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Abstract

To meet the increasing demand of quantum chemistry calculations in data-driven chemical re-
search, the collaboration between industrial stakeholders and the quantum chemistry community
has led to the development of GPU4PySCF, a GPU-accelerated Python package. This open-source
project is accessible via its public GitHub repository at https://github.com/pyscf/gpudpysct.
This paper outlines the primary features, innovations, and advantages of this package. When per-
forming Density Functional Theory (DFT) calculations on modern GPU platforms, GPU4PySCF
delivers 30 times speedup over a 32-core CPU node, resulting in approximately 90% cost sav-
ings for most DFT tasks. The performance advantages and productivity improvements have been
found in multiple industrial applications, such as generating potential energy surfaces, analyzing
molecular properties, calculating solvation free energy, identifying chemical reactions in lithium-ion
batteries, and accelerating neural-network methods. To make the package easy to extend and inte-
grate with other Python packages, it is designed with PySCF-compatible interfaces and Pythonic
implementations. This design choice enhances its coordination with the Python ecosystem.

1 Introduction

Quantum chemistry is essential in various fields such as drug discovery, materials science, chemical
engineering, and environmental science. It primarily relies on ab initio simulations for atomic inter-
actions, serving as a crucial source of data beyond experimental findings. These fields often require
extensive ab initio simulations to explore chemical spaces, identify equilibrium geometries, and de-
termine chemical properties. Density Functional Theory (DFT) stands out as the most commonly
used method in quantum chemistry for generating physical observables. According to a 2018 workload
analysis by the National Energy Research Scientific Computing Center (NERSC), DFT algorithms
account for 30% of total computational resource usage!. The surge in demand for quantum chemistry
calculations is not only due to traditional scientific simulations but also the emergence of deep learning
models. These models significantly increase the demand for data from ab initio calculations and use
quantum features as input. Consequently, the development of DFT algorithms for GPUs has become
increasingly beneficial for these industries.

The utilization of GPUs in quantum chemistry has emerged as a transformative tool, thanks to
their parallel processing capabilities. GPUs are adept at managing large data volumes and conducting
calculations across multiple cores simultaneously, making them exceptionally efficient for quantum
chemistry simulations. The initiative to accelerate two-electron integral evaluations using GPUs can
be traced back to 2008 [1, 2], a period when gaming cards exhibited limited double-precision computing
capabilities. Today’s GPUs not only offer substantial floating-point performance but also boast high
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memory bandwidth and extensive memory capacity, effectively minimizing the bottlenecks associated
with quantum chemistry algorithms. Traditional CPU-based quantum chemistry software packages,
such as GAMESS [3, 4], GAUSSIAN, Q-Chem [5], and Psi4 [6] now delegate computationally intensive
tasks to GPUs through interfaces like BrainQC [7, 8]. Furthermore, the past decade has seen the
development of GPU-based quantum chemistry packages, including Terachem [9, 10] and Quick [11,
12, 13], which notably reduce CPU-GPU data transfers.

Achieving optimal performance in quantum chemistry computations on Graphics Processing Units
(GPUs) necessitates an approach that extends significantly beyond the simple porting of algorithms
from Central Processing Units (CPUs) to GPU architectures. This complex process is hindered by
several technical challenges that can substantially impact the acceleration of quantum chemistry sim-
ulations on GPUs. 1) Limited memory. GPUs are equipped with high-speed memory that, despite its
rapid access capabilities, is limited in capacity and substantially smaller than the system RAM found
in CPU-based systems. The quantum chemistry domain, characterized by its reliance on large matrices
and complex wave functions, frequently demands more memory than GPUs can provide. This limita-
tion often requires computational strategies such as offloading portions of the data back to the CPU or
the implementation of advanced memory management techniques, both of which can negatively affect
computational throughput. 2) CPU-GPU communication. The bandwidth between CPU memory and
GPU memory is restricted and can become a critical bottleneck, especially in computational scenarios
where the GPU necessitates frequent access or updates to data stored in the main system memory.
This bottleneck necessitates the re-implementation of a significant number of traditional CPU algo-
rithms directly on the GPU to minimize data transfer overhead. 3) Complexities of GPU architecture.
The process of maximizing GPU computational efficiency involves the fine-tuning of several coding
and architectural aspects, including but not limited to, optimizing memory access patterns, managing
thread execution, and configuring kernels. The same optimization strategies do not necessarily apply
to the new architecture. This level of optimization is highly specialized and demands a considerable
investment of time, highlighting the intricate and expert-driven nature of leveraging GPU capabilities
for the advancement of quantum chemistry calculations.

Optimizing a quantum chemistry workflow that balances chemical accuracy and computational
efficiency requires extensive domain expertise and practical experience. Initially, a quantum chemist
is tasked with selecting an appropriate basis set and exchange-correlation functional from a broad
dataset, exemplified by the Basis Set Exchange, which catalogs over 600 basis sets [14], and LibXC,
comprising more than 400 exchange-correlation functionals [15]. Subsequent considerations include
evaluating methods for dispersion correction, solvent model selection, basis set superposition error
(BSSE) correction, and establishing convergence criteria for various computational tasks. The adop-
tion of recent composite DFT protocols, such as PBEh-3¢ [16], wB97X-3c [17], and r2SCAN-3c [18],
necessitates precise configurations of basis sets, exchange-correlation functionals, BSSE corrections,
and dispersion corrections. Additionally, contemporary quantum chemistry workflows frequently in-
corporate integration with other software packages, including RDKit, PyTorch, and Qiskit, to extend
their computational capabilities. Notably, the open-source communities behind PySCF [19] and Psi4 [6]
have contributed user-friendly Python interfaces, offering a wide range of functionalities. PySCF, in
particular, is recognized for its straightforward, Pythonic interface, facilitating seamless integration
with other Python libraries and enabling the scripting of customized quantum chemistry workflows.
Its adaptable design also supports acceleration within the modern GPU ecosystem, underscoring the
importance of flexible, integrated approaches in the development of efficient quantum chemistry work-
flows.

In this work, we have developed a Python-based and GPU-optimized framework, building upon the
foundations of PySCF. This initiative aims to advance quantum chemistry calculations on GPUs by
focusing on several key areas: 1) Prioritizing density fitting algorithms, which are inherently more GPU-
friendly, while offering limited support for direct Self-Consistent Field (SCF) methods. 2) Adapting our
codebase to leverage modern GPU architectures, such as tensor cores, to achieve up to twice the speed
in tensor contractions. 3) Integrating a wide array of open-source packages from the quantum chemistry
community within our GPU4PySCF package, thus supporting sophisticated DFT methods, popular
basis sets, solvent models, chemical property calculations, geometry optimization, and transition state
search methodologies. This comprehensive approach signifies a notable advancement in the field of
quantum chemistry, bridging the gap between traditional computational methods and the cutting-edge
capabilities offered by modern GPU technology.



We underscore the notable advantages of GPU4PySCF as follows:

e Speed: GPU4PySCF provides performance that is equivalent to that of 600-1000 CPU cores for
running conventional CPU-based quantum chemistry software. As a result, it offers substantial
cost savings, for instance, up to 90% when utilizing the NVIDIA A100-80G cards.

e Python Integration: The framework allows direct access to quantum features of atoms at
the Python level, ensuring seamless compatibility with other Python-based packages such as
PyTorch, Jax, TensorFlow, RDkit, and more.

e Open Source: GPU4PySCF benefits from the support of the PySCF community, the largest
open-source quantum chemistry community, fostering collaborative development and innovation.

e Application Driven: Specifically optimized and tailored for industrial applications, GPU4PySCF
excels in tasks such as DFT calculations, offering practical advantages for commercial research
and development.

Detailed performance metrics and benchmarks are provided in Section 2. These calculations have
been rigorously cross-validated with Q-Chem 6.1, ensuring reliability and accuracy. Furthermore,
Section 3 briefly illustrates how GPU4PySCF can be utilized to navigate the potential energy land-
scape, analyze quantum features, compute thermodynamic properties, estimate solvation free energies,
quantify chemical reactions, and integrate with neural network models. This comprehensive approach
showcases the framework’s versatility and potential to revolutionize quantum chemistry computations
through GPU acceleration.

2 Performance and Benchmark

2.1 Dataset and Performance

We focus on the benchmarks with density fitting scheme, which is efficient for small molecules with
less than 200 atoms. A small and diverse dataset is constructed for the benchmarking the fundamental
modules in GPU4PySCF. We select small molecules (< 100 atoms) from the supplement information
in [20] and two medium-sized molecules from the supplement information in [8]. The newly constructed
dataset includes 8 elements (H, C, O, N, Mg, S, Cl, P), and 13 small molecules with 20-168 atoms.
The details of the dataset are provided in Appendix A. The xyz files and benchmarking details can
be found on GitHub. Other transition metals, such as Nb, Ti, Ru and so on, are also supported
in GPU4PySCF, although they are not included in this dataset. This capability will be shown in
Sec. 3.4.1. Larger molecules with more than 168 atoms still can be calculated with the direct SCF
scheme in GPU4PySCF. The detailed performance of direct SCF scheme will be disclosed in the future
work. The availability of direct SCF scheme can be found in Sec. 4.2.

For a typical DFT protocol with def2-TZVPP, B3LYP, and (99,590) grids, we time SCF, gradient,
and Hessian calculations on NVIDIA A100-80G. For the smallest molecule in the dataset, SCF, gradi-
ent, and Hessian take 1.7, 0.68, and 43 seconds respectively. For the largest molecule in the dataset,
SCF, gradient, and Hessian take 309 seconds, 58 seconds, and 21 hours respectively. Hessian calcula-
tion is the most expensive module of the vibrational analysis. With GPU4PySCF, one can perform
the vibrational analysis for large molecules with 168 atoms in one day. The vibrational analysis of
moderately sized (100-200 atoms) molecules is prohibitively expensive with traditional quantum chem-
istry softwares [21]. The time can be further reduced with the recent GPUs such as H100. The time
scaling curve of SCF, gradient, and Hessian calculations is shown in Figure 1. Theoretically, SCF and
gradient calculations are quartic scaling with respect to the system size, while Hessian calculation is
O(N?). The slope of the scaling curve decreases as the system size gets larger, due to sparsity. The
bottleneck of calculating a large molecule is the CPU memory storage. A CPU-GPU hybrid strategy
is employed to store GTO integrals in this work. For small molecules, all the intermediate variables
are stored in GPU memory. For the large system, the variables are stored in CPU memory. The data
in CPU memory is asynchronously transferred to GPU memory for consumption. The performance
does not drop significantly in the scaling curve.
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Figure 1: Scaling curve of SCF, gradient, and Hessian calculations. def2-TZVPP basis set, def2-
universal-JKFIT auxiliary basis, B3LYP, (99,590) grids, on A100-80G.

2.2 Speedup of SCF, Gradient, and Hessian Calculations

Achieving complete alignment between various quantum chemistry software settings presents a signif-
icant challenge. Fundamental configurations like the threshold for two-electron integrals, exchange-
correlation functionals, basis sets, and Lebedev grids are generally standardized within the quantum
chemistry community. However, more intricate adjustments—such as mitigating the linear dependence
of atomic orbitals, defining SCF convergence criteria, and pruning DFT grids—often exhibit subtle
discrepancies. Moreover, benchmarking these results against commercial software treated as a ”black
box” adds an additional layer of complexity. In our analysis, we strive to minimize these discrepancies
by uniformly applying stringent criteria across basic settings. Given the restricted access to com-
mercial quantum chemistry software, our benchmarking efforts are focused exclusively on Q-Chem, a
prominent commercial platform renowned for its cutting-edge algorithms designed for large systems.
The discrepancies between Q-Chem 6.1 and GPU4PySCF for exchange-correlation functionals and
different basis sets are shown in Appendix B and C.

Our benchmarking endeavors concentrate on three foundational modules: Self-Consistent Field
(SCF), gradient, and Hessian calculations. These modules are the most expensive components in nu-
merous quantum chemistry computations. In this section, all computations are conducted on closed-
shell systems using density fitting. The functionalities of open-shell calculations will be shown in Sec.
3.4.2 and Sec. 3.4.3. Notably, due to the memory management issue within the density fitting coupled
perturbed SCF iteration in Q-Chem, the reference Hessian calculations are performed using finite dif-
ference methods. But the Hessian matrices are calculated analytically in GPU4PySCF. We anticipate
that resolving these issues could enhance the efficiency of Hessian calculations in Q-Chem by a factor
of 2-3. Hessian calculations for molecules exceeding 84 atoms become prohibitively expensive for tra-
ditional quantum chemistry packages. We only benchmark the speedup across molecules containing
20-84 atoms.

On average, GPU4PySCF achieves a performance that is 20 times faster than identical SCF cal-
culations performed using Q-Chem 6.1 on 32 CPU cores. This speedup increases dramatically to
50 times for Hessian calculations, although the acceleration observed in gradient calculations is rel-
atively modest. However, since gradient calculations are generally quicker than SCF iterations, this
does not significantly affect the overall efficiency of geometry optimization or transition state search
tasks. An evaluation of the actual costs based on AWS pricing for comparable machinery shows that
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Figure 2: Speedup and actual cost saving of GPU4PySCF on A100-80G over Q-Chem v6.1 on 32-core
CPU. The cost is estimated based on AWS pricing. $40.966/hr for pdde.24xlarge GPU instance with
8 A100-80G GPUs, 96 vCPUs and 1152 GiB CPU memory. $2.117/hr for r7i.8xlarge CPU instance
with 32 vCPUs and 256 GiB memory. def2-TZVPP basis set, def2-universal-JKFIT auxiliary basis,
(99,590) xc grids, (50,194) nlc grids.

GPU4PySCF can reduce expenses by about 90% across most tasks. For the gradient calculation with
pure DFT, the saving decreases to 70%. This task technically can be accelerated with a more efficient
algorithm [22]. We leave this implementation as future work. It is observed that larger molecules
typically experience a more substantial speedup compared to smaller molecules. This is due to the
high GPU occupancy of a large molecule.

2.3 Speedup of DFT with Implicit Solvent Models

Solvent models in quantum chemistry critical for simulating and understanding the behavior of molecules
in solution, an essential aspect given most chemical reactions occur in some type of solvent. The Po-
larizable Continuum Model (PCM) models are the most common implicit solvent models. But the
computational efficiency of those models are rarely discussed. Especially when the density fitting
scheme is employed, the computational cost of PCM models is not negligible. Since Q-Chem 6.1 does
not support density fitting SCF with PCM models, we use the standard SCF scheme as a reference.
Thus, the following speedups should be interpreted as two factors: GPU speedup and density fitting
speedup. We stress that the different algorithms are used in Q-Chem and GPU4PySCF. The compari-
son is performed to mimic the actual usage of the solvent models. The discrepancies between Q-Chem
6.1 and GPU4PySCF for solvent models are shown in Appendix D.

We benchmark DFT calculations employing two PCM models, C-PCM [23, 24] and IEF-PCM [25].
IEF-PCM model is slightly more expensive than C-PCM model since more entries are calculated for
the linear system. The SMD model [26] introduces the additional computation of CDS contributions
on the top of IEF-PCM model. Yet, the computational cost of these contributions is almost negligible.
The efficiency of CDS contributions will not be discussed in this section, but the accuracy benchmarks
will be presented in Section 3.3. Other types of implicit solvent models, such as generalized Born
models, are not implemented in the current version.

We evaluate the performance of molecules with up to 42 atoms. The computational cost of larger
molecules is prohibitively expensive with Q-Chem, although GPU4PySCF is able to handle large
molecules. With the A100-80G GPU and density fitting, GPU4PySCF significantly accelerates the
SCF calculations by 40-80 times, gradient calculations by 20-40 times, and Hessian calculations by
100-170 times, respectively. The speedup of the calculations in the gas phase is slightly lower than the
results in Table 1. For instance, the speedup of SCF for Vitamin C in gas phase is around 33. The
speedup difference between gas phase and liquid phase suggests the high efficiency of PCM models in
GPU4PySCF.



Molecule C-PCM IEF-PCM
SCF Gradient Hessian | SCF  Gradient Hessian
Vitamin C | 41.1 28.4 106.4 41.6 27.3 104.9
Inosine 65.5 38.9 147.4 65.6 40.2 146.2
Bisphenol A | 76.2 43.3 162.7 76.7 45.4 161.3
Mg Porphin | 84.0 49.0 162.2 87.3 49.8 160.1
Penicillin V | 83.2 44.1 170.5 84.0 43.4 169.4

Table 1: Speedup of GPU4PySCF on A100-80G over Q-Chem 6.1 on 32-core CPUs for DFT tasks
with PCM solvent models. B3LYP, def2-TZVPP, def2-universal-JKFIT, (99,590), 302 Lebedev grids
for both H atoms and Heavy atoms.

3 Applications

In this section, we showcase the capabilities of GPU4PySCF with several industrial applications. A
complete list of capabilities will be shown in Section 4.1.

3.1 Exploring Potential Energy Surface
3.1.1 Torsion Scan

The development of molecular mechanics force fields significantly benefits from torsion scans conducted
at precise quantum chemistry levels, serving as a crucial source of training data [27, 28, 29, 30, 31,
32, 33]. However, torsion scans are notably time-consuming, as they require at least 24 independent
constrained geometry optimizations for each proper torsion angle in a molecule. These optimizations
determine the potential energy of the molecule with the torsion angle fixed at specific values within the
[—180°, +180°] range. Depending on the complexity of the potential energy surface, each optimization
might necessitate 10-100 sequential quantum chemistry calculations, underscoring the importance of
computational efficiency for this task. Historically, such scans have been restricted to small molecule
fragments, typically using small basis sets at the double-zeta level.

The advent of GPU4PySCF, coupled with its seamless integration with the Pythonic interface of
the geometric optimizer geomeTRIC, revolutionizes this process, allowing for torsion scans on a scale
previously deemed unfeasible. This enables routine computations of torsion scans for real-world drug
molecules employing large basis sets.

An illustrative example of this capability is provided by our work on Enzalutamide (Figure 3).
Utilizing GPU4PySCF, we conducted a torsional energy profile scan using wB97M-V /def2-TZVPP at
10° step (37 angles in total). This comprehensive analysis entailed 1089 DFT evaluations, with the
entire scan completed in 34,679.9 seconds, averaging approximately 32 seconds per DFT evaluation.
This ability to scan large, complex molecules using high-precision quantum chemistry algorithms sig-
nificantly broadens the scope of chemical spaces accessible through torsion scan methodologies. All
calculations in this subsection were performed using grid level 3 in PySCF with density fitting on an
A100-80G GPU.

3.1.2 Dimer Interaction Energies

Noncovalent interactions are paramount in molecular modeling, especially for the accurate prediction
of thermodynamics and transport properties [34, 35]. Additionally, robust noncovalent interactions,
such as hydrogen bonding and 7-7 stacking, are essential for ligand-protein binding [36, 37, 31, 38].
The assessment of dimer interaction energies through quantum mechanical approaches serves as a
prevalent method to explore noncovalent interactions. However, attaining precise noncovalent interac-
tion energies demands high-fidelity techniques, which invariably elevate computational costs. Thanks
to the efficiency of GPU4PySCF, interaction energies for systems comprising hundreds of atoms are
now attainable within practical timeframes, even when utilizing sophisticated DFT methodologies that
incorporate non-local correlation effects.

We offer an illustrative example involving the oral COVID-19 antiviral Nirmatrelvir [39] (PubChem
CID 155903259, Figure 4 (a)), a SARS-CoV-2 main protease inhibitor developed by Pfizer. In its
binding pocket, Nirmatrelvir forms a hydrogen bond with a histidine side chain. The interaction
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Figure 3: An example of torsion scan. (a) The molecule Enzalutamide (PubChem CID 15951529).
(b) Torsion scan energy profile and number of geometry optimization iterations (number of DFT
calculations) at each scanned proper torsion angle degree.

energy between Nirmatrelvir and the histidine residue (Figure 4 (b)) is calculated using various bases.
For the direct evaluation of interaction energy, 42 single-point energy calculations were conducted.
The total wall times for def2-SVP, def2-SVPD, and def2-TZVPPD bases were 2370, 3082, and 5823
seconds, respectively. Moreover, the counterpoise method (CP) [40] was applied to mitigate basis set
superposition error (BSSE) [41, 42], involving 120 single-point energy calculations for each base, with
total wall times of 4020, 5510, and 11892 seconds, respectively. All these calculations were performed
using the wB97M-V functional and grid level 3 in PySCF with density fitting on an A100-80G GPU.
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Figure 4: An example of noncovalent interaction. (a) Nirmatrelvir (left) and the histidine residue
(right). The hydrogen bond distance (between donor and acceptor atoms) is 2.8 A in the shown geom-
etry, which is truncated from PDB 7yrz. (b) Interaction energy at varying hydrogen bond distances.

3.1.3 Lithium Ion Solvation Structure

The concept of solvation structure engineering has been utilized in recent studies, such as high-
concentrated [43], localized high-concentrated [44], and fluorinated ether-based electrolytes [45, 46].
By engineering solvation structures, these studies show improvements in ion transport, solid electrolyte
interphase, and electrochemical stability [47, 48, 49, 50]. Binding energy of solvation structures is an
indicator of solvents’ ability to dissolve salt [51]. In addition, binding energy plays a crucial role in
solvation and desolvation, which is the mechanism for LiT plating/stripping and intercalation in Li
batteries [52, 53]. As such, investigating solvation structures and their corresponding binding energies
facilitate the realization of high energy density, fast charging and improved cell lifetime.

In this work, we examine the solvation structures of Li™ ions in the electrolyte by computing the
structure and binding energy of Li™ ion clusters. Through molecular dynamics simulations of the



battery electrolyte containing 2.25M LiFSI(lithium bis(fluorosulfonyl)imide) in DMC(dimethyl car-
bonate):EC(ethylene carbonate) with a weight percentage ratio of 51:49, we captured typical solvation
structures of LiT ions and computed the binding energies of these structures using GPU4PySCF, as
presented in Figure 5 and Table 2.

Most of the clusters we examined have a coordination number of 4, consisting of either solvent
or anion molecules, or a combination of the two. Their binding energies range from -0.065 eV to
-1.078 eV, indicating significant differences in the energy stability of the clusters. We observe that
clusters composed solely of Lit and FSI~ exhibit the most positive binding energies compared to
those containing solvents. This observation aligns with chemical intuition, suggesting that the salt
dissolution of LiFSI in an EC-DMC polar solvent mixture is preferred, manifesting the fundamental
requirement of solvent functionality in Li-battery liquid electrolyte applications. Besides, clusters with
the same composition can exhibit different energies if their structures vary, as shown in Figure 6 for
the Li" (DMC)(EC)(FSI ™), cluster, suggesting adequate geometric sampling for DFT calculations is
necessary for accurate representation of solvation structure stabilities, emphasizing the importance of
computational efficiency provided in our code.

All calculations are performed with 6-3114++G(3df,3pd) basis set and cc-pVTZ-RI auxiliary basis
for the density fitting technique. The IEF-PCM with UFF radii was utilized for modeling solvent ef-
fects, with the dielectric constant being 20.0. Additionally, M06-2X functional together with Grimme’s
D3 version of dispersion correction with zero damping was used. Note that our examples in this section
are merely illustrative and do not provide a complete study of the issue of LiT ion solvation structures.

Figure 5: Solvation structures of LitT ion. The clusters depicted in images (a) to (i) correspond
respectively to the clusters listed in Table 2. The distances between LiT ion and coordinated atoms
are plotted in A.
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Figure 6: Two different structures of Li" (DMC)(EC)(FSI™)2. The energies of clusters in (a) and (b)
are -1.078 eV and -0.941 eV, respecively. The distances between LiT ion and coordinated atoms are
plotted in A.

Cluster Binding Energy
Lit (DMC)Q(FSI )2 -1.077
LiT (DMC)y(EC)(FSI™)  -1.020
LiT (DMC)(EC)o(FSI™) -1.018
LiT (DMC)(EC)(FSI" )2  -1.004
Lit (DMC)(EC)3 -0.893
LiT (DMC)2(EC), -0.857
Lit(EC), -0.735
Lit (FSI7); -0.656
Lit (FSI™ )4 -0.065

Table 2: Binding energies (eV) of various clusters.

3.2 Analyzing Molecular Properties
3.2.1 CHELPG Charge Calculation

CHELPG (charges from electrostatic potentials using a grid-based method) is a computational method
designed to calculate atomic charges within a molecule based on the electrostatic potential generated
by its electrons [54, 55]. Introduced by Breneman and Wiberg in 1990, this method aims to derive
atomic charges that are reflective of the molecule’s electrostatic potential on a grid surrounding the
molecule [54]. These charges can be then utilized in simulations to model intermolecular forces and
other electrostatic properties. The essence and the most time-consuming part of CHELPG lies in
calculating the electrostatic potential at grids around the molecule. The method then optimizes the
atomic charges by fitting these calculated potentials to the actual electrostatic potential observed,
using a least-squares method. This optimization process ensures that the derived atomic charges
closely represent the true electrostatic potential around the molecule.

Followed by the work of Herbert and co-workers [56], CHELPG is implemented in our package,
and the computational efficiency has been enhanced with the aid of GPUs. Our implementation uses
the Cartesian grid with the default spacing 0.3 A and the radial extent of the CHELPG grid 2.8 A as
recommended in Ref. [54]. Besides, the smoothing function used in Ref. [56] is also implemented, where
the Bondi radius is used [57] (the radius of hydrogen is changed to 1.1 A). Consistent results can be
obtained when employing identical settings with Q-Chem. As shown in Figure 7, in GPU4PySCF, the
calculation speed of CHELPG has been greatly improved approximately 10 times versus CPU-based
quantum chemistry software [5]. This improvement in computational efficiency is due to the efficient
implementation of molecular integrations (calculating the electrostatic potential at grids) on GPU. All
the calculations in this subsection are performed using B3LYP functional and def2-SVPD basis with
density fitting used.
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Figure 7: Comparison of the time required for CHELPG calculation between GPU4PySCF and Q-
Chem. The computations by Q-Chem used 64 cores and 128G memory, while GPU4PySCF used 15

cores, 245G memory, and one A100-SXM-80GB GPU. The tested systems are benchmark molecules
listed in Table 5.

3.2.2 NMR Shielding Constants

Nuclear Magnetic Resonance (NMR) Shielding Constants represent a pivotal spectroscopic parameter
in NMR spectroscopy, utilized for determining the electronic structure and geometric configuration of
molecules [58]. During NMR experiments, the absorption signals through nuclear spin transitions un-
der the external magnetic field are detected. Actually, the magnetic field experienced by the nucleus
is not the external magnetic field per se, but rather the residual field post electron shielding. The
shielding constant elucidates the behavior of the wave function in the vicinity of the nucleus, serving
as a coefficient between the electron shielding effect and the external magnetic field. Its ability to
provide detailed information about the molecular framework and atomic-level interactions makes it
indispensable for chemists. For example, NMR is particularly valuable in organic chemistry for iden-
tifying the composition and structure of small organic molecules, aiding in the elucidation of complex
organic compounds and reaction mechanisms [59, 60]. Employing DFT to calculate NMR shielding
constants offers the significant advantage of a level of precision that closely aligns with experimental
results with efficiency, yet without the extensive resource demands of experiments [61]. This balance
makes calculations of NMR shielding constants an invaluable tool for guiding experimental design
and interpreting complex NMR, spectra, bridging the gap between theoretical insights and practical
applications in stereochemistry. In this work, the NMR shielding constants are implemented using the
gauge-including atomic orbitals [62] (GIAO) to address the uncertainty of the gauge origin, introduced
by the introduction of the uniform external magnetic field. The specific working equations may be
referred to in the discussion section on general NMR calculations as presented in Ref. [63].

Nuclear Magnetic Resonance (NMR) Shielding Constants represent a pivotal spectroscopic parame-
ter in NMR spectroscopy, utilized for determining the electronic structure and geometric configuration
of molecules [58]. During NMR, experiments, the absorption signals through nuclear spin transitions
under the external magnetic field are detected. Actually, the magnetic field experienced by the nu-
cleus is not the external magnetic field per se, but rather the residual field post electron shielding. The
shielding constant elucidates the behavior of the wave function in the vicinity of the nucleus, serving
as a coefficient between the electron shielding effect and the external magnetic field. Its ability to
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provide detailed information about the molecular framework and atomic-level interactions makes it
indispensable for chemists. For example, NMR is particularly valuable in organic chemistry for iden-
tifying the composition and structure of small organic molecules, aiding in the elucidation of complex
organic compounds and reaction mechanisms [59, 60]. Employing DFT to calculate NMR shielding
constants offers the significant advantage of a level of precision that closely aligns with experimental
results with efficiency, yet without the extensive resource demands of experiments [61]. This balance
makes calculations of NMR shielding constants an invaluable tool for guiding experimental design
and interpreting complex NMR spectra, bridging the gap between theoretical insights and practical
applications in stereochemistry. In this work, the NMR shielding constants are implemented using the
gauge-including atomic orbitals [62] (GIAO) to address the uncertainty of the gauge origin, introduced
by the introduction of the uniform external magnetic field. The specific working equations may be
referred to in the discussion section on general NMR calculations as presented in Ref. [63].

An illustrative example of NMR shielding constants of hydrogens on toluene is displayed in Figure 8.
When the toluene is oriented perpendicular to the external magnetic field (and for non-perpendicular
orientations, it can be decomposed into horizontal and vertical magnetic fields), its delocalized w
electrons will generate a ring current, which in turn induces a magnetic field. The direction of the
induced magnetic field is opposite to that of the external magnetic field on the top and bottom sides of
the phenyl ring. However, on the sides of the phenyl ring (where the hydrogen atoms are positioned on
the sides of the ring), the directions are the same, i.e., the induced magnetic field enhances the effect
of the external magnetic field, deshielding the hydrogen nuclei and causing the chemical shift to move
to lower field values; whereas the hydrogen atoms on the methyl group are in a stronger shielding
environment, leading to the chemical shift to move to higher field values. Due to the geometrical
configuration, the three hydrogen atoms on the methyl group exhibit differing chemical shifts, although
theoretically, they should be identical.

2.78

7.56 7.54

Figure 8: Chemical shifts of hydrogens on toluene (in units of p.p.m.). Hydrogens on the methyl group
are indicated in blue text, while hydrogens on the benzene ring are in red. This calculation employs
the B3LYP functional, the def2-TZVPP basis set, and the def2-universal-JKFIT auxiliary basis set,
and the structure of toluene is taken from PubChem [64].

3.3 Solvation Free Energy

Implicit solvent models are computational tools designed to efficiently simulate the effect of a solvent
on molecular systems, emphasizing the solvent’s overall impact rather than detailing every interaction
between solvent and solute molecules. In the realm of quantum chemistry, electrostatic interactions
between solvent and solute molecules are captured using the Polarizable Continuum Model (PCM),
which offers a nuanced understanding of molecular properties in solution. In GPU4PySCF, users
can access four variants of PCM models: C-PCM, COSMO, IEF-PCM, and SS(V)PE. For accurate
prediction of solvation energies, accounting for non-electrostatic interactions such as cavitation, Pauli
repulsion, dispersion, and hydrogen bonding is essential. These contributions are encompassed within
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more advanced models like SMD [26], CMIRS [65], and COSMO-RS [66] models, with the SMD model
being particularly prevalent in quantum chemistry calculations and available from GPU4PySCF.
The implementation of the SMD model varies across different quantum chemistry software plat-
forms. And the algorithm has been updated with minor modifications over time. We benchmark our
implementation against Q-Chem and Gaussian 03, and we note several unique aspects in our approach:

e The cavity surface of PCM models is smoothed using SWIG methods [67], enhancing the stability
of geometry optimization and molecular dynamics simulations.

e Atomic SASA and molecular SASA are calculated numerically using Lebedev quadrature, di-
verging from the analytical formulation found in [68].

e Modified Coulomb radii are employed with SMD18 [69], with newly fitted parameters that im-
prove the accuracy of halogen bonding interactions.

We employ the Minnesota Solvation Database — version 2012 [70] for the benchmarks. The database
has been updated to version 2020 since the publication of SMD. The corresponding solvent descriptor
database has been updated twice. We should take the changes into consideration for the following
results. For neutral solutes, the error in solvation free energies consistently remains below 1 kcal/mol
across various protocols (Table 3), with the errors decreasing further when employing larger basis sets
or advancing up Jacob’s Ladder. These errors are comparable to those from corresponding protocols
in Q-Chem and Gaussian 03. For achieving the best accuracy, a protocol employing a larger basis set
and a higher-level Rung exchange-correlation functional is recommended. For ions, the overall error in
solvation free energies is around 4 kcal/mol, with cases involving acetonitrile and dimethyl sulfoxide
contributing significantly to this discrepancy. Notably, SMD calculations using Hartree-Fock generally
outperform those utilizing DFT methods such as BSLYP and M06-2X, a conclusion supported by other
studies [71, 72, 26].

Neutrals Tons

Method Aqueous NAQ | Acetonitrile DMSO Methanol Water
PySCF/MO06-2X /TZ 0.69 0.68 5.9 4.2 2.4 5.6
PySCF/MO06-2X/6-31G* 0.71 0.65 5.9 4.6 2.1 4.8
PySCF/B3LYP/TZ 0.79 0.69 5.7 3.8 3.1 6.3
PySCF/B3LYP/6-31G* 0.89 0.70 5.8 4.3 2.5 5.4
PySCF/HF/6-31G* 0.84 0.74 6.2 5.4 3.1 3.8

Q-Chem/HF/6-31G* 0.90 0.70 5.4/4.1 2.9/3.9
G03/MO05-2X /cc-pVTZ 0.68 0.67 5.9 4.4 2.3 4.6
G03/B3LYP/6-31G* 0.80 0.67 5.7 4.3 2.9 4.9
GO03/HF/6-31G* 0.90 0.73 5.9 5.2 2.7 34

Table 3: Mean unsigned error (MUE) in solvation free energies (kcal/mol) with different protocols.
The detailed protocols for GO3 are described in the original SMD paper [26], Table 13. The data
for Q-Chem is take from [71]. In all calculations, the bulk electrostatic contribution is calculated
with IEF-PCM. Density fitting is applied for all PySCF calculations. 2346 solvation free energies for
neutrals and 332 solvation free energies for ions are used for G03. 2369 solvation free energies and 361
solvation free energies are used for PySCF results. The uncertainty of the reference data are + 0.2
kcal/mol for neutral solutes and + 3 kcal/mol for ions. ‘TZ’ is short for def2-TZVPP. ‘NAQ’ is short

for nonaqueous.

3.4 Chemical Reactions
3.4.1 Transition State Search

The activation energy, the energy of the transition state relative to the reactants, is a critical parame-
ter for determining the chemical reaction rate. A higher activation energy means the fewer molecules
have enough energy to react at a given temperature, leading to a slower reaction. Knowing the ac-
tivation energy helps in designing and optimizing chemical processes. Transition state searches in
quantum chemistry are complex and require careful planning and execution. Computational tools
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Figure 9: Activation energy (left) and reaction energy (right). wB97M-V/def2-TZVPP: direct single-
point energy calculations with the geometries in Ref. [76] using wB97M-V functionals and def2-TZVPP
basis set. wB9TM-V /def2-TZVPP//TPSS-D3(BJ)/def2-SVP: re-optimize geometries using the same
protocols as [76] TPSS-D3(BJ)/def2-SVP and calculate the single-point energy with using wB97M-V
functionals and def2-TZVPP basis set. All the calculations employ (200,1202) grids for transition
metals, (99,590) grids for other elements, and density fitting.

play an important role for finding the optimized geometries of the reactants and products, optimizing
the transition state, and verifying the transition state. Those computations need a lot of computa-
tional resources for calculating SCF, gradient, and Hessian. An efficient quantum chemistry tool can
accelerate the finding of the reaction pathway. Successfully finding transition states requires not just
computational resources but also a deep understanding of the chemistry involved and experience with
the computational methods and software. There are fully or partially automated tools [73, 74, 75] for
generating reaction profiles. This work does not provide the automated approaches. But one can build
GPU4PySCF in the existing automated workflows.

In this work, we try to reproduce the result in MOBH35 dataset [76]. For simplicity, the reactions
involving bimolecular reactants or products are removed [73]. This subset of MOBH35 includes various
transition metals Sc, Ti, Mn, Fe in the first row, Nb, Mo, Ru, Rh, Pd in the second row, and Ta,
W, Re, Os, Ir, Pt in the third row. The transition metals are generally challenging for computation
because they not only requires high-angular momentum GTO integrals, but also need ECP in the
large basis set. Ref. [73] tried to modify the geometries of some reactions based on the chemical
intuition. However, we are not able to verify the transition states in the modified geometries. We still
use the original geometries in [76] as the initial guess for re-optimizing transition state. Both geometry
optimizations and transition state optimizations are performed with geomeTRIC [77].

We benchmark the results with wB97M-V, which is one of the best performer in MOBH35 database [76].
In the dataset, the reference energies are calculated with CCSD(T)/CBSyw1 + A(T)/TZVPP. The bar-
rier heights and reaction energies are presented in Fig. 9. The average absolute deviation (MAD) of
the reaction energy we calculated in the subset of MOBH35 is 1.75 kcal/mol, which is similar to MAD
(1.7 kcal/mol) of the entire database reported in [76]. The re-optimized transition states are almost
identical to the geometries reported in [76]. The difference of the reaction energy between the orig-
inal geometry and re-optimized geometries is 0.01 kcal/mol in MAD. That verifies the robustness of
transition state optimization scheme.

3.4.2 Electrochemical Stability Windows of Electrolytes

To guarantee thermodynamic stability of a lithium-ion battery, it’s critical that the electrochemical
potential of the electrodes falls within the electrolyte’s electrochemical stability window, which is
the range between the oxidation and reduction potential of the electrolyte [78, 79, 80]. If an anode’s
electrochemical potential exceeds the reduction potential of the electrolyte, it can lead to the reduction
of the electrolyte; similarly, if a cathode’s electrochemical potential is below the oxidation potential
of the electrolyte, it could oxidize the electrolyte, despite that the formation of a passivation layer
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can prevent continuous electron transfer and mitigate these effects. A broader electrochemical window
signifies a larger operational voltage range, which directly translates to higher energy density and
potentially higher power output of the device [81, 82]. Thus, in the study of electrolyte in lithium-ion
batteries, electrolyte’s electrochemical window directly influences the selection of solvent molecules in
electrolyte for high-performance energy storage solutions.

A straightforward approach to determining the electrochemical stability window of electrolytes
involves calculating the gap between HOMO and LUMO [81, 82], but this method has its short-
comings [83]. Thus, our analysis adopts a more accurate thermodynamic approach to define the
electrochemical stability of the electrolyte, which relies on calculating the redox potentials rather than
molecular orbital gaps [80, 84, 79, 85, 86, 83]. The determination of oxidation and reduction potentials
can be rigorously approached through thermodynamic cycles [84, 83]. Besides, for the evaluation of
reduction potentials in particular, the introduction of LiT ions plays a pivotal role for considering
the polarization effects of Lit on solvent molecules, which significantly influence the electrochemical
behavior of the system, thereby affecting the solvent’s reduction potential [86, 80]. Thus, in this work,
we consider the following oxidation and reduction reactions for some specific solvent S

S—St+e, (1)
S+ Lit +e” — Li—S. (2)

The oxidation and reaction potential potential of those reactions can be calculated as

Eoxidation =(Ggas(0xidized) — Ggas(initial) + AGgoly (oxidized) — AGyoly (initial)) /F — 1.44, (3)
Ereduction = — (Ggas(reduced) — Ggas(initial) + AGgory (reduced) — AGgory (initial)) /F' — 1.44,  (4)

where Gg,s is the free energy in gas of different species, such as initial, oxidized and reduced species.
The solvation energy in Eq. (3) and Eq. (4) of some specific solvent S reads

ACTYsolV(S) = Esolv(s) - Egas(s)a (5)

approximated by the energy difference between solvation and gas phase. Subtraction of 1.44 V con-
verses from the absolute electrochemical scale to the Li/LiT potential scale, and the value 1.44 V is
referred to Ref. [80] for comparisons.

In our study, we calculated the redox potentials of some molecules reported in Ref. [80], and
compared our results with those previously reported in the same reference. It should be noted that
our calculations were performed using a thermodynamic cycle, with computational parameters that
slightly differ from those used in Ref. [80]. As shown in Figure 10, despite differences in the compu-
tational approach and parameters from those described in the original literature, the results obtained
are remarkably similar. Consequently, we posit that our package possesses the capability to calculate
redox potentials, thereby enabling the prediction of electrochemical windows. Considering the compu-
tational efficiency, oxidation and reduction potential calculations involves the optimization of geometric
structures in vacuum and solvent, as well as the calculation of Hessian in vacuum. The computational
acceleration using GPU4PySCF with respect to Q-Chem for these processes has been discussed in pre-
vious sections. Consequently, the acceleration ratio for the calculation of oxidation-reduction potential
is determined by the lowest acceleration ratio among these individual parts.

3.4.3 Fukui Function, Condensed Fukui Function and ESP

In chemical reaction research, determining the most reactive site on a compound is crucial. Typi-
cally, organic chemists make judgments based on knowledge and experience, but quantum chemistry
calculations can also be helpful. The widely-used Fukui function [87, 88] predicts reactive sites and
comprises three types: f*, f~, and f°, for nucleophilic, electrophilic, and radical attacks, respectively.
In most applications, the Fukui function is calculated by the finite difference formula [89]. It requires
calculations for neutral (N electrons), cationic (N-1 electrons), and anionic (N+1 electrons) states and
analyzing the electron density difference. Regions with larger Fukui function values imply greater
reactivity at this site.

The condensed Fukui function uses atomic charges to evaluate the reactivity of individual atoms in
a molecule more intuitively [90]. By calculating atomic charges for N, N-1, and N+1 electron states,
differences between states can be obtained for each atom, enabling reactivity comparisons.
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Figure 10: Electrochemical stability windows calculated by GPU4PySCF (blue bars) and from Ref. [80]
(red bars). It should be noted that the largest discrepancy lies in the reduction potential of the DMK
molecule. Using the same structure and calculation method as Ref. [80], we get 0.55 V, which differs
from the reported results. Computational details are the same as in section 3.1.3.

For example, consider an electrophilic aromatic substitution using Anisole to examine the orienta-
tional effect of the directing group. After optimizing the initial structure for the neutral state, single
point calculations are performed for N, N-1, and N+1 electron states at the B3LYP/def2-TZVPP
level. The Fukui function is obtained from electron density differences in different states and saved
to *.cub files, which can be visualized using the open-source tool VMD [91]. Finally, the condensed
Fukui function is calculated using CHELPG atomic charges [54].

Figure 11: The f~ Fukui function isosurface (isolevel 0.008) of Anisole is shown in blue, and the
condensed f~ values are marked near the corresponding carbon atoms.
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As the study concentrates on electrophilic substitution sites, only the f~ function is relevant. As
shown in Figure 11, the f~ isosurface (isolevel 0.008) occurs mainly on the ortho- and para-position
carbon atoms, and less in the meta-position. The condensed Fukui function values also suggest that
ortho and para carbon atoms with higher f~ values are more susceptible to electrophilic substitution
reactions. This result is consistent with organic chemistry knowledge that the -OCHgs group is an
ortho, para director.

The electrostatic potential (ESP) is a commonly used real-space function that provides important
information about the interaction sites of compounds. It helps understand the anisotropic distribu-
tion of charges on the molecular surface, thereby assisting in inferring possible reaction sites. The
wave function obtained from the single-point calculation of compounds using GPU4PySCF can be
further exported as the ESP’s *.cub file, which can also be visualized using VMD. The color map of
the electrostatic potential for Anisole on the electron density isosurface (rho=0.001) is displayed in
Figure 12.

Figure 12: ESP color map for Anisole on the electron density isosurface (rho=0.001).

3.5 Incorporating with Neural Networks

Recently, the application of machine learning has been extended to the quantum chemistry community
[92, 93], demonstrating substantial potential to address quantum mechanic problems. The traditional
quantum chemistry techniques are still important ingredients of the recipe. Currently, most researchers
employ the PySCF routines for accessing the quantum chemistry calculations. This work further offers
the same functionalities with GPU acceleration, which is crucial as most deep learning models are
running on GPU.

We take Fermionic neural networks [94, 95, 92] as an example. The main philosophy of this research
realm, namely neural network-based Quantum Monte Carlo, is to learn highly accurate ground state
wavefunctions using a variational Monte Carlo approach. For this approach, atomic orbital (AO)
evaluation is an important component that encapsulates traditional chemistry knowledge. Specifically,
utilizing the Hartree-Fock AO to ‘pretrain’ neural networks is a common strategy in this research area,
as introduced in [92]. This process guides the networks to an acceptable initial state, after which
they evolve based on variational principles. However, AO evaluation, invoked at every ‘pretraining’
step, is typically executed on CPUs, which quickly becomes the computational bottleneck of the whole
process. Another factor contributing to the inefficiency of this implementation is substantial data
transfer between CPU memory and GPU memory, especially for large systems. With GPU4PySCF
developed, AO evaluation can be efficiently performed on GPUs and achieves a hundredfold speed
improvement as shown in Fig. 13.

Furthermore, GPU4PySCF can be effortlessly integrated with existing neural network frameworks
within quantum chemistry and manifest significant acceleration. For instance, by integrating Lap-
Net [96] with GPU4PySCF, we achieved approximately three times faster pretraining on Benzene
molecule. Beyond pretraining, GPU4PySCF also enables researchers to design and implement neural
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network wavefunction ansatzes that incorporate traditional chemistry knowledge, like AO, to better
characterize the desired quantum state.
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Figure 13: Speedup ratio of A100-80G card over 32-core CPUs in atomic orbital evaluations. Benzene
with cc-pVDZ basis is used for benchmark. AO values, gradients and Hessian matrices are chosen for
comparison.

4 Community and Ecosystem

PySCF has been a constantly growing open-source community. It has been integrated into various
open-source packages as the interface to quantum chemistry. For example,

e Quantum Computing. For instance, Google’s quantumlib, IBM’s Qiskit, NVIDIA’s CUDA
Quantum, Tencent’s TenCirChem.

e Deep Learning. For instance, DeepMind’s FermiNet [92] and DM21, DeepModeling’s DeePKS-
kit [97], ByteDance’s DeepSolid and LapNet.

e Quantum Chemistry Workflows. For instance, Microsoft’s AiiDA.

Without changing too many code, those works can be accelerated with GPU4PySCF.

4.1 Compatibility with PySCF

GPU4PySCF objects are designed to be compatible with the corresponding PySCF objects. A PySCF
object can be converted into a GPU4PySCF object with calling to_gpu function when the functionality
is implemented on GPU. The kernel execution will be accelerated with GPU. On the other hand, a
GPU4PySCF object can be converted into a PySCF object with to_gpu. Then PySCF features if not
accelerated still can be applied. Here is an example

import pysct

from pyscf import 1lib

from pyscf.dft import rks

N N e

5 atom = 777
¢ 0 0.0000000000 -0.0000000000 0.1174000000
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H -0.7570000000 -0.0000000000 -0.4696000000
H 0.7570000000 0.0000000000 -0.4696000000

mol = pyscf.M(atom=atom, basis=’sto3g’)
mol.verbose = 4
mf = rks.RKS(mol, xc=’b3lyp’).density_£fit ()

5 # Move PySCF object to GPU

mf_GPU = mf.to_gpu()

# Compute Energy
e_dft = mf_GPU.kernel ()

# Compute Gradient
g = mf_GPU.nuc_grad_method ()
g_dft = g.kernel ()

# Compute Hessian

h = mf_GPU.Hessian ()
h.auxbasis_response = 2
h_dft = h.kernel ()

Listing 1: Example of PySCF with GPU support

GPU4PySCF has been meticulously engineered to maintain a high degree of compatibility with
PySCF, ensuring that any settings related to accuracy in PySCF are seamlessly applicable in GPU4PySCF.
This compatibility is facilitated by the use of matching APIs, which we will explore in Section 4.1.
Furthermore, any custom configurations set in PySCF are automatically applied to GPU4PySCF. We
have conducted benchmarks on SCF energy, gradient, and Hessian calculations for the water molecule
using well-established exchange-correlation functionals across Rungs 2-4 of Jacob’s Ladder [98]. For all
examined exchange-correlation functionals, the discrepancies in energy relative to PySCF calculations
are less than 10~ !! Ha, falling below the SCF convergence threshold of 10~!°. Moreover, the 2-norm
differences for gradients and Hessians are below 107 Ha/Bohr and 1076 Ha/Both, respectively,
demonstrating exceptional accuracy and consistency with PySCF.
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Figure 14: 2-norm of the differences between PySCF and calculations with different DFT functionals
for HoO molecule, grids level = 5, def2-QZVPP atomic basis, def2-universal-JKFIT auxiliary basis,
convergence tolerance = 10712, Different units (Ha for energy, Ha/Bohr for gradient, and Ha/Bohr?
for Hessian) are used in y-axis.
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4.2 Accelerated Functionalities

Practical DFT calculations not only involve the contributions of foundational DFT but also advanced
features such as dispersion correction, solvent effect, ECP, and etc. Those contributions are essential
to accurately model the electronic structure. This study adheres to a principle of utilizing exist-
ing open-source implementations for these advanced features wherever possible. In scenarios where
these implementations are either non-existent or inadequate, we undertake the redevelopment of these
features, emphasizing the enhancement of computational efficiency through GPU acceleration, partic-
ularly for processes that exhibit slower performance than SCF iterations.

Dispersion corrections are usually much cheaper than DFT self-consistent iterations. And these con-
tributions are calculated with dftd3/simple-dftd3 and dftd4/dftd4 packages without GPU acceleration.
Although DFT-D3 has been implemented in Torch and Jax, these implementations will introduce the
dependencies of heavy-weight machine learning framework. For robustness, we build simple-dftd3 and
dftd4 in GPU4PySCF, and disable OpenMP. Nonlocal corrections are carefully optimized at CUDA
level due to its expensive computational cost.

PCM/SMD solvent models require solving Poisson-Boltzmann equation in each SCF iteration.
The computational complexity of solving Poisson-Boltzmann equation is cubic-scaling with respect
to the number of grids on molecular surface. Although it is cheaper than the quartic-scaling hybrid
DFTs, it would be the bottleneck without GPU acceleration. To address this, we have re-engineered
the PCM/SMD solvent models for GPU execution using Python, recognizing the potential need for
further optimizations to minimize the memory requirements.

ECP contributions are calculated only once in SCF. We reuse PySCF routines on CPU to calculate
the ECP contributions in SCF, gradient, and Hessian. Other contributions of DFT are still accelerated
with GPU for a molecular system with ECP. The computational cost is acceptable if the system only
has a few heavy atoms. We leave this as future work to further accelerate ECP calculations.

The functionalities are summarized in the Table 4.

Method SCF  Gradient Hessian

direct SCF 0] GPU CPU
density fitting 0] (0] O
LDA (@] (0] (0]
GGA (@] (0] (0]
mGGA (0] (0] (0]
hybrid 0] (0] O
unrestricted 0] (0] (0]
PCM solvent GPU GPU FD
SMD solvent GPU GPU FD
dispersion correction | CPU* CPU* FD

nonlocal correlation (0] O NA

ECP CPU CPU CPU

MP2 GPU CPU CPU

CCSD GPU CPU NA

Table 4: A summary of GPU4PySCF functionalities and level of optimizations. ‘O’: carefully optimized
for GPU. ‘CPU’: only cpu implementation. ‘GPU’: drop-in replacement or naive implementation. ‘FD’:
use finite-difference gradient to approximate the exact Hessian matrix. 'NA’: not available. ‘CPU*’:
DFTD3 [99]/DFTD4 [100] on CPU.

4.3 Coordinating with other packages

The development of PySCF/GPU4PySCF benefits from the contributions from the open-source com-
munity. GPU4PySCF, acting as an extension of PySCF, can be seamlessly incorporated with the
open-source packages compatible with PySCF. We highlight the roles of the following fundamental
packages working with PySCF/GPU4PySCF.

e BSE [14]: basis set exchange for newly developed basis set.
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GeomeTRIC [77]: geometric optimization and transition state search.

LibXC [15]: DFT exchange correlation functionals.

DFTD3 [99]/DFTD4 [100]: dispersion corrections.

Libeint [101]: fundamental GTO integrals.

CuPy [102]: A drop-in replacement of Numpy & SciPy for GPU.

5 Limitations and Future development

Quantum chemistry is a field characterized by its complex algorithms and significant computational
demands. Accelerated computing technologies, such as GPUs, offer promising ways to tackle these
challenges, yet their adoption in quantum chemistry has been slower than in other areas. Although
the package delivers significant speedup for various tasks, we admit our implementations are not the
optimal. We recognize the current limitations and suggest focused areas for future development to
enhance computational efficiency and capabilities.

Wavefunction-based Methods. Beyond traditional mean-field methods, sophisticated wavefunction-
based techniques like MP2/RI-MP2 and CCSD(T)/DF-CCSD(T) have seen successful optimization for
GPU processing. Our work in GPU4PySCF includes preliminary implementations for MP2 and CCSD
methods, demonstrating the feasibility and benefits of using GPUs for these computationally intensive
tasks. References such as [103, 104, 105] for MP2/RI-MP2 and [106, 107] for CCSD(T)/DF-CCSD(T)
highlight the ongoing efforts and achievements in this area.

Direct SCF & Other Integral Schemes. The Direct Self-Consistent Field (SCF) method
has been particularly explored for GPU acceleration due to its minimal memory requirements and
scalability with system size, especially when screening techniques are applied. The efficiency of Direct
SCF is largely dependent on the integral computation strategy. We utilize Rys quadrature due to
its simplicity and versatility in calculating Gaussian Type Orbital (GTO) integrals on GPUs. In the
current implementations, this integral scheme is applied up to g functions. While it may not be the
fastest, it simplifies the integral program for various operators. The selection of the optimal algorithm
for integral computations is crucial for maximizing performance.

Periodic Boundary Conditions (PBC). The PBC module in PySCF extends its capabilities
to simulate extended systems using Gaussian basis sets. The main challenges in PBC calculations can
be attributed to the infinite number of repeated images caused by periodicity. This leads to high com-
putational costs and numerical instability. Although sophisticated integral screening and evaluation
schemes have been implemented in the CPU code, their techniques may not be directly transferable
to GPU-based programs. New techniques are under development to refine integral screening and
evaluation for GPU-optimized PBC simulations, as mentioned in [108].

Multi-GPUs. The advent of data-center GPUs equipped with multi-GPU configurations signifi-
cantly enhances data transfer speeds via technologies like NVIDIA’s NVLink or AMD’s xGMI, offering
a substantial improvement over traditional CPU-GPU data transfer rates. This technique not only
accelerates the computation of quantum chemistry problems but also enables the efficient handling of
tasks that require large amounts of GPU memory. Multi-GPU implementations perhaps can achieve
greater parallel efficiency than 100% for large molecules.

Mixed Precision. The mixed-precision computing approach capitalizes on the differential compu-
tational capabilities of GPUs, balancing single and double precision to optimize performance without
compromising accuracy. In the context of Direct SCF algorithms, error estimation via Schwarz in-
equality allows for the strategic use of precision levels. This technique reduces computational overhead
by performing most calculations in single precision in later SCF iterations. Such strategies, as in-
vestigated in [109, 110], showcase the ongoing innovation in leveraging GPU capabilities to improve
quantum chemistry computations, focusing on maximizing performance and computational efficiency.
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A Dataset for Benchmarks

The information of the dataset used in Section 2 is as follow:

Molecule name Number of atoms Elements

Vitamin C 20 H,C,0
Inosine 31 H,C,O,N
Bisphenol A 33 H,C,0

Mg Porphin 37 H,C,N,Mg
Penicillin V 42 H,C,0,N,S
Ochratoxin A 45 H,C,0,N,Cl
Cetirizine 52 H,C,0O,N,Cl
Tamoxifen 57 H,C,O,N
Raffinose 66 H,C,0
Sphingomyelin 84 H,C,O,N,P
Azadirachtin 95 H,C,0
Taxol 113 H,C,0
Valinomycin 168 H,C,O,N

Table 5: The information of constructed dataset.
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B Accuracy for Different XC Functionals

The following calculations are using def2-TZVPP, def2-universal-JKFIT, and (99,590) grids. The
energy, gradient, and Hessian difference are measured in 2-norm. The units are Hartree, Hartree/Bohr,
and Hartree/Bohr? respectively.

Molecule names | Energy  Gradient Hessian
Vitamin C 1.30E-06  3.35E-05 1.26E-03
Inosine 5.50E-08 3.44E-05 1.19E-03
Bisphenol A 4.99E-06 6.39E-05 1.51E-03
Mg Porphin 9.23E-06 4.10E-05 1.34E-03
Penicillin V 2.48E-06 1.12E-04 2.18E-03
Ochratoxin A | 9.07E-06 9.93E-05 2.33E-03
Cetirizine 1.12E-05 1.30E-04 4.77E-03
Tamoxifen 7.96E-06 8.98E-05 1.77E-03
Raffinose 8.97TE-06 2.15E-04 2.96E-03
Sphingomyelin | 1.69E-05 1.27E-04 4.10E-03

Table 6: Difference between GPU4PySCF and Q-Chem 6.1, using PBE XC functional.

Molecule names | Energy  Gradient Hessian
Vitamin C 5.55E-07 2.74E-05 1.04E-03
Inosine 8.17E-07 2.76E-05 9.62E-04
Bisphenol A 4.61E-06 5.21E-05 1.17E-03
Mg Porphin 8.28E-06 3.82E-05 1.20E-03
Penicillin V 1.86E-06 8.76E-05 1.69E-03
Ochratoxin A | 7.67E-06 6.80E-05 1.77E-03
Cetirizine 8.40E-06 9.09E-05 3.56E-03
Tamoxifen 4.77E-06 7.09E-05 1.29E-03
Raffinose 6.43E-06 1.62E-04 2.22FE-03
Sphingomyelin | 1.52E-05 9.50E-05 3.28FE-03

Table 7: Difference between GPU4PySCF and Q-Chem 6.1, using B3LYP XC functional.

Molecule names | Energy  Gradient
Vitamin C 1.91E-06 2.45E-05
Inosine 3.32E-06  3.96E-05
Bisphenol A 3.07E-06 6.54E-05
Mg Porphin 5.40E-06 4.38E-05
Penicillin V 3.35E-06  9.26E-05
Ochratoxin A 5.29E-06 7.22E-05
Cetirizine 1.54E-05 7.74E-05
Tamoxifen 3.78E-06 7.54E-05
Raffinose 7.88E-07 1.28E-04
Sphingomyelin | 1.76E-05 9.69E-05

Table 8: Difference between GPU4PySCF and Q-Chem 6.1, using wB97M-V XC functional, Hessian
is not supported yet.
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C Accuracy for Different Basis Sets

The following calculations are using B3LYP, def2-universal-JKFIT, (99,590) grids. The energy, gradi-
ent, and Hessian difference are measured in 2-norm. The units for energy, gradient, and Hessian are
Hartree, Hartree/Bohr and Hartree/Bohr? respectively.

Molecule names | Energy  Gradient Hessian
Vitamin C 1.14E-07 2.65E-05 9.88E-04
Inosine 1.06E-05 2.71E-05 1.03E-03
Bisphenol A 1.28E-06 4.68E-05 1.06E-03
Mg Porphin 6.26E-06 3.97E-05 1.01E-03
Penicillin V 5.18E-05 8.46E-05 1.65E-03
Ochratoxin A | 4.72E-05 5.39E-05 1.61E-03
Cetirizine 2.46E-05 9.08E-05 3.18E-03
Tamoxifen 3.86E-05 6.43E-05 1.28E-03
Raffinose 7.80E-05 1.41E-04 2.18E-03
Sphingomyelin | 8.46E-05 8.99E-05 3.14E-03

Table 9: 6-31G.

Molecule names | Energy  Gradient Hessian
Vitamin C 6.31E-07 2.52E-05 9.24E-04
Inosine 1.25E-05 2.61E-05 9.82E-04
Bisphenol A 9.31E-07 4.68E-05 9.89E-04
Mg Porphin 7.19E-06 3.15E-05 9.59E-04
Penicillin V 3.71E-05 8.31E-05 1.52E-03
Ochratoxin A | 3.06E-05 5.06E-05 1.50E-03
Cetirizine 2.26E-05 8.67E-05 2.93E-03
Tamoxifen 1.73E-05 6.38E-05 1.27E-03
Raffinose 5.60E-05 1.32E-04 2.13E-03
Sphingomyelin | 4.12E-05 8.31E-05 3.13E-03

Table 10: Difference between GPU4PySCF and Q-Chem 6.1, using def2-SVP basis.

Molecule names | Energy  Gradient Hessian
Vitamin C 5.55E-07 2.74E-05 1.04E-03
Inosine 8.17TE-07 2.76E-05 9.62E-04
Bisphenol A 4.61E-06 5.21E-05 1.17E-03
Mg Porphin 8.28E-06 3.82E-05 1.20E-03
Penicillin V 1.86E-06 8.76E-05 1.69E-03
Ochratoxin A | 7.67TE-06 6.80E-05 1.77E-03
Cetirizine 8.40E-06 9.09E-05 3.56E-03
Tamoxifen 4.77E-06 7.09E-05 1.29E-03
Raffinose 6.43E-06 1.62E-04 2.22E-03
Sphingomyelin | 1.52E-05 9.50E-05 3.28E-03

Table 11: Difference between GPU4PySCF and Q-Chem 6.1, using def2-TZVPP basis set.
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Molecule names | Energy  Gradient Hessian
Vitamin C 5.23E-07 2.79E-05 1.04E-03
Inosine 9.11E-07 2.75E-05 9.63E-04
Bisphenol A 4.78E-06 5.23E-05 1.17E-03
Mg Porphin 8.28E-06 3.83E-05 1.21E-03
Penicillin V 4.23E-06 8.74E-05 1.70E-03
Ochratoxin A | 3.08E-06 6.81E-05 1.77E-03
Cetirizine 6.85E-06 9.10E-05 3.56E-03
Tamoxifen 3.36E-06 7.12E-05 1.29E-03
Raffinose 2.57E-06 1.61E-04 2.22E-03
Sphingomyelin | 6.98E-06 9.57E-05 3.29E-03

Table 12: Difference between GPU4PySCF and Q-Chem 6.1, using def2-TZVPD basis set.

D Accuracy for Solvent Models

All of the following calculations are using B3LYP, def2-TZVPP, def2-universal-JKFIT, (99,590) grids.
The energy, gradient, and Hessian difference are measured in 2-norm. The corresponding units are
Hartree, Hartree/Bohr and Hartree/Bohr?. Since Q-Chem 6.1 do not support PCM models for the
density fitting scheme, we use the regular SCF scheme as the reference. The following tables reflects
the density fitting errors.

Molecule names | Energy  Gradient Hessian
Vitamin C 1.38E-04 1.20E-04 1.14E-03
Inosine 2.08E-04 1.39E-04 1.18E-03
Bisphenol A 1.99E-04 1.78E-04 1.36E-03
Mg Porphin 1.40E-04 1.35E-04 1.33E-03

Table 13: Difference between GPU4PySCF and Q-Chem 6.1, using C-PCM solvent model.

Molecule names | Energy  Gradient Hessian
Vitamin C 1.38E-04 1.20E-04 1.14E-03
Inosine 2.08E-04 1.39E-04 1.18E-03
Bisphenol A 1.99E-04 1.78E-04 1.36E-03
Mg Porphin 1.40E-04 1.35E-04 1.33E-03

Table 14: Difference between GPU4PySCF and Q-Chem 6.1, using IEF-PCM solvent model
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