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Abstract—MRI-Linac systems require fast image 
reconstruction with high geometric fidelity to localize and track 
tumours for radiotherapy treatments. However, B0 field 
inhomogeneity distortions and slow MR acquisition potentially 
limit the quality of the image guidance and tumour treatments. In 
this study, we develop an interpretable unrolled network, referred 
to as RebinNet, to reconstruct distortion-free images from B0 
inhomogeneity-corrupted k-space for fast MRI-guided 
radiotherapy applications. RebinNet includes convolutional 
neural network (CNN) blocks to perform image regularizations 
and nonuniform fast Fourier Transform (NUFFT) modules to 
incorporate B0 inhomogeneity information. The RebinNet was 
trained on a publicly available MR dataset from eleven healthy 
volunteers for both fully sampled and subsampled acquisitions. 
Grid phantom and human brain images acquired from an open-
bore 1T MRI-Linac scanner were used to evaluate the 
performance of the proposed network. The RebinNet was 
compared with the conventional regularization algorithm and our 
recently developed UnUNet method in terms of root mean squared 
error (RMSE), structural similarity (SSIM), residual distortions, 
and computation time. Imaging results demonstrated that the 
RebinNet reconstructed images with lowest RMSE (<0.05) and 
highest SSIM (>0.92) at four-time acceleration for simulated brain 
images. The RebinNet could better preserve structural details and 
substantially improve the computational efficiency (ten-fold 
faster) compared to the conventional regularization methods, and 
had better generalization ability than the UnUNet method. The 
proposed RebinNet can achieve rapid image reconstruction and 
overcome the B0 inhomogeneity distortions simultaneously, which 
would facilitate accurate and fast image guidance in radiotherapy 
treatments. 
 
Index Terms—MRI-guided radiotherapy, geometric distortion, B0 
inhomogeneity, unrolled network  
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I. INTRODUCTION 
RI-guided radiotherapy (MRgRT) workflow has 
recently attracted increasing attention for accurate 
tumour treatments due to its excellent soft-tissue 
contrast and lack of additional ionizing radiation 

exposure compared to other imaging techniques such as 
computed tomography (CT) [1, 2]. Hybrid systems integrating 
an MRI scanner and a medical linear accelerator (Linac) have 
been developed to enable fast tumour tracking and image 
guidance, which would facilitate optimized dose delivery and 
adaptive patient-specific treatment strategies [3, 4]. Such MRI-
Linac systems show great promise for the translation of 
accurate image-guided radiotherapy treatments in routine 
clinical practice [5].  

In a conventional MR image reconstruction system, the 
main magnetic (B0) field is assumed to be uniform in the field 
of view (FOV) [6-8] for the MR signal spatial encoding. 
However, in practice, generating a perfectly uniform B0 field is 
not always achievable due to hardware constraints on main 
magnet design and manufacture. Sometimes, the patient 
“friendliness” design of the magnet, such as short and wide-
bore systems leads to trade-offs in B0 field homogeneity [9]. In 
particular, the Australian 1T MRI-Linac scanner applies an 
open-bore/split magnet with a large central gap (50cm) to 
facilitate patient positioning and radiation dose delivery [10, 
11]. The split bore configuration is prone to restrict B0 field 
homogeneity, which will undermine the spatial encoding and 
thus produce geometric distortions in reconstructed MR images 
[12]. The geometric distortions cause target position errors and 
potentially degrade precise radiation delivery in the MRI-Linac 
tumour treatments [13, 14]. This effect will be particularly 
problematic for MRgRT applications where high geometric 
fidelity is required [15, 16]. 
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Given the knowledge of B0 field inhomogeneity, image 
distortions can be retrospectively corrected by post-processing 
interpolation algorithms [17]. However, such image-domain 
methods can result in image blurring and resolution loss due to 
the intrinsic smoothing effect of interpolation operations, 
particularly at the edges of large FOVs [18, 19]. Alternatively, 
geometric deformations can be corrected prospectively during 
the image reconstruction process [20]. This method 
incorporates distortion information into the gradient encoding 
matrix, translating the sophisticated image reconstruction under 
field deviations into an ill-conditioned and nonlinear inverse 
problem. Iterative minimization algorithms with regularizations 
such as wavelet transform [21], low rank [22], and total 
variation [23] are normally applied to solve the ill-conditioned 
problem and to reconstruct distortion-free images directly from 
the raw k-space domain. This k-space domain method can 
effectively overcome the smoothing effect of interpolation-
based methods [24]. However, it is non-trivial to select optimal 
regularization parameters, and the iterative algorithms are 
computationally expensive, which is challenging for fast image 
guidance in radiotherapy treatments [25]. 

Deep learning has shown promising performances in 
solving MR regularization problems, enabling accurate and fast 
online image reconstruction [26-29]. Convolutional neural 
networks (CNN)-based methods have been widely investigated 
to reconstruct high-quality MRI images from incomplete k-
space or aliased images [30]. A 2D UNet and a modified GAN 
were trained to recover distortion-free images with super-
resolution for the single-shot echo planar imaging (EPI) [31, 
32]. Recently, we proposed an image-domain CNN-based 
method (UnUNet) and a physics-guided network (DCReconNet) 
to rapidly reconstruct images from subsampled k-space in the 
presence of gradient nonlinearity (GNL) [28, 33]. In this work, 
we develop an interpretable unrolled network (RebinNet) to 
reconstruct images with corrected B0 inhomogeneity distortions 
for MRgRT applications on an MRI-Linac. The RebinNet 
included CNN blocks to perform image regularizations and 
Nonuniform Fast Fourier Transform (NUFFT) to operate B0 
inhomogeneity spatial encoding. Grid phantom measurements 
with reversed gradient polarities were used to measure the B0 
inhomogeneity information. Subsampled k-space was 
integrated into the RebinNet architecture to further reduce the 
acquisition time. The proposed RebinNet was trained on a 
publicly available MR brain dataset with 11 healthy volunteers, 
and then evaluated on grid phantom and volunteer brain images 
acquired from an open-bore 1T MRI-Linac scanner with fully 
sampled and subsampled acquisitions. The RebinNet was 
compared with the conventional regularization algorithm and 
the image-domain UnUNet method in terms of image quality 
and computational cost. 

II. METHODS AND MATERIALS  

A. B0 inhomogeneity spatial encoding and image reconstruction 
Given the theoretical/undistorted location L, the distorted 

location 𝐿𝐿�+ with a positive encoding gradient and the location 
𝐿𝐿�−  with a negative encoding gradient are governed by the 
equations below [9]:  

      𝐿𝐿�+ = 𝐿𝐿 + 𝑑𝑑𝐵𝐵𝐺𝐺(𝐿𝐿)
𝐺𝐺

+ 𝑑𝑑𝐵𝐵0(𝐿𝐿)
𝐺𝐺

                       (1) 

𝐿𝐿�− = 𝐿𝐿 + 𝑑𝑑𝐵𝐵𝐺𝐺(𝐿𝐿)
𝐺𝐺

− 𝑑𝑑𝐵𝐵0(𝐿𝐿)
𝐺𝐺

                       (2) 

where 𝑑𝑑𝐵𝐵G(𝐿𝐿) and 𝑑𝑑𝐵𝐵0(𝐿𝐿) denote gradient field and B0 field 
perturbations at the location of L, respectively. G represents the 
applied gradient strength. 𝑑𝑑𝐵𝐵𝐺𝐺(𝐿𝐿)

𝐺𝐺
  and 𝑑𝑑𝐵𝐵0(𝐿𝐿)

𝐺𝐺
 represent the GNL- 

and B0 inhomogeneity-induced distortions, respectively. The 
sign of B0 inhomogeneity distortion 𝑑𝑑𝐵𝐵0(𝐿𝐿)

𝐺𝐺
 is affected by the 

gradient polarity and thus the distortion can be calculated by 
averaging the displacements: 

𝑑𝑑𝐵𝐵0(𝐿𝐿)
𝐺𝐺

= 𝐿𝐿�+−𝐿𝐿�−

2
                                    (3) 

Eq. (3) shows that B0 inhomogeneity effect is inversely 
proportional to the applied gradient strength, which can be 
calculated by the following equation: 

𝐺𝐺 = 𝑊𝑊∗𝑆𝑆
𝛾𝛾∗𝑉𝑉

                                          (4) 
where 𝑊𝑊 is the imaging bandwidth and S is the image size; 𝛾𝛾 
and V represent the gyromagnetic ratio and the size of FOV, 
respectively.  
The forward spatial encoding process with B0 field 
inhomogeneity can be formulated as: 

𝑚𝑚(𝐸𝐸𝐵𝐵0°𝐹𝐹)𝑥𝑥 = 𝑏𝑏                               (5) 
where b is the measured k-space data; m represents the 
undersampling mask and x is the distortion-free image; F 
denotes the theoretical Fourier Transform operator with the 
kernel of 𝑒𝑒𝑘𝑘,𝐿𝐿 = 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋; 𝐸𝐸𝐵𝐵0 is the distorted encoding operator 
caused by B0 field inhomogeneity in the form of 𝑒𝑒𝑘𝑘,∆(𝐿𝐿) =
𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋∆(𝐿𝐿)  and ∆(𝐿𝐿) = 𝑑𝑑𝐵𝐵0(𝐿𝐿)

𝐺𝐺
 is the B0 inhomogeneity 

displacement at location L. 𝐸𝐸𝐵𝐵0°𝐹𝐹 represents the element-wise 
multiplication of matrix 𝐸𝐸𝐵𝐵0 and F. The distortion-free image 
can then be reconstructed by solving the minimization problem: 

𝑥𝑥 = argmin
𝑥𝑥

{‖𝑚𝑚(𝐸𝐸𝐵𝐵0°𝐹𝐹)𝑥𝑥 − 𝑏𝑏‖22 + 𝜆𝜆𝜆𝜆(𝑥𝑥)}           (6) 
where ‖𝑚𝑚(𝐸𝐸𝐵𝐵0°𝐹𝐹)𝑥𝑥 − 𝑏𝑏‖22  is the L2-norm operation which 
promotes the data fidelity between the measured and estimated 
data. 𝑃𝑃(𝑥𝑥)  represents the sparsity regularization term (e.g., 
wavelet, low rank, and total variation) with weighting 
parameter 𝜆𝜆  [34, 35]. It is noted that 𝐸𝐸𝐵𝐵0°𝐹𝐹  denotes a 
nonuniform to uniform spatial mapping which can be 
implemented by the type-I NUFFT algorithm [36]. 
Conventional regularization methods based on iterative 
algorithms [37] have been typically used to solve the above 
minimization problem in Eq. (6). However, it requires a 
cumbersome fine-tuning process to determine the optimal 
weighting parameter 𝜆𝜆 , and the iterative algorithms are 
computationally expensive, making them impractical for the 
clinical translation. 

B. Network architecture 
Recently, model-driven unrolled neural networks have 

been increasingly used for solving MR inverse problems, which 
incorporate MR physical models and have well-defined 
interpretability [38]. Inspired by the unrolled network 
architecture, we developed a B0 inhomogeneity distortion-free 
reconstruction pipeline to solve the ill-conditioned problem 
described by Eq. (5) through the following equation: 

𝑥𝑥 = argmin
𝑥𝑥

{‖𝑚𝑚(𝐸𝐸𝐵𝐵0°𝐹𝐹)𝑥𝑥 − 𝑏𝑏‖22 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)}        (7) 
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where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) represents convolutional neural networks that 
are used to learn effective regularizations. As shown in Fig. 1(a), 
the input of the RebinNet includes the undersampled k-space 
data and the B0 inhomogeneity displacement information, and 
the output is the reconstructed distortion-free image. The 
proposed network consists of seven iterative soft shrinkage-
thresholding blocks, and each block includes a data fidelity 
calculation and a CNN-based latent regularization (see Fig. 
1(b)). The forward and backward transforms with a soft-
thresholding operator are implemented to reduce image artifacts. 
Two linear convolutional operators and a rectified linear unit 
(ReLU) are applied to form each transform operation. A 
residual block is added to further facilitate the network 
performance. 

 
Fig. 1. The overall workflow of the proposed method (a) and the 
RebinNet architecture (b). It takes both the distorted k-space data and 
the B0 inhomogeneity displacement as the input, and outputs the 
distortion-free image.  

C. Data preparation for network training and testing 
In this work, a public T1-weighted brain image dataset 

from 11 healthy volunteers was used to generate training data 
for the RebinNet. The brain images were acquired from a 
whole-body MRI system (Magnetom Tim Trio; Siemens 
Healthcare, Germany) and the imaging parameters are: image 
size=320×320×256, resolution=0.7×0.7×0.7 mm3 isotropic, 
TE/TR=2.13 ms/2.4 s, echo spacing=65 ms, and phase 
encoding direction: R/L. The brain images were uniformly 
located in the entire region of interest (ROI) of 30×30×30 cm3 
to simulate distorted k-space data. 3000 brain images from ten 
healthy volunteers were used as training data and 300 images 
from the eleventh volunteer were selected to generate the 
testing data. As shown in Fig. 2, a specially designed 3D 
phantom [39] was scanned from a body coil on the Australian 
MRI-Linac scanner with reversed gradient polarities to measure 
the B0 field inhomogeneity information on phantom marker 
positions. The imaging parameters were image size=130×110
× 192, image resolution=1.8 mm × 2 mm × 1.8 mm, pixel 
bandwidth=202 Hz, turbo spin echo sequence (TSE), 
TE/TR=15 ms/5.1 s and phase encoding direction: R/L. Our 
previously developed spherical harmonic (SH) method [40] was 
used to calculate the B0 inhomogeneity displacement at any 
position in the FOV based on the phantom measurements. The 
calculated B0 field information was then integrated into the 
spatial encoding process in Eq. (5) to simulate distortion-
corrupted k-space data. These simulated k-space data were 
retrospectively subsampled by 1D random undersampling 
masks at acceleration factors (AFs) of 2, 4, and 6 along the 
phase encoding direction.  

 
Fig. 2. The training data preparation pipeline, consisting of phantom measurements, spherical harmonic calculation and B0 inhomogeneity spatial 
encoding. 
 

To test the performance of our network, another two scans 
of the 3D distortion phantom were conducted with 6cm-shifted 
phantom isocenter along y direction, and reversed gradient 
polarities with full sampling were applied for each scan. The 
pixel bandwidth for both scans was 101 Hz and 202 Hz, 
respectively and the other imaging parameters were image 
size=130×110×192, image resolution=1.8 mm×2 mm×1.8 mm, 
turbo spin echo sequence (TSE), TE/TR=15 ms/5.1 s and phase 
encoding direction: R/L. The fully sampled phantom data were 
then retrospectively subsampled with AF=4. A healthy 

volunteer’s brain was scanned with a six-channel head coil with 
the following parameters: image size=256×256×12, image 
resolution=0.98 mm×0.98 mm×5 mm, pixel bandwidth=203 
Hz, TSE sequence, TE/TR=77 ms/8 s and phase encoding 
direction: R/L. The acquisitions were retrospectively 
subsampled with AFs=2 and 4 using 1D random undersampling 
mask. For multi-channel imaging, the sum-of-squares (SoS) 
operation was used to combine all channel data so that the coil 
sensitivity maps were not required for the network 
reconstruction. 
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D. Evaluation 

Mean squared error (MSE) loss was adopted for the 
network training using the Adam optimizer [41] with a mini-
batch size of 32. The network was trained for 100 epochs and 
the learning rate was 0.001. The training took approximately 20 
hours on a high-performance computer equipped with a Nvidia 
Tesla V100 P32 GPU. All human studies were conducted with 
the approval of the Institutional Review Board (IRB). 

The conventional regularization-based compressed 
sensing (CS) method with the NUFFT operation was 
implemented to solve the minimization problem in Eq. (6) and 
to reconstruct the distortion-free images, referred to as DFCS. 
A grid search was used to determine the optimal regularization 
parameters that minimized the MSE between the reconstructed 
and reference images. The distortion-free zero-filling 
reconstruction method was referred to as DFZF. An additional 
image-domain UnUNet method was also implemented to solve 
Eq. (6), where a standard unrolled network was used to 
reconstruct distorted images from the undersampled k-space 
data and a ResUNet was then applied to correct geometric 
distortion from the image domain. The UnUNet method was 
trained on the same dataset as described in Section 2.3. The 
RebinNet was compared with DFZF, DFCS, and UnUNet 
methods at AFs=2, 4, and 6. The conventional Fourier 
Transform reconstruction and the RebinNet were also 

implemented for fully sampled acquisitions, referred to as FT 
and RebinNet-FS. The root mean squared error (RMSE) and 
structural similarity index (SSIM) metrics were calculated to 
quantitatively evaluate the image reconstruction quality. 3289 
marker positions extracted from the specially designed 3D 
phantom were used to quantitatively measure the geometric 
distortion on reconstructed images. 

III. RESULTS 

A. Simulation results 
Fully sampled brain images with B0 inhomogeneity were 

simulated at different pixel bandwidths for positive and 
negative gradient encoding polarities to validate the 
effectiveness of the proposed RebinNet for distortion 
correction, as shown in Fig. 3. Yellow lines are the contours of 
ground truth images. The image contours of the conventional 
FT reconstructions do not match with yellow lines due to B0 
inhomogeneity-induced distortions. As indicated by the red 
arrows, image distortions increase inversely with the 
bandwidth. When applying the reversed gradient polarity, 
different geometric displacement patterns were observed on 
FT-reconstructed images. By contrast, the RebinNet 
dramatically reduced distortions and negligible errors were 
observed in RebinNet results, as illustrated by the error maps. 

 
Fig. 3. Fully sampled brain images with positive and negative gradient polarities. The bandwidth frequency of 230Hz, 115Hz and 57Hz was used 
to simulate the k-space data that was then reconstructed by the conventional FT method. The simulated k-space data at 230Hz was reconstructed 
by the RebinNet method for comparison. Error maps between reconstructed images and ground truth were shown at the bottom. 

 
Subsampled data at AF = 2, 4, 6 were also simulated to 

compare the performances of the proposed RebinNet with 
DFZF, DFCS, and UnUNet, and the results are demonstrated in 
Fig. 4. As indicated by the yellow lines, these four methods 
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successfully correct geometric distortions compared with the 
simple FT method. Image artifacts and noise in DFZF results 
were considerably alleviated by DFCS, UnUNet and the 
proposed RebinNet. These three algorithms reconstructed 
images with comparable image quality at AF=2. The DFCS 
method reconstructed images with signal blurring and detail 
loss at AF of 4 and 6, as pointed out by the yellow arrows. The 
image structural details were well preserved on UnUNet and 

RebinNet images, demonstrating that the neural network 
approach can achieve superior performance for higher AF 
subsampling cases. Quantitatively, the UnUNet and RebinNet 
resulted in lower RMSE and higher SSIM than the DFCS 
method. 

 
 

 

 
Fig. 4. Brain image reconstructions from distortion-corrupted k-space data at acceleration factors of 2, 4 and 6. DFZF, DFCS, UnUNet and 
RebinNet reconstructions were compared for axial slices at z= 36mm (AF=2), z=132mm (AF=4) and z=148mm (AF=6), respectively. Fully 
sampled data was reconstructed by the conventional FT method. Zoomed regions (red rectangle) were shown at the bottom of each image. Yellow 
lines represent the contours of ground truth brain images. Yellow arrows indicate that the UnUNet and RebinNet methods can preserve better 
structural details than the other methods. 

 
Comparison of RMSE and SSIM metrics for different 

reconstruction methods on the 300 testing brain images are 
shown in Fig. 5. The median and maximum RMSE values for 
the DFZF-reconstructed images are 0.05 and 0.09, respectively; 
whereas these two values are lower than 0.04 and 0.06 for the 
other three methods. It is noticeable that the RebinNet and 
UnUNet methods provided lower RMSE values than the DFCS 
method, demonstrating more accurate image reconstructions. In 
terms of the SSIM level, the images reconstructed by the two 
neural network approaches show the highest median value 
(~0.95) than those reconstructed by DFZF (0.68) and DFCS 
(0.79) methods.   

 
Fig. 5. Boxplots of RMSE (left) and SSIM (right) values across 300 
testing brain images reconstructed by DFZF, DFCS, UnUNet and 
RebinNet methods at AF=4. The minimum, first quartile (25%), 
median (50%), third quartile (75%) and the maximum values were 
statistically analysed. Red crosses represent outliers that account for 
0.7% of total samples.  
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B. Experimental results 

1) Phantom results: A 3D grid phantom was scanned from a 
body coil on an MRI-Linac scanner with pixel bandwidth = 202 
Hz to evaluate the performance of the proposed method. As 
shown in Fig. 6, the fully sampled FT-reconstructed images 
show opposite geometric distortion patterns for positive and 
negative gradient polarities, demonstrating that the B0 
inhomogeneity effect is dependent on the sequence parameters. 
The image distortions were substantially reduced on RebinNet-

FS images, which were used as references for subsampled 
acquisitions at AF of 4. A comparison of different methods on 
this phantom at AF=4 was also shown in the right part of Fig. 
6. As indicated by the yellow arrows, undesired image blurring 
and artifacts in UnUNet reconstructions were reduced by the 
RebinNet. The phantom images acquired with pixel bandwidth 
= 101 Hz were shown in Supporting Information Figure SI, and 
the RebinNet gave the best image quality compared with the 
other methods, which is consistent with the results in Fig. 6.  

 

 
Fig. 6. Grid phantom images acquired with positive (the top row) and negative (the bottom row) gradient polarities on the MRI-Linac system 
with pixel bandwidth = 202 Hz at the location of x=-33.7 mm. Fully sampled data was reconstructed by the FT and RebinNet-FS methods. 
Subsampled data at AF=4 was reconstructed by DFZF, DFCS, UnUNet and RebinNet methods, respectively. 
 

3289 phantom markers were extracted from the grid 
phantom images before and after RebinNet corrections to 
quantitatively measure the geometric displacements. The 
distribution of image distortions on 3289 markers in the whole 
FOV is shown in Fig. 7. Before correction, geometric 
distortions on 2539 markers are less than 2 mm and 383 markers 
have distortions over than 4 mm. After applying the RebinNet, 
the residual displacements of 3278 markers are within 1mm and 
only 11 markers’ distortions are larger than 1mm. The maximal 
displacement of uncorrected images is 12.2 mm; while the 
RebinNet reduced it within 2mm, showing a significant 
improvement on geometric fidelity. Similarly, the RMSE of 
corrected markers is only 0.16 mm, which is smaller than one-
tenth of uncorrected ones (2.8 mm). 

 
Fig. 7. Geometric distortion distribution on 3289 markers in the FOV 
before and after correction. 
 

 
2) In vivo brain results: Fig. 8 compares the proposed RebinNet 
with DFZF and DFCS for the acquired in vivo brain data at AF 
= 2 and 4. Fully sampled images reconstructed by the RebinNet-
FS were used as references. Comparable image quality with 
similar RMSE (0.01) and SSIM (0.94) values was achieved for 
DFCS and RebinNet methods at AF=2. Image structural details 
for AF=4 were better preserved in the RebinNet than DFCS, 
which is consistent with the results of Fig. 4 and Fig. 6. 

C. Computational efficiency  
The DFCS, UnUNet and RebinNet algorithms were 

implemented on a desktop computer equipped with an Intel 
Xeon central processing unit (CPU) @ 3.7 GHz and RAM (16 
GB) on a Windows 10 Enterprise system. The inference time of 
DFCS method on an image size of 256×256 was 30s, while the 
UnUNet and RebinNet methods required 3s, showing a ten-fold 
reduction in computational cost. In addition, we executed the 
two neural network approaches on a high-performance 
computer equipped with an Nvidia Tesla V100 P32 GPU and 
the latency was only 300 ms, demonstrating the fast image 
reconstruction potential for MRgRT applications. 
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Fig. 8. Volunteer brain images acquired from our MRI-Linac system. The fully sampled reconstructions for FT and RebinNet-FS methods are 
shown on the left two columns. The DFZF, DFCS and RebinNet were used for image reconstructions at AF=2 (the top row) and AF=4 (the 
bottom row). The top and bottom slices were acquired at y=-12.5mm and y=13mm, respectively. 

IV. DISCUSSION 
The fast acquisition and reconstruction of geometrically 

accurate images is the ongoing challenge for clinical 
translations of the MRgRT technique [42-44]. Although MR 
acceleration techniques with undersampled k-space have shown 
great potentials to reduce MR acquisition time, the 
reconstruction methods based on conventional iterative 
regularization algorithms are still computationally expensive. 
Here, we leveraged the advance of interpretable unrolled 
networks to develop a fast image reconstruction pipeline that 
can reconstruct B0 inhomogeneity distortion-free images 
directly from undersampled k-space data. The latency of the 
proposed method was within 0.5s, which is considered 
acceptable for online and fast image reconstruction during 
MRI-guided radiation treatments [45, 46]. In addition, the 
residual geometric distortions after using the RebinNet was less 
than 2mm. Studies have shown that geometric inaccuracy 
within 2 mm could result in ≤5% dosimetry errors and thus is 
tolerable for accurate absorbed dose delivery [47]. 

The image domain UnUNet method resulted almost 
comparable image reconstructions to the RebinNet for the 
evaluations on simulated brain images. When tested on 
phantom images that were never seen in the training process, 
the RebinNet reconstructed better image quality than the 
UnUNet method, indicating superior generalization ability. The 
GNL causes sequence-independent geometric distortions; 
whereas B0 inhomogeneity leads to sequence-dependent 
distortions which will be affected by the sequence parameters 
(e.g., bandwidth, applied gradient strength and so on). The GNL 
distortions were separated by the reversed gradient technique 
and were corrected using our previously developed 

DCReconNet method [33] in this work. The performance of 
distortion-free image reconstruction relies partially on the 
accurate B0 field characterization [48]. Spherical harmonics and 
phantom measurements were combined to provide the B0 
inhomogeneity information. Since B0 inhomogeneity is 
different from scanner to scanner, new phantom measurements 
are required for other MRI systems. 

In this work, the standard Cartesian TSE sequences were 
used to acquire the testing brain and phantom data. Recently, 
non-Cartesian sequences such as radial and spiral sampling 
have shown promise for fast tumour tracking in MRI-guided 
radiotherapy [49]. However, non-Cartesian sequences need to 
rapidly switch encoding gradients, which would introduce 
strong eddy currents and thus cause additional image artifacts. 
This deep learning method has much potential to solve the 
image reconstruction problems in non-Cartesian sequences. 

V. CONCLUSION 
In this work, a deep-learning based method was developed 

to reconstruct distortion-free images from B0 inhomogeneity-
corrupted k-space with fully sampled and undersampled 
acquisitions. Simulation and experimental results demonstrated 
that the RebinNet could preserve image structural details and 
dramatically improve the computational efficiency in 
comparison to conventional regularization algorithms. 
Additionally, the proposed network has shown better 
generalization ability than the image-domain UnUNet method. 
Therefore, the RebinNet shows great potentials for facilitating 
accurate and fast image guidance in radiotherapy treatments. 
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