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POLYNOMIAL FOURIER DECAY FOR PATTERSON-SULLIVAN MEASURES

OSAMA KHALIL

Abstract. We show that the Fourier transform of Patterson-Sullivan measures associated to con-
vex cocompact groups of isometries of real hyperbolic space decays polynomially quickly at infinity.
The proof is based on the L2-flattening theorem obtained in [16] combined with a method based
on dynamical self-similarity for ruling out the sparse set of potential frequencies where the Fourier
transform can be large.

1. Introduction

1.1. Background. The Fourier transform of a Borel probability measure µ on R
d is defined as

follows:

µ̂(ξ) :=

∫

Rd

e2πi〈ξ,x〉 dµ(x), ξ ∈ R
d. (1.1)

We say µ has polynomial Fourier decay if |µ̂(ξ)| = O(‖ξ‖−κ) for some κ > 0 as ‖ξ‖ → ∞.
Rates of decay of Fourier transforms of dynamically defined measures have been extensively

studied in recent years. Beyond its intrinsic interest, this question has found many applications
in other areas of mathematics; e.g. essential spectral gaps on hyperbolic manifolds [14, 8, 19],
the uniqueness problem [21], quantum chaos and fractal uncertainty principles [13], Diophantine
approximation [12], and geometric measure theory [33, 22] to name a few.

Moreover, the problem has motivated the development of many methods drawing on a wide
varying tools ranging from spectral gaps of the underlying dynamics [4, 7], to renewal theory [18],
sum-product phenomena [8, 19, 17], large deviation estimates for Fourier transforms [23, 1, 6], as
well as many related developments; cf. [3, 2, 15, 32, 21, 20, 35, 10] for a non-exhaustive list. We refer
the reader to the survey [31] for a comprehensive account of the history and recent developments in
the subject.

A common strategy that is implicit in many of the aforementioned results proceeds as follows:

(1) Find a mechanism to show that the Fourier transform has the desired rate of decay for a
large set of frequencies ξ.

(2) Use the dynamics (or the multiscale/convolution structure of µ) to express the Fourier
transform of µ at frequency ξ as an average of Fourier transforms of (scaled copies of) µ at
images of ξ by the dynamics.

(3) Show (through non-linearity of/Diophantine conditions on the dynamics) that images of ξ
by the dynamics are reasonably well-distributed in the space in such a way that they avoid
the potential exceptional set of frequencies arising in Step 1.

To demonstrate this strategy, consider the following basic estimate towards Step 1: if µ satisfies
the Frostman condition µ(B(x, r)) . rα for some α > 0 and all balls of radius r ≥ 0, then the

Fourier transform decays like ‖ξ‖−α/2
on average, i.e.

∫

‖ξ‖≤R
|µ̂(ξ)|2 dξ . Rd−α, ∀R ≥ 1. (1.2)

This estimate roughly means that the exceptional set of potentially problematic frequencies have
(box) dimension at most d−α; cf. [22, Section 3.8]. Hence, we can obtain Fourier decay as soon as
we can show that the frequencies produced in Step 2 have dimension > d−α. Since the image of ξ
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under the dynamics tends to have a similar dimension to the support of µ itself, this procedure is
sufficient for establishing Fourier decay in many situations when the dimension of the support of µ
is > d/2.

However, in general, the estimate (1.2) is rather weak when α ≤ d/2. In that case, more involved
methods are necessary to either produce stronger estimates in Step 1 (e.g. large deviations methods)
or to produce better averaging and well-distribution schemes in Steps 2 and 3 (e.g. spectral gap and
renewal theory methods).

Recently, a very general estimate towards Step 1 was obtained in [16, Corollary 11.5] under natural
non-concentration hypotheses on the (not necessarily dynamically defined) measure µ. Namely, it
is shown1 that if µ does not concentrate near proper affine subsapces of Rd at many scales, then its
Fourier transform decays polynomially outside of a very sparse set of frequencies, i.e. for all ε > 0,
there is δ > 0 such that:

∣∣∣
{
‖ξ‖ ≤ R : |µ̂(ξ)| > R−δ

}∣∣∣ = O (Rε) . (1.3)

The goal of this article to show that (1.3) can be used in conjunction with the strategy out-
lined above to give efficient proofs of quantitative Fourier decay of dynamically defined measures.
We apply our method to a particular class of interest in applications, namely that of Patterson-
Sullivan measures for convex cocompact groups of isometries of real hyperbolic space. Since the
non-concentration conditions implying (1.3) are known to hold for large classes of dynamically-
defined measures2, we hope the simplicity of the method presented here will allow it to be extended
to yield Fourier decay results in much broader contexts.

1.2. Main result. Let Γ be a discrete, Zariski-dense, convex cocompact, group of isometries of real
hyperbolic space Hd+1, d ≥ 1. Let ΛΓ be the limit set of Γ on ∂Hd+1 and µ be the Patterson-Sullivan
probability measure on ΛΓ associated to Γ; cf. Section 2 for detailed definitions. The following is
the main result of this article.

Theorem 1.1. There exists κ > 0 such that the following holds for all ϕ ∈ C2, ψ ∈ C1 satisfying

‖ϕ‖C2 + ‖ψ‖C1 ≤ A, inf
x∈ΛΓ

‖∇xϕ‖ > a,

for some constants a > 0 and A ≥ 1. There exists a constant C = C(A, a, µ) ≥ 1, so that for all

λ 6= 0, we have
∣∣∣∣
∫

ΛΓ

e2πiλϕ(x)ψ(x) dµ(x)

∣∣∣∣ ≤ C|λ|−κ.

Remark 1.2. Our proof shows that the rate κ provided by Theorem 1.1 depends only on non-
concentration parameters of µ; cf. Section 2.6 for the precise definition of non-concentration. In
particular, the rate of decay does not change upon replacing Γ by a finite index subgroup since the
measure µ remains the same in this case [29].

Theorem 1.1 generalizes prior work of Bourgain and Dyatlov in the case of hyperbolic surfaces [8]
and of Li, Naud, and Pan in the case of Schottky hyperbolic 3-manifolds [19]. These prior results
are based on Bourgain’s sum-product theorem, while the proof of Theorem 1.1 is based on the
estimate (1.3), which was obtained using purely additive methods.

To keep the presentation clear, we restricted our setup to the case of convex cocompact groups.
Using the recurrence results obtained in [16], the proof of Theorem 1.1 can be adapted to handle
the general case of geometrically finite manifolds.

1Cf. Definition 2.2 and Theorem 2.3 for precise statements.
2E.g. self-conformal measures [11], and Patterson-Sullivan measures for (cusped) geometrically finite manifolds [16].
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By the work of Dyatlov and Zahl [14], Theorem 1.1 is known to imply spectral bounds on the
resolvent of the Laplace operator which yield an essential spectral gap3 for the resolvent as well as
Selberg’s zeta function. Moreover, the size of the essential spectral gap obtained this way depends
explicitly on the decay rate κ in Theorem 1.1. In particular, Theorem 1.1 implies that the resolvent
admits a uniform essential spectral gap over all finite covers of Hd+1/Γ; cf. Remark 1.2. We note
that this essential spectral gap result was obtained independently in [5] by different methods and
an essential gap of size depending on Γ was obtained previously in [24, 27].

Acknowledgements. This author is partially supported under NSF grant DMS-2247713.

2. Preliminaries

2.1. Convex cocompact manifolds. The standard reference for the material in this section is [9].
Let G denote the group of orientation preserving isometries of real hyperbolic space, denoted H

d+1,
of dimension d ≥ 1. In particular, G ∼= SO(d+ 1, 1)0.

Fix a basepoint o ∈ H
d+1. Then, G acts transitively on H

d+1 and the stabilizer K of o is a
maximal compact subgroup of G. We shall identify H

d+1 with K\G. Denote by A = {gt : t ∈ R}
a one parameter subgroup of G inducing the geodesic flow on the unit tangent bundle of H

d+1.
Let M < K denote the centralizer of A inside K so that the unit tangent bundle T1

H
d+1 may be

identified with M\G. In Hopf coordinates, we can identify T1
H

d+1 with R× (∂Hd+1 × ∂Hd+1 \∆),
where ∂Hd+1 denotes the boundary at infinity and ∆ denotes the diagonal.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd+1. Note that the discreteness of Γ implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o in view of
the negative curvature of Hd+1. We often use Λ to denote ΛΓ when Γ is understood from context.
We say Γ is non-elementary if ΛΓ is infinite.

The non-wandering set for the geodesic flow is the closure of the set of vectors in the unit tangent
bundle whose orbit accumulates on itself. In Hopf coordinates, this set, denoted Ω, coincides with
the projection of R× (ΛΓ × ΛΓ −∆) mod Γ. We say H

d+1/Γ is convex cocompact if Ω is compact,
cf. [9]. Denote by N+ the expanding horospherical subgroup of G associated to gt, t ≥ 0.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈ M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
geodesic determined by v on the boundary of Hd+1. Given x ∈ G/Γ, we say x± belongs to Λ if the
same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

Notation. Throughout the remainder of the article, we fix a discrete, Zariski-dense, convex cocom-
pact group Γ of isometries of Hd+1.

2.2. Patterson-Sullivan measures. The critical exponent, denoted δΓ, is defined to be the infi-
mum over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑

γ∈Γ

e−sd(o,γ·o) (2.1)

converges. This exponent coincides with the Hausdorff dimension of the limit set as well as the
topological entropy of the geodesic flow on the quotient orbifold H

d+1/Γ. We shall simply write δ
for δΓ when Γ is understood from context.

3That is to say a strip to the left of the critical line with at most finitely many poles. The interested reader is referred
to the survey [13] for more on this topic.
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The Busemann function is defined as follows: given x, y ∈ H
d+1 and ξ ∈ ∂Hd+1, let γ : [0,∞) →

H
d+1 denote a geodesic ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t)) − dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures {νx} on the
boundary indexed by x ∈ H

d+1 which satisfy the following equivariance property:

γ∗νx = νγx, and
dνy
dνx

(ξ) = e−sβξ(x,y), ∀x, y ∈ H
d+1, ξ ∈ ∂Hd+1, γ ∈ Γ.

Patterson [25] and Sullivan [34] showed the existence of a unique (up to scaling) Γ-invariant
conformal density of dimension δΓ, denoted

{
µPSx : x ∈ H

d+1
}
. These measures are known as the

Patterson-Sullivan measures. We refer the reader to [28] and [26] and references therein for details
of the construction in much greater generality.

2.3. Stable and unstable foliations and leafwise measures. Recall that we fixed a basepoint
o ∈ H

d+1. In what follows, we use the following notation for pullbacks of the Patterson-Sullivan
measures to orbits of N+ under the visual map:

dµux(n) = eδΓβ(nx)+ (o,nx)dµPSo ((nx)+). (2.2)

These measures have simpler transformation formulas under the action of the geodesic flow and N+

which makes them relatively easier to analyze than the Patterson-Sullivan measures directly. In
particular, they satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.3)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µ
u
nx = µux, (2.4)

where (n)∗µ
u
nz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, since

M normalizes N+, these conditionals are Ad(M)-invariant in the sense that for all m ∈M ,

µumx = Ad(m)∗µ
u
x. (2.5)

2.4. Local stable holonomy. In this Section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting homogeneous. Let x = u−y for some y ∈ Ω and u− ∈ N−

2 . Since the
product map N− × A ×M ×N+ → G is a diffeomorphism near identity, we can choose the norm
on the Lie algebra so that the following holds. We can find maps p− : N+

1 → P− = N−AM and
u+ : N+

2 → N+ so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.6)

Then, it follows by (2.2) that for all n ∈ N+
2 , we have

dµuy(u
+(n)) = eδβ(nx)+ (u+(n)y,nx)dµux(n).

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),
∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

−δβΦ−1(ny)(ny,Φ
−1(ny))

dµuy(n). (2.7)

Remark 2.1. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−

2 for all n ∈ N+
2 whenever u− belongs to N−

1 .
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2.5. Notational convention. Throughout the article, given two quantities A and B, we use the
Vinogradov notation A ≪ B to mean that there exists a constant C ≥ 1, possibly depending on
Γ and the dimension of G, such that |A| ≤ CB. In particular, this dependence on Γ is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on Γ may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside Ω
and the volume of the unit neighborhood of Ω. We write A ≪x,y B to indicate that the implicit
constant depends parameters x and y. We also write A = Ox(B) to mean A≪x B.

2.6. The L2-flattening theorem. In light of the formula (2.2), Theorem 1.1 amounts to studying
the Fourier transform of the measures µux. Moreover, the isomorphism N+ ∼= R

d allows us to view
these measures as living on Euclidean space.

The key ingredient in the proof of Theorem 1.1 is [16, Corollary 1.8] which relates Fourier decay
properties of measures on Euclidean space to the non-concentration properties of such measures
near proper affine subspaces. This result in particular implies that PS measures enjoy polynomial
Fourier decay outside of a very sparse set of frequencies.

We formulate here a special case of the aforementioned result which suffices for convex cocompact
manifolds and refer the reader to [16, Theorem 11.5] for a more general result that holds in the
presence of cusps.

Definition 2.2. We say that Borel measure µ on R
d is uniformly affinely non-concentrated if for

every ε > 0, there exists δ(ε) > 0 so that δ(ε) → 0 as ε → 0 and for all x ∈ R
d, 0 < r ≤ 1, and

every affine hyperplane W < R
d, we have

µ(W (εr) ∩B(x, r)) ≤ δ(ε)µ(B(x, r)), (2.8)

where W (r) and B(x, r) denote the r-neighborhood of V and the r-ball around x respectively. We
refer to δ(ε) as the non-concentration parameters of µ.

Theorem 2.3 ([16, Corollary 1.8]). Let µ be a compactly supported Borel probability measure on

R
d which is uniformly affinely non-concentrated and denote by µ̂ its Fourier transform. Then, for

every ε > 0, there is δ > 0 such that for all T ≥ 1,
∣∣∣
{
‖ξ‖ ≤ T : |µ̂(ξ)| > T−δ

}∣∣∣ = Oε(T
ε),

where | · | denotes the Lebesgue measure on R
d. The implicit constant depends only on the non-

concentration parameters of µ and the diameter of its support.

We note that Theorem 2.3 was obtained by different methods for measures on the real line in [30].
We will be able to apply Theorem 1.1 to PS measures (or, more precisely, their shadows µux)

thanks to the following proposition.

Proposition 2.4 ([16, Corollary 12.2]). For every x ∈ N−
1 Ω, the measure µux

∣∣∣N+
1

is uniformly

affinely non-concentrated in the sense of Definition 2.2, with uniform parameters in x.

Remark 2.5. It is shown in [16, Corollary 12.2] that the non-concentration parameters of µux
depend only on the injectivity radius at x, which is in turn uniformly bounded above and below on
a neighborhood of the non-wandering set Ω due to convex cocompactness of Γ.

3. Proof of Theorem 1.1

The goal of this section is to provide the proof of Theorem 1.1. In light of the formula (2.2), it
suffices to prove polynomial Fourier decay for the measures µux for x in the non-wandering set Ω.
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Norms and Lie algebras. In what follows, we denote by n
+ and n

− the Lie algebras of N+ and
N− respectively. We fix an isomorphism of n+ and n

− using a Cartan involution sending gt to g−t.
Moreover, we fix an isomorphism of n+ (and hence of n−) with R

d. Finally, we fix a Euclidean inner
product on R

d ∼= n
+ ∼= n

− denoted with 〈·, ·〉 which is invariant by the Adjoint action of the group
M ∼= SOd(R).

Reduction to linear phases. We begin with the following elementary lemma which reduces the
proof to the study of linear phase functions. Its proof based on using a partition of unity on the
support of the integral and Taylor expanding the phase function. The details are left to the reader.

Lemma 3.1. To prove Theorem 1.1, it suffices to show that there exists κ > 0 so that for all

0 6= ξ ∈ R
d, x ∈ Ω, and ψ ∈ C1

c (N
+
1 ), we have

∫

N+
1

ei〈ξ,n〉ψ(n) dµux(n) ≪Γ ‖ψ‖C1 ‖ξ‖
−κ , (3.1)

where, by abuse of notation, if n = exp(v) for some v ∈ n
+ ∼= R

d, we let 〈ξ, n〉 := 〈ξ, v〉.

In the remainder of this section, we fix ξ ∈ R
d and ψ ∈ C1

c (N
+
1 ). Our goal is to prove the

estimate (3.1).

Partitions of unity and flow boxes. Let ι denote the smaller of 1 and the injectivity radius of
Ω and set

ιξ := ι/ ‖ξ‖1/3 . (3.2)

We let Pξ denote a partition of unity of the unit neighborhood of Ω so that each ρ ∈ Pξ is

M -invariant and supported inside a flow box Bρ of radius4 ιξ. With the aid of the Vitali covering
lemma, we can arrange for the collection {Bρ} to have a uniformly bounded multiplicity, depending
only on the dimension of G. We can choose such a partition of unity so that for all ρ ∈ Pξ,

‖ρ‖C1 ≪ ι−1
ξ . (3.3)

We also introduce the following subcollection of Pξ:

P0
ξ :=

{
ρ ∈ Pξ : Bρ ∩N

−
1/2Ω 6= ∅

}
. (3.4)

Note that the cardinality of P0
ξ can be bounded as follows. Indeed, since Γ is geometrically finite,

the unit neighborhood of Ω has finite volume. Moreover, the flow boxes Bρ with ρ ∈ P0
ξ are all

contained in such a unit neighborhood and have uniformly bounded multiplicity; cf. (3.4). Finally,
each Bρ has radius ιξ for all ρ ∈ Pξ. Thus, letting D ∈ N be such that the Lebesgue measure of Bρ

is ≍ ιDξ , we see that

#P0
ξ ≪Γ ι

−(2D+1)
ξ . (3.5)

Note that the dimension of X is 2D + 1+ dim(M), however the bound above involves 2D+ 1 only
since each flow box is M -invariant.

Transversals. We fix a system of transversals {Tρ} to the strong unstable foliation inside the boxes
Bρ. Since Bρ meets N−

1/2Ω for all ρ ∈ P0
ξ , we fix some yρ in the intersection Bρ ∩ N

−
1/2Ω. In this

notation, we can find neighborhoods of identity P−
ρ ⊂ P− =MAN− and N+

ρ ⊂ N+ such that

Bρ = N+
ρ P

−
ρ · yρ, Tρ = P−

ρ · yρ. (3.6)

We also let Mρ, Aρ, and N−
ρ be neighborhoods of identity in M,A and N− respectively so that

P−
ρ =MρAρN

−
ρ .

4That is the support of the projection of the M -invariant function ρ is contained in such a flow box.
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Time smoothing. Let T > 0 be a large parameter to be chosen depending on ‖ξ‖. Let q : R →
[0, 1] be a smooth bump function supported in the interval (T − 1, T + 1) and having the property

∫

R

q(t) dt = 1. (3.7)

Using our partition of unity, we can write
∫

N+
1

ei〈ξ,n〉ψ(n) dµux(n) =

∫

R

q(t)
∑

ρ∈Pξ

∫

N+
1

ei〈ξ,n〉ψ(n)ρ(gtnx) dµ
u
x(n)dt. (3.8)

Saturation and post-localization. Fix some arbitrary t > 0. Our first step is to partition the
integral in (3.8) over N+

1 into pieces according to the flow box they land in under flowing by gt. To
simplify notation, we write

xt := gtx. (3.9)

We denote by N+
1 (t) a neighborhood of N+

1 defined by the property that the intersection

Bρ ∩ (Ad(gt)(N
+
1 (t)) · xt)

consists entirely of full local strong unstable leaves in Bρ. We note that since Ad(gt) expands N+

and Bρ has radius < 1, N+
1 (t) is contained inside N+

2 . Since φ is supported inside N+
1 , we have

χN+
1
(n)ψ(n) = χN+

1 (t)(n)ψ(n), ∀n ∈ N+. (3.10)

For simplicity, we set

ξt := e−tξ, ψt(n) := ψ(Ad(gt)
−1n), At := Ad(gt)(N

+
1 (t)).

For ρ ∈ Pξ, we let Wρ,t denote the collection of connected components of the set

{n ∈ At : nxt ∈ Bρ} .

Moreover, since x ∈ Ω, we see that the the restriction of the support of µux to N+
1 consists of

points n ∈ N+ with nx ∈ Ω. This implies that the non-zero summands in the right side of (3.8)
necessarily correspond to those ρ in P0

ξ .

In view of (3.10), changing variables using (2.3) yields

∑

ρ∈Pξ

∫

N+
1

ei〈ξ,n〉ψ(n)ρ(gs+tnx) dµ
u
x(n)

= e−δt
∑

ρ∈P0
ξ ,W∈Wρ,t

∫

n∈W
ei〈ξt,n〉ψt(n)ρ(nxt) dµ

u
xt
(n). (3.11)

Centering the integrals. It will be convenient to center all the integrals in (3.11) so that their
basepoints belong to the transversals Tρ of the respective flow box Bρ; cf. (3.6).

Let Iρ,t denote an index set for Wρ,t. For W ∈ Wρ,t with index ℓ ∈ Iρ,t, let nρ,ℓ ∈W , mρ,ℓ ∈Mρ,

n−ρ,ℓ ∈ N
−
ρ , and tρ,ℓ ∈ (−ιξ, ιξ) be such that

xρ,ℓ := nρ,ℓ · xt = n−ρ,ℓmρ,ℓgtρ,ℓ · yρ ∈ Tρ. (3.12)

Note that since x belongs to Ω and yρ ∈ N−
1/2Ω, we have that

xρ,ℓ ∈ Ω. (3.13)

For each such ℓ and W , let us denote Wℓ =Wn−1
ρ,ℓ and set

ψ̃ρ,ℓ(t, n) := ψt(nnρ,ℓ), χ̃ρ,ℓ(t, n) := exp(i〈ξt, nnρ,ℓ〉). (3.14)
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Changing variables using (2.3) and (2.4), we can rewrite the right side of (3.11) as follows:

e−δt
∑

ρ∈P0
ξ ,W∈Wρ,t

∫

n∈W
ei〈ξt,n〉ψt(n)ρ(nxt) dµ

u
xt
(n)

= e−δt
∑

ρ∈P0
ξ

∑

ℓ∈Iρ,t

∫

n∈Wℓ

χ̃ρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

(n). (3.15)

Weak-stable holonomy. Fix some ρ ∈ P0
ξ . Recall the points yρ ∈ Tρ and n−ρ,ℓ ∈ N−

ρ satisfy-

ing (3.12). Let

p−ρ,ℓ := n−ρ,ℓmρ,ℓgtρ,ℓ . (3.16)

The product map M ×N−×A×N+ → G is a diffeomorphism on a ball of radius 1 around identity;
cf. Section 2.4. Hence, given ℓ ∈ Iρ,t, we can define maps φℓ and p̃−ℓ from Wℓ to N+ and P−

respectively by the following formula

np−ρ,ℓ = p̃−ℓ (n)φℓ(n). (3.17)

We suppress the dependence on ρ and t to ease notation. Then, φℓ induces a map between the
strong unstable manifolds of xρ,ℓ and yρ, also denoted φℓ, and defined by

φℓ(nxρ,ℓ) = φℓ(n)yρ.

In particular, this induced map coincides with the local weak stable holonomy map inside Bρ.
Note that we can find a neighborhood Wρ ⊂ N+ of identity of radius ≍ ιξ such that

φℓ(Wℓ) ⊆Wρ, (3.18)

for all ℓ ∈ Iρ,t. Moreover, by shrinking the radius ιξ of the flow boxes by an absolute amount
(depending only on the metric on G) if necessary, we may assume that all the maps φℓ are invertible
on Wρ. Hence, we can define the following:

p−ℓ (n) := p̃−ℓ (φ
−1
ℓ (n)) ∈ P−, ψ̃ρ,ℓ(t, n) := Jφℓ(n)× ψ̃ρ,ℓ(t, φ

−1
ℓ (n)),

χρ,ℓ(t, n) := χ̃ρ,ℓ(t, φ
−1
ℓ (n)), ρℓ(n) := ρ(p−ℓ (n)nyρ), (3.19)

where Jφℓ denotes the Jacobian of the change of variable φℓ; cf. (2.7).
Changing variables in the right side of (3.15), we obtain
∑

ℓ∈Iρ,t

∫

n∈Wℓ

χ̃ρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

(n) =
∑

ℓ∈Iρ,t

∫

Wρ

χρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρℓ(n) dµ
u
yρ(n).

(3.20)

Linearizing the phase. We have the following formula for the functions φℓ which are responsible
for the oscillation of χρ,ℓ along N+. The elementary proof of this lemma is given in Section 4.

Lemma 3.2. Let p−ρ,ℓ be as in (3.16) and let wρ,ℓ ∈ n
− be such that n−ρ,ℓ = exp(wρ,ℓ). Then, for

every n = exp(v) ∈ N+
1/2, we have

log φℓ(n) =
1

etρ,ℓ λ̃ℓ(v)
m−1

ρ,ℓ ·

(
v +

‖v‖2

2
wρ,ℓ

)
,

where log φℓ(n) is viewed as an element of n+ and λℓ : N
+
1/2 → R+ is given by

λ̃ℓ(v) = 1 + 〈v,wρ,ℓ〉+
‖v‖2 ‖wρ,ℓ‖

2

4
.

This lemma implies the following linearization estimate.
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Corollary 3.3. With the same notation as in Lemma 3.2, we have for all n = exp(v) ∈Wρ that

χρ,ℓ(t, n) = αρ,ℓ(t− tρ,ℓ, n) +O(e−t),

where

αρ,ℓ(t, n) := exp (iλℓ(v)〈ξt,mρ,ℓ · v〉) , λℓ(v) = 1 + 〈v,wρ,ℓ〉. (3.21)

Proof. Indeed, Lemma 3.2 implies that

v =
1

etρ,ℓ λ̃ℓ(v)
m−1

ρ,ℓ ·

(
φ−1
ℓ (v) +

∥∥φ−1
ℓ (v)

∥∥2

2
wρ,ℓ

)
,

where we use φ−1
ℓ (v) to denote log φ−1

ℓ (exp(v)) for simplicity. Since Wρ and the flow boxes Bρ

have radii ≍ ιξ, we have that φ−1
ℓ (v) and wρ,ℓ both have size ≪ ιξ. Similarly, we see that λ̃ℓ(v) =

λℓ(v) + O(e−t). Remembering that ξt = e−tξ so that etρ,ℓξt = ξt−tρ,ℓ , the corollary follows in view
of (3.2) providing the size of ιξ. �

Let us summarize our progress so far. In light of (3.8), (3.11), (3.15), (3.20), and Corollary 3.3,
we find that∫

N+
1

ei〈ξ,n〉ψ(n) dµux

=
∑

ρ∈P0
ξ

∫

R

q(t)e−δt

∫

Wρ

∑

ℓ∈Iρ,t

αρ,ℓ(t− tρ,ℓ, n)ψ̃ρ,ℓ(t, n)ρℓ(n) dµ
u
yρdt+O

(∫

R

q(t)e−t dt

)
.

Recall that q(t) was supported in the interval (T−1, T ) and satisfies (3.7). Hence, changing variables
in t 7→ t+ tρ,ℓ and letting

ψρ,ℓ(t, n) := e−δtρ,ℓ × q(t+ tρ,ℓ)× ψ̃ρ,ℓ(t+ tρ,ℓ, n), (3.22)

we obtain∫

N+
1

ei〈ξ,n〉ψ(n) dµux

≪ e−δT
∑

ρ∈P0
ξ

∣∣∣∣∣∣

∫

R×Wρ

∑

ℓ∈Iρ,t

αρ,ℓ(t, n)ψρ,ℓ(t, n)ρℓ(n) dµ
u
yρdt

∣∣∣∣∣∣
+O

(
e−T

)
. (3.23)

Cauchy-Schwarz. In light of (3.23), we are left with estimating integrals of the form:
∫

R×Wρ

Ψρ(t, n) dµ
u
yρdt, Ψρ(t, n) :=

∑

ℓ∈Iρ,t

αρ,ℓ(t, n)ψρ,ℓ(t, n)ρℓ(n). (3.24)

We begin by giving an apriori bound on Ψρ. Denote by Jρ ⊂ R the bounded support of the integrand
in t coordinate of the above integrals. One then checks that

‖ψρ,ℓ‖L∞(Jρ×Wρ)
≪ 1, ‖Ψρ‖L∞(Jρ×Wρ)

≪ #Iρ,T . (3.25)

By Cauchy-Schwarz, we get
∣∣∣∣∣

∫

Jρ×Wρ

Ψρ(t, n) dµ
u
yρdt

∣∣∣∣∣

2

≤ |Jρ|µ
u
yρ(Wρ)

∫

Jρ×Wρ

|Ψρ(t, n)|
2 dµuyρdt

We frequently use the following bounds

|Jρ| ≪ 1, µuyρ(Wρ) ≪Γ 1,
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where the latter follows from convex cocompactness of Γ and the fact that yρ ∈ N−
1/2Ω; cf. discussion

above (3.6).

Linearizing the amplitude. Fix some t ∈ Jρ. Let r > 0 to be chosen a small negative power of
‖ξ‖. Using [16, Proposition 9.9], we can find a cover {Aj} of Wρ with balls of radius rιξ centered
around uj ∈ Wρ ∩ supp(µuyρ) and satisfying

∑
j µ

u
yρ(Aj) ≪ µuyρ(Wρ). In particular, by the triangle

inequality we have
∫

Wρ

|Ψρ(t, n)|
2 dµuyρ(n) ≤

∑

j

∫

Aj

|Ψρ(t, n)|
2 dµuyρ(n). (3.26)

We now turn to estimating the sum of oscillatory integrals in (3.26). For k, ℓ ∈ Iρ,t, we let

ψk,ℓ(t, n) := ψρ,k(t, n)ρk(n)ψρ,ℓ(t, n)ρℓ(n), αk,ℓ(t, n) := αρ,k(t, n)αρ,ℓ(t, n).

Expanding the square, we get

∑

j

∫

Aj

|Ψρ(t, n)|
2 dµuyρ =

∑

j

∑

k,ℓ∈Iρ,t

∫

Aj

αk,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ .

Using (2.3) and (2.4), we change variables in the integrals using the maps taking each Aj onto
N+

1 . More precisely, recall that Aj is a ball of radius rιξ around uj such that ujyρ ∈ Ω. Letting

τ = − log rιξ, yjρ = gτujyρ, αj
k,ℓ(t, n) = αk,ℓ(t,Ad(g−τ )(n)uj),

ψj
k,ℓ(t, n) = ψk,ℓ(t,Ad(g−τ )(n)uj), (3.27)

we can rewrite the above sum as

∑

j

∑

k,ℓ∈Iρ,t

∫

Aj

αk,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ ≤ e−δτ

∑

j

∑

k,ℓ∈Iρ,t

∣∣∣∣∣

∫

N+
1

αj
k,ℓ(t, n)ψ

j
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣ . (3.28)

One advantage of flowing forward by gτ is that it provides smoothing of the amplitude functions
ψk,ℓ. In particular, it follows by (3.3) that

∥∥∥ψj
k,ℓ

∥∥∥
C1

≪ ‖ψ‖C1 e
−τ ι−1

ξ = O(‖ψ‖C1 r).

Applied to the right side of (3.28), we obtain

∫

Wρ

|Ψρ(t, n)|
2 dµuyρ = e−δτ

∑

j

∑

k,ℓ∈Iρ,t

∣∣∣∣∣

∫

N+
1

αj
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣+O(‖ψ‖C1 r#I
2
ρ,t). (3.29)

Separation of frequencies. Recall that uj denotes the center of the ball Aj for each j and let
vj ∈ n

+ be such that

uj = exp(vj).

Then, given n = exp(v) ∈ N+
1 , we observe using (3.21) that

αρ,k(t,Ad(g−τ )(n)uj) = exp
(
iλℓ(vj)〈ξt,mρ,ℓ · (vj + e−τv)〉

)
+O(e−τ ‖ξt‖

∥∥e−τv + vj
∥∥).

We note that exp(e−τv+vj) belongs to the ball Aj (an element of the cover of Wρ). Since Aj meets

the ball Wρ, we have that ‖e−τv + vj‖ ≪ ιξ(1 + r) ≪ ‖ξ‖2/3.
Letting ξt+τ = e−t−τξ and

βjk,ℓ := ξt+τ · (λk(vj)mρ,k − λℓ(vj)mρ,ℓ) , (3.30)
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it follows that ∣∣∣∣∣

∫

N+
1

αj
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

N+
1

exp
(
i〈βjk,ℓ, n〉

)
dµu

yjρ

∣∣∣∣∣+O
(
e−t−τ ‖ξ‖2/3

)
, (3.31)

where we absorbed the constant term of the phase into the absolute values.
To apply the flattening theorem, it will be important to understand the distribution of the

frequencies βjk,ℓ. To this end, we have the following lemma.

Lemma 3.4. For all j, k, ℓ, we have
∥∥∥βjk,ℓ

∥∥∥≫ ‖ξt+τ‖ |〈vj , wρ,k − wρ,ℓ〉|,

where wρ,k and wρ,ℓ are the vectors corresponding to the transverse intersection points defined in

Lemma 3.2.

Proof. In light of Corollary 3.3, it suffices to prove that
∥∥∥βjk,ℓ

∥∥∥≫ ‖ξt+τ‖ |λk(vj)− λℓ(vj)〉|.

The estimate is evident when λk(vj) = λℓ(xj). Hence, we may assume without loss of generality
that λk(vj) > λℓ(vj), and recall that these functions are non-negative by definition; cf. (3.21). We
may also assume that our norm is invariant by Od(R). In what follows, let

mk := mρ,k, ck := λk(vj), Ak := ckmk

to simplify notation with the similar notation for the index ℓ in place of k defined analogously.
Recall the elementary estimate ‖g · v‖ ≥ ‖v‖ /

∥∥g−1
∥∥ for any invertible linear map g and any

vector v ∈ R
d. This estimate implies the following lower bound for

∥∥∥βjk,ℓ
∥∥∥:

∥∥∥βjk,ℓ
∥∥∥ ≥

‖ξt+τ‖

‖(Ak −Aℓ)−1‖
=

‖ξt+τ‖ ck∥∥∥(Id− cℓ
ck
mℓm

−1
k )−1

∥∥∥
.

That Id− cℓ
ck
mℓm

−1
k (and hence Ak −Aℓ) is invertible follows at once from the following estimate

on the norm of its inverse. Using the power series expansion of Id−Q, for matrices Q with ‖Q‖ < 1,
we see that ∥∥∥∥(Id−

cℓ
ck
mℓm

−1
k )−1

∥∥∥∥ ≤
∑

n≥0

(
cℓ
ck

)n

=
ck

ck − cℓ
.

The lemma follows by combining the above two estimates. �

This lemma motivates the definition of the following subset of I2ρ,t parametrizing pairs (k, ℓ) for

which the vectors βjk,ℓ are too small. Namely, we set

Cj
ρ,t =

{
(k, ℓ) ∈ I2ρ,t : |〈vj , wρ,k − wρ,ℓ〉| < ‖ξt+τ‖

−1/10
}
. (3.32)

Roughly speaking, elements of Cj
ρ,t correspond to points that concentrate near affine subspaces

orthogonal to vj .

The following proposition allows us to trivially estimate over the pairs in Cj
ρ,t by showing that

the points yρ,ℓ do not typically concentrate near proper affine linear subspaces.

Proposition 3.5. There exists η > 0, depending only on the Patterson-Sullivan measure of Γ, such

that for all k ∈ Iρ,t, we have

#
{
ℓ ∈ Iρ,t : (k, ℓ) ∈ Cj

ρ,t

}
≪ 1 + ‖ξt+τ‖

−η/10 ‖vj‖
−η eδt.
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Proof. The deduction of the above estimate from [16, Theorem 11.7] is similar to the proof of [16,
Proposition 9.13], but we include a sketch of the proof for completeness. For a given k ∈ Iρ,t,

the condition (k, ℓ) ∈ Cj
ρ,t implies that wρ,ℓ is contained in the ‖ξt+τ‖

−1/10 / ‖vj‖-neighborhood of

the affine subspace v⊥j + wρ,k, where v⊥j is the orthocomplement of vj with respect to our inner

product. Moreover, the points wρ,ℓ are separated by an amount ≫ e−t; cf. [16, Proof of Proposition
9.13]. Finally, by [16, Theorem 11.7] implies that any ε-neighborhood of a proper affine subspace
has measure O(εη). In particular, such neighborhood contains at most O(εηeδt), since each ball of
radius e−t with center in Ω has measure ≍ e−δt. �

To apply Proposition 3.5, we first estimate trivially on the terms where ‖vj‖ < ‖ξt+τ‖
−1/20. We

note that the union ⋃

j:‖vj‖<‖ξt+τ‖
−1/20

Aj

is contained in a ball of radius ≍ ‖ξt+τ‖
−1/20. It follows that

e−δτ
∑

j:‖vj‖<‖ξt+τ‖
−1/20

µu
yjρ
(Aj) ≪ ‖ξt+τ‖

−δ/20 .

Let Sj
ρ,t = I2ρ,t \ C

j
ρ,t. Combined with (3.29) and (3.31), we obtain

∫

Wρ

|Ψρ(t, n)|
2 dµuyρ

≪ e−δτ
∑

j:‖vj‖≥‖ξt+τ‖
−1/20

∑

(k,ℓ)∈Sj
ρ,t

∣∣∣∣∣

∫

N+
1

exp
(
i〈βjk,ℓ, n〉

)
dµu

yjρ

∣∣∣∣∣

+O
((

‖ψ‖C1 r + e−t−τ ‖ξ‖2/3 + ‖ξt+τ‖
−δ/20

)
#I2ρ,t +

(
1 + ‖ξt+τ‖

−η/20 eδt
)
#Iρ,t

)
. (3.33)

3.1. The role of additive combinatorics. For each j, the sum on the right side of the above
estimate can be viewed as an average, when properly normalized, over Fourier coefficients of the

measure µu• . Moreover, the frequencies βjk,ℓ are sampled from a well-separated set. Hence, this

average can be estimated using the L2-Flattening Theorem, Theorem 2.3.
To simplify notation, for w ∈ R

d, we let

νj := µu
yjρ

∣∣∣N+
1
, ν̂j(w) :=

∫

N+

e−i〈w,n〉 dνj(n). (3.34)

Note that the total mass of νj, denoted |νj|, is µu
yjρ
(N+

1 ). Let η2 > 0 be a small parameter to be

chosen using Proposition 3.6 below. Define the following set of frequencies where ν̂j is large:

B(j, k, η2) :=
{
ℓ ∈ Iρ,t : (k, ℓ) ∈ Sj

ρ,t and |ν̂j(β
j
k,ℓ)| > ‖ξt+τ‖

−η2 |νj |
}
. (3.35)

Then, splitting the sum over frequencies according to the size of the Fourier transform ν̂j and
reversing our change variables to go back to integrating over Aj, we obtain

e−δτ
∑

j:‖vj‖≥‖ξt+τ‖
−1/20

∑

(k,ℓ)∈Sj
ρ,t

∫
e−i〈βj

k,ℓ,n〉 dνj(n)

≪

(
max
j,k

#B(j, k, η2) + ‖ξt+τ‖
−η2 #Iρ,t

)
#Iρ,tµ

u
yρ(N

+
1 ), (3.36)

The following key counting estimate for B(j, k, η2) is a consequence of the L2-flattening theorem,
Theorem 2.3.
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Proposition 3.6 (cf. [16, Proposition 9.16]). For every ε > 0, there is η2 > 0 such that for all j
and k ∈ Iρ, we have

#B(j, k, η2) ≪ε ‖ξ‖
ε
(
1 + eδt ‖ξt+τ‖

−η1
)
,

where η1 > 0 is the constant provided by Proposition 3.5.

Proof. Recall the definition of the frequencies βjk,ℓ in (3.30) and the sets Sj
ρ,t = I2ρ,t \ C

j
ρ,t, where

Cj
ρ,t was defined in (3.32). The rough idea behind the proof is that, by Lemma 3.4, Sj

ρ,t parametrize
pairs of frequencies which are sufficiently separated. This allows us to apply Theorem 2.3 on the
Lebesgue measure of the set of frequencies where the Fourier transform is large to conclude that
the sets B(j, k, η2) are relatively small in size.

More precisely, Proposition 2.4 and Theorem 2.3 imply that the set B(j, k, η2) can be covered by
Oε(‖ξ‖

ε) balls of radius 1, provided η2 is small enough, depending only on ε. By Lemma 3.4 and
Proposition 3.5, each such ball contains at most O(1+ eδt ‖ξt+τ‖

−η1). This concludes the proof. �

By choosing r−1 and eT to be suitably small positive powers of ‖ξ‖, the theorem now follows
upon combining (3.33), (3.36), and Proposition 3.6.

4. Explicit formula for stable holonomy maps

In this section, we give explicit formulas for the commutation relations between stable and un-
stable subgroups which we need for the proof of Lemma 3.2.

4.1. Proof of Lemma 3.2. Consider the following quadratic form on R
d+2: for x = (xi) ∈ R

d+2,

Q(x) = 2x0xd+1 − |x1|
2 − · · · − |xd|

2.

Let SOR(Q) ∼= SO(d+1, 1) be the orthogonal group of Q; i.e. the subgroup of SLd+2(R) preserving
Q. Then, we have a surjective homomorphism SOR(Q) → G = Isom+(Hd+1) with finite kernel.
The geodesic flow is induced by the diagonal group

A =
{
gt = diag(et, Id, e

−t) : t ∈ R
}
,

where Id denotes the identity matrix in dimension d. Recall thatM = SOd(R) denotes the centralizer
of A inside the standard maximal compact subgroup K ∼= SOd+1(R) of G.

For x ∈ R
d, viewed as a row vector, we write xt for its transpose. We let ‖x‖2 := x · x, and x · x

denotes the sum of coordinate-wise products. Hence, N+ can be parametrized as follows:

N+ =



n

+(x) :=



1 x ‖x‖2

2
0 Id−1 xt

0 0 1


 : x ∈ R

d,



 . (4.1)

The group N− is parametrized by the transpose of the elements of N+.
Note that the product map M × A × N+ × N− → G is a diffeomorphism near identity. In

particular, given τ ∈ R, m ∈M , and small enough5 x, y ∈ R
d, we can find φy(x) ∈ R

d and τ(x) ∈ R
such that

n+(x)n−(y)gτm ∈ N−Mgτ(x)n
+(φ(x)).

The coordinates (τ, x) parametrize every local weak stable leaf in our manifold. In particular,
the function (τ(x), φ(x)) parametrize the image of such leaf under local strong stable holonomy. To
compute the function φ(x), let

λ(x) = 1 + x · y +
‖x‖2 ‖y‖2

4
.

5It suffices to have ‖x‖ and ‖y‖ at most 1/2 for instance.
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Then, by examining the first row of n+(x)n−(y) in the above parametrization, we find that

τ(x) = τ − log λ(x), φ(x) =
1

eτλ(x)
m−1 ·

(
x+

‖x‖2

2
y

)
,

where for m ∈M and v ∈ R
d, we use the notation m · v to denote the standard action of M on R

d.
This concludes the proof Lemma 3.2 follows by taking x = v, y = wρ,ℓ, and τ = tρ,ℓ in the notation
of the statement.
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