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Abstract

Let F be a coherent sheaf on a complex variety X that has a locally
free resolution E•. In [19], the authors constructed a pseudomeromorphic
current whose support is contained in supp(E•) that represents products
of Chern classes of F . In this paper, we show that their construction
works for general de-Rham characteristic classes and then generalize it
to represent products (in de-Rham cohomology) of characteristic forms
of cohesive modules defined by Block[8]. Finally, we state a corollary
to a transgression result in [16] that show that it is sufficient to only
use the degree-0 and degree-1 parts of the superconnection to construct
currents[6][5] that represent characteristic forms of cohesive modules in
the Bott-Chern cohomology.

1 Introduction

While coherent sheaves on any quasi-projective scheme over a Noetherian affine
scheme admits a locally free resolution [14, Example 6.5.1], this is not generally
true. An example is certain coherent sheaves on Spec(K[x]/(x2) for any field
K.[12, Example 4.18]. To circumvent such issue, in [8, Definition 2.3.2][9], Block
introduced the differential-graded category PD of Cohesive Modules over
the differential-graded algebra (dga) D = (A•(X), d, 0) = (A•,0(X), ∂, 0) the
Dolbeault dga of a complex manifold X (and also over general curved dga’s)
and studied their properties. It has the important property that

Theorem 1.1. [8, Theorem 4.1.3] Let X be a compact complex manifold, and
Db
coh(X) be the bounded derived category of complexes OX-sheaves with coherent

cohomology. Then the homotopy category Ho(PD), whose objects are exactly
those of PD and whose morphisms Ho(PD)(x, y) = H0(PD(x, y)), is equivalent
to Db

coh(X).

Thus many statements about coherent sheaves admitting a locally free reso-
lution can be translated into more general statements about cohesive modules.
Our main result in this paper (Theorem 5.1) generalizes Theorem 5.1 in [19],

which constructs, for a coherent sheaf F that admits a locally free resolution on
a complex manifold X , a current having the same support as a resolution for F
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that represents products of Chern classes/Chern forms of F , to a more general
class of characteristic forms on cohesive modules which define classes in both the
de-Rham cohomology and Bott-Chern cohomology of the manifold X. At the
end, we ask some questions about transgression formulae for superconnections
and superconnection currents that represent certain Bott-Chern characteristic
forms.

2 Acknowledgements

I would like to sincerely express my gratitude towards Prof.Jonathan Block,
whose patience, guidance, insight, and encouragement helped me overcome
many difficulties during both the learning process and the research process.
I would also like to thank him for teaching an awesome Algebraic Topology
sequence, where I learned many tools necessary for this project. Special thanks

to Prof.Tony Pantev for teaching an awesome Complex Algebraic Geometry se-
quence, and especially for completing the course despite his health conditions.
This project would have been impossible without what I learned from his lec-
tures. I also sincerely thank Prof.Ron Donagi for serving on my thesis committee
and for holding the algebraic geometry seminar, which exposed me to cool top-
ics that furthered my interest in algebraic geometry. I would like to also extend

my gratitude to other faculty members and graduate students who offered me
advice throughout the project, and with whom I had fruitful discussions with:
Prof.Ted Chinburg, Prof.Ryan Hynd, Fangji Liu, Tianyue Liu, Xingyu Meng,
Zixuan Qu, Zhecheng Wu, Shengjing Xu and David Zhu.

3 Cohesive Modules and Unitary Connections

3.1 The ∂-superconnection

Let X be a complex manifold, and D = (A0,•(X), ∂) be its Dolbeault differential
graded algebra, we can define the dg-category PD of D−cohesive modules as
follows[16]: the objects are E = (E•,E

′′

). Here, E• =
⊕N

k=0 Ek, with each Ek

a finite dimensional complex vector bundle over X.

Proposition 3.1. Here are some basic facts about the sheaves of E•− and
End(E•)−valued differential forms

1. A0,•(X,E•) ∼= A0,•(X)⊗A0(X) A0(X,E•) and A•,0(X,E•) ∼=
A•,0(X)⊗A0(X) A0(X,E•). Therefore A•(X,E•) ∼= A•(X)⊗A0(X)

A0(X,E•).

2. Same can be said if we replace E• by EndC(E
•) in (1).

3. Therefore EndOX (A•(X,E•)) ∼= A•(X,EndC(E
•)) as OX−modules.
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Now let E
′′

: A0,•(X,E•) → A0,•(X,E•) be OX -linear of total degree−1
and satisfy the following:

1. E
′′ ◦ E′′

= 0; i.e. E
′′

is flat.

2. The ∂−Leibniz formula ∀s ∈ A0(X,E•), ∀ω ∈ A0,•(X),

E
′′

(s⊗ ω) := E
′′

(s)⊗ ω + (−1)deg(ω)s⊗ ∂(ω) (1)

The meaning of total degree−1 is that ∀p, q ∈ N

E
′′

(A0,p(X,Eq)) ⊆
⊕

k≥max{−p,−q+1}

Ap+k(X,Eq−k+1) ⇒ E
′′

=
⊕

k∈Z

E
′′

k ,

with E
′′

k = 0, ∀k < max{−p,−q + 1}. Note that by definition of E
′′

and degree,

we know that E
′′

k is A•(X)−linear ∀k 6= 1. Now consider ∀0 ≤ k ≤ n, we have

E
′′

(E
′′ |A0(X,Ek)) = 0, so its projection onto A0(X,Ek+2) is also 0. Therefore

E
′′

0 ◦ E′′

0 (A0(X,Ek)) = 0, and we know that

0 A0(X,E0) A0(X,E1) · · · A0(X,EN ) 0
E
′′

0 E
′′

0 E
′′

0

is a complex of coherent sheaves.

3.2 Extended Hermitian Metric and the d-connection

Let h be a Hermitian metric on E•. Then, using Proposition 2.1.(1), we can
extend h to A•(X,E•) via

h(α⊗ f, β ⊗ g) = α ∧ h(f, g) ∧ β, ∀α, β ∈ A•(X), ∀f, g ∈ A0(X,E•)

We will write a cohesive module as (E•,E
′′

, h) to emphasize the dependence
of various properties/constructions on the Hermitian metric. Now we state an
important structure theorem:

Theorem 3.1. [16] For a Hermitian cohesive module (E•,E
′′

, h), there is a
unique E

′

: A•,0(X,E•) → ⋃
q∈Z

A•+q+1,0(X,E•−q) satisfying the following:

1. E
′

is a ∂−superconnection, i.e.1 ∀α⊗ f , with α ∈ A•(X), f ∈ A0(X,E•),
we have E

′

(α⊗ f) = E
′

(α)⊗ f + (−1)deg(α)α⊗ (∂f).

2. Extending E
′′

and E
′

to A•,•(X,E•) linearly (considering that A•,•(X,E•)
∼= A0,•(X)⊗A0(X) A•,0(X)⊗A0(X) A0(X,E•)), and we have E = E

′′

+E
′

is a d−superconnection.

3. E is h−unitary, i.e. ∀s, t ∈ A•(X,E•), we have (−1)deg(s)d(h(s, t)) =
−h(E(s), t) + h(s,E(t)).

1Note that A•,0(X,E•) ∼= A•,0(X)⊗A0(X) A
0(X,E•)
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4. Writing E
′

=
⊕

q∈Z
E

′

q,∇ = E
′′

1 + E
′

1 : A•,•(X,E•) → A•+1,•+1(X,E•) is
a unitary d−connection.

From the last statement we see that ∇ restricts to connections on each
Ek, 0 ≤ k ≤ N. Therefore, writing ∇k = ∇|Ek

and ∇ =
⊕N

k=0 ∇k, we know
that (Ek,∇k) is a vector bundle with a d−connection. Note that ∇ induces a
connection ∇End on End(E•) by

∇End : A•(X,End(E•)) → A•+1(X,End(E•)), φ 7→ ∇◦φ− (−1)deg(φ)φ◦∇.

3.3 Construction of a Compatible Unitary Connection

Definition 3.1. [19, Section 4] Connections {Θk}0≤k≤N on {Ek} are com-

patible with the complex 0 E0 E1 · · · EN 0
φ0 φ1 φN−1

if Θk+1 ◦ φk = −φk ◦Θk ⇔ Θk+1 ◦ φk + φk ◦Θk = 0.

The reason why compatibility is important will be seen in the next section.
In the case of cohesive modules, the ∇k’s might not be compatible with E

′′

0 . Let

Zi be the set where E
′′

0 is not exact, and let Z =
⋃N
i=0 Zi. We will call Z the

support of the cohesive module. Let χ : R → [0, 1] be a smooth characteristic
function such that χ ≡ 0 on (−∞, 1 − δ) and χ ≡ 1 on (1 + δ,∞), for some
arbitrarily small positive δ.

Now for a positive ǫ > 0, if Z = ∅, define χǫ ≡ 1 on X. Otherwise, define
F = ⊠

N
k=1Fk = ⊠

N
k=1det(E

′′

0 |Ek−1
)
∧
rank(Ek−1) on X [2, Section 2], which is a

section to the coherent sheaf F = ⊠
N
k=1

(∧rank(Ek−1)E∗
k−1 ⊗

∧rank(Ek−1)Ek

)
.

Then it is clear that Z = {F = 0} =
⋃N
k=1{Fk = 0}. If it is impossible to find

an F that is generically nonvanishing such that Z ⊆ {F = 0}, define χǫ ≡ 1.

Otherwise define χǫ(x) = χ
(

|F (x)|2

ǫ

)
, ∀x ∈ X. In this case χǫ ≡ 1 except on a

small neighborhood of Z when ǫ is small. (Since F is generically nonvanishing,
we can modify F such that F ≡ 1 except in a small neighborhood of Z.) Now
we need another concept before constructing the compatible connections: the
minimal inverse.

Definition 3.2. [19, 2] For 0 ≤ k ≤ N−1, write A0(X,Ek+1) = E
′′

0 (A0(X,Ek))
⊕Fk+1. Define the minimal inverse σk : Ek+1 → Ek, a morphism between
vector bundles, by the following conditions: if e ∈ E

′′

0 (Ek), then σk(e) ≡ n, where
E

′′

0 (n) = e, and n has pointwise the minimal h−norm among all such vectors.
If under h, e ⊥ E

′′

0 (Ek), then σk(e) ≡ 0. It then follows that E
′′

0 ◦ σk ◦ E
′′

0 = E
′′

0 .

Remark. Here are some properties of σk

1. The minimality of σk(e) is equivalent to stating that n ⊥ Ker(E
′′

0 |Ek
),

since any complement of Ker(E
′′

0 |Ek
) injects onto E

′′

0 (Ek) under E
′′

0 .[1]
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2. From Remark (1), we know that Im(σk) ⊥ Ker(E
′′

0 |Ek
) ⇒ Im(σk) ⊥

E
′′

0 (Ek−1), since (E
′′

0 )
2 = 0. This means that σk−1σk = 0.[19]

3. σk is smooth on X\Zk. This is because on X\Zk, the rank of E
′′

0 |Ek
is

constant. It then suffices to show that σk|E′′

0 (Ek)
is smooth, since σk on

the orthogonal complement is constant. This follows from a description of
σk in [1, Section 3].

Now we construct the connections ∇ǫ
k = ∇k − χǫ(σk ◦ ∇End ◦ E′′

0 ) on Ek’s,

and we write ∇ǫ =
⊕N

k=0 ∇ǫ
k. Then we have

Theorem 3.2. [19, Lemma 4.4] For any ǫ > 0, the connections {∇ǫ
k}0≤k≤N

are compatible with E
′′

0 exactly where χǫ ≡ 1.

4 Characteristic Class in de-Rham Cohomology

4.1 Characteristic Forms of (E•,E
′′

, h)

Let (E•,E
′′

, h) be a Hermitian cohesive module. Define the curvature Rh =
E2 = 1

2 [E,E] = [E
′

,E
′′

].

Remark. Noting that E ∈ End(A•(X,E•)) ∼= A•(X,End(E•)) ∼=
A•(X) ⊗A0(X) A0(X,End(E•)), so if we write E = α ⊗ f, then we have Rh =
(α ∧ α)⊗ (f ◦ f).

Then, following Quillen’s notion of the supertrace[20], for a fixed convergent
complex power series f(T ), we define its characteristic form to be Trs(f(Rh)),
where Trs : A•(X,End(E•)) → A•(X) is defined as follows [20, 2]: letting E• =
E+ ⊕ E−, with E+ =

⊕
2|k Ek, E

− =
⊕

26|k Ek, we define Trs : End(E•) →
C, X 7→ tr(ǫX), where for e ∈ E+, ǫX(e) = X(e), and for e ∈ E−, ǫX(e) =
−X(e).Now extend Trs linearly toA•(X,End(E•)). Then we have the following
facts

Theorem 4.1. [16][Corollary 2.26] Characteristic forms are closed, so they
define classes in H•

dR(X,C). These classes are well-defined by Serre’s Vanishing
Theorem. We then have [Trs(f(Rh))] = [Trs(f(Θ∇))]

2 in H•
dR(X,C), where

Θ∇ = ∇2 is the curvature form associated to ∇.

4.2 Characteristic Forms of Exact Chain Complexes

We first show the following claim establishing a more explicit relation between
the characteristic form and the curvature form. Let (E,∇) be a vector bundle
on X. Denote tr : A•(X,End(E)) → A•(X) the extension of the trace function
on A0(X,End(E)). Then we have

2This ∇ was defined in Theorem 2.1.(4).
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Proposition 4.1. [tr(f(Θ∇))] ∈ H∗
dR(X) is a polynomial in the Chern classes

of E. Specifically, it is a symmetric polynomial in [Θ∇]. It is also a sum of
homogeneous polynomimals in [Θ∇].

Proof. Let X,Y be two complex algebraic varieties, and (E,∆) a vector bundle
of rank k on X.We show that (E,∆) 7→ [tr(f(Θ∆))] is a natural transformation
from Vectk(−;C) to H∗(−). For a morphism φ : Y → X , let (φ∗E, φ∗∆)be the
pullback vector bundle on Y with the pullback connection which is functorial (as
defined in [21, Theorem 3.6(a)]), we know that Θφ∗∆ = φ∗Θ∆. Now it suffices
to show that ∀i ∈ N, φ∗[tr(Θi∆)] = [tr((φ∗Θ∆)

i)]. Recall the splitting principle

Lemma 4.2. [10, Section 21] Let E → X a C∞ complex vector bundle and
p : P(E) → M be the projection map. Then p∗(E) → P(E) splits into a direct
sum of line bundles and p∗ : H∗(X) → H∗(P(E)) is an embedding.

Using the lemma and the fact that φ∗P(E) = P(φ∗(E)), and considering the
commutative diagram

L1 ⊕ · · · ⊕ Ln → P(E) φ∗(L1)⊕ · · · ⊕ φ∗(Ln) → P(φ∗(E))

E → X φ∗(E) → Y
φ∗

p∗E

φ∗

P∗

φ∗(E)

and then noting that P(φ∗(E)) = φ∗(P(E)), we can reduce to when E → X is
a line bundle, in which case φ∗ amounts to multiplication by an element in OX

on both sides.

Now recall that every natural transformation Vectk(−,C) → H∗
dR(−) can be

expressed as a polynomial in the Chern classes [10, Proposition 23.11], it re-
mains to show that the Chern classes cn(E) is a polynomial of [Θ∆]. This follows
directly from [21, Definition 3.4].

Remark. To show that [tr(f(Θ∇))] is a polynomial, not a series, in the Chern
classes, we implicitly used the fact that degrees≥ 2dimC(X) vanish in H∗

dR(X).

Now we recall a Whitney formula [4, Lemma 4.22]

Theorem 4.3. Let φ be a symmetric homogeneous polynomial of degree less
than or equal to dimC(X), then let {Dk}0≤k≤N be compatible connections on

(E•,E
′′

). If the complex (E•,E
′′

0 ) is exact, then in de-Rham cohomology,

[φ(ΘD0)] = −
(
2π
i

)deg(φ) · [φ(∑N
i=1(−1)iEi)][4, Equation 4.15], which is defined

as follows: letting σk(Dj) =
(
2π
i

)k ·ck(Ej , Dj)
3[4, Equation 3.34], and φ(Dj) =

φ̃(σ1(Dj), · · · , σdeg(φ)(Dj)), and writing∑N
i=1(−1)iEi as Ê•, we define φ(Ê•) ≡ φ̃(c1(Ê•), · · · , cdeg(φ)(Ê•)).

3Here σk denotes the elementary symmetric polynomial of degree k.
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Remark. Here, the Chern classes of Ê• satisfy the following:

1 +

2dimC(X)∑

i=1

ci(Ê•) = c(Ê•) ≡
N⊕

k=0

c(Ei)
(−1)i

Since φ is homogeneous, we know that [φ(ΘD0 )] =
(
2π
i

)deg(φ)

[φ̃(c1(E0, D0), · · · , cdeg(φ)(E0, D0)]. Therefore From this and Proposition 3.1, we
automatically have

Corollary 4.3.1. On X\Z,

T rs(f(Θ∇)) =
N⊕

k=0

Trs(f(Θ∇k
)) =

N∑

k=0

(−1)ktr(Θ∇k
) = 0.

5 Characteristic Currents

Now we define the characteristic currents on a cohesive module (E•,E
′′

, h). For
a ∈ H∗

dR(X), denote ak to be the degree-k component of a.

Definition 5.1. For (p1, · · · , pk) ∈ [0, 2dimC(X)]k define the characteristic

current to be Trp1(E
•,∇) ∧ · · · ∧ Trpk(E•,∇) ≡ limǫ→0[Trs(f(∇ǫ))]p1 ∧ · · · ∧

[Trs(f(∇ǫ))]pk .

Remark. We will explain the meaning of wedge product right after Definition
5.2 (assuming Theorem 5.1 a priori).

Definition 5.2. [3] Let f be a holomorphic function on X. For a ∈ N, the
current [ 1

fa ] is defined as the functional on test forms ξ 7→ limǫ→0

∫
|f |>ǫ

ξ
fa and

∂[ 1
fa ] sends test form ξ to limǫ→0

∫
|f |>ǫ

∂(ξ)
fa . These are well-defined by[15, The-

orem 7.1]. Let Π = Π1 ◦Π2◦· · ·◦Πr be a sequence of resolutions of singularities,
with Πi : Yi → Yi−1 with Y0 = X. Then a current on X is pseudomeromor-

phic if it can be written as
∑
ℓΠ∗τℓ, where τℓ is a current on some Yℓ of the

form
(∏k

i=1[
1
fai

]
)
∂[ 1
fb1

] ∧ · · · ∧ ∂[ 1
fbm

] for some holomorphic f on Yℓ.

Here, we need to define a notion of ”wedge product” of currents. This is
given by the Coleff-Herrera product[11, Theorem 1.7.2][18, Theorem 2]. Call
(ǫ1, · · · , ǫp) → (0, · · · , 0) along an admissible path if ∀k ∈ N and ∀j ≥ 2,

ǫj−1

ǫkj
→

0. in this case we write ǫ1 ≪ · · · ≪ ǫp → 0. Then for f1, · · · , fp holomorphic,
we define

∂[
1

f1
] ∧ · · · ∧ ∂[ 1

fp
] = lim

ǫ1≪···≪ǫp→0

∂χ(|f1|2/ǫ1)
f1

∧ · · · ∧ ∂χ(|fp|2/ǫp)
fp

,

where for each (ǫ1, · · · , ǫp) and for any test form φ of bi-degree (dimC(X),

dimC(X)−p), the expression on the right hand side denotes φ 7→
∫
X
∂χ(|f1|

2/ǫ1)
f1

∧

7



· · · ∧ ∂χ(|fp|
2/ǫp)

fp
∧ φ. Then for holomorphic f1, · · · , fk, g1, · · · , gm, and for a

(dimC(X), dimC(X)− p)−test form φ, define
(∏k

i=1[
1
fi
]
)
∂[ 1
g1
]∧ · · · ∧ ∂[ 1

gm
](φ)

as

lim
δ1,··· ,δk→0

ǫ1≪···≪ǫm→0

∫

|fi|>δi,∀i

∧m
j=1 ∂χ

(
|gj |

2

ǫj

)
∧ φ

∏k
i=1 fi

∏m
j=1 gj

Remark. It follows from Definition 5.2 that pushforwards of pseudomeromor-
phic currents under resolutions of singularities are still pseudomeromorphic.

Theorem 5.1. The characteristic current Trp1(E
•,∇) ∧ · · · ∧ Trpk(E•,∇) is

a well-defined closed pseudomeromorphic current, with support contained in Z,
an analytic subvariety of positive codimension, that represents Trs(f(Θ∇))p1 ∧
· · · ∧ Trs(f(Θ∇))pk for any k−tuple (p1, · · · , pk).
Remark. Denote (D∗(X), d) the complex of currents on M. Here Dq(X) is the

dual space to Ω
2dimC(X)−q
c (X), the vector space of compactly supported smooth

forms on X, with the dual topology. Also, the chain map d : Dq(X) → Dq+1(X)

is given by (dT )(φ) = (−1)q+1T (dφ). Then we have H∗
dR(X)

∼=−→ H∗(D∗(X), d).[13,
Chapter 3, Section 1]

Proof. By Proposition 4.1 and linearity, it suffices to consider the case where
Trs(f(Θ∇)) is a monomial in the Chern classes. Then from [19, Lemma 2.1]
and [19, Theorem 5.1], it suffices to show that ∀ℓ1, ℓ2 we have

lim
ǫ→0

cℓ1(E
•,∇ǫ) ∧ lim

δ→0
cℓ2(E

•,∇δ) = lim
ǫ→0

cℓ1(E
•,∇ǫ) ∧ cℓ2(E•,∇ǫ)

and then proceed inductively (for wedge products of more Chern classes). Since
[tr(f(Θ∇))] is a characteristic class, it does not depend on the choice of con-
nection. As in the proof of [19, Theorem 5.1], for any ǫ and δ, we can write
cℓ1(E

•, ǫ) as A1 +
∑

j≥1 χ
j
ǫBj +

∑
j≥1 χ

j−1
ǫ ∧ dχǫ ∧ B′

j and cℓ2(E
•, δ) as A2 +∑

j≥1 χ
j
δCj +

∑
j≥1 χ

j−1
δ ∧ dχδ ∧ C′

j , where A1, A2, Bj, Cj , B
′
j , C

′
j are indepen-

dent of ǫ and δ, with A1, A2 smooth and Bj , Cj , B
′
j , C

′
j polynomials in the

entries of the minimal inverses σk (cf. Definition 2.2), DEnd(E•)E
′′

0 , and θk,

which are the matrices representing ∇k (0 ≤ k ≤ N). Also, χǫ = χ( |F |2

ǫ )
as defined in Section 3.3. Therefore it suffices to consider where χǫ 6≡ 1 for
ǫ small enough and show that for any i, j and any s, t products of entries of
σk, DEnd(E•)E

′′

0 and θk, we have χǫ, limǫ→0 χ
i
ǫs ∧ limδ→0 χ

j
δt = limǫ χ

i+j
ǫ s ∧ t,

and also limǫ→0 χ
i
ǫdχǫ ∧ s ∧ limδ→0 χ

j
δdχδ ∧ t = limǫ→0 χ

i+j
ǫ dχǫ ∧ s ∧ dχǫ ∧ t.

We use similar ideas to [19, Lemma 2.1]. By resolution of singularities [17,
Theorem 3.36], since in Section 2.3 we found a section F = ⊠

N
j=0Fj to a co-

herent sheaf (actually a vector bundle) F such that Z ⊆ Z(F ), which implies
that (F ) · OX

4 is not invertible on Z(F ), we know that there exists a (com-
position of) birational and projective modification(s) π : Y → X such that

4Here (F ) is the ideal of OX generated by (F ).
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π|Y−π−1(Z(F )) : Y − π−1(Z(F )) → X −Z(F ) is an isomorphism, and the coher-
ent sheaf of ideals on Y generated by pullbacks of local sections to (F ) · OX ,
which we write as π−1 ((F ) · OX) , is a monomonial sheaf of ideals.5 Equiva-
lently, this is the subsheaf of OY generated by π∗F = ⊠

N
j=0π

∗Fj . This means

that π∗Fj = Fj0Fj1, where Fj0 =
∏n
i=1 z

ci
i is a monomial in local coordinates

{z1, · · · , zn} and Z(Fj0) ⊆ π−1(Z(F )) and Fj1 is holomorphic and nonvanish-
ing. Then on Y , we have the local formula

π∗σk =
1

Fk0
φk, ∀0 ≤ k ≤ N (2)

with φk smooth everywhere on Y. (cf.the definition of σk in Definition 2.2.
This can also be found in [2, Section 2]) Note that DEnd(E•)E

′′

0 and θk are

everywhere smooth. Now by [19, Equation 2.2], writing π∗s = 1
ψ1
s̃, π∗t = 1

ψ2
t̃,

with ψ1, ψ2 products of monomials (thus also monomials) of local coordinates
on Y and s̃, t̃ smooth.6 In view of Equation (2), it suffices to show that for
any test 2dimC(X)-form ξ on Y (here we note that χ ∼ χi, ∀i ∈ N, and also
{ψ1 = 0}⋃{ψ2 = 0} ⊆ π−1(Z) = {π∗F = 0}, using the fact that π is an
isomorphism on X − Z(F ) and s, t are smooth outside of Z)

[
lim
ǫ→0

χ
(

|π∗F |2

ǫ

)i+j

ψ1ψ2

]
(ξ) =

[
lim
ǫ→0

χ
(

|π∗F |2

ǫ

)i

ψ1

][
lim
δ→0

χ
(

|π∗F |2

δ

)j

ψ2

]
(ξ) ⇐⇒

lim
ǫ→0

∫

|ψ1ψ2|>ǫ

ξ

ψ1ψ2
= lim

ǫ→0
δ→0

∫
|ψ1|>ǫ
|ψ2|>δ

ξ

ψ1ψ2
(3)

since this current does not depend on the choice of characteristic function.[19,
Lemma 2.1] Then the difference between the two is (noting that ξ is a test form
so ||ξ||L∞(X) exists)

lim
ǫ→0
δ→0

∫

|ψ1|>ǫ

(1|ψ2|>ǫ/|ψ1| − 1|ψ2|>δ)ξ

ψ1ψ2
+ lim
ǫ→0

∫

|ψ1|<ǫ

1|ψ2|>ǫ/|ψ1|ξ

ψ1ψ2

≤


 lim
ǫ→0
δ→0

∫
|ψ1|>ǫ
δ>ǫ/|ψ1|

ǫ/|ψ1|<|ψ2|<δ

∣∣∣∣
ξ

ψ1ψ2

∣∣∣∣+
∫

|ψ1ψ2|<ǫ

∣∣∣∣
ξ

ψ1ψ2

∣∣∣∣


+ lim

ǫ→0

∫

|ψ1|<ǫ

∣∣∣∣
ξ

ψ1

∣∣∣∣ ≤

||ξ||L∞(X)


 lim
ǫ→0
δ→0

∫
|ψ1|>ǫ
δ>ǫ/|ψ1|

ǫ/|ψ1|<|ψ2|<δ

∣∣∣∣
1Supp(ξ)

ψ1ψ2

∣∣∣∣+ lim
ǫ→0

∫

|ψ1ψ2|<ǫ

∣∣∣∣
1Supp(ξ)

ψ1ψ2

∣∣∣∣+
∫

|ψ1|<ǫ

∣∣∣∣
1Supp(ξ)

ψ1

∣∣∣∣




5Also reference [17, Note 3.16] for the equivalent characterizations of monomial ideal
sheaves.

6More accurately π∗s might be a sum of such terms, but we can certainly apply a normal-
ization argument to achieve a fraction whose denominator is a monomial in local coordinates.
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We have

lim
ǫ→0
δ→0

∫
|ψ1|>ǫ
δ>ǫ/|ψ1|

ǫ/|ψ1|<|ψ2|<δ

∣∣∣∣
1Supp(ξ)

ψ1ψ2

∣∣∣∣ ≤ lim
ǫ→0
δ→0

∫
|ψ1|>ǫ
|ψ2|<δ

∣∣∣∣
1Supp(ξ)

ψ1ψ2

∣∣∣∣

≤ lim
ǫ→0

√∫

|ψ1|>ǫ

1Supp(ξ)

|ψ1|2
· lim
δ→0

√∫

|ψ2|<δ

1Supp(ξ)

|ψ2|2
= O

(
lim
δ→0

∫

|ψ2|<δ

1Supp(ξ)

|ψ2|

)
,

which will follow from Lemma 5.3. To prove that this is 0, and also the second
and third terms vanish, it suffices to prove the following two lemmas:

Lemma 5.2. Let φ be a holomorphic function on M whose vanishing locus is
a measure-zero set (specifically, a subvariety of positive codimension), and such
that 1

φ ∈ L1(Supp(ξ)), then limǫ→0

∫
|φ|<ǫ

1
|φ| = 0. Here, | · | is the complex norm.

Proof. Note that codim(Z(φ)) > 0 ⇒ µ(Z(φ)) = 0, where µ is the pullback
(under the coordinate maps) of the Lebesgue measure on CdimC(X). Define

fn : X → [0,+∞], x 7→
{

1
|φ(x)| |φ(x)| < 1

n

0 otherwise
(4)

Then note that fi(x) ≥ fj(x), ∀i < j, and limn→∞ fn(x) 6= 0 ⇔ φ(x) = 0. Now
since

∫
Supp(ξ)

|f1| ≤
∫
Supp(ξ)

1
|φ| <∞, then by monotone convergence, we have

lim
ǫ→0

∫

|φ|<ǫ

1Supp(ξ)

|φ| = lim
n→∞

∫

|φ|< 1
n

1Supp(ξ)

|φ| = lim
n→∞

∫

Supp(ξ)

fn

=

∫

Supp(ξ)

lim
n→∞

fn =

∫

Supp(ξ)∩Z(φ)

lim
n→∞

fn,

which is 0 since µ(Supp(ξ) ∩ Z(φ)) ≤ µ(Z(φ)) = 0.

Lemma 5.3. We can apply a further sequence of blow-ups Π : Ỹ → Y such that
1

Π∗ψ1
and 1

Π∗ψ2
∈ L1(Supp(ξ)). Therefore we can assume WLOG that 1

ψ1
, 1
ψ2

∈
L1(Supp(ξ)).

Proof. We will show this for ψ1 only. In local coordinates, write ψ1 =
∏n
i=1 z

ci
i .

Then by Fubini, and writing r = diam(Supp(ξ)) <∞ we have ||ψ1||L1(Supp(ξ)) ≤∏n
i=1

∫
|zi|≤r

1
|zi|ci

, which is finite if ci is smaller than 2dimC(Y ), ∀i. Now since

Supp(ξ) ∩ Z(π∗F ) is compact, we can cover it by finitely many coordinate
neighborhoods, and |ψ1ψ2| will have a strictly positive lower bound outside these
neighborhoods. Thus the problem reduces to finding Π : Ỹ → Y such that Π∗ψ1

and Π∗ψ2 are monomials in local coordinates covering Supp(ξ)∩Z(π∗F ) in which
the degree of every coordinate does not exceed 2dimC(Y ) − 1. This will follow
directly from [17, Theorem 3.68], which states that if I ⊆ OX is an ideal sheaf
with MaxordSupp(ξ)∩Z(π∗F )(I) ≤ m for some m ∈ N, then there is a composition
of blow-ups Π = Πr ◦ · · · ◦ Π1 such that MaxordΠ−1(Supp(ξ)∩Z(π∗F ))Π

−1(I) =

MaxordΠ−1(Supp(ξ))∩Z(Π∗π∗F ) < m. Here, for a point y ∈ Y, ordy(I)
def
= max{r :
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m
r
yOY,y ⊃ Ix}, where my is the maximal ideal of OY,y; for a subset Z ⊆ Y,

define MaxordZ(I) = supy∈Z ordy(I).[17, Definition 3.47] In our case, we let I =
(ψ1, ψ2)OY . Then ordy(I) is just the maximal order of the two monomials.

(Proof of Theorem 5.1–Continued)
Now we show that limǫ→0 π

∗(χǫ)
idπ∗χǫ ∧ π∗s ∧ limδ→0(π

∗χδ)
jdπ∗χδ ∧ π∗t =

limǫ→0(π
∗χǫ)

i+jdπ∗χǫ∧π∗s∧dπ∗χǫ∧π∗t. Since π∗s, π∗t have nice expressions,
for a test form ξ of matching degree, it suffices to consider

[
lim
ǫ→0

χ

( |π∗F |2
ǫ

)i dχ
(

|π∗F |2

ǫ

)

ψ1

∧
lim
δ→0

χ

( |π∗F |2
δ

)j dχ
(

|π∗F |2

δ

)

ψ2

]
(ξ)

= lim
ǫ→0
δ→0

∫

X

dχ
(

|π∗F |2

ǫ

)
∧ dχ

(
|π∗F |2

δ

)
∧ ξ

ψ1ψ2

and

[
lim
ǫ→0

χ

( |π∗F |2
ǫ

)i+j ∧2
dχ
(

|π∗F |2

ǫ

)

ψ1ψ2

]
(ξ) = lim

ǫ→0

∫

X

∧2
dχ
(

|π∗F |2

ǫ

)
∧ ξ

ψ1ψ2
.

The difference is

lim
ǫ→0
δ→0
τ→0

∫

X

ξ

ψ1ψ2
∧
(
dχ

( |π∗F |2
ǫ

)∧
dχ

( |π∗F |2
δ

)
−

2∧
dχ

( |π∗F |2
τ

))

Note that the term in the parenthesis is nonzero only when |π∗F |2 < (1 + ν) ·
min{ǫ, δ, τ}, where supp(χ) ⊆ [0, 1 + ν). By definition of χ, ||∇χ||L∞(R) < ∞,
and ∣∣∣∣

∣∣∣∣dχ
( |π∗F |2

ǫ

)∣∣∣∣
∣∣∣∣ ≤ ||∇χ||L∞(R) ·

∣∣∣∣
∣∣∣∣∇
( |π∗F |2

ǫ

)∣∣∣∣
∣∣∣∣ ,

so the difference does not exceed (writing k = ||ξ||L∞(X) · ||∇χ||L∞(R)

·||∇(|π∗F |2)||L∞(Supp(ξ)), and denoting the region {|π∗F |2 < (1+ν)·min{ǫ, δ, τ}}
by Cǫ,δ,τ ),

k · lim
ǫ→0
δ→0
τ→0

∫

Cǫ,δ,τ∩Supp(ξ)

1

|ψ1ψ2|

(
1

ǫδ
− 1

τ2

)
.

Note that by Hölder’s Inequality, the integrand does not exceed

√∫

Supp(ξ)∩Cǫ,δ,τ

1

|ψ1ψ2|2
·
√∫

Supp(ξ)∩Cǫ,δ,τ

∣∣∣∣
1

ǫδ
− 1

τ2

∣∣∣∣
2

≤
√∫

Supp(ξ)

1

|ψ1ψ2|2
·
√∫

Supp(ξ)∩Cǫ,δ.τ

2

|π∗F |2 .
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Since Supp(ξ) is compact, from what we have shown before the first term is
finite. Also, the second term goes to 0 as ǫ, δ and τ go to 0 simultaneously, since
µ(Z(|π∗F |2)) = 0 and after applying a further sequence of resolutions making
the degrees of local coordinates low enough in |π∗F |2, just as in the proof of
Lemma 5.3, we can follow essentially the same proof as for Equation (3)). Then
the statement will then follow from Proposition 5.1.

Proposition 5.1. π∗
(
limǫ→0 π

∗(χǫ)
idπ∗χǫ ∧ π∗s ∧ limδ→0(π

∗χδ)
jdπ∗χδ ∧ π∗t

)
=

limǫ→0 χ
i
ǫdχǫ ∧ s ∧ limδ→0 χ

j
δdχδ ∧ t, and we can say the same about the other

three currents we are considering. 7

Proof. This is clear from the definition.

Remark. It is clear from our method that [19, Theorem 5.1] also applies to
any other characteristic class in de-Rham cohomology.

6 Chern Currents in Bott-Chern Cohomology

6.1 The Bott-Chern Character

We first define the double complex of Bott-Chern cohomology classes of the
cohesive module (E•,E

′′

, h).[7] Letting d = ∂ + ∂ be the de-Rham differential,
we have

Definition 6.1. Hp,q
BC(X) ≡ (Ap,q(X) ∩Ker(d)) /∂∂Ap−1,q−1(X).

The Bott-Chern character of (E•,E
′′

, h) is defined by chBC(E
•,E

′′

, h) =
Trs(exp(−Rh)). By [16, Lemma 2.20], this defines a class in HBC(X). The
Bott-Chern character is also independent of the Hermitian metric h by [16,
Corollary 3.14][7, Theorem 8.2]. Therefore it makes sense to write it as chBC(E

•,E
′′

).
If the complex (A•(X,E•),E

′′

0 ) is exact, then we have

Theorem 6.1. [16, Theorem 4.21] Let E
′′

t =
∑N

k=0 t
1−k
2 E

′′ |Ek
for t > 0 and Rt

denote the corresponding curvatures. Let NH be the number operator h 7→ kh if
h ∈ A•(X,Ek)[16, Definition 4.18][6, Definition 2.3], and we have

chBC(E
•,E

′′

) = ∂∂

∫ ∞

1

Trs

(
NH · exp(−Rt)

t

)
dt⇒ chBC(E

•,E
′′

) = 0.

Now we consider the case where A•(X,E•) is not exact. Again, denote the
support of this complex by Z.

7i.e. Pushing forward by π is the same as taking away all the π∗ in the expressions.
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6.2 Transgression Formulae and Superconnection Currents

There are Bott-Chern currents representing chBC(E
•,E

′′

). Denote Z(F ) = X ′

and φ :
∧
T ∗X → ∧

T ∗X, a 7→ (2πi)−|a|/2a. Now write δX′ ∈ D∗(X) be the
current of integration along X ′. Let H E be the sheaf of cohomology groups
of E•. Note that ∀x ∈ X there is a canonical isomorphism H E x

∼= {y ∈ E• :
E

′′

0 (y) = 0,E
′

0(y) = 0}, so by [6, Theorem 1.2] it inherits a Hermitian metric
from h. Let ∇H E be the connection compatible with the inherited Hermitian
metric. Now we define the following superconnections:

1. Fix a y ∈ (NX/X′ )R with y ∈ (NX/X′)R, define B = ∇H E + ∂yE
′′

0 + ∂yE
′

0.

2. For t > 0, let At = ∇E•

+
√
tE0.

Now for any t > 0, define currents ζE•(t), ζ
′

E•(0) and T (h) by

ζE•(t) =
1

Γ(t)

∫ ∞

0

ut−1

(
Trs(NH · exp(−A2

u))−
∫

X′

Trs(NH · exp(−B2)) · δX′

)
du

∫

X

µζ
′

E•(0) =
∂

∂t
|t=0

∫

X

µζE•(t), ∀µ ∈ A•(X).

T (h) = φ(ζ
′

E•(0)).

Then we have the following representation formula

Theorem 6.2. [5, Theorem 2.5]

chBC(E
•,E

′′

) =

(∫

NX/X′

φ(Trs(exp(−B2)))

)
δX′ − ∂∂

2πi
T (h).

By [6, Theorem 3.2], We know that the wave-front set of
(∫

NX/X′

φ(Trs(exp(−B2)))
)
δX′

is contained in (NX/X′ )R∗ , and there is the following convergence resembling our
previous construction:

Theorem 6.3. As t→ ∞, we have

Trs(exp(−A2
t )) →

(∫

NX/X′

Trs(exp(−B2))

)
δX′

and also (abusing the notation a bit and writing At also as the current ξ 7→∫
X Trs(exp(−A2

t ))∧ξ and B by the current ξ 7→
(∫

NX/X′

Trs(exp(−B2))
)
δX′(ξ).)

lim
t→∞

sup
ξ∈Γ

|ξ|m ·
∣∣∣ ̂φ · (At −B)(ξ)

∣∣∣ = lim
t→∞

sup
ξ∈Γ

|ξ|m ·
∣∣∣(At −B)(φξ̂)

∣∣∣ = 0,

with the following nice convergence: ∃C′ > 0 such that for t≪ 1, we have

lim
t→∞

sup
ξ∈Γ

|ξ|m ·
∣∣∣ ̂φ · (At −B)(ξ)

∣∣∣ ≤ C′

√
t
,
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for any fixed m ≥ 1, for any open U ⊆ X biholomorphic to a ball and contained
in a trivializing neighborhood of T ∗

R
X and any smooth function φ supported on

U, and any Γ a closed cone such that on U ∩X ′,Γ ∩ (NX/X′)∗
R
= {0}.

Observe that all the above constructions involve only the degree-0 and
degree-1 terms of E. It is then natural to ask the following question:

Question 6.1. What effects do the E
′′

k terms (k ≥ 2) have on chBC(E
•,E

′′

)?

The answer is that they have no effects. This follows from Qiang’s trans-
gression formula with respect to superconnections[16].

6.2.1 Known Transgression Formulae

There are two main types of transgression formulae. The first type is with
respect to the moduli space (with the topology of uniform C∞ convergence on
compact sets) M of Hemitian metrics on E•.[7, Theorem 8.1.2][6, Theorems
2.1, 2.2, 2.4][16, Proposition 3.10, Corollary 3.13, Theorem 3.19]. The second
type is with respect to the moduli space of superconnections. We will need the
following (combining Corollary 4.8 and Proposition 4.15 of [16]):

Theorem 6.4. Let f be a convergent power series. Let E be the space of all
∂−superconnections of degree-1 on (E•, h). Then ∃δ1, δ2, which are 1−forms
on the subspace of A•,0(X,End(E•)) of exotic degree8 −1 and the subspace of
A0,•(X,End(E•)) of exotic degree 1 respectively, and γ1, γ2 which are sections
to the subspaces of exotic degree 0 of A0,•(X,End(E•)) and A•,0(X,End(E•))
respectively such that

−dETrs(f(Rh)) = ∂Trs(f ′(Rh) · δ1) + ∂Trs(f ′(Rh) · δ2)

and
∂Trs(f ′(Rh · γ1)) = Trs(f ′(Rh) · δ1)
∂Trs(f ′(Rh · γ2)) = Trs(f ′(Rh) · δ2).

For the construction of γ1, γ2, δ1, δ2 refer to Definition 4.11 and Definition
4.5 in [16]. It then directly follows that in H•

BC(X),

Corollary 6.4.1. Let ψt(E
′′

) ∈ E be the superconnection E
′′

0 +E
′′

1 + t
∑

t≥2 E
′′

k ,
and let the associated curvature forms be φt(Rh). Then Trs(f(φ1(Rh))) ≃
Trs(f(φ0(Rh))) = Trs(f(Rh)) in H

•
BC(X).

8From Proposition 3.1, we can write an element A ∈ Ap,q(X,End(E•)) as φ ⊗ τ, with
φ ∈ Ap,q(X) and τ ∈ Endd(E•) for some d. Then we define the exotic degre to be d+ q − p.
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