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Abstract: Architected materials with their unique topology and geometry offer the potential to 

modify physical and mechanical properties. Machine learning can accelerate the design and 

optimization of these materials by identifying optimal designs and forecasting performance. 

This work presents LatticeML, a data-driven application for predicting the effective Young's 

Modulus of high-temperature graph-based architected materials. The study considers eleven 

graph-based lattice structures with two high-temperature alloys, Ti-6Al-4V and Inconel 625. 

Finite element simulations were used to compute the effective Young's Modulus of the 2x2x2 

unit cell configurations. A machine learning framework was developed to predict the Young's 

Modulus, involving data collection, preprocessing, implementation of regression models, and 

deployment of the best-performing model. Five supervised learning algorithms were evaluated, 

with the XGBoost Regressor achieving the highest accuracy (MSE = 2.7993, MAE = 1.1521, 

R-squared = 0.9875). The application uses the Streamlit framework to create an interactive web 

interface, allowing users to input material and geometric parameters and obtain predicted 

Young's Modulus values. 
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1. Introduction 

Architected materials are a class of materials that modify their physical and mechanical 

properties through their unique topology and geometry. They draw inspiration from natural 

cellular materials like bones and corals, which possess special properties such as lightweight 

structures and topology-controlled mechanics [1-4]. Artificial architected materials, known as 

lattice structures, are designed to mimic these natural materials. The relative density is a crucial 

property, representing the ratio of the lattice volume to the bounding box volume. Architected 

materials with very low relative density (<5%) are considered foams, while those with 10-50% 

relative density are classified as lattice structures [5-7]. These materials can be classified based 

on their geometry as stochastic, periodic, or pseudo-periodic, with periodic lattice structures 

like the octet truss and Schwarz diamond being widely studied. The mechanical behavior of 

architected materials is either stretching-dominated, resulting in higher stiffness and strength, 

or bending-dominated, leading to lower stiffness but higher energy absorption [9-10]. This 

behavior is determined by the scaling law that relates their effective properties to relative 
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density. Optimization methods such as functional gradation, hybrid designs, and higher-order 

lattices are used to enhance the mechanical performance of architected materials, providing the 

ability to tailor their relative density and geometry. Architected materials have applications in 

lightweight structures, energy absorption, thermal and acoustic insulation, biomedical 

implants, and other areas due to their unique physical and mechanical properties enabled by 

additive manufacturing. 

Machine learning can significantly improve the design and optimization of architected 

materials using a variety of methods. It can help identify the best material designs and 

topologies to achieve desired properties like stiffness, strength, and energy absorption. By 

analyzing existing data on material properties and geometries, machine learning can forecast 

the performance of new designs and guide material selection and design choices. Machine 

learning can also help with the inverse design process, allowing designers to specify desired 

properties and generate designs that achieve them, which speeds up the discovery of new 

material architectures. Buehler et al. [11] proposed an unsupervised generative adversarial 

network (GAN) model for designing nature-inspired materials, which provides an alternative 

to traditional supervised deep learning methods. Without human intervention, the GAN model 

creates a latent space that can be explored and manipulated to create material designs. The 

method extends existing data distributions to create novel materials inspired by leaf 

microstructures in 2D and 3D dimensions. Peng et al. [12] proposed a data-efficient approach 

to optimizing the design of 3D-printed architected materials by incorporating a machine 

learning (ML) cycle that combines finite element method (FEM) simulations and 3D neural 

networks. This approach enables rational material design without the need for prior knowledge 

or extensive manual effort. The method was used in orthopedic implant design to create 

microscale heterogeneous architectures with a biocompatible elastic modulus and greater 

strength than uniform designs. Lee et al. [13] proposed a method for optimizing the elastic 

modulus, strength, and toughness of lattice structures while minimizing balances by focusing 

on the shape of beam elements. This method used generative deep learning to speed up the 

optimization process. The study emphasizes the importance of distributed stress fields and 

deformation modes in achieving significant improvements in mechanical properties depending 

on beam shape and lattice type. Wei et al. [14] developed a deep learning-based method for 

efficiently determining the elastic isotropy of architected materials directly from images of 

their unit cells, addressing the cost and time constraints of traditional methods. A measure of 

elastic isotropy for heterogeneous architected materials was created by building a database with 

corresponding unit cell images. Using connectivity, mechanical qualities, and stress levels of 

only 1% of nodes, Buehler et al. [15] employed a semi-supervised approach to construct 

topological structures of architected materials. In order to anticipate the distribution of load 

levels for the remaining 99% of nodes, this method made use of graph neural networks (GNNs), 

which learned graph embeddings and performed exceptionally well in semi-supervised 

classification tasks with little input. 

The novelty of this work lies in the development of LatticeML, a data-driven machine learning 

application specifically designed to predict the effective Young's Modulus of high-temperature 

graph-based architected materials. Unlike previous studies that have employed machine 
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learning for architected material design, this research focuses on a unique class of lattice 

structures and materials operating in extreme environments. The integration of finite element 

analysis and supervised learning algorithms within a user-friendly web application represents 

a significant advancement in the field. LatticeML enables rapid prediction of material 

properties, accelerating the design and optimization process without the need for extensive 

prior knowledge or manual effort. 

 

2. Materials and Methods 

In the present work, eleven graph-based lattice structures shown in Figure 1 were considered 

to have the material property of two high-temperature-based alloys i.e. Ti-6Al-4V and Inconel 

625 whose material and thermal properties are shown in Table 1.  The effective young modulus 

values of the 2 X 2 X 2 configuration of the given architected materials were found by carrying 

out the simulations on nTopology software. Six unit strain loads are utilized in the estimation 

of the unit cell's mechanical properties. Under periodic boundary conditions, these loads 

represent two separate forms of deformations: shear and tensile. The objective is to calculate 

the unit cell's effective stiffness matrix, C, which for an anisotropic material has 21 independent 

components. Three tensile loads (one for each axis) are applied in the X, Y, and Z directions. 

When a unit load is applied in the X direction, the block applies a strain of  ∈11= 1 while 

keeping ∈22=∈33=∈12=∈13=∈23= 0 and similarly for Y and Z directions unit loads of ∈22=

1 𝑎𝑛𝑑 ∈33= 1 are applied respectively. In the XY, XZ, and YZ planes (each plane separately), 

three shear loads are applied. The block applies a shear strain of  𝛾12 = 1 while keeping the 

𝛾13 = 𝛾23 = 0. Comparably, the unit loads applied to the XZ and YZ planes are 𝛾13 = 1 and 

𝛾23 = 1. The system of equations that relates the stress tensor σ to the strain tensor ϵ through 

the anisotropic stiffness matrix C can be expressed as Equation 1.  
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Figure 1. Graph based unit cells used in the present work 

 

Table 1. Mechanical and thermal properties of the alloys considered in the present work 

Alloy Elastic modulus (GPa) Poisson ratio Thermal conductivity 

(W/m.k) 

Inconel 625 208 0.28 9.7 

Ti-6Al-4V 138.8 0.34 6.7 

 

Figure 2 shows the machine learning framework used in the present work. The flowchart 

depicts the process of using machine learning techniques to predict the effective Young's 

modulus of an architected material. The process begins with "Collecting the data from 

simulations," where data was collected for two types of high temperature-based alloys using 
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nTopology software. The next step is "Preparing the dataset," where the collected data was 

stored in a CSV file containing five input parameters and one output parameter having 110 

datapoints shown in Table 2. This prepared dataset was then used in the subsequent step of 

“Implementing machine learning models.” Here, five supervised machine learning regression-

based algorithms were employed to predict the effective Young’s modulus of the architected 

material. The flowchart then shows the “Finding the best model” step involved comparing the 

performance of the different models using metrics such as MSE, MAE, and R-square value, 

ultimately identifying the best-performing model.”Deployment of the best model,” which in 

this case was the LatticeML model. This model utilizes the Streamlit framework to create an 

interactive, data-driven web interface.   

 

Figure 2. Machine learning framework used in the present work. The flowchart illustrates the step-by-step 

process of developing the LatticeML application, including data collection from finite element simulations, 

dataset preparation, implementation of regression models, identification of the best-performing model, and 

deployment of the final application using the Streamlit framework. 

 

Streamlit is an open-source Python library that enables the creation of data applications and the 

deployment of machine learning models. The flow of data within Streamlit is a critical aspect, 

as illustrated in the accompanying Figure 3. When the source code is modified while a user is 

interacting with the application, two simultaneous processes occur in Streamlit. First, Streamlit 

executes all the callbacks present in the application. Afterwards, Streamlit runs the entire 

Python script from the top to the bottom, and the resulting output is then displayed in the user’s 

web browser. 
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Figure 3. Data flow representation in Streamlit. This diagram depicts the key aspects of the Streamlit 

framework, highlighting how modifications to the source code trigger simultaneous execution of callbacks and 

the full Python script, resulting in the updated output being displayed in the user’s web browser. 

 

Table 2. Obtained data from the simulations 

Lattice 

Type 

Thicknes

s (mm) 

Young Modulus 

of Alloy (GPa) 

Poisson 

Ratio 

Conductivity of 

Alloy (W/m.K) 

Young Modulus of 

Architected Material 

(GPa) 

Simple 

Cubic 

0.1 208 0.28 9.7 0.0869701 

Simple 

Cubic 

0.2 208 0.28 9.7 0.527124 

Simple 

Cubic 

0.3 208 0.28 9.7 1.16401 

Simple 

Cubic 

0.4 208 0.28 9.7 2.0176 

Simple 

Cubic 

0.5 208 0.28 9.7 3.05216 

Octet 0.1 208 0.28 9.7 0.16683 

Octet 0.2 208 0.28 9.7 1.03 

Octet 0.3 208 0.28 9.7 2.43738 

Octet 0.4 208 0.28 9.7 4.48208 
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Octet 0.5 208 0.28 9.7 7.04384 

Triangular 

Honeycomb 

0.1 208 0.28 9.7 17.9893 

Triangular 

Honeycomb 

0.2 208 0.28 9.7 40.5554 

Triangular 

Honeycomb 

0.3 208 0.28 9.7 48.0243 

Triangular 

Honeycomb 

0.4 208 0.28 9.7 55.2025 

Triangular 

Honeycomb 

0.5 208 0.28 9.7 53.1677 

Re entrant 

Honeycomb 

0.1 208 0.28 9.7 14.5018 

Re entrant 

Honeycomb 

0.2 208 0.28 9.7 29.4579 

Re entrant 

Honeycomb 

0.3 208 0.28 9.7 38.4636 

Re entrant 

Honeycomb 

0.4 208 0.28 9.7 40.8903 

Re entrant 

Honeycomb 

0.5 208 0.28 9.7 43.4441 

Diamond 0.1 208 0.28 9.7 0.000510052 

Diamond 0.2 208 0.28 9.7 0.0123604 

Diamond 0.3 208 0.28 9.7 0.0587947 

Diamond 0.4 208 0.28 9.7 0.0972955 

Diamond 0.5 208 0.28 9.7 0.217339 

Body 

Centred 

Cubic 

0.1 208 0.28 9.7 0.0768271 

Body 

Centred 

Cubic 

0.2 208 0.28 9.7 0.400881 

Body 

Centred 

Cubic 

0.3 208 0.28 9.7 0.950872 

Body 

Centred 

Cubic 

0.4 208 0.28 9.7 1.66866 

Body 

Centred 

Cubic 

0.5 208 0.28 9.7 2.53609 

Face 

Centred 

Cubic 

0.1 208 0.28 9.7 0.0979675 

Face 

Centred 

Cubic 

0.2 208 0.28 9.7 0.602584 

Face 

Centred 

Cubic 

0.3 208 0.28 9.7 1.4032 

Face 

Centred 

Cubic 

0.4 208 0.28 9.7 2.54084 



 

8 
 

Face 

Centred 

Cubic 

0.5 208 0.28 9.7 3.88883 

Hexagonal 

Honeycomb 

0.1 208 0.28 9.7 11.658 

Hexagonal 

Honeycomb 

0.2 208 0.28 9.7 23.2304 

Hexagonal 

Honeycomb 

0.3 208 0.28 9.7 29.8872 

Hexagonal 

Honeycomb 

0.4 208 0.28 9.7 35.7401 

Hexagonal 

Honeycomb 

0.5 208 0.28 9.7 35.2737 

Kelvin Cell 0.1 208 0.28 9.7 0.000531771 

Kelvin Cell 0.2 208 0.28 9.7 0.0165469 

Kelvin Cell 0.3 208 0.28 9.7 0.092296 

Kelvin Cell 0.4 208 0.28 9.7 0.307433 

Kelvin Cell 0.5 208 0.28 9.7 0.705788 

Iso Truss 0.1 208 0.28 9.7 0.151367 

Iso Truss 0.2 208 0.28 9.7 0.901676 

Iso Truss 0.3 208 0.28 9.7 2.07243 

Iso Truss 0.4 208 0.28 9.7 3.68043 

Iso Truss 0.5 208 0.28 9.7 5.50209 

FCC Foam 0.1 208 0.28 9.7 16.9701 

FCC Foam 0.2 208 0.28 9.7 28.2643 

FCC Foam 0.3 208 0.28 9.7 30.5209 

FCC Foam 0.4 208 0.28 9.7 29.6728 

FCC Foam 0.5 208 0.28 9.7 31.8022 

Simple 

Cubic 

0.1 138.8 0.342 6.7 0.047599 

Simple 

Cubic 

0.2 138.8 0.342 6.7 0.288788 

Simple 

Cubic 

0.3 138.8 0.342 6.7 0.637965 

Simple 

Cubic 

0.4 138.8 0.342 6.7 1.10666 

Simple 

Cubic 

0.5 138.8 0.342 6.7 1.67495 

Octet 0.1 138.8 0.342 6.7 0.0913379 

Octet 0.2 138.8 0.342 6.7 0.564378 

Octet 0.3 138.8 0.342 6.7 1.33652 

Octet 0.4 138.8 0.342 6.7 2.45951 
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Octet 0.5 138.8 0.342 6.7 3.86823 

Triangular 

Honeycomb 

0.1 138.8 0.342 6.7 9.84095 

Triangular 

Honeycomb 

0.2 138.8 0.342 6.7 22.2262 

Triangular 

Honeycomb 

0.3 138.8 0.342 6.7 26.3193 

Triangular 

Honeycomb 

0.4 138.8 0.342 6.7 30.2602 

Triangular 

Honeycomb 

0.5 138.8 0.342 6.7 29.1769 

Re entrant 

Honeycomb 

0.1 138.8 0.342 6.7 7.93576 

Re entrant 

Honeycomb 

0.2 138.8 0.342 6.7 16.1398 

Re entrant 

Honeycomb 

0.3 138.8 0.342 6.7 21.0905 

Re entrant 

Honeycomb 

0.4 138.8 0.342 6.7 22.4164 

Re entrant 

Honeycomb 

0.5 138.8 0.342 6.7 23.8383 

Diamond 0.1 138.8 0.342 6.7 0.000279763 

Diamond 0.2 138.8 0.342 6.7 0.00679377 

Diamond 0.3 138.8 0.342 6.7 0.0323304 

Diamond 0.4 138.8 0.342 6.7 0.0533401 

Diamond 0.5 138.8 0.342 6.7 0.11957 

Body 

Centred 

Cubic 

0.1 138.8 0.342 6.7 0.0420683 

Body 

Centred 

Cubic 

0.2 138.8 0.342 6.7 0.219526 

Body 

Centred 

Cubic 

0.3 138.8 0.342 6.7 0.520995 

Body 

Centred 

Cubic 

0.4 138.8 0.342 6.7 0.914647 

Body 

Centred 

Cubic 

0.5 138.8 0.342 6.7 1.39051 

Face 

Centred 

Cubic 

0.1 138.8 0.342 6.7 0.0536066 

Face 

Centred 

Cubic 

0.2 138.8 0.342 6.7 0.32969 

Face 

Centred 

Cubic 

0.3 138.8 0.342 6.7 0.767773 

Face 

Centred 

Cubic 

0.4 138.8 0.342 6.7 1.39021 
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Face 

Centred 

Cubic 

0.5 138.8 0.342 6.7 2.12855 

Hexagonal 

Honeycomb 

0.1 138.8 0.342 6.7 6.3807 

Hexagonal 

Honeycomb 

0.2 138.8 0.342 6.7 12.7312 

Hexagonal 

Honeycomb 

0.3 138.8 0.342 6.7 16.3865 

Hexagonal 

Honeycomb 

0.4 138.8 0.342 6.7 19.6004 

Hexagonal 

Honeycomb 

0.5 138.8 0.342 6.7 19.3486 

Kelvin Cell 0.1 138.8 0.342 6.7 0.000291577 

Kelvin Cell 0.2 138.8 0.342 6.7 0.0090961 

Kelvin Cell 0.3 138.8 0.342 6.7 0.0508268 

Kelvin Cell 0.4 138.8 0.342 6.7 0.169576 

Kelvin Cell 0.5 138.8 0.342 6.7 0.389164 

Iso Truss 0.1 138.8 0.342 6.7 0.0828692 

Iso Truss 0.2 138.8 0.342 6.7 0.494307 

Iso Truss 0.3 138.8 0.342 6.7 1.13721 

Iso Truss 0.4 138.8 0.342 6.7 2.02136 

Iso Truss 0.5 138.8 0.342 6.7 3.02333 

FCC Foam 0.1 138.8 0.342 6.7 9.42718 

FCC Foam 0.2 138.8 0.342 6.7 15.7062 

FCC Foam 0.3 138.8 0.342 6.7 16.9339 

FCC Foam 0.4 138.8 0.342 6.7 16.5215 

FCC Foam 0.5 138.8 0.342 6.7 17.7296 

 

3. Results and Discussion 

3.1.Collection of the data from simulations 

In mechanics, homogenization is an effective mathematical and computational method that is 

especially useful when studying composite materials. The goal is to understand the effective 

behavior of a material consisting of several, frequently heterogeneous, constituents on a 

macroscopic level. At the microscopic scale, the spatial domain of microstructure is represented 

by Ω𝜀 , where 𝜀 represents the characteristics length scale associated with the microstructure. 

At this scale, the presence of distinct constituents, defects, or geometric features can cause the 

material properties to vary significantly from one point to another. The governing equations for 

the behavior of the material at the microscopic level can be expressed as shown in Equation 2. 

The equilibrium of forces within the material's microstructure is expressed by this equation. 
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∇. 𝜎𝜀 + 𝑓 = 0                                                                                                                        (2)                                                                                                                     

Where 𝜎𝜀 represents the stress tensor and 𝑓 represents the external forces or sources. 

Using asymptotic methods, these microscopic equations are expanded, and the solution is 

expressed as a series in terms of 𝜀 as shown in Equation 3.  

𝑢𝜀(𝑥) = 𝑢0(𝑥) + 𝜀𝑢1(𝑥) + 𝜀2𝑢2(𝑥) + ⋯                                                                           (3)                                                                                 

Where  𝑢𝜀(𝑥)  represents the displacement field at the microscale. 

The equations governing the macroscale behavior are then derived using the method of multiple 

scales, which involves averaging over the periodic microstructure. Equations that characterize 

the behavior of the material at a larger scale are homogenized as a result of this process. 

Predicting macroscopic behavior from microstructural properties, the homogenized equations 

usually take the form of partial differential equations relating effective stress and strain 

quantities as shown in Equation 4. 

∇. 𝜎 + 𝐹 = 0                                                                                                                         (4)                                                                                                                                           

Where 𝜎 is homogenized stress tensor, and 𝐹 represents effective external forces or sources. 

Figure 4 shows the obtained results from the homogenization.  

 

a) 
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Figure 4. Visualization of the stress and strain fields within the a) BCC, b) Diamond, c) FCC, d) FCC Foam, e) 

Hexagonal honeycomb, f) Iso Truss, g) Kelvin cell, h) Octet, i) Re-entrant honeycomb, j) Simple cubic and k) 

Traingular honeycomb architected material microstructure. This figure presents the results of the 

homogenization analysis, displaying the distribution of stress and strain components throughout the unit cell 

geometry. 

3.2.Finding the best model 

In the present work, five supervised machine learning regression-based algorithms i.e. decision 

trees, cat boost regressor, XG Boost regressor, extra tree regressor, and gradient boosting 

regressor are implemented for predicting the effective Young's modulus value.  

Regression problems involve the prediction of continuous outcomes based on input features, 

and one sort of decision tree model used for these tasks is the DecisionTreeRegressor. 

max_depth and random_state are two of the hyperparameters listed in the 

DecisionTreeRegressor class.  The max depth of the decision tree, which establishes the 

model's complexity, is controlled by the max depth hyperparameter. While a deeper tree can 

help identify more intricate patterns in the data, it can also cause overfitting, a situation in 

which the model performs well on training data but badly on untested data. Model complexity 

and generalization are balanced by restricting the decision tree's growth to three levels with 

max_depth=3. In order to anticipate the residuals of the predictions made by the preceding 

ensemble, each decision tree in the ensemble of decision trees that Cat Boost builds is trained 

to do so. Since the model is set up to use root mean squared error (RMSE) as the loss function, 

the method employs it for optimization. Moreover, symmetric tree development for increased 

prediction stability, ordered boosting for consistent treatment of categorical features, and early 

halting based on the validation set performance are all used by Cat Boost to prevent overfitting. 

The foundation of XG Boost is gradient boosting, a technique that builds an ensemble of 

decision trees one after the other, each one improving prediction accuracy by learning from the 

mistakes of the one before it. In order to minimize overfitting, XG Boost employs a regularized 

objective function to strike a compromise between the model's complexity and data fit. 

Moreover, it includes parallel processing, which makes training on big datasets effective. 

Multiple decision trees are constructed for regression tasks using the Extra Trees Regressor, an 

ensemble learning technique. Extra Trees grows each tree using the whole training dataset, as 

contrast to conventional decision tree-based methods that employ bootstrapping to produce 

subsets of the training data. In the process of creating trees, it adds more randomization by 

choosing thresholds at random for each node's data splitting. Because of this randomness, the 

trees may become more robust and diverse, which could improve generalization. The average 

of the forecasts made by each tree in the ensemble constitutes the final forecast. The number 

of trees (n_estimators=10) and the degree of randomness added during the tree-building 

process are two of the hyperparameters that the algorithm allows for adjustment. Gradient 

Boosting Regressor is a well-liked ensemble learning technique that builds a more reliable and 

accurate model for regression tasks by combining several weak learners, usually decision trees. 

It works by training each tree iteratively to reduce the residual errors of the prior trees in the 

ensemble, thereby fixing the faults made by those trees. The algorithm determines the gradient 

of the loss function (such as mean squared error) in relation to the predictions at each iteration, 

which directs the training procedure. Table 3 shows the obtained metric features for each 
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algorithms and Figure 5-7 shows the actual value vs predicted value plots, Q-Q plots and 

residual plots.  

Figure 6 shows the five Q-Q plots, each representing the relationship between the theoretical 

quantiles and the observed values of the residuals for different regression models. The Decision 

Tree Regression, XG Boost Regression, and Cat Boost Regression models all show a clear 

linear relationship between the theoretical and observed quantiles, suggesting that the residuals 

from these models follow a normal distribution. The Extra Tree Regression model's Q-Q plot 

shows a slightly curved pattern, which may indicate a slight deviation from normality in the 

residuals, but the overall trend is still linear, indicating that the residuals are reasonably well-

behaved. The Gradient Boosting Regression model's Q-Q plot demonstrates a clear linear 

relationship between the theoretical and observed quantiles, suggesting that the residuals from 

this model follow a normal distribution. This suggests that the assumptions of the regression 

models are generally met, and the models can be considered reliable for making inferences or 

predictions.  

 

Table 3. Metric features obtained for each algorithms 

Algorithms MSE MAE R-square value 

Decision Tree 37.5061 3.1171 0.8333 

XG Boost 2.7993 1.1521 0.9875 

Cat Boost 6.7487 1.8070 0.9700 

Extra Tree 21.2221 2.9399 0.9057 

Gradient Boosting 27.2566 3.4953 0.8789 

 

 

a) 



 

19 
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d) 

 

e) 

Figure 5. Actual vs predicted effective Young’s Modulus values for a) Decision trees, b) XG Boost, c) Cat 

boost, d) Extra tree and e) Gradient boosting regression algorithms 
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b)  
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e) 

Figure 6. Q-Q plots for a) Decision trees, b) XG Boost, c) Cat boost, d) Extra tree and e) Gradient boosting 

regression algorithms 

 

The residual plot for the Decision Tree Regression model shows a relatively even distribution 

of residuals around the zero line, suggesting a good fit of the model to the data. The residuals 

appear to be randomly scattered, indicating that the model assumptions are reasonably well 

met. The residual plot for the XG Boost Regression model also exhibits a relatively even 

distribution of residuals around the zero line, with a few outliers. This suggests that the XG 

Boost Regression model provides a reasonably good fit to the data, though there may be some 

room for improvement. The residual plot for the Cat Boost Regression model displays a similar 

pattern to the XG Boost Regression, with an even distribution of residuals around the zero line 

and a few outliers. This indicates that the Cat Boost Regression model also provides a 

reasonably good fit to the data. The residual plot for the Extra Tree Regression model shows a 

more scattered pattern of residuals, with some clustering and a more pronounced curvature in 

the overall trend. This suggests that the Extra Tree Regression model may not fit the data as 

well as the other models. Finally, the residual plot for the Gradient Boosting Regression model 

demonstrates a relatively even distribution of residuals around the zero line, with a few outliers. 

This suggests that the Gradient Boosting Regression model provides a good fit to the data, 

similar to the Decision Tree and XG Boost Regression models. 



 

24 
 

 

a) 
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e) 

Figure 7. Residual plots for a) Decision trees, b) XG Boost, c) Cat boost, d) Extra tree and e) Gradient boosting 

regression algorithms 

3.3.Deployment of the best Machine learning model to predict the effective Young 

modulus 

The deployment of machine learning models is the process for making models available in 

production environments, where they can provide predictions to the other software systems. It 

is the last stage in the machine learning lifecycle. There are two types of environments in the 

ML pipelines i.e. research environment and production environment shown in Figure 8. The 

investigation, testing, and development stages of a machine learning project are the main areas 

of concentration for the research environment. Here, researchers and data scientists develop 

and improve machine learning models. The final, highly-optimized machine learning models 

are implemented for practical application in the production environment. Its main goal is to 

give end users or systems scalable and dependable predictions.  
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Figure 8. A diagram of a machine learning model deployment process, highlighting the distinction between 

research and production environments, and the key components required for successful integration of machine 

learning models in a production system. 

 

We develop our machine learning model in a research environment which is an isolated model 

and here we train our machine learning model on the available historical data. If we are satisfied 

with the obtained results from the research environment then we are ready to migrate it to the 

production environment where it receive the live data and make further prediction. It should be 

noted that our machine learning models should be reproducible in both research and production 

environment. Reproducibility guarantees that when the model is trained and assessed in various 

settings, the same outcomes will be obtained. During the study phase, it is simple to verify 

experimental results thanks to this consistency. When other researchers can repeat the 

experiments and get comparable results, the research findings are considered validated. 

Transparency and trust in the dependability of the machine learning models are promoted by 

reproducibility in the research setting. 

Machine learning in production require different multiple components like data, 

documentation, infrastructure, applications and configuration to work properly. The general 

layout and composition of a system that integrates machine learning models and algorithms is 

referred to as the machine learning (ML) system architecture. It includes all of the different 

parts, sections, and exchanges required to create, implement, and oversee machine learning 

systems. The performance, scalability, maintainability, and general success of an ML system 

are significantly influenced by its architecture. Production code is designed to be deployed for 

end users.  The key area of machine learning system is shown in Figure 9.  
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Figure 9. The general layout and composition of a machine learning system architecture, including the data, 

feature, scoring, and evaluation layers, which are essential for the deployment and operation of machine 

learning models in real-world applications. 

 

The input data must be handled and managed by the data layer. Data collection, preprocessing, 

cleaning, and transformation are some of the tasks involved. The data layer makes sure the data 

is in an appropriate format so the machine learning model can process it further. Features in 

machine learning refer to the input variables or characteristics that are utilized in the prediction 

process. The tasks associated with feature engineering, which converts unprocessed data into 

a set of features the machine learning model can use to identify trends and anticipate outcomes, 

are included in the feature layer. A trained machine learning model is usually used in the scoring 

layer to make predictions or score new data points. To produce predictions or scores, the model 

must be applied to the input features. The scoring layer generates class labels or probabilities 

in classification problems and continuous predictions in regression problems. The machine 

learning model's performance is evaluated by the evaluation layer. In order to determine various 

performance metrics, such as accuracy, precision, recall, F1 score, or others depending on the 

problem's nature, it entails comparing the model's predictions to the actual outcomes (ground 

truth). The assessment layer aids in determining how well the model applies to fresh, untested 

data. 
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The provided web application is designed to predict the Young's Modulus of Architected 

Materials using machine learning models. Users can upload their datasets and receive 

predictions based on their input features. The application utilizes the Streamlit framework to 

create an interactive, data-driven web interface. 

The application begins with a title and subtitle, followed by an image of lattice structures shown 

in Figure 10. Users can upload a CSV file containing data for analysis, which is then loaded 

into a Data Frame using pandas and pre-processed. This involves encoding categorical 

variables using Label Encoder and removing unnecessary columns. After preprocessing, the 

data is split into training and testing sets in 80-20 ratio. Features are standardized using 

Standard Scaler for consistent scaling across different features. An XGBoost regressor 

(XGBRegressor) is used as the machine learning model and trained on the training data. The 

application allows users to input their own features for prediction, either through numerical 

inputs or by selecting a value from a dropdown menu for categorical features. The user inputs 

are standardized and used to make predictions. 

 

Figure 10. Interface of the LatticeML web application, featuring the title, subtitle, and an image of various 

lattice structures. 

 

The application displays the predicted Young's Modulus of the Architected Material based on 

user inputs shown in Figure 11. Additionally, it calculates and presents model performance 

metrics such as mean squared error (MSE), mean absolute error (MAE), and R-squared (R2) 

error using the test data. Several visualizations are included to demonstrate the model's 

performance and insights into the data. These include a correlation heatmap, feature 

importances, an actual vs. predicted plot, residual plots, and a Q-Q plot for residuals. These 

visualizations help in understanding the relationships between features, the importance of 
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different features, how well the model performs in predicting actual values, and the distribution 

of residuals. 

 

Figure 11. Interface of the LatticeML web application, displaying the predicted Young's Modulus value based 

on user inputs, as well as model performance metrics and visualizations. 

 

4. Conclusion 

This work has shown the degree to which the LatticeML framework predicts the effective 

Young's modulus of graph-based, high-temperature architected materials. This application 

reduces the time and resources needed for standard design and optimization procedures by 

combining finite element analysis with sophisticated machine learning regression models to 

provide fast and accurate material property predictions. With an MSE of 2.7993, MAE of 

1.1521, and R-squared value of 0.9875, the results demonstrate that the XGBoost Regressor 

obtains the maximum prediction accuracy. One of the main advantages of the LatticeML model 

is its capacity to represent the complex relations between mechanical behavior, lattice 

geometry, and material composition. The framework's usability and accessibility are further 

improved by the interactive online interface, which gives engineers and designers more 

freedom to experiment and accelerate the creation of high-performance architected materials.   
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