
LightningSimV2: Faster and Scalable Simulation for High-Level
Synthesis via Graph Compilation and Optimization

Rishov Sarkar, Rachel Paul, Cong (Callie) Hao
School of Electrical and Computer Engineering, Georgia Institute of Technology

{rishov.sarkar, rachel.paul, callie.hao}@gatech.edu

Abstract—High-Level Synthesis (HLS) enables rapid prototyp-
ing of complex hardware designs by translating C or C++ code to
low-level RTL code. However, the testing and evaluation of HLS
designs still typically rely on slow RTL-level simulators that can
take hours to provide feedback, especially for complex designs.
A recent work, LightningSim, helps to solve this problem by
providing a simulation workflow one to two orders of magnitude
faster than RTL simulation. However, it still exhibits inefficiencies
due to several types of redundant computation, making it slow for
large design simulation and design space exploration. Addressing
these inefficiencies, we introduce LightningSimV2, a much faster
and scalable simulation tool. LightningSimV2 features three
main innovations. First, we perform compile-time static analysis,
exploiting the repetitive structures in HLS designs, e.g., loops,
to reduce the simulation workload. Second, we propose a novel
graph-based simulation approach, with decoupled simulation
graph construction step and graph traversal step, significantly
reducing repeated computation. Third, benefiting from the decou-
pled approach, LightningSimV2 can perform incremental stall
analysis extremely fast, enabling highly efficient design space
exploration of large numbers of complex hardware parameters,
e.g., optimal FIFO depths. Moreover, the DSE is well-suited
for parallel computing, further improving the DSE efficiency.
Compared with LightningSim, LightningSimV2 achieves up to
3.5× speedup in full simulation and up to 577× speed up
for incremental DSE. Our code is open-source on GitHub at
https://github.com/sharc-lab/LightningSim/tree/v0.2.0.

I. INTRODUCTION

Growing demands for real-time, energy-efficient, high-
throughput compute combined with the end of Moore’s law
have emphasized the need for customized computing architec-
tures more than ever before. Faced with the challenge of creat-
ing ever more complex designs, many hardware designers have
turned to High-Level Synthesis (HLS), which facilitates the
process of hardware coding by raising the level of abstraction
from RTL implementation to behavioral modeling in higher-
level software languages such as C, C++, or SystemC. HLS
tools aim to synthesize this high-level software code, typically
annotated with compiler directives to guide the hardware
implementation, into RTL code for the same functionality.

HLS greatly improves designer productivity in three ways.
First, HLS code can provide a concise specification of hard-
ware structures that would otherwise take much longer to
write and test. Second, HLS enables the use of C simulation,
in which HLS code is compiled and run using the standard
toolchains of the high-level language as a fast and easy way to
perform a partial check to ensure that an HLS design functions
as intended. Third, the HLS synthesis process provides feed-
back in the form of latency and resource utilization estimates.

However, in many cases, designers require more precise
evaluation of their HLS designs than what is provided by
C simulation or the synthesis process. For example, when
using the HLS dataflow feature to generate multiple hardware
modules communicating via first-in-first-out (FIFO) streams,
neither C simulation nor HLS synthesis can detect deadlock
conditions caused by FIFO communication. Additionally, HLS
synthesis latency estimates become much less reliable as they
cannot account for dynamic FIFO communication behavior.

In such cases, where the dynamic behavior of a design limits
visibility into its hardware functionality and performance, de-
signers usually resort to slow simulation of the HLS-generated
RTL code. This can take hours, especially for complex designs.
A recent work, LightningSim [1], provides a much faster
alternative to RTL simulation for dynamic behavior modeling
and cycle-level estimation of designs built for AMD Vitis HLS.
As Fig. 1 shows, LightningSim exploits LLVM intermediate
representation (IR) in the synthesis process. It has two stages:
IR trace generation and IR trace analysis. The trace analysis
stage further contains a schedule resolution step and a stall
calculation step to obtain the total cycle count of an HLS
design. Furthermore, it features a unique ability to perform
incremental stall calculation when only certain hardware
parameters, namely FIFO buffer depths, are changed. Such
changes do not affect HLS scheduling or the execution trace,
so only the stall calculation step needs to be re-executed.
LightningSim produces 99.9%-accurate latency estimates up
to 95× faster than RTL simulation in Vitis HLS.

Despite the speed up over RTL simulation, we notice several
inefficiencies in LightningSim, as shown in Fig. 1. Ineffi-
ciency 1: LightningSim ignores optimization opportunities for
common HLS design patterns during simulation, e.g., loops,
resulting in repeated work. Inefficiency 2: The stall calculation
in LightningSim involves massive redundant computation and
thus is inefficient. It uses an event-based simulator, which
repeatedly checks the “events” inside modules (more details
in Sec II-C), resulting in slow simulation for large designs.
As presented in LightningSim, for medium-size designs such
as FlowGNN [2], it takes tens of seconds to simulate, while
for large designs, it can take up to several tens of minutes.
Inefficiency 3: Even though LightningSim applies incremental
re-simulation for hardware parameter changes, it still needs to
read and modify the raw list-based execution traces, making
the design space exploration (DSE) slow and inefficient for
parallel computing using multicore. For instance, we observe
that for a complicated HLS design, a first-order Implicit Neural

ar
X

iv
:2

40
4.

09
47

1v
2

 [
cs

.P
F]

 1
6

A
pr

 2
02

4

mailto:rishov.sarkar@gatech.edu
mailto:rachel.paul@gatech.edu
mailto:callie.hao@gatech.edu
https://github.com/sharc-lab/LightningSim/tree/v0.2.0

LightningSimHLS synthesis

Front-end
compilation

Scheduling
and binding

110101
110110
011010
101000

</></></>

RTL
generation

Stage 1: IR trace generation

LLVM
bitcode

Static
schedule

Execution
trace

Stage 2: IR trace analysis
Schedule resolution

Stall calculation

Inefficiency 1

Inefficiency 1: Process repeated design patterns,
e.g., loops, with redundancy
Inefficiency 2: Stall calculation is slow due to
repeated event scanning
Inefficiency 3: Slow DSE since it directly operates
on the event lists; unfriendly for parallel computing

DSE

LightningSimV2

Stage 1: Optimized IR trace generation

Stage 2: IR trace analysis

Decoupled stall Calculation

Step 1: Dynamic graph construction

Step 2: Graph traversal

Smaller
execution trace

RTL
code

Event
lists

HLS design cycle count

Inefficiency 2

Inefficiency 3

Schedule resolution

Compiled
simulation graph

DSE

Innovation 1

Innovation 2

Innovation 3

Innovation 1: Avoid repeating redundant design patterns
Innovation 2: Decoupled stall calculation via simulation graph
Innovation 3: Faster, incremental, and parallelized DSE

HLS design cycle count

Fig. 1. LightningSimV2 addresses three major limitations in LightningSim with three innovations. First, it uses static analysis to reduce the size of the
generated execution trace by avoiding repeating redundant design patterns, e.g., loops. Second, it largely speeds up stall calculation by a decoupled graph
compilation and graph traversal during trace analysis. Third, it largely speeds up DSE for hardware parameters, e.g., FIFO depths, by only executing the
lightweight graph traversal step, which is suitable for scalable and parallel computing with little memory overhead.

Representation (INR) architecture with 238 FIFOs [3], each
DSE iteration takes 4 minutes to visit only one design point,
making it impossible to fully explore the optimal FIFO depths.
A second-order INR architecture has more than 900 FIFOs and
each design point takes more than 30 minutes to simulate using
LightingSim, exposing great challenges for scalable DSE.

Addressing these limitations, we propose LightningSimV2.
It achieves much faster simulation speed, scales better to
larger designs, and enables much faster DSE, thanks to three
key innovations, as depicted in Fig. 1. We summarize our
contributions and key features of LightningSimV2 as follows.

• Innovation 1: Optimized trace generation. Light-
ningSimV2 employs static analysis to identify repetitive
design patterns, e.g., loop structures, and avoid tracing
every iteration of these loops. The generated execution
traces are much smaller and thus are faster to analyze.

• Innovation 2: Optimized and decoupled stall calcula-
tion. Instead of event-based simulation in LightningSim,
LightningSimV2 adopts a novel and much faster graph-
based simulation technique. It decouples stall calculation
into two steps: dynamic simulation graph construction
and graph traversal. The first step constructs a simu-
lation graph by scanning each simulation event only
once, avoiding repeatedly checking the same events as
LightningSim does. The second step applies a superfast
graph traversal for the final cycle count calculation. Using
the graph-based simulation, LightningSimV2 achieves up
to 6.4× speed up for the trace analysis step.

• Innovation 3: Optimized and parallelizable DSE. Our
decoupled graph-based simulation technique also enables

efficient DSE for HLS dataflow designs. A great feature
of our proposed simulation graph is that it can capture
unknown dependencies during graph construction; such
dependencies rely on actual hardware parameters, e.g.,
FIFO depths. Thus the simulation graph is hardware-
agnostic and does not need to change. When performing
DSE for FIFO depths, only the lightweight graph traversal
step will be executed without modifying the simulation
graph. This is not only efficient but more importantly,
it enables high-throughput evaluation of multiple design
points simultaneously by employing parallel computing
with little memory and communication overhead.

• Evaluation and open-source. All of our proposed im-
provements are completely lossless. LightningSimV2 is
100% accurate compared with LightningSim and thus is
99.9% accurate to RTL simulation. It is up to 3.52× faster
than LightningSim for end-to-end simulation, particularly
for large designs. In addition, LightningSimV2 shows
superior DSE efficiency: its incremental stall calculation
is up to 577×, 121× on average, faster than that in
LightningSim. The code is open-source on GitHub.

II. BACKGROUND AND MOTIVATIONS

A. HLS Simulation

Several prior works identify opportunities to speed up HLS
simulation. FastSim [4] uses the Verilog code synthesized by
HLS to generate an equivalent C++ model to handle frequently
used constructs, particularly the finite state machines (FSMs),
for faster simulation. FLASH [5] takes the approach of com-
bining the input HLS source code with scheduling information

from the synthesis process to generate a C++ model for
computing latency estimates that cycle-accurately model FIFO
communication. LightningSim [1] is another state-of-the-art
HLS simulator, using a novel trace-based approach with up
to two orders of speedup over RTL simulation. We briefly
introduce LightningSim approaches and their limitations.

B. LightningSim Workflow

Fig. 1 shows LightningSim’s two decoupled stages, IR trace
generation and IR trace analysis. The trace analysis stage
further has two steps, schedule resolution and stall calculation.
Trace generation. First, LightningSim compiles and instru-
ments an HLS testbench to produce an execution trace of
simulation events that determine hardware execution time.
This trace includes a list of LLVM basic blocks (BBs) in their
execution order that allow full reconstruction of exactly which
LLVM instructions are executed and when. It also includes
ancillary data about the simulated off-chip AXI memory access
patterns and the read/write patterns of internal FIFO buffers.
The output of this step is a dumped file of the execution trace
of BBs; an example is shown in Fig. 2 left bottom block.
Schedule resolution. Second, LightningSim analyzes this gen-
erated execution trace and correlates it with static scheduling
data produced by the HLS tool to capture its dynamic behavior,
as shown in Fig. 2. During this process, LightningSim creates
a list of events for each module. An event indicates the
interaction between the module and external signals, e.g.,
off-chip memory access, FIFO read/write, and function calls,
which may cause modules to stall.

Each event has a static stage after HLS synthesis and is
mapped to one specific dynamic stage after schedule resolu-
tion. In this example, events 1 and 2 are mapped to dynamic
stage 3, and event 5 is mapped to dynamic stage 6. The
dynamic stage represents the order in which the event occurs,
accounting for repeated executions. For instance, two events
occurring in two different iterations of a loop would have the
same static stage but different dynamic stages. The output of
this step is a set of event lists, each module with one list.
Stall calculation. Once these events and their dynamic stages
are determined, LightningSim uses a custom stall calculation
engine to iterate over the events, modeling actual hardware
status as it goes, e.g., FIFO full/empty. The goal of stall
calculation is to determine whether each event causes a stall
and, if so, for how long, to precisely capture the design cycle
count. The output is the actual cycle count of the entire design.

The performance of stall calculation is particularly im-
portant: it not only correctly calculates the actual design
cycle count, but more importantly, its speed is crucial for
efficient DSE of HLS dataflow designs. If an HLS design
has multiple FIFOs, optimally determining the depth of each
FIFO is essential to hardware resources and performance but
is challenging. Using Vitis HLS, each time one FIFO depth
is changed, a full-blown RTL simulation is needed to get its
new cycle count. In contrast, LightningSim can incrementally
re-execute the stall calculation step only; thus it is much more
efficient than using RTL simulation.

C. LightningSim Limitations
Despite the promising features of LightningSim, we identify

two limitations that may largely hurt its simulation speed and
thus hinder efficient DSE for HLS designs.

1) Fixed-Bound Loops: HLS designs frequently feature
fixed-bound loops and pipelines with iteration counts known
at compile-time. LightningSim processes these repetitive iter-
ations one by one during trace generation, committing a large
volume of redundant work and resulting in larger trace files.
Imagine a loop with tripcount one million—LightningSim will
generate one million repetitive BBs in its trace.

Prior work exists in other domains that uses static analysis
techniques up-front to make dynamic analysis more efficient.
For instance, CYPRESS [6] applies this concept to commu-
nication trace compression. It uses static analysis of a target
program to construct a communication trace template, which
means that dynamic analysis can trace only the information
needed to “fill in” the template.

2) Event-Based Simulation: As discussed earlier, during
schedule resolution, LightningSim processes the execution
trace to generate lists of events; then, during stall calculation,
LightningSim adopts an event-based simulator to progressively
check the behavior of events and modules. This approach
involves massive computation redundancy.

The rightmost block in Fig. 2 shows an example of the
simulation process in LightningSim. In this example, there are
three active modules, each contains a pool of events, and each
event is mapped to a dynamic stage inside that module. First,
LightningSim will check all the events of all active modules
to see whether they can be unstalled (the events annotated by
red dashed circles). For instance, a FIFO read event will be
unstalled if the FIFO is no longer empty. Second, a module can
only be unstalled if all its events are unstalled for its earliest
dynamic stage (the events annotated by green). Third, this
module will be advanced to the next dynamic stage (module
2). These three steps will be repeatedly executed till the
simulation finishes. During this process, the first step contains
massive computation redundancy, since the same event may be
visited multiple times. For example, after module 2 advances
from dynamic stage 2 to 3, the same sets of events in
modules 1 and 3 need to be checked again, since some events
may change their stalling status due to event dependencies
from module 2. This can be wasteful, especially if there
are many active modules but only one of them is unstalled
per iteration. Most of the modules will not have changed
state, but LightningSim must still re-check their events. In
addition, before simulating each module, LightningSim must
sort all its events by their dynamic stages. This can cause high
overhead for large designs since sorting complexity increases
superlinearly with the event count.

The fundamental limitation of this approach is that events
are maintained as lists, and the dependencies between events
are unknown during static analysis and must be captured on-
the-fly according to FIFO depths, off-chip memory accesses,
and function calls. As an example, assume a FIFO depth is 3
and a consumer module is reading from it; to decide whether

Static stages:
FSM states generated by HLS

BB1 1

BB2 2 to 3

BB3 3 to 5

BB4 4

Dynamic stages:
Dynamic executions, with delays and repetitions, etc.

Event-based simulation

4 3 2

1

5 FSM

Execution trace
BB4 BB1 BB3BB1 BB2 BB4

Time ...

Dynamic
stages

Static
stages

1 2 3 4 5 6 7 8 9

BB4 BB1 BB3BB1 BB2 BB4

1 2 3 4 1 3 4 5 4

event
2

event
5

event
11

event
1

event
8FIFO read

AXI read

func call ...

...

events may
cause stalls

...

2. Find the module whose earliest
events can all be unstalled

3. Advance this module to
the next dynamic stage

Schedule Resolution
Stage 2: Trace Analysis

Stall Calculation

module 2

event
4

event
5

event
6

module 1

event
4

event
5

event
6

module 3

event
1

event
4

event
5

event
6

event
3

event
7

event
2

event
3

event
1

event
2

Dynamic
stage 2 3 71 5 6 3 5 6

1. Check all modules' earliest events to see which module can be unstalled

event
1

Massive
computation
redundancy!

Fig. 2. Illustration of the trace analysis stage in LightningSim, including schedule resolution and stall calculation. Schedule resolution correlates static stages
to dynamic stages. Stall calculation uses an event-based simulation to calculate the final clock count, which involves massive computation redundancy since
the same events may be checked repeatedly, and the number of events can be large.

this read event can be unstalled, we must check the current
FIFO depth on-the-fly as well as the producer module’s write
event. This requires repetitive scanning of modules and events.

This limitation raises a question: how can we dynamically
capture such dependencies with only a one-time scan? In
addition, since graphs are natural to capture dependencies, can
we use a graph-based simulator instead of using event lists?

In the remainder of the paper, we introduce the three key in-
novations addressing the three inefficiencies in LightningSim.
Sec. III discusses innovation 1, optimized trace generation
with static analysis for fixed-bound loops. Sec. IV discusses
innovation 2, optimized stall calculation, by adopting a graph-
based simulation rather than event-based, with two decoupled
steps, graph construction and graph traversal. Sec. VI discusses
innovation 3 by showcasing efficient DSE of FIFO depths for
a large design, benefiting from the decoupled stall calculation.

III. STATIC ANALYSIS FOR FIXED-BOUND LOOPS

A. Challenges and Overview

Challenges. Reducing the footprint of loops in the execution
trace poses several challenges.

• We must reliably identify fixed-bound loops and their
corresponding tripcounts. We do not require users to
annotate their code with accurate tripcounts.

• The static and dynamic start and end stage of such loops
need to be correctly identified, for both pipelined and
nonpipelined loops.

• The order and stage information of events needs to be
maintained for all events that occur within the loop—
even for simple fixed-bound loops, this data may differ
across loop iterations.

Overview. During the trace generation step, loops with fixed
bounds are identified, the tripcount is found, and the trace
logging of the basic blocks in the loop is removed. Trace
logging for the fixed loop is then inserted. This greatly reduces
the number of trace file lines generated for each fixed-bound
loop by only logging each basic block in the loop once.

During the trace analysis step, when a loop is encountered,
the loop tripcount and basic blocks are parsed and the loop
dynamic start and end stages are calculated. Then, all AXI and

FIFO events are handled for that loop. Thus we only process
each basic block in the loop once instead of every iteration.

B. Step 1: Trace Generation

Simple fixed-bound loop identification. A simple fixed-
bound loop is identified by a loop containing two basic
blocks (a header and a latch) that has a constant tripcount, as
identified by LLVM loop analysis passes [7]. This is reliable
and does not need an accurate user-defined tripcount.
Trace generation modification. The trace generation is then
modified to log each basic block in the loop only once by
moving the log statements to the pre-header of the loop and
removing the log statements from each basic block in the
loop. Events will then be logged as normal, and an end loop
statement is added to the exit block of the loop.

C. Step 2: Trace Analysis

Loop end dynamic stage. At the trace analysis step, the loop
basic blocks are parsed, setting the dynamic start and end stage
of the loop. In a pipelined region, the dynamic end stage of
the loop is set to: dynamic start stage+ loop overlap length+
II×(tripcount−1). In a non-pipelined region, the end stage of
the loop is set to: dynamic start stage+ loop overlap length+
(loop overlap length+1)× (tripcount−1). However, the loop
header basic block always executes one extra time, so the
dynamic end stage is adjusted to reflect the extra execution.
Events. To maintain correctness, we still log all events in the
execution trace. As events in the loop are analyzed, the Light-
ningSimV2 schedule resolver loops through the corresponding
blocks, and the iteration number of the loop is used to assign
the dynamic start and end stages of each event instance.

IV. DECOUPLED STALL CALCULATION

A. Graph-based Simulation: Challenges and Overview

As discussed in Sec. II-C2, the limitation of event-based
simulation is the lack of known dependencies between events,
thus requiring repeated checks. This naturally motivates the
usage of graphs to capture and record those dependencies.
Challenges. Using graphs is a well-established approach for
many applications, such as task scheduling [8, p. 469] and

Graph traversal with FIFO depth = 3

Graph traversal with FIFO depth = 1Compiled simulation graph Event lists

top

module

producer

module
1 2 3 4 5 6

consumer

module

producer
start

consumer
start

producer
end

consumer
end

FIFO
write

FIFO
write

FIFO
write

FIFO
write

FIFO
read

FIFO
read

FIFO
read

FIFO
read

1 2 3 4 5 6

1 2 3 4 5 6
Dynamic stages

function
call

events

FIFO
events

FIFO
events

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Nodes: dynamic stages
Edges: event dependencies (func calls, FIFO/AXI read/write, etc.)

top

consumer

FIFO
RAW

FIFO
RAW

FIFO
RAW

FIFO
RAW

FIFO
WAR

FIFO
WAR

FIFO
WAR

FIFO
WAR

floating
edge

Unknown FIFO read/write dependencies: floating edges
Known FIFO read/write dependencies

Known function call dependencies WAR: write after read
RAW: read after write

Final clock
count: 6

Decoupled Stall Calculation (within stage 2, trace analysis)

Step 2: Graph Traversal for Clock Count Calculation (incremental for DSE)Step 1: Dynamic Graph Construction (one-time effort)

producer

producer P1 P2 P3 P4 P5 P6

C1 C2 C3 C4 C5 C6consumer

0

0

1

1

This edge
is ignored C3 C4 C5

Floating edges are resolved based
on the FIFO depth constraint

2

3

4

5

6

6

8

7
Longest path values Final clock

count: 8

producer P1 P2 P3 P4 P5 P6

C1 C2 C3 C4 C5 C6consumer

0

0

1

1

C3

2

2

3

3

4

4

6

5

Fig. 3. Illustration of the decoupled stall calculation in LightningSimV2, including two steps. Step 1: dynamic graph construction, which is a one-time effort.
Step 2: graph traversal for clock count calculation, which is extremely lightweight and can be applied for DSE, e.g., with different FIFO depths.

deadlock detection [9]. INR-Arch [3] first proposed the use of
graphs to detect deadlocks and calculate latency estimates in
a FIFO-heavy HLS design. However, their graph construction
approach is specific to their HLS design and does not gener-
alize, especially to those with off-chip memory accesses.

Aiming to propose a general-purpose and scalable simulator
based on a simulation graph, we encounter specific challenges.

• C1: The dependencies are partially determined by hard-
ware parameters, such as FIFO depths, which can only
be modeled by checking the hardware resources at each
time step as the simulation progresses. How can we model
unknown dependencies during the graph construction?

• C2: Event dependencies differ according to different
hardware parameters, resulting in a different dependency
graph, so changing the hardware parameters may require
constructing a new graph each time. This can be pro-
hibitively expensive if a DSE of hardware parameters is
needed, e.g., deciding the optimal FIFO depths within a
large design. How can we avoid constructing a new graph
from scratch for each set of new design parameters?

• C3: To reduce the size of the simulation graph and make
it easy to analyze, the graph should use compressed
sparse row (CSR) format. CSR is most performant when
frequently querying a node’s predecessors, which best
suits the goal of simulation. However, it requires that the
predecessors of a node are known during construction
time. Given the dynamic nature of the potentially un-
known dependencies, how can we construct the graph in
CSR without knowing all the predecessors of the nodes?

• C4: If the HLS design and/or the number of events is
large, the graph will contain a huge number of nodes,
which can be slow to construct and analyze. How can we
reduce the graph size so it is memory efficient?

Overview. Fig. 3 illustrates the overall flow of our innovative
graph-based stall calculation. It has two decoupled steps:

simulation graph construction and graph traversal. Graph con-
struction is a one-time effort that scans the event lists only
once while keeping the unresolved dependencies, which we
call floating edges. Graph traversal is a lightweight process to
compute the cycle count on the simulation graph while resolv-
ing the dependencies. Given different hardware parameters, the
simulation graph remains the same but only the graph traversal
is different. In this example, we demonstrate two cases, a FIFO
depth being 1 and 3: both cases use the same simulation graph
but have different traversal results and floating edge resolution.

Using our proposed algorithm, the decoupled approach
addresses C2; the floating edge approach addresses C1. We
further propose a node pending/commit technique to address
C3 and node/edge elimination to address C4.

B. Step 1: Dynamic Graph Construction

The simulation graph is built based on dynamic stages
and events. The concept of dynamic stages is introduced in
Sec. II-B and illustrated in Fig. 2. We will introduce the
definition of an event, the simulation graph structure, the
process of building the graph, and data structures to store
auxiliary information to assist graph construction.

1) Event: Events are the fundamental building block of
simulations in both LightningSim and LightningSimV2. An
event represents the time step at which one module may affect
another. Each event is associated with a time at which it
occurs, expressed as a dynamic stage of the module in which
it exists. Multiple events may co-exist at a dynamic stage.

In LightningSimV2, the input to the graph construction pro-
cess is a stream of events that are generated from the execution
trace, as indicated in the top half of Fig. 4. LightningSimV2
defines seven different types of events:

• The call event occurs at the start of a function call in the
execution trace. Events following the call will compose a
subgraph within the simulation graph. In hardware, this
equates to a submodule’s start signal being asserted.

trace_bb::vadd::0
trace_bb::entry_proc::0
trace_bb::load_input1::0
fifo_write::0x7ffcfe665d94
trace_bb::load_input1::1

Auxiliary information trackers

Graph compiler

Trace parsing + schedule resolution:
Calculate dynamic stages for each event

</></></>

Static schedules (from HLS)

LLVM instructions
↕

FSM stages

call entry_proc
in vadd stage 6

call load_input1
in entry_proc stage 5

fifo_write id=1
in load_input1 stage 3

FIFO tracker
1 2Write queue:

Read queue:
3

8 10
4

AXI tracker
2 3Req. queue:

Resp. queue: 3 4

AXI rctl tracker
load_input1

load_input2
1 2 3 4 5 6
1 2 3 4 17 18 1916

Execution Trace (from testbench)

...

Events in trace order

load_input1

entry_proc

vadd1 2 3 4 5

1 3 4 5

1 2 3 4

2

6

Pending nodesCommitted nodes

C
all stack →Floating

edges

Deleted nodes when
in-degree is 1

Events are attached to pending nodes;
will become edges at commit

Committed

4

Pending

Fig. 4. The LightningSimV2 graph compiler architecture. Trace resolution
produces a stream of events, each of which is timestamped with a dynamic
stage in its corresponding module. These events are attached to pending nodes
within the call stack and added to tracking structures. Eventually, when a
pending node is committed, its events are used to update tracking structures
that also determine what edges need to be created in the graph.

• The return event indicates that the current function call
has reached completion. This represents the hardware
module asserting its done signal to unblock its parent
module. All pending nodes in the current module will be
committed (will be discussed later in this section) and we
return to building the subgraph for the parent module.

• FIFO read and FIFO write events correspond to a read
or write of a FIFO stream within the current function. In
hardware, a module trying to read an empty FIFO buffer
is stalled until the buffer is not empty; a module trying
to write a full FIFO buffer is stalled until it is not full.

• AXI read request and AXI read events are generated in
the execution trace during a load from off-chip memory
over an AXI interface. An AXI read request must precede
one or more AXI reads, and a minimum delay in terms of
cycles is enforced in our simulator between an AXI read
request and its first AXI read, mimicking C/RTL co-sim.

• Similarly, AXI write request, AXI write, and AXI write
response events are generated during stores to off-chip
memory. A minimum number of cycles between AXI

writes and AXI write responses is also enforced.
2) Simulation Graph Structure: Our proposed simulation

graph is composed of nodes that are either committed or
pending, edges with known source and target nodes, and
floating edges with an unknown source.

• The nodes in the simulation graph represent dynamic
stages within hardware modules, as shown in Fig. 3. Each
node can be associated with multiple events.

• The edges represent known dependencies between events
that are associated with the nodes—constraints that one
event must “happen before” another event. Each edge has
its meta-data to record the dependency type.

• The floating edges represent unknown FIFO write-after-
read (WAR) dependencies, due to unknown FIFO depths.
For a FIFO write event, it will be stalled if the FIFO
is full, and thus a FIFO WAR dependency must be
created for it. However, we must avoid hardcoding such
constraints into the graph; otherwise the graph must be
rebuilt for any FIFO depth change. Therefore, we create
a FIFO WAR floating edge to each FIFO write event
(except the first, which can never depend on a FIFO read)
but leave its source unspecified. These floating edges
will be resolved, i.e., the source will be specified, in the
second step, graph traversal, according to specific FIFO
depth values. The proposed floating edge addresses the
challenge of unknown dependencies (C1).

❒ Example. We first use a simple example in Fig. 3 to explain
the graph structure before discussing detailed edge types. It de-
picts three modules: a top module that invokes a producer
module writing to a FIFO stream and a consumer module
reading from it. In each module, we first create a node for
each dynamic stage, from 1 to 6. We notice a dependency
between FIFO reads and writes: if a write does not occur
before its corresponding read, the FIFO will be empty, and the
read will stall until the write occurs. Thus, we create edges
from FIFO writes to FIFO reads to enforce this dependency
that “writes must happen before reads”. As shown in the
compiled simulation graph, there are four such edges annotated
as FIFO RAW (read after write). Next, for each FIFO write
event for the producer module, there must be a FIFO WAR
dependency. Since the FIFO depth is unknown during graph
construction, these dependency edges are floating.

Formally, the simulation graph contains six types of edges:
• Control flow edges are the most ubiquitous in the graph.

They are used for two purposes. First, they enforce
the implicit ordering constraints between consecutive
dynamic stages of the same module. For example, since
dynamic stage 2 of any module must always come after
its dynamic stage 1, an edge must be created between
these two nodes. Second, control flow edges are used at
the start and end of each subcall, as depicted by the top
module in Fig. 3: since producer starts at top’s stage
2 and ends at its stage 4, blue arrows connect top’s stage
2 to the first stage of producer and the last stage of
producer back to top’s stage 4.

• FIFO read-after-write (RAW) edges connect each FIFO
write to the same-numbered FIFO read. As previously
mentioned, at the time that the nth FIFO read would
normally occur, the nth FIFO write must have already
occurred; otherwise the FIFO will be empty and the read
will stall until the write occurs. Either situation can be
modeled through a dependency from the write to the read.

• FIFO write-after-read (WAR) edges model dependencies
caused by a FIFO becoming full. If a FIFO has depth d,
after d writes to the FIFO, at least one read must occur
before the (d+1)st write can occur. Therefore, for a FIFO
of depth d, we must create an edge to model that the nth

write depends on the (n−d)th read. As discussed earlier,
these edges are floating edges.

• AXI read edges are used to create a dependency between
a read request on an AXI interface and its first read
transfer. Each AXI interface has a user-specified latency,
e.g., 64 cycles; during simulation, the first read transfer
is modeled as occurring at least this long (plus some
fixed overhead) after the read request. AXI write response
edges model a similar dependency between the last write
transfer on an AXI interface and the write response.

• AXI rctl edges model a more complicated dependency
that stems from the hardware implementation of AXI
interfaces. Each AXI interface has its own internal FIFO
buffer named rctl that buffers read requests; however,
once this buffer becomes full, any subsequent read re-
quests will be delayed until the active read request is fully
processed and can be removed from the rctl buffer. The
observed effect of this delay is that once the rctl buffer
is full, the first read transfer of subsequent read requests
stalls for longer than it normally would. Since a read
request is removed from the rctl buffer after its last
read transfer, a dependency is created by the last read
transfer of a read request and the first read transfer of a
request some time later.

3) Graph Compilation Process: As discussed earlier, we
prefer the simulation graph to be in CSR format, which is
memory efficient and suitable for graph traversal. However,
we must address two unique challenges: C3: a node cannot
be added to the graph until all its predecessors are known, and
C4: the graph can be prohibitively large.

To address C3, we propose to keep nodes in two statuses:
pending (depicted in white in Fig. 4) and committed (depicted
in red). Nodes are pending when their in-degree may change
as more events arrive. Once a node’s in-degree is known, it is
committed, meaning that it is added to the CSR data structures.

As events stream from the execution trace, the graph
compiler maintains a call stack of modules and a queue of
pending nodes for each, corresponding to the latest dynamic
stages in each module. For each event streamed in, the node
corresponding to its dynamic stage is annotated with the event.
Events sharing a dynamic stage are grouped onto one node.

The graph compiler commits a node when it is certain that
no more events in the execution trace will reference it. This
is possible because of the nature of the schedule resolution

process: after an event with static stage s and dynamic stage d,
no event after it in the execution trace can occur at a dynamic
stage less than (d − s). Therefore, we can always commit
pending nodes whose dynamic stages are earlier than that,
ensuring that the pending node queue for each module is never
larger than the latest static stage encountered in that module.

To address C4, we apply node elimination on the fly.
Specifically, for nodes with only one incoming edge, we
entirely remove them from the graph by combining the single
in-edge with each of its out-edges.

The proposed node pending/commit and elimination tech-
niques can largely reduce graph size, as Sec. V will show.

4) Auxiliary Information Trackers during Graph Construc-
tion: During graph construction, we need to keep track of
FIFO status and AXI events and maintain their correct orders.
We design the following three trackers, as depicted in Fig. 4.

• FIFO tracker. For each FIFO in the design, we keep a
FIFO tracker to observe any of its read or write events.
This tracker serves two purposes. First, it provides each
FIFO read or write event with a pairing key, queueing
these keys so that each read is connected to a write using
this pairing key. Second, the tracker also collects the
permanent node indices of each read and write as they
are committed; this is crucial for resolving floating WAR
edges to a FIFO read during graph traversal.

• AXI tracker. AXI trackers similarly track all events
for an AXI interface, providing events with the keys
corresponding to AXI read and AXI write response edges.
Unlike the FIFO tracker, no queue is necessary because
the source and destination of each of these edge types
always appear back-to-back in the execution trace with
no other AXI events separating them. Instead, an AXI
read request simply creates the edge key to be used
by the following read, and an AXI write (the last in a
write transaction) creates the edge key to be used by the
following write response.

• AXI rctl tracker. Modeling the dependencies caused
by the AXI rctl buffer is significantly more complex
than for FIFO and other AXI dependencies. In particular,
dependencies caused by the AXI rctl buffer rely on a
global ordering of all AXI read requests across the entire
design, which must be specially handled. Furthermore, if
a read request occurs before a subcall, any AXI transfers
occurring within the subcall must be correctly ordered
with respect to the read request in the parent module.
The AXI rctl tracker maintains the correct global
ordering using two key principles. First, pending nodes
are guaranteed to be committed in the order of their
dynamic stages, so the rctl tracker uses commit order,
rather than execution trace order, to put read requests
into the rctl buffer. Second, to handle inter-module
dependencies, the rctl tracker maintains rctl buffer
models separately for each module in the design and
splices them into the correct order when the module
return event is encountered.

C. Step 2: Graph Traversal

Once the simulation graph has been constructed, traversing
the graph to calculate the simulation cycle count becomes
a very simple and fast process of finding the longest path
through the graph. This can be done by iterating over every
node in topologically sorted order and assigning a cycle count
to the node, which is the maximum value of its predecessor
cycle count plus the corresponding incoming edge delay. The
value of the end node in the graph is the final cycle count of
the HLS design.

During graph traversal, the floating edges will be resolved,
i.e., the source node will be determined, according to the FIFO
depth parameters. The only type of floating edge used in the
LightningSimV2 is the FIFO WAR edge, pointing to FIFO
write events. Assume the FIFO between a producer and a
consumer has a depth of d. If the floating edge destination is
the nth FIFO write event, then the source must be resolved to
(n−d)th FIFO read, indicating that the FIFO is full and cannot
be written unless a FIFO read is executed. If n is smaller than
d, the FIFO write will have no dependency on any FIFO read,
and thus the floating edge can be ignored entirely.

Notably, this graph traversal does not change the simulation
graph structure, making it ideal for incremental DSE and
parallel computing.
❒ Example. We showcase two graph traversals in Fig. 3, with
FIFO depths being 1 and 3. When the FIFO depth is 1, the last
three FIFO WAR edges are resolved to their respective FIFO
reads. Specifically, P3’s incoming floating edge is resolved to
C3, because P3 is the second FIFO write and C3 is the first
FIFO read, and with FIFO depth being 1, P3 will be stalled
by C3 since the FIFO is full now. The first FIFO write is
never stalled since the FIFO depth is always larger than zero.
When the FIFO depth is 3, only the last floating edge for P6
is resolved to C3 while the first three are ignored. With the
floating edges resolved, the longest path values, annotated as
red, are computed accordingly.

Adapting an established linear-time algorithm for topolog-
ical sorting [10, p. 573], we implement our simulation by
performing a depth-first postorder traversal on the reverse
of the simulation graph. We start at the end node of the
simulation and perform a depth-first search along the reverse
direction of each directed edge in the graph, visiting each
node’s predecessors rather than its successors. After visiting
all of a node’s predecessors, we update that node’s clock cycle
according to the maximum of each predecessor node’s clock
cycle combined with the delay along that predecessor edge.

We highlight that if this depth-first traversal encounters a
cycle in the graph, it indicates that the design will deadlock—
two (or more) nodes must happen before each other, which
means they will both stall indefinitely in hardware. Thus our
simulator can perform deadlock detection with no added cost.

V. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed techniques
through several comprehensive experiments. All experiments
were evaluated on a 64-core machine using an Intel Xeon

Gold 6226R x86-64 CPU and 502 GiB of RAM, running Red
Hat Enterprise Linux Server 7.9 and tested using AMD Vitis
HLS 2021.1. We reproduce the results of LightningSim on our
system using the open-source code.1

A. Comparisons Against LightningSim

Table I shows direct comparisons with the original Light-
ningSim using the benchmark suite provided by the original
LightningSim authors [1]. We compare the following metrics
to evaluate the innovations of LightningSimV2.

• Simulated cycle counts for simulation accuracy. These
show that LightningSimV2 achieves 100% accuracy with
respect to the original LightningSim and 99.9% accuracy
with respect to C/RTL co-sim.

• Total end-to-end simulation time. On tiny designs, where
trace generation dominates the total execution time and
trace analysis takes under 0.1 seconds, LightningSimV2’s
performance is comparable to LightningSim. However,
when trace analysis takes a significant portion of the sim-
ulation, LightningSimV2 achieves considerable speedup
of up to 1.67× over the original LightningSim.

• Trace generation time (TG) and trace file size for fixed-
bound loop optimization. The fixed-bound loop optimiza-
tion technique contributes up to 1.28× speed up for trace
generation. More importantly, it reduces the amount of
trace data significantly for multiple designs that are loop-
heavy. For instance, LightningSim’s matrix multiplication
benchmark originally produced 43 kilobytes of trace
data, but through our proposed static analysis techniques,
LightningSimV2 reduces this to just 172 bytes—a 99.6%
reduction. This greatly saves memory.

• Trace analysis time (TA) for optimized stall calculation
using graph-based simulator. By avoiding event sorting
and repeated event checking (discussed in Sec. II-C) in
LightningSim, our graph-based simulation for stall cal-
culation achieves up to 3.9× speed up for trace analysis.

• Incremental stall calculation (Incr.) for efficient DSE.
The most significant speedups, however, are in incre-
mental simulation. LightningSimV2 achieves speedups
by two orders of magnitude: up to 577× with a geometric
mean of 121× speedup, trending higher for larger, more
complex designs. This speedup implies that our decou-
pled graph construction and graph traversal is highly
efficient, since the graph traversal step is extremely
lightweight with superior scalability.

B. Graph Optimization

We also analyze the impact of the optimizations discussed
in Sec. IV-B3 that reduce the size of the graph by the
node pending/commit technique and node/edge elimination.
A representative subset is shown in Table II.

We see that for most of the simple designs, our proposed
graph optimization can significantly reduce the number of
nodes and edges by more than 90%. Even on more complex

1https://github.com/sharc-lab/LightningSim/tree/v0.1.0

https://github.com/sharc-lab/LightningSim/tree/v0.1.0

TABLE I
COMPARISONS OF LIGHTNINGSIMV2 OVER LIGHTNINGSIM.

LightningSim LightningSimV2
Time Trace Time Trace

Cycles Total TG TA Incr. Line Size Total TG TA Incr. Line Size Speedup
Benchmark Cosim LS/LSv2 (s) (s) (ms) (ms) Count (bytes) (s) (s) (ms) (ms) Count (bytes) Overall TG TA Incr.

Fixed-point square root [11] 30 30 5.00 5.00 3.91 0.12 6.3K 151K 4.97 4.97 2.80 0.00 700 18K 1.01× 1.01× 1.39× 77.3×
FIR filter [11] 172 172 2.38 2.37 5.32 0.12 128K 2.4M 2.43 2.43 6.02 0.00 128K 2.4M 0.98× 0.98× 0.88× 71.4×
Fixed-point window conv [11] 35 35 3.56 3.56 2.15 0.08 67 1.7K 3.69 3.69 2.31 0.00 7 182 0.97× 0.97× 0.93× 53.3×
Floating point conv [11] 35 35 2.37 2.35 17.2 0.12 67 1.7K 2.42 2.42 1.92 0.00 7 182 0.98× 0.97× 8.96× 74.7×
Arbitrary precision ALU [11] 36 36 2.09 2.09 3.24 0.07 9 252 2.12 2.12 2.38 0.00 9 252 0.99× 0.99× 1.36× 47.9×
Parallel loops [11] 32 32 2.32 2.31 5.55 0.14 131 5.2K 2.34 2.34 4.68 0.00 131 5.2K 0.99× 0.99× 1.19× 65.4×
Imperfect loops [11] 34 34 2.38 2.37 8.25 0.12 44 1.8K 2.24 2.23 8.73 0.00 8 276 1.06× 1.06× 0.95× 69.6×
Loop with max bound [11] 31 31 2.24 2.24 2.63 0.11 2.1K 56K 2.25 2.25 1.94 0.00 224 6.1K 0.99× 0.99× 1.36× 68.8×
Perfect nested loops [11] 406 406 2.26 2.25 7.39 0.21 1.3K 30K 2.27 2.26 5.85 0.00 1.3K 30K 0.99× 0.99× 1.26× 134×
Pipelined nested loops [11] 405 405 2.25 2.24 4.86 0.16 16K 402K 2.23 2.23 1.56 0.00 140 3.7K 1.01× 1.01× 3.12× 95.8×
Sequential accumulators [11] 32 32 2.29 2.28 5.72 0.16 131 5.5K 2.29 2.28 3.88 0.00 131 5.5K 1.00× 1.00× 1.48× 76.9×
Accumulators + asserts [11] 33 33 2.31 2.31 5.61 0.15 103 5.0K 2.30 2.29 4.41 0.00 103 5.0K 1.01× 1.01× 1.27× 75.3×
Accumulators + dataflow [11] 31 31 2.31 2.30 6.23 0.19 131 3.5K 2.29 2.29 3.96 0.00 131 3.5K 1.01× 1.00× 1.58× 93.7×
Static memory example [11] 66 66 2.24 2.24 4.37 0.17 4.2K 192K 2.18 2.18 3.47 0.00 480 17K 1.03× 1.03× 1.26× 78.8×
Pointer casting example [11] 408 408 2.18 2.17 5.18 0.14 819 25K 2.15 2.15 1.85 0.00 7 209 1.01× 1.01× 2.80× 92.4×
Double pointer example [11] 25 25 2.05 2.04 5.05 0.16 490 21K 2.14 2.14 5.18 0.00 170 6.0K 0.96× 0.96× 0.98× 79.3×
AXI4 master [11] 178 177 2.16 2.16 7.93 1.53 416 14K 2.19 2.18 4.10 0.00 128 3.3K 0.99× 0.99× 1.93× 568×
AXIS w/o side channel [11] 52 51 2.04 2.04 2.10 0.09 103 2.0K 2.06 2.06 1.21 0.00 7 158 0.99× 0.99× 1.73× 61.5×
Multiple array access [11] 252 252 2.24 2.24 2.79 0.14 255 8.2K 2.18 2.18 1.64 0.00 7 213 1.03× 1.03× 1.70× 92.4×
Resolved array access [11] 131 131 2.24 2.23 6.39 0.20 256 14K 2.20 2.19 3.68 0.00 8 332 1.02× 1.02× 1.74× 112×
URAM with ECC [11] 115 115 2.29 2.29 6.28 0.26 70 3.2K 2.21 2.21 4.86 0.00 22 828 1.04× 1.04× 1.29× 114×
Fixed-point Hamming [11] 259 259 2.42 2.41 5.76 0.13 515 13K 2.37 2.36 1.46 0.00 7 189 1.02× 1.02× 3.94× 87.8×
Unoptimized FFT [12] 261,781 261,150 2.91 2.65 260 78.0 39K 1.2M 2.78 2.68 107 0.82 39K 1.2M 1.05× 0.99× 2.43× 94.8×
Multi-stage FFT [12] 3,770 3,772 2.66 2.62 42.4 0.83 5.7K 149K 2.67 2.60 66.7 0.00 5.7K 149K 1.00× 1.01× 0.64× 210×
Huffman encoding [12] 10,283 10,272 2.83 2.59 233 3.94 25K 987K 2.63 2.53 102 0.01 24K 935K 1.07× 1.02× 2.29× 266×
Matrix multiplication [12] 1,036 1,036 2.64 2.63 11.6 0.24 2.1K 43K 2.61 2.61 3.51 0.00 7 172 1.01× 1.01× 3.31× 155×
Parallelized merge sort [12] 131 131 2.23 2.22 14.1 0.34 994 26K 2.27 2.26 9.62 0.00 994 26K 0.98× 0.98× 1.47× 90.4×
Vector add with stream [13] 4,261 4,261 4.95 4.29 658 407 70K 2.3M 4.48 4.19 286 1.00 70K 2.2M 1.10× 1.02× 2.31× 406×
FlowGNN GIN [2] 260,359 260,337 48.3 25.6 23 s 2.2 s 1.9M 169M 28.9 20.0 8.8 s 3.80 1.9M 169M 1.67× 1.28× 2.57× 577×
FlowGNN GCN [2] 112,836 112,561 41.5 30.1 11 s 2.1 s 809K 61M 30.9 27.5 3.5 s 6.20 809K 61M 1.34× 1.09× 3.31× 335×
FlowGNN GAT [2] 17,282 17,282 46.3 37.7 8.6 s 751 346K 30M 41.6 35.8 5.9 s 4.75 346K 30M 1.11× 1.05× 1.46× 158×
FlowGNN PNA [2] 344,206 344,206 45.0 24.3 21 s 1.4 s 1.9M 161M 30.5 22.4 8.1 s 4.19 1.9M 161M 1.48× 1.09× 2.55× 333×
FlowGNN DGN [2] 110,710 110,710 36.0 24.5 11 s 1.3 s 1.1M 42M 26.9 20.8 6.0 s 2.76 1.1M 42M 1.34× 1.18× 1.90× 473×

Cosim Cycles: Cycle count reported by C/RTL co-simulation. LS/LSv2 Cycles: Cycle count reported by both LightningSim and LightningSimV2.
TG: Time taken for trace generation. TA: Time taken for trace analysis. Incr.: Time taken for incremental simulation after changing FIFO depths.
In all columns, K represents 1,000; M represents 1,000,000.

TABLE II
THE EFFECT OF OUR PROPOSED OPTIMIZATIONS ON THE GRAPH SIZE.

Unoptimized Optimized % Reduced
Benchmark Nodes Edges Nodes Edges Nodes Edges

Pipelined nested loops [11] 408 407 2 1 99.51% 99.75%
AXI4 master [11] 176 181 7 12 96.02% 93.37%
Unoptimized FFT [12] 296K 299K 2.0K 5.1K 99.31% 98.29%
Multi-stage FFT [12] 3.9K 3.9K 10 20 99.74% 99.49%
Huffman encoding [12] 10K 10K 62 122 99.40% 98.83%
Matrix multiplication [12] 1.0K 1.0K 2 1 99.81% 99.90%
Parallelized merge sort [12] 138 141 6 9 95.65% 93.62%
Vector add with stream [13] 17K 41K 16K 41K 1.35% 0.54%
FlowGNN GIN [2] 236K 419K 56K 238K 76.37% 43.11%
FlowGNN GCN [2] 143K 323K 70K 250K 51.05% 22.61%
FlowGNN GAT [2] 150K 227K 7.4K 84K 95.09% 62.91%
FlowGNN PNA [2] 392K 501K 34K 143K 91.32% 71.50%
FlowGNN DGN [2] 136K 257K 43K 164K 68.75% 36.42%

designs like the FlowGNN benchmarks, we typically see a
reduction in nodes by more than 50% and in edges by more
than 20%. Most designs have significant improvement, clearly
demonstrating the effectiveness and memory efficiency of our
optimizations. Designs that are densely packed with events at
nearly every stage do not benefit as much from our techniques,
as demonstrated by the vector add with stream benchmark.

C. Larger Designs

Sec. V-A only includes benchmarks where LightningSim’s
trace generation (TG) time dominates compared to its trace
analysis (TA) time. To evaluate our scalability to larger de-
signs, we test two designs where LightningSim’s TA domi-
nates TG. INR-Arch [3] is a FIFO-heavy design for computing
implicit neural representations for image processing applica-
tions. SkyNet [14] implements a DNN for object tracking.

The results in Table III show LightningSimV2’s scalability.
Our graph-based approach reduces trace analysis time substan-
tially, yielding up to 3.5× overall speedup on large designs.

D. Memory Usage

LightningSimV2 also boasts superior memory efficiency
compared to LightningSim. We measure the maximum res-
ident set size during execution and report the results in
Table IV. We see that our graph-based simulation techniques
save up to 77% memory usage, especially on larger designs.

VI. CASE STUDY: FAST DSE FOR FIFO DEPTHS

In this case study, we demonstrate the parallelizability of
our incremental stall calculation algorithm and see how it can
be used for fast DSE for hundreds of FIFO depths.

TABLE III
RESULTS ON LARGER DESIGNS.

Benchmark LS LSv2 ∆

INR-Arch [3] 7.56 min. 2.14 min. 3.5×
– Trace generation 1.50 min. 1.19 min. 1.3×
– Trace analysis 6.05 min. 0.95 min. 6.4×
– Trace size 2.88 GB 1.98 GB ↓ 31%

SkyNet [14] 155.66 min. 51.71 min. 3.0×
– Trace generation 20.62 min. 16.70 min. 1.2×
– Trace analysis 135.04 min. 35.01 min. 3.9×
– Trace size 30.45 GB 29.92 GB ↓ 2%

TABLE IV
THE EFFECT OF OUR PROPOSED OPTIMIZATIONS ON RAM USAGE.

Benchmark LS RAM LSv2 RAM % Reduced

FlowGNN GIN [2] 1.36 GB 1.03 GB −24.62%
FlowGNN GCN [2] 1.06 GB 0.91 GB −14.22%
FlowGNN GAT [2] 1.25 GB 0.91 GB −26.69%
FlowGNN DGN [2] 1.15 GB 0.92 GB −19.40%
INR-Arch [3] 4.63 GB 2.15 GB −53.56%
SkyNet [14] 262.84 GB 59.35 GB −77.42%

In the original LightningSim, despite the nice feature of in-
cremental stall calculation, it directly operates on and modifies
event lists. This is unfriendly for parallel computing: to use
multiple CPU cores, the event lists must be explicitly copied to
each, incurring heavy communication and memory overhead.

In contrast, in LightningSimV2, the optimized graph struc-
ture can be trivially parallelized by running graph traversal
across multiple CPU cores with different hardware parameters
for floating edge resolution. This process is depicted in Fig. 5.
We emphasize that the simulation graph does not need to be
copied to each core for parallel execution, since our graph
traversal process does not mutate the graph itself, so it can be
shared among all cores. The only data that is kept specific to
each core are the simulation hardware parameters and internal
structures for computing clock cycles for each node. This
makes DSE easily scalable to large multiprocessor systems.

To demonstrate the scalability of this process, we perform
a case study using the INR-Arch [3] design from Sec. V-C,
which is a large HLS dataflow design with 238 FIFO streams.
After a full simulation of this design, we sample 128 points
from the FIFO design space and process them in parallel on
64 CPU cores with both LightningSim and LightningSimV2.

Fig. 6 shows the comparison. LightningSimV2 significantly
speeds up every step of the simulation, clearly demonstrating
its scalability and potential for DSE. Specifically, trace gen-
eration is 20% faster thanks to our static analysis techniques,
which reduced the trace size by 31% from 2.88 GB to 1.98
GB. This reduction in trace data leads to 2.1× faster schedule
resolution. The time it takes to evaluate a single design
point reduces from over 4 minutes to 0.53 seconds. More
importantly, the biggest benefit of LightningSimV2 is in the
parallel evaluation of design points: what takes LightningSim
over 18 minutes to perform using 64 cores is now completed
by LightningSimV2 in just 2.64 seconds—a 426× speedup.

Main memory
Core 1

traverse(G, FIFO1_depth = 5, ...)

...

cycle
count

Simulation graph G:
Read-only; no copy, no modification

floating edge

floating edge
Core 2

traverse(G, FIFO3_depth = 8, ...)
Core 3

traverse(G, FIFO9_depth = 2, ...)

cycle
count
cycle
count

Parallel computing in multicore

(No change during DSE) Incremental Stall Calculation

Repeated for DSE: another
batch of design points

Fig. 5. Parallel computing for DSE. The graph construction is a one-time
effort: the compiled simulation graph G will not be changed or modified, and
thus is read-only and will not be copied to different cores. During DSE, only
the incremental stall calculation step is re-executed in parallel with a batch
of design points.

90.05 s
118.76 s

244.50 s

1124.69 s

LightningSim DSE

71.43 s
56.67 s

Time saved
1446.72 s

LightningSimV2 DSE

Fig. 6. A breakdown of time spent when performing DSE for FIFO depths
using LightningSim vs. LightningSimV2: blue represents trace generation,
orange represents schedule resolution, green represents the time to evaluate
a single design point, and red represents DSE across 128 design points.
LightningSimV2 is so fast that the time needed to evaluate a single design
point (0.53 seconds) and DSE across 128 design points (2.64 seconds) is
nearly invisible in the chart.

Overall, LightningSimV2 reduces the total experiment time
by 24 minutes, or 91.7%, demonstrating a clear advantage over
LightningSim for DSE, especially for large-scale applications.

VII. CONCLUSION

This work proposed LightningSimV2, a fast and scalable
simulation tool for HLS designs. It addresses several inef-
ficiencies in LightningSim through three major innovations:
fixed-loop bound optimization in IR trace generation, graph-
based simulation using decoupled graph construction and
graph traversal, and incremental parallelizable DSE. Compared
to the original LightningSim, LightningSimV2 achieves up to
3.5× speedup for end-to-end simulation, up to 6.4× speedup
for trace analysis, and up to 577× speed up for incremental
stall calculation. We also demonstrated how these techniques
make LightningSimV2 well-suited for efficient DSE of FIFO
depth parameters even for designs with hundreds of FIFOs.

LightningSimV2 also offers new opportunities for future
work. Although LightningSimV2, like the original Light-
ningSim, does not yet support nondeterministic behavior in
HLS designs, its simulation graph structure provides the
groundwork for partial simulation of HLS designs, which
could be useful in implementing nondeterministic constructs.

REFERENCES

[1] R. Sarkar and C. Hao, “LightningSim: Fast and accurate trace-based
simulation for high-level synthesis,” in 2023 IEEE 31st Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). Marina Del Rey, CA, USA: IEEE, May 2023, pp. 1–11.

[2] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “FlowGNN:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). Montreal, QC, Canada:
IEEE, Feb. 2023, pp. 1099–1112.

[3] S. Abi-Karam, R. Sarkar, D. Xu, Z. Fan, Z. Wang, and C. Hao,
“INR-Arch: A dataflow architecture and compiler for arbitrary-order
gradient computations in implicit neural representation processing,”
in Proceedings of the 42nd IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’23. San Francisco, CA, USA:
Association for Computing Machinery, Nov. 2023.

[4] M. Abderehman, J. Patidar, J. Oza, Y. Nigam, T. A. Khader, and
C. Karfa, “FastSim: A fast simulation framework for high-level syn-
thesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 5, pp. 1371–1385, May 2022.

[5] Y.-K. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, parallel, and
accurate simulator for HLS,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4828–
4841, Dec. 2020.

[6] J. Zhai, J. Hu, X. Tang, X. Ma, and W. Chen, “CYPRESS: Combining
static and dynamic analysis for top-down communication trace com-
pression,” in SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis. New Orleans, LA, USA:
IEEE, Nov. 2014, pp. 143–153.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer
Society, Mar. 2004, p. 75.

[8] S. S. Skiena, The Algorithm Design Manual, 2nd ed. London: Springer,
2008.

[9] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller, “A graph
based approach for MPI deadlock detection,” in Proceedings of the 23rd
International Conference on Supercomputing, ser. ICS ’09. New York,
NY, USA: Association for Computing Machinery, Jun. 2009, pp. 296–
305.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 4th ed. Cambridge, Massachusett: The MIT Press, 2022.

[11] Xilinx, “Basic examples for Vitis HLS,” GitHub, Apr. 2021.
[12] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for

FPGAs,” May 2018.
[13] Xilinx, “Vitis accel examples’ repository,” GitHub, Aug. 2022.
[14] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,

T. Huang, H. Shi, W.-M. Hwu, and D. Chen, “SkyNet: A hardware-
efficient method for object detection and tracking on embedded sys-
tems,” Proceedings of Machine Learning and Systems, vol. 2, pp. 216–
229, Mar. 2020.

	Introduction
	Background and Motivations
	HLS Simulation
	LightningSim Workflow
	LightningSim Limitations
	Fixed-Bound Loops
	Event-Based Simulation

	Static Analysis for Fixed-Bound Loops
	Challenges and Overview
	Step 1: Trace Generation
	Step 2: Trace Analysis

	Decoupled Stall Calculation
	Graph-based Simulation: Challenges and Overview
	Step 1: Dynamic Graph Construction
	Event
	Simulation Graph Structure
	Graph Compilation Process
	Auxiliary Information Trackers during Graph Construction

	Step 2: Graph Traversal

	Experimental Results
	Comparisons Against LightningSim
	Graph Optimization
	Larger Designs
	Memory Usage

	Case Study: Fast DSE for FIFO Depths
	Conclusion
	References

