurately predicted by J(KLIEM until computer precision is

reached. The LSE stays near 0.01% beyond 8 modes. As

illustrated in Fig. 3, excellent accuracy of EnPOD-GP with 3

modes per HSB (27 modes in total) is observed for thermal

solution in time and space subjected to one of the PMs used in

Fig. 2, compared to FEniCS-FEM simulation.

In addition to simple training of each individual HSB,

results illustrated in Figs. 2 and 3 from EnPOD-GP simulation

of the AMD quad-core CPU have demonstrated several

advantages of EnPOD-GP. The training of POD modes with

simple random power excitations is remarkably effective and

leads to a robust ENPOD-GP methodology that is independent

of dynamic and spatial power source variations. Using any PM,

a very accurate prediction of spatiotemporal thermal solution

can be achieved with just 2 or 3 modes per HSB (per FU in this

case) and yet its LSE can be pre-estimated accurately from (7).

The DoF needed for EnPOD-GP is the selected number of

modes M per HSB (or per IPOD-GP) multiplied by Nhb (the

number of HSBs). Thus, the DoF equals 27 in EnPOD-GP if 3

modes per IPOD-GP for 9 sets of ODEs are used. Compared to

FEniCS-FEM, the reduction of DoF is 4 orders of magnitude (150 [150 [17/27). The decrease in computing time,

compared to FEniCS-FEM simulation is near 2,600 times if 3

modes per HSB is used (LSE ≈ 0.78%) to evaluate the

temperature in the entire process and 3,500 times if 2 modes

per HSB are used (LSE ≈ 2.8%). In cases where only

temperature at several points in space/time need to be evaluated

from (5), at least a one-order reduction in computing speed can

be achieved.

IV. LOCAL ENSEMBLE POD-GP MODEL

Although the training is considerably simpler and more

effective than GPOD-GP, the intensive training effort needed

for EnPOD-GP still becomes intolerable when too many HSBs

need to be trained in a microprocessor with thousand or more

cores to generate numerous sets of POD modes. With some

modifications described below based on concepts of thermal

length λth and generic building blocks, a local EnPOD-GP

model (LEnPOD-GP) is proposed to significantly minimize the

training effort for GPUs with thousand or more cores.

In order to describe the developed LEnPOD-GP model more

clearly, a workflow diagram is included in Fig. 4, which

illustrates each step needed to develop LEnPOD-GP, perform

simulation in POD space, and then post process the solution in

POD space to obtain temporospatial temperature in a GPU. This

diagram is used throughout in this section to offer a better

understanding of LEnPOD-GP.

5

Fig. 4. Workflow chart for (a) development of LEnPOD-GP and (b) simulation

(solving ODEs) in POD space and post processing to obtain �(�⃗, �) in a GPU. <̀ = is the number of generic building blocks each represented by an IPOD-GP

model. However, <I= is the number of HSBs or truncated domains that are all

covered by <̀ = IPOD-GPs. In this study for the GPU, <̀ ==16 and <I= = 404.

Also,
⃗4 = >
4,�,
4,?, … ,
4,�BC
and &�⃗4 = >/4,�, /4,?, … , /4,�BC

with M as the number

of modes used in each truncated domain to represent the solution.

A. LEnPOD-GP Background

Thermal Length: Temperature induced by a heat source

diffuses and decays in space. To simplify the characterization

of the decreasing profile, thermal length λth based on the

concept of the exponential diffusion profile is used even though

the profile is not exactly exponential. That is, λth is defined as

the distance measured vertically from an HSB boundary to a

location where the temperature decreases to 36.8% of the HSB

boundary temperature. Temperature induced by each HSB at a

distance several thermal lengths away from the HSB can be

neglected. A truncated local domain containing the HSB is

defined for collecting the training data with the domain

boundaries several thermal lengths away from the HSB unless

the HSB is very close to GPU boundaries, as shown in the

floorplan of Fig. 4(a) for 2 truncated domains. For example, the

truncated local domain for the mth HSB is smaller because it is

very close to the GPU boundaries. Using the training data

collected from each truncated local domain, instead of the entire

processor, one set of POD modes for each IPOD-GP (i.e., each

HSB) is trained for the truncated domain, as indicated in Fig.

4(a). This substantially reduces the training effort for a large

processor with a large number of cores. The distance between

the HSB and the truncated local domain boundary can be varied

to obtain the desired accuracy. In this investigation, five

thermal lengths are taken to ensure the temperature induced by

the HSB beyond the truncated domain is negligible.

Generic building blocks: Microprocessors in general consist

of many repeated units or generic building blocks. For a

processor with hundreds or thousands of cores/FUs, one IPOD-

GP model for one generic block can then be trained to represent

many identical truncated local domains containing identical

HSBs, where each HSB may include several cores and/or FUs.

This will significantly reduce the number of truncated training

domains (i.e., <̀ = ,the number of generic building blocks or

IPOD-GPs), which significantly minimizes the training effort

and memory space. However, for some identical HSBs whose

distance from any edge of the processor is less than the selected

number of thermal lengths, separate training is needed to

include the boundary effects on the processor edge for these

truncated domains, such as the mth HSB in Fig. 4(a).

B. Training of LEnPOD-GP for Tesla V100 Volta GV 100

GPU

The Tesla Volta™ GV100 GPU whose floorplan shown in

Fig. 5 is selected to demonstrate the learning capability and

accuracy for LEnPOD-GP. The Tesla GV100 GPU’s thermal

design power (TDP) is as high as 300W with a die size of 815

mm2 and 21.1 billion transistors. There are 80 stream

multiprocessor (SMs) in the GPU and each SM comprises four

texture units and four processing blocks (PBs), where each PB

consists of 16 FP32 Cores, 8 FP64 Cores, 16 INT32 Cores and

two Tensor Cores. There are thus 13,440 cores in total. For this

demonstration, 404 HSBs are selected, where each HSB

represents each of 320 PBs, all 4 texture units within each of 80

SMs, one L2 cache, one high-speed hub or 2 memory

interfaces. The areas of most cores/FUs in the selected GPU are

considerably smaller than those in the quad-core CPU shown in

Fig. 1. For example, there are 320 identical PBs (each includes

42 cores), and area of each PB is 18 times smaller than that of

each of the CPU cores in Fig. 1 (0.5 × 1.79 mm2 vs. 4.78 × 3.45

mm2). The chip area of Volta GV100 is however around 4.9

times larger than that of the AMD quad-core CPU (28.6 [28.5

mm2 vs. 14 [12 mm2). This induces smaller-size hot spots in

a considerably larger GPU than the CPU. To capture these

smaller-size hot spots accurately in the training data collected

from DNS, a finer mesh of 675 [673 [17 is used in the GPU

(compared to 150 [150 [17 in the CPU).

Fig. 5. floorplan of Tesla Volta GV100 GPU, together with zoom-in views of

SM and PB [30]. The size of chip is 28.65 × 28.5 × 0.72 mm3. Lines A and B

on the floorplan indicate the plotting paths for temperature profiles shown in

Fig. 8.

6

As discussed above, thermal data are collected from the

truncated domain for each of HSBs within 5λth beyond the

HSB. λth of an HSB on each side is influenced by chip

thickness, materials, the HSB width vertical to the heat

diffusion direction, and the aspect ratio of HSB. λth is pre-

evaluated in DNSs for widths between 1mm and 19 mm, and it

is found that λth varies from 0.8mm to 1.5mm for a chip

thickness of 720 µm. The evaluated thermal length for each

HSB is thus applied in data collection from the truncated

generic local domain. Also, for some HSBs with a distance less

than 5λth from any of the processor edges, such as the mth HSB

in Fig. 4(a), the training is performed separately.

Fig. 6. Equivalent eigenvalues of LEnPOD-GP for thermal data collected from

Tesla Volta GV100 GPU.

Fig. 7. LSE of thermal simulation of the Volta GV100 using LEnPOD-GP.

For LEnPOD-GP, DNSs of the generic local domain for each

HSB is performed to train its IPOD-GP using random dynamic

power excitations applied to the HSB. As shown in Fig. 4(a), the

training data are utilized to solve POD modes and eigenvalues

that are then applied to evaluate model parameters (i.e., matrix

and vector elements in (4)) for each IPOD-GP. Based on the

above consideration of thermal length and generic building

blocks to select the generic truncated local domain (including

the local domains whose HSBs are close to the processor edges),

only 16 IPOD-GPs (i.e., <̀ = = 16) are needed to represent

thermal solutions induced by 404 HSBs (i.e., 404 sets of ODEs,

or <̀ = = 404) to construct LEnPOD-GP for the Tesla Volta

GV100 GPU. Equivalent eigenvalues �	
EF

 of LEnPOD-GP

accounting for 404 sets of POD modes (404 truncated local

domains) in this entire GPU evaluated from (6) represented by

16 I-PODGPs are shown Fig. 6. This eigenvalue spectrum

declines rapidly to an extremely small value and becomes

flattened beyond the 21th mode due to computer prevision.

J(KLIEM estimated from (7) predicts an idea LSE near 3.2%,

0.9% and 0.36% with 2, 3 and 4 modes per truncated local

domain, respectively, as shown in Fig. 7.

C. Demonstration of LEnPOD-GP for Tesla V100 Volta GV

100 GPU

In the demonstration of LEnPOD-GP, the PM of the Tesla

Volta™ GV100 GPU is adopted from [30], where a

configurable GPU power simulator, AccelWattch, is developed

and validated by GPU benchmarks. However, AccelWattch

only generates the total power for each category of power

components without the spatial power density distribution. To

generate a PM for the demonstration used in Fig. 4(b), the total

power dissipation of each category is randomly distributed

among all components within the category based on the

location of each component given in the floorplan. For

example, the total power consumed by texture units obtained

from AccelWattch is partitioned into 80 portions randomly, and

each portion is assigned to all 4 texture units in each of 80 SMs

(since all 4 texture units in each SM is taken as one HSB).

In this demonstration, 404 sets of ODEs given in (4) are first

solved, as shown in Fig. 4(b), where each set includes M POD

modes (i.e., M ODEs). Post processing is then performed in (5)

using
⃑4 to first obtain the dynamic temperature profile in each

truncated domain �4��⃗, �� and then for the entire chip ���⃗, ��, as

detailed in Fig. 4(b). The numerical LSE with respect to the

FEniCS-FEM solution is presented in Fig. 7, compared with

J(KLIEM . Because the temperature responding to each HSB

outside its truncated local domain is ignored for all 404 power

source blocks and thermal gradients are relatively large in this

case, LSE from LEnPOD-GP for the entire GPU is larger than

J(KLIEM, unlike EnPOD-GP for the quad-core CPU where LSE

agrees well with J(KLIEM below 8 modes. Nevertheless, using a

small number of modes per local domain, LEnPOD-GP still

offers an accurate prediction of the thermal profile in the entire

GPU with high thermal gradients and many crucial hot spots.

For the entire domain, LSE in this case for the GPU shown in

Fig. 7 reaches 2.18% or 1.6% with 3 or 4 modes per local

domain, respectively, and remains at 1.5% beyond 4 modes. In

most regions below the device (or heating) layer, temperature

is low and close to the ambient, where the error tends to be

larger. The LSE in the heating (device) layer, as shown in Fig.

7, is reduced to 1.87%, 1.39% or 1.3% when using 3, 4 or 5

modes, respectively. Dynamic temperature evolution at the

intersection of Paths A and B (see Fig. 5) is given in Fig. 8(a).

The temperature profiles along Paths A and B at t = 25 ms are

illustrated in Figs. 8(b) and 8(c), respectively. Using 3 or more

modes, results derived from LEnPOD-GP agree quite well with

those obtained from rigorous FEniCS-FEM.

7

The computational speedup (estimated in Intel Xeon Gold

6130 dual CPUs) for predicting the temperature in the entire

GPU using LEnPOD-GP with 3 modes is around 900 times,

compared to FEniCS-FEM. For the device layer, the efficiency

improvement over FEniCS-FEM becomes 4,380 times. For

applications related to thermal issues at the chip level of

microprocessors, thermal information is usually only of interest

in high temperature regions, i.e., in the high-power density

cores and FUs. As mentioned above, differently from DNSs or

thermal circuits, once the ODEs are solved (which is very fast)

for LEnPOD-GP, one can select just a certain points in time or

space to evaluate temperature from (5). When using 3 modes

per HSB in LEnPOD-GP to calculate only the maximum

temperature in the entire chip, a computational speedup of more

than 1.1 or 0.7 million times over FEniCS-FEM can be

achieved when 3 or 4 modes per HSB is implemented in

LEnPOD-GP. The maximum error of the maximum chip

temperature at all time steps predicted by LEnPOD-GP is near

1.2 oC or 1.18 oC when using 3 or 4 modes per HSB,

respectively. These results indicate that, although the

application of the truncated local domains in LEnPOD-GP

slightly degrades the LSE in the entire processor, the maximum

peak temperature in the entire chip remains accurate with a

superior computational speed over the DNS.

Fig. 8. (a) Dynamic temperature at the intersection of Paths A and B indicated

in Fig. 5. (b) and (c) Temperature profiles at t =25 ms along Path A and Path B,

respectively, derived from FEniCS-FEM and LEnPOD-GP.

V. CONCLUSIONS

The classical POD-GP simulation methodology suffers

from intensive computational training of the POD modes in

order to improve accuracy for microprocessors with a large

number of cores. EnPOD-GP and LEnPOD-GP have been

proposed to minimize the intensive training effort and improve

simulation accuracy. EnPOD-GP has been applied to an AMD

quad-core CPU with 9 HSBs each represented by a set of POD

modes. It has been demonstrated in this case that EnPOD-GP is

very accurate, efficient and robust to any dynamic PMs.

Compared to FEniCS-FEM, an LSE near 0.78% is achieved

with a 2,600-time computational speedup using 3 modes per

HSB. To further minimize the training effort for processors

with an enormous number of cores, LEnPOD-GP is developed,

which applies local domain truncation for each HSB, together

with generic building blocks, to reduce the massive amount of

training data. In the demonstration of LEnPOD-GP on thermal

simulation of Tesla Volta™ GV100 (a GPU with more than

13,000 cores), 16 generic truncated domains are trained to

represent 404 truncated local domains for 404 HSBs. Even

though the accuracy is degraded by neglecting temperature

outside each of 404 truncated domains, the LSE is still as small

as 1.87%, 1.39% or 1.3% in the device layer when using 3, 4 or

5 modes per HSB, respectively.

The saving in computational time to obtain the dynamic

temperature distribution in the entire GPU using LEnPOD-GP

with 3 modes per HSB for the selected GPU is near 900 times,

compared to FEniCS-FEM. In the device layer, it is about 4,380

times. When evaluating only the peak temperature of the entire

GPU at every time step, LEnPOD-GP offers a reduction in

computational time over 1.1 million times, compared to

FEniCS-FEM, with a maximum error near 1.2oC. Since

LEnPOD-GP does not need to post process dynamic

temperature over the entire simulation space or time, the

computational speedup will be even more for applications

where the peak temperature is needed only at certain intervals

of time.

REFERENCES

[1] S. Mukhopadhyay, Y. Long, B. Mudassar, et al., "Heterogeneous
integration for artificial intelligence: Challenges and opportunities," IBM
J. Res. Develop., vol. 63, no. 6, pp. 4:1-4:1, 2019.

[2] F. Al-Ali, T. D. Gamage, H. W. Nanayakkara, et al, "Novel Casestudy
and Benchmarking of AlexNet for Edge AI: From CPU and GPU to
FPGA," in Proc. CCECE, pp. 1-4, 2020.

[3] T. Baji, "Evolution of the GPU Device widely used in AI and Massive
Parallel Processing," in Proc. EDTM, pp. 7-9, 2018.

[4] D. Etiemble, "45-year CPU evolution: One law and two equations", Proc.
2nd Workshop Pioneering Processor Paradigms, 2018, [online]
Available: https://arxiv.org/abs/1803.00254v1. Accessed: 2024-03-04.

[5] A. Heinig, R. Fischbach, and M. Dittrich, “Thermal analysis and
optimization of 2.5 D and 3D integrated systems with wide I/O memory,”
in Proc. ITHERM, pp. 86–91, 2014.

[6] J. Zhou, J. Yan, K. Cao, et al., “Thermal-aware correlated two-level
scheduling of real-time tasks with reduced processor energy on
heterogeneous MPSoCs,” J. Syst. Archit., vol. 82, pp. 1–11, 2018.

[7] Y.-W. Wu, C.-L. Yang, et al., “Joint exploration of architectural and
physical design spaces with thermal consideration,” in Proc. ISLPED, pp.
123–126, 2005.

8

[8] HotSpot 6.0 temperature simulation tool: [online] Available:
http://lava.cs.virginia.edu/HotSpot. Accessed: 2024-03-04.

[9] A. Sridhar, A. Vincenzi, M. Ruggiero, et al., “3D-ICE: Fast compact
transient thermal modeling for 3D ICs with inter-tier liquid cooling,” in
Proc. ICCAD, pp. 463–470, 2010.

[10] H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-levelthermal
simulators,” ACM Comput. Surv., vol. 52, no. 2, pp. 1–35, 2019.

[11] Y. Zhan and S. S. Sapatnekar, “High-efficiency Green function-based
thermal simulation algorithms,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 26, no. 9, pp. 1661–1675, 2007.

[12] H. Sultan and S. R. Sarangi, “A fast leakage-aware Green’s-functionbased
thermal simulator for 3-D chips,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 28, no. 11, pp. 2342–2355, 2020.

[13] A. Ziabari, J.-H. Park, E. K. Ardestani, et al., "Power blurring: Fast static
and transient thermal analysis method for packaged integrated circuits and
power devices", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
22, no. 11, pp. 2366-2379, 2014.

[14] D. Fetis and P. Michaud, “An evaluation of hotspot-3.0 block-based
temperature model,” in Proc. WDDD, pp. 1–26, 2006.

[15] W. Huang, K. Sankaranarayanan, R. J. Ribando, et al., “An improved
block-based thermal model in HotSpot 4.0 with granularity
considerations,” in Proc. Ann. WDDD, pp. 1–10, 2007.

[16] Z. Yuan, P. Shukla, S. Chetoui, S. Nemtzow, S. Reda, A. K. Coskun,
PACT: An extensible parallel thermal simulator for emerging integration
and cooling technologies, IEEE Trans. CAD ICs Syst. 41 (4) (2021)
1048–1061.

[17] W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, M. R. Stan,
Differentiating the roles of IR measurement and simulation for power and
temperature-aware design, in: Proc. ISPASS, IEEE, 2009, pp. 1–10.

[18] J.-H. Han, X. Guo, K. Skadron, M. R. Stan, From 2.5 D to 3D
ChipletSystems: Investigation of Thermal Implications with HotSpot 7.0,
in: Proc. ITHERM, IEEE, 2022, pp. 1–6.

[19] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, M. R. Stan,
Accurate, pre-RTL temperature-aware design using a parameterized,
geometric thermal model, IEEE Trans. Comput. 57 (9) (2008) 1277–1288

[20] L. Sirovich, "Turbulence and the dynamics of coherent structures part I:
Coherent structures", Quart. Appl. Math., vol. 45, pp. 561-571, 1987.

[21] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal
decomposition in the analysis of turbulent flows,” Annual review of fluid
mechanics, vol. 25, no. 1, pp. 539–575, 1993.

[22] L. Jiang, A. Dowling, M. -C. Cheng and Y. Liu, "PODTherm-GP: A
Physics-based Data-Driven Approach for Effective Architecture-Level
Thermal Simulation of Multi-Core CPUs," IEEE Trans. Comput., doi:
10.1109/TC.2023.3278535.

[23] L. Jiang, Y. Liu and M. -C. Cheng, "Fast-Accurate Full-Chip Dynamic
Thermal Simulation With Fine Resolution Enabled by a Learning
Method," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
42, no. 8, pp. 2675-2688, 2023.

[24] D. Coenen, H. Oprins, R. Degraeve and I. D. Wolf, "Benchmarking of
Machine Learning Methods for Multiscale Thermal Simulation of
Integrated Circuits," IEEE Trans. CAD ICs and Systems, vol. 42, 2264-
2275, 2023, doi: 10.1109/TCAD.2022.3216549.

[25] K. Dev, A. N. Nowroz, and S. Reda, “Power mapping and modeling of
multi-core processors,” in Proc. ISLPED, pp. 39–44, 2013.

[26] FEniCS Project. 2003. [Online].Available: https://fenicsproject.org/.
Accessed: 2024-03-04.

[27] N. Binkert, B. Beckmann, et al., “The Gem5 simulator,” SIGARCH
Comp. Arch. News, vol. 39, no. 2, pp. 1–7, 2011.

[28] S. Li, J. H. Ahn, et al., “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in Proc.
MICRO, pp. 469–480, 2009.

[29] S. C.Woo et al., “The SPLASH-2 programs: Characterization and
methodological considerations,” SIGARCH Comput. Architecture News,
vol. 23, no. 2, pp. 24–36, 1995.

[30] NVIDIA Tesla V100 GPU architecture, 2017, [online] Available:
http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf. Accessed: 2024-03-04.

[31] V. Kandiah et al., "Accelwattch: A power modeling framework for
modern GPUs", in Proc. MICRO, pp. 738-753, 2021.

