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ABSTRACT
We propose a lightweight deep convolutional neural network (lCNN) to estimate cosmological parameters from simulated three-
dimensional DM halo distributions and associated statistics. The training dataset comprises 2000 realizations of a cubic box with
a side length of 1000 ℎ−1Mpc, and interpolated over a cubic grid of 3003 voxels, with each simulation produced using 5123 DM
particles and 5123 neutrinos . Under the flatΛCDM model, simulations vary standard six cosmological parameters includingΩ𝑚,
Ω𝑏, ℎ, 𝑛𝑠 , 𝜎8, 𝑤, along with the neutrino mass sum, 𝑀𝜈 . We find that: 1) within the framework of lCNN, extracting large-scale
structure information is more efficient from the halo density field compared to relying on the statistical quantities including the
power spectrum, the two-point correlation function, and the coefficients from wavelet scattering transform; 2) combining the halo
density field with its Fourier transformed counterpart enhances predictions, while augmenting the training dataset with measured
statistics further improves performance; 3) achieving high accuracy in inferring Ω𝑚, ℎ, 𝑛𝑠 , and 𝜎8 by the neural network model,
while being inefficient in predicting Ω𝑏,𝑀𝜈 and 𝑤; 4) compared to the simple random forest network trained with three statistical
quantities, lCNN yields unbiased estimations with reduced statistical errors: approximately 33.3% for Ω𝑚, 20.0% for ℎ, 8.3%
for 𝑛𝑠 , and 40.0% for 𝜎8. Our study emphasizes this lCNN-based novel approach in extracting large-scale structure information
and estimating cosmological parameters.
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1 INTRODUCTION

One of the compelling challenges in modern cosmology is the pre-
cise estimation of cosmological parameters. With the continuous
development of observational techniques, our understanding of the
Universe is progressively deepening. However, to comprehensively
and accurately understand the evolution and nature of the Universe,
key parameters such as the expansion rate and dark energy density
need more sophisticated measurement and analysis. This is crucial
for validating cosmological models and unlocking the puzzles of the
Universe such as and Hubble and 𝑆8 tensions. High-precision pa-
rameter estimates will validate or challenge existing theories, e.g.,
the ΛCDM model (Weinberg 1989; Peebles & Ratra 2003; Li et al.
2011), leading to greater progress in understanding the nature of the
Universe.

The large-scale structure (LSS) of the Universe holds significant
cosmological information. These vast and intricate formations de-
pict the distribution, accumulation, and evolution of matter in the
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Universe, serving as crucial observables for comprehending cosmic
origins and evolution (Bardeen et al. 1986; De Lapparent et al. 1986;
Huchra et al. 2012; Tegmark et al. 2004; Guzzo et al. 2014). Through
the observation and analysis of LSS, we can track the evolution of the
Universe, comprehend its expansion history across various redshifts,
explore the formation mechanisms of galaxy clusters and superclus-
ters, and investigate the impacts of DM and dark energy on the
evolution of LSS.

At present, the two-point correlation function (2PCF) and its
Fourier counterpart, the power spectrum, are the most commonly
used statistical tools for analyzing LSS(Zhong et al. 2024), due to
the fact that their sensitivity to both the geometry and the cosmic
evolution (Kaiser 1987; Ballinger et al. 1996; Eisenstein et al. 1998;
Blake & Glazebrook 2003; Seo & Eisenstein 2003), allowing for the
effective extraction of information regarding Gaussian perturbations.
These methods have been successfully applied in analyzing galaxy
redshift surveys such as the 2dFGRS (Colless et al. 2003), 6dFGS
(Beutler et al. 2011), the WiggleZ Survey (Riemer–Sørensen et al.
2012), and the SDSS Survey (York et al. 2000; Eisenstein et al. 2005;
Percival et al. 2007; Anderson et al. 2014; Samushia et al. 2014; Ross
et al. 2015; Beutler et al. 2017; Sánchez et al. 2017; Alam et al. 2017;
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Chuang et al. 2017; Neveux et al. 2020). However, they encounter
difficulties in extracting small-scale information, e.g., ≲ 40 ℎ−1Mpc,
from the LSS due to the pronounced influence of nonlinear structure
evolution caused by gravitational collapse on such scales. Conse-
quently, direct comparisons between observations and theories on
the nonlinear scales become challenging.

Alternative statistical measures have been turned to in probing
the small-scale properties of the Universe beyond 2PCF. The three-
point correlation function (Sabiu et al. 2016; Slepian et al. 2017)
has been utilized to improve cosmological constraints, while the
more complicated four-point correlation function (Sabiu et al. 2019),
has demonstrated more stringent constriants. Furthermore, more re-
cently, Lavaux & Wandelt (2012) employed cosmic voids as a means
to probe the cosmic geometry. Additionally, Li et al. (2017) explored
the redshift dependence of the 2PCF along the line-of-sight as a
probe for cosmological parameters. The symmetry of galaxy pairs
was tested (Marinoni & Buzzi 2010) and the redshift dependence of
the Alcock-Paczynski effect (AP effect) can be exploited to mitigate
redshift distortions (RSDs) (Li et al. 2015). Additionally, Li et al.
(2018) utilized the tomographic AP method on SDSS galaxy data to
obtain a strong constraint on dark energy.

More recently, the mark weighted correlation function
(MCF) (White 2016) has proposed as an alternative approach. It
assigns density weights to various galaxy features to extract non-
Gaussian information on LSS. Demonstrated effectiveness in captur-
ing detailed clustering information has led to significantly enhanced
constraints on cosmological parameters such as Ω𝑚 and 𝑤 (Yang
et al. 2020; Lai et al. 2023; Yin et al. 2024). Moreover, Fang et al.
(2019); Yin et al. (2024) utilized the 𝛽-skeleton statistics to constrain
cosmological parameters.

Although the methods mentioned above can extract rich informa-
tion from LSS, they also exhibit certain drawbacks. Some methods
are overly complex and demand substantial computational resources.
Moreover, no single statistical method can completely extract all the
information embedded within LSS. In recent years, the rapid devel-
opment and application of machine learning have introduced new
and powerful technical tools for astronomical data analysis, offering
innovative solutions to the challenges encountered in survey data
analysis (Way et al. 2012; Chen & Zhang 2014; Jordan & Mitchell
2015; Rodríguez-Mazahua et al. 2016; Ball et al. 2017; El Bouchefry
& de Souza 2020; Sen et al. 2022). Machine learning-based data anal-
ysis methods offer significant advantages over traditional approaches
in terms of efficiency, accuracy, and feature extraction capabilities.
For instance, Wu et al. (2021, 2023) developed a deep learning tech-
nique to infer the non-linear velocity field from the DM density field.
In addition, (Wang et al. 2023) present a deep-learning technique for
reconstructing the dark-matter density field from the redshift-space
distribution of dark-matter halos.

Ravanbakhsh et al. (2016); Pan et al. (2020) utilized convolu-
tional neural networks (CNNs) to extract information from 3D DM
distribution and accurately estimate cosmological parameters. Mean-
while, (Lazanu 2021) employed the Quĳote simulation (Villaescusa-
Navarro et al. 2020) to estimate cosmological parameters from 3D
DM distribution using CNNs, comparing the constraints with those
obtained from power-spectrum-based methods. Additionally, Hortua
(2021) utilized Quĳote simulation data to estimate cosmological pa-
rameters from a Bayesian neural network, resulting in a posterior
distribution of parameters. Recently, Hwang et al. (2023) applied the
Vision Transformer, known for its advantages in natural language
processing, to the estimation of cosmological parameters, and com-
pares its performance with traditional CNNs and 2PCF.

In this study, we explore a deep-learning-based approach to ex-

tract cosmological information from the halo number density field.
In contrast to previous studies (Lazanu 2021; Ravanbakhsh et al.
2016; Pan et al. 2020), we utilize the halo number density field
instead of the DM particle density field. Additionally, we incorpo-
rate redshift-space distortion (RSD) effects into our mock samples
based on a fiducial cosmology, aiming to more realistically reflect
real observations. Using the halo catalog of the Quĳote’s LH𝜈𝑤

simulation (Villaescusa-Navarro et al. 2020), our proposed lCNN
framework demonstrates the ability to provide reliable constraints on
cosmological parameters. Furthermore, we observe that by combin-
ing various statistics as input to the lCNN, the performance of the
neural network can be noticeably enhanced.

This paper is part of the "Dark-AI" project1, a project aims to
apply state-of-the-art machine learning algorithms to address frontier
problems in cosmology.The structure of this paper is as follows. In
Sect. 2, we introduce the samples utilized for training and testing,
whereas in Sect. 3, we outline the architecture of our neural network.
Sect. 4 is dedicated to presenting the results. Finally, we conclude in
Sect. 5 by discussing the results.

2 DATA

To estimate cosmological parameters, training and test samples
are constructed using the DM halo catalogues from LH𝜈𝑤 sim-
ulations, a subset of 2000 simulations within the Quĳote simu-
lations (Villaescusa-Navarro et al. 2020)–an ensemble of publicly
available 𝑁-body simulations. These simulations utilize the TreePM
code Gadget-III (Springel 2005) and are conducted in boxes with side
length 1 ℎ−1Gpc. The LH𝜈𝑤 simulations offer various cosmological
results, evolving 5123 DM particles together with 5123 neutrino par-
ticles. For this study, we focus on the snapshot at 𝑧 = 0.5. Beginning
from 𝑧 = 127, the simulations evolve over time, with matter power
spectra and transfer functions obtained from CAMB (Lewis et al.
2000), appropriately adjusted. These quantities are used to determine
displacements and peculiar velocities via second-order perturbation
theory, which are then employed to assign initial particle positions
on a regular grid using the 2LPT2. The simulations are executed
by employing Latin-hypercube sampling, a statistical technique for
generating a quasi-random sample of parameter values from a mul-
tidimensional distribution, with 7 cosmological parameters. The pa-
rameter ranges are as follows: Ω𝑚 ∈ [0.1, 0.5], Ω𝑏 ∈ [0.03, 0.07],
ℎ ∈ [0.5, 0.9], 𝑛𝑠 ∈ [0.8, 1.2], 𝜎8 ∈ [0.6, 1.0], 𝑀𝜈 ∈ [0, 1], and
𝑤 ∈ [−1.3,−0.7].

In this study, we performed the following preprocessing steps on
the halo catalogs in the Quĳote LH𝜈𝑤 simulations to make it avail-
able as data for use by the neural network: 1) The RSD effect was
incorporated along the line of sight (LoS) to more accurately repro-
duce real observational conditions, as expressed by:

𝒔 = 𝒔0 + 𝒗 · 𝑧
𝑎𝐻 (𝑎) (1)

where 𝒔0 is the original position of halos,while 𝒔 is the new positions
after the RSD effect is considered.

2) According to the different cosmological parameters of each
simulation, we converted the halo positions into a fiducial cosmology
background. The fiducial cosmology is derived from Planck 2018
measurements (Aghanim et al. 2020), where Ω𝑚 = 0.3071, 𝑤 =

1 https://dark-ai.top/
2 https://cosmo.nyu.edu/roman/2LPT/
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Figure 1. Distribution of cosmological parameters across the simulation
boxes following the preprocessing steps on the halo catalogs in the Quĳote
LH𝜈𝑤 simulations.As observed, by discarding simulations with halo number
densities that are too low, the resulting distributions for each parameter exhibit
slight deviations from a uniform distribution.

−1. The relation between the Quĳote cosmologies and the fiducial
cosmology is expressed by:

𝑠⊥ = 𝑠0
⊥
𝑑
𝑓

𝐴
(𝑧)

𝑑𝐴(𝑧)
, 𝑠∥ = 𝑠0

∥
𝐻 (𝑧)
𝐻 𝑓 (𝑧)

(2)

where 𝑑𝐴(𝑧) and 𝐻 (𝑧) represent the angular diameter distance and
the Hubble parameter at redshift 𝑧, respectively. The superscript 𝑓 de-
notes the fiducial cosmology, while 𝒔⊥ and 𝒔∥ represent components
perpendicular and parallel to LoS, respectively.

3) After conversion from the fiducial cosmology, the box sizes
are no longer the same in all three dimensions. Therefore, to con-
veniently feed the data cubes into the neural network, we cut the
converted boxes into sides of equal length, specifically 744 ℎ−1Mpc.
Consequently, only the halos within such box in each simulation are
considered.

4) Considering that DM halos with very low mass contribute sig-
nificant noise, we implemented a cutoff for small mass halos. This
cutoff was chosen appropriately such that the number of DM halos
has a density equal to 2 × 10−4 ℎ3Mpc−3 in each box to be com-
patible with current spectral observations . Furthermore, if the halo
number density in a simulation box is lower than that value, the box
is discarded, resulting in 1710 data cubes remaining. Of these, 1500
are used for training and 210 for testing. Note that, the parameter dis-
tributions deviate from a uniform distribution due to the discarding
of some simulation boxes corresponding to different cosmological
models, as illustrated in Fig. 1.

5) The halo number density field is discretized into mesh cells by
assigning the haloes to a 3003 mesh using the Cloud-in-Cell (CIC)
scheme, with a cell resolution of (2.48 ℎ−1Mpc)3.

2.1 Training and Test Samples

After preprocessing the simulation data, as mentioned previously, we
obtained halo catalogs at the redshift of 0.5 for 1710 cosmological
models. We utilized the spatial distribution information of halos
together with various associated statistics as both training and test
sets for the neural network. This study utilized three datasets for
training and testing, as described below.

Dataset A: we utilized the three-dimensional distribution of the
DM halo number density field, 𝑛(𝒙), which is interpolated onto a
3003 mesh with a resolution of (2.48 ℎ−1Mpc) along each side,
to extract the input cosmological parameters. The first and second
rows of Fig. 2 display the projected halo number density fields in
three different cosmological models, along with their corresponding
zoomed-in plots.

Dataset B: We utilized the Fourier-transformed halo density field
with 3003 grids. Letting 𝛿(k) denote the Fourier transform of the
overdensity 𝛿(x), defined by

𝛿(𝒌) =
∫

𝑑3𝑥

(2𝜋)3/2 𝛿(𝒙) exp(−𝑖𝒌 · 𝒙) , (3)

where 𝛿(𝒓) = 𝑛(𝒓)/𝑛̄ − 1 is the density contrast, a dimensionless
measure of overdensity at each point.

In practice, to complement 𝑛(𝒙), we retain only the low-frequency
(i.e. large-scale) modes in the Fourier space field, which are not
captured by the configuration space field. Specifically, we filter 𝛿(𝒌)
with |𝑘 | < 0.5ℎMpc−1, resulting in a datacube of Fourier modes on
a 603 grid. The third and fourth rows of Fig. 2 show the amplitudes of
the Fourier fields for the three different cosmological models, along
with their corresponding zoomed-in plots. Here, the zero-frequency
mode is located at the center of each plot. Note that both amplitude
and phase are input into the neural network, where each Fourier mode
can be expressed as 𝛿 = 𝐴𝑒𝑖𝜙 , with 𝐴 representing amplitude and 𝜙

representing phase.
Dataset C: in addition to the density field information, we have

integrated various statistics into our training samples. These statistics
comprise the two-point correlation function of halos, 𝜉 (𝑟), and the
corresponding power spectrum, 𝑃(𝑘), and the wavelet scattering
transform (WST) coefficients, labeled as 𝑆𝑛, where 𝑛 denotes the
order of WST coefficients.

The power spectrum is given by the following average over Fourier
space:〈
𝛿(𝒌)𝛿∗ (𝒌′)

〉
= (2𝜋)3𝑃(𝑘)𝛿3 (𝒌 − 𝒌′) . (4)

The relationship between 𝑝(𝑘) and 𝜉 (𝑟) is a Fourier transform,
which can be mathematically expressed as follows,

𝜉 (𝑟) ≡ ⟨𝛿(𝒙)𝛿(𝒙 − 𝒓)⟩ =
∫

𝑑3𝑘

(2𝜋)3 𝑃(𝑘)𝑒
𝑖𝒌 · (𝒙−𝒙′ ) . (5)

Considering the relatively large uncertainty of statistics at small
scales due to noise, 𝜉 (𝑟) and 𝑃(𝑘) are normalized by their mean
value,namely we only utilized their shapes and focused on specific
ranges: 𝑟 ∈ [20, 200] ℎ−1Mpc for 𝜉 (𝑟) and 𝑘 ∈ [0.05, 0.6] ℎMpc−1

for 𝑃(𝑘). In other words, we discarded magnitude information, keep-
ing only shape information.

The wavelet scattering transform (WST) was originally introduced
in the context of signal processing in computer vision, as discussed
by Bruna & Mallat (2013); Mallat (2012). This method serves the
purpose of capturing the statistical properties inherent in an input
field. In the WST framework, an input field 𝐼 (𝒙) undergoes two
primary nonlinear operations: wavelet convolutions and modulus
calculations. Essentially, when Ψ 𝑗1 ,𝑙1 (𝒙) denotes an oriented wavelet

MNRAS 000, 1–10 (2024)
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Figure 2. Projected DM halo number density fields of a region of
744 × 744 × 124 (ℎ−1Mpc)3 and their corresponding Fourier coun-
terparts, selected from the training set. Three different cosmological
models are presented from left to right, with the parameters as follows:
(Ω𝑚,Ω𝑏 , ℎ, 𝑛𝑠 , 𝜎8, 𝑀𝜈 , 𝑤) = {0.32, 0.045, 0.75, 0.93, 0.74, 0.07, −1}
(left), {0.10, 0.049, 0.88, 1.08, 0.93, 0.11, −0.94} (middle), and
{0.13, 0.054, 0.62, 0.90, 0.94, 1.00, −1.18} (right). The first and sec-
ond rows display the spatial distributions of the halo number density field
and their zoomed-in plots, where we show the projected field with a thin slice
depth of 124 ℎ−1Mpc. The third and last rows correspond to the amplitudes
of the corresponding Fourier modes of the density fields and their zoomed-in
versions, where the depth along LoS is within Δ𝑘 ∈ [−0.5, 0.5] ℎMpc−1.

probing a scale 𝑗1 and angle 𝑙1, the WST operation transforms 𝐼 (𝒙)
as follows:

𝐼′ (𝒙) =
��𝐼 (𝒙) ⊗ Ψ 𝑗1 ,𝑙1 (𝑥)

�� . (6)

Here, ⊗ represents convolution. The averaging of this operation pro-
duces a WST coefficient 𝑆𝑛, essentially a real number describing
the characteristics of the field. Through the utilization of a set of
localized wavelets Ψ 𝑗1 ,𝑙1 (𝒙), exploring different scales 𝑗1 and angles
𝑙1, repeated iterations of this process generate a scattering network.
The WST coefficients, 𝑆𝑛, up to order 𝑛 = 2, are determined by the
following relationships:

𝑆0 = ⟨|𝐼 (𝒙) |⟩ ,
𝑆1 ( 𝑗1, 𝑙1) =

〈��𝐼 (𝒙) ⊗ Ψ 𝑗1 ,𝑙1 (𝒙)
��〉 ,

𝑆2 ( 𝑗2, 𝑙2, 𝑗1, 𝑙1) =
〈��(��𝐼 (𝒙) ⊗ Ψ 𝑗1 ,𝑙1 (𝒙)

��) ⊗ Ψ 𝑗2 ,𝑙2 (𝒙)
��〉 .

(7)

Here, < · > denotes averaging over samples. Generally, a family
of wavelets Ψ 𝑗1 ,𝑙1 (𝒙) can be generated by applying dilations and
rotations to a mother wavelet. In our study, the mother wavelet is a
solid harmonic multiplied by a Gaussian envelope, taking the form
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Figure 3. Three statistics are utilized as training data for cosmological pa-
rameter inference. They are derived from the same density fields representing
three distinct cosmologies, as depicted in Fig. 2. According to Eqs. 4, 5 and 6,
the power spectra, 2PCFs, and WST coefficients for the halo number density
fields are presented from top to bottom, respectively. In the third row, the red
and blue dots represent the WST coefficients of 𝑆1 and 𝑆2, respectively, each
of which is normalized by its mean value.

of

Ψ𝑚
𝑙
(𝒙) = 1

(2𝜋)3/2 e−|𝒙 |
2/2𝜎2

|𝒙 |𝑙𝑌𝑚
𝑙
( 𝒙

|𝒙 | ) , (8)

where, 𝑌𝑚
𝑙

represents the Laplacian spherical harmonics, and 𝜎 de-
notes the Gaussian width measured in field pixels. In this study, we
set𝜎 = 0.25. Given a 3D input field, along with a total number of spa-
tial dyadic scales 𝐽 and total orientations 𝐿, WST coefficients can be
calculated to any order. Here, the coefficient order is defined as a func-
tion of ( 𝑗 , 𝑙), where 𝑗 ∈ [0, 1, ..., 𝐽 −1, 𝐽] and 𝑙 ∈ [0, 1, ..., 𝐿−1, 𝐿].
Detailed information on the coefficients can be found in Valogiannis
et al. (2023).

In our analysis, we set 𝐽 = 6 and 𝐿 = 4, resulting in a total of 140
WST coefficients, excluding 𝑆0. In summary, the WST coefficients
in our work are

𝑆0 =
〈
|𝐼 (𝒙)𝑞 |

〉
,

𝑆1 ( 𝑗1, 𝑙1) =
〈( 𝑚=𝑙1∑︁

𝑚=−𝑙1
|𝐼 (𝒙) ⊗ Ψ𝑚

𝑗1 ,𝑙1
(𝒙) |2

)𝑞/2
〉
,

𝑆2 ( 𝑗2, 𝑗1, 𝑙1) =
〈( 𝑚=𝑙1∑︁

𝑚=−𝑙1
|𝑈1 ( 𝑗1, 𝑙1) (𝒙) ⊗ Ψ𝑚

𝑗2 ,𝑙1
(𝒙) |2

)𝑞/2
〉
,

(9)

with

𝑈1 ( 𝑗1, 𝑙1) (𝒙) =
𝑚=𝑙1∑︁
𝑚=−𝑙1

|𝐼 (x) ⊗ Ψ𝑚
𝑗1 ,𝑙1

(𝒙) |2 , (10)

where 𝑞 is a specified power governing operations on a target field.
Choosing 𝑞 > 1 or 𝑞 < 1 highlights overdense or underdense regions,
respectively, while 𝑞 = 1 represents the basic WST scenario. In our
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Deep Learning for Cosmological Parameter inference 5

analysis, we consider all three cases: 𝑞 = 0.5, 𝑞 = 1, and 𝑞 = 2. Fig. 3
presents these three statistics, derived from the same three simulation
boxes as depicted in Fig. 2. For WST coefficients, only 𝑞 = 0.5 is
displayed.

Finally, employing the principal component analysis (PCA) tech-
nique, an efficient compression scheme is utilized to retain most of
the signal information encoded in the data while projecting out the
noise-dominated modes. The original 𝜉 (𝑟) has 266 bins, 𝑃(𝑘) has
243 bins, and 𝑆1 , 𝑆2 totally consist of 200 bins. Through PCA, each
measurement statistic is compressed into a one-dimensional vector
of 20 dimensions.

3 METHOD

To fully exploit the three-dimensional nature of the data, we em-
ployed a deep 3D convolutional network. After investigating several
architectures, we propose a lightweight deep convolutional neural
network (lCNN) that is efficient and present high performance in
parameter estimation. Fig. 4 schematically depicts lCNN designed
for determining cosmological parameters.

The network comprises three types of layers: 3D convolutions
which is followed by batch normalization, max pooling layers,and
fully connected layers. It begins with a 603-voxel input layer repre-
senting the density field. When incorporating the Fourier transform
of the density, two extra channels are introduced to accommodate
the amplitude and phase of the Fourier modes. Thus, we represent
the dimension of the input data cube as 603 × 𝑛, where 𝑛 is for the
number of channels utilized. Following this 4 convolutional layers
are applied, and each is accompanied by batch normalization and a
max-pooling layer with a kernel (2, 2, 2) for dimensionality reduc-
tion. The size of kernel in convolutional layers is (3, 3, 3) except
the third,which is (4, 4, 4). After four 3D convolutions,the input data
information are encoded by 128 × 23 voxels, which are transited
into a standard deep neural network after the flatten operation. Here,
we introduce two new hidden layers, with 1324 and 128 neurons
respectively, before concluding with a seven-neuron output layer.
This output layer corresponds to the seven parameters that have been
varied in the simulations. Additionally, when employing statistical
measurements such as power spectra, 2PCF, and WST coefficients,
each measurement originally has a dimension of 20. We then con-
struct two fully connected layers to transform the dimension of each
statistic to 100, which are concatenated with the output features of
lCNN before passing them through the fully connected layers.

Throughout the network, rectified linear unit (ReLU) activa-
tion functions are employed. For optimization, the Adam opti-
mizer (Kingma & Ba 2017) is utilized with a learning rate of 5×10−5.
For our machine learning task, we opted for the widely-used Mean
Squared Error (MSE) loss function. This metric quantifies the aver-
age squared difference between predicted and true values, defined as

MSE =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦

pred
𝑖

− 𝑦true
𝑖

)2
(11)

In the training and testing process, we employed a density field that
has been interpolated into a 3003 grid using the CIC scheme, as pre-
viously mentioned. For training purposes, we divided a single 3003

data cube into 53 sub-boxes, each with dimensions of 603. When
combining the density field in Fourier space, which has dimensions
of 603 × 2, the density and its Fourier transform were concatenated
into a sub-box with dimensions of 603 × 𝑛, where 𝑛 = 3. When

utilizing only statistical measurements without incorporating den-
sity fields, parameter estimation is exclusively performed using the
random forest network.

During training, for each epoch, we randomly selected a sub-box
to feed into the neural network. For testing, all 53 sub-boxes are
fed into the neural network, and the predictions are averaged to
estimate the cosmological model. The training and testing processes
are schematically depicted in Fig. 5.

3.1 Evaluation Metrics

Once the data is divided into training and test sets, we proceed to
estimate the cosmological parameters for inputs outlined in subse-
quent sections. We evaluate the performance of each model through
four approaches on the test set to quantify the results: 1) plotting the
predicted values against the ground truth for the test set, quantified
by the coefficient of determination 𝑅2,𝑅2 ranges from 0 to 1, where 1
represents perfect inference.; 2) calculating the averaged bias (Bias)
for each parameter; 3) calculating the relative squared error (RSE)
for each parameter; 4) calculating the Root Mean Square (RMSE)
for each parameter. These quantities are defined as follows:

𝑅2 = 1 −
∑
𝑖

(
𝑦

pred
𝑖

− 𝑦true
𝑖

)2∑
𝑖

(
𝑦true
𝑖

− 𝑦̄true)2 , (12)

Bias =
1
𝑁

∑︁
𝑖

(
𝑦

pred
𝑖

− 𝑦true
𝑖

)
, (13)

RSE =

∑
𝑖

(
𝑦

pred
𝑖

− 𝑦true
𝑖

)2∑
𝑖

(
𝑦true
𝑖

− 𝑦̄true)2 , (14)

and

RMSE =

√︄
1
𝑁

∑︁
𝑖

(
𝑦

pred
𝑖

− 𝑦true
𝑖

)2
, (15)

where the summation runs through the entire 𝑁 test samples, with the
bar indicating the average. The 𝑅2 quantifies the fraction by which
the error variance is less than the true variance, while the RMSE
provides an overall measure of the model’s prediction accuracy, with
lower values indicating better performance. Similarly, RSE measures
the relative error between predicted and true values by comparing
the squared difference between them. On other hand, Bias denotes
the systematic error of predictions from true values. A Bias close to
zero indicates that, on average, the model is making predictions that
are unbiased.

4 RESULTS

In this section, we present the results obtained from various models
using different inputs, including the density field, its Fourier modes,
the three statistical measurements, and their combinations. Addition-
ally, we compare the performance of predictions made by the random
forest model using statistical measurements alone.

Five distinct models were devised to evaluate the optimal choice
among different datasets as inputs, including:

(i) Model “CNN(𝑟)”: utilizing solely the density field.
(ii) Model “CNN (𝑟 + 𝑘)”: incorporating the density field along

with its Fourier modes.
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Figure 4. Architecture of the proposed lightweight deep convolutional neural network (lCNN) for parameter estimation. Starting with a cube of size 603×𝑛, where
𝑛 = 1 for the density field and 𝑛 = 3 for the combination of density and Fourier modes (2 for amplitude and phase), the network comprises several convolutional
layers. Each convolutional layer is followed by Batch Normalisation (BN) layers to enhance convergence, and Max Pooling layers to reduce dimensionality.
The dropout technique is also used for preventing the network from overfitting. Subsequently, the network is flattened and includes two fully connected layers
consisting of 1024 and 128 neurons. The output layer with seven neurons corresponds to the original input parameters {Ω𝑚,Ω𝑏 , ℎ, 𝑛𝑠 , 𝜎8, 𝑀𝜈 , 𝑤}. For
feature extraction, four convolutional layers with filters 32, 64, 64, and 128 are applied. If the statistical measurements, including the power spectrum, 2PCF,
and WST coefficients, each having a dimension of 20, are utilized, we then construct two fully connected layers to transform the dimension of each statistic to
100. These layers are then concatenated with the density field network.

Figure 5. Training and testing processes. Data cubes are divided into 53

sub-boxes of dimensions 603. When incorporating density fields in Fourier
space, with dimensions 603 × 2, they are concatenated into sub-boxes of
size 603 × 3.We combine the density fields in configuration and Fourier
spaces to utilize clustering information from both small-scale and large-scale
structures. During training, sub-boxes are randomly selected for each epoch,
while testing involves feeding all 53 sub-boxes into the neural network, with
predictions averaged to estimate the cosmological model.

(iii) Model “CNN(𝑟)+statistics”: employing the density field to-
gether with three statistics including 𝑃(𝑘), 𝜉 (𝑟), and 𝑆𝑛.

(iv) Model “CNN(𝑟 + 𝑘)+statistics”: combining the case “CNN
(𝑟 + 𝑘)” with three statistics.

(v) Model “statistics”: using only the three measured statistics.

Fig. 6 displays loss curves against the number of epochs for the
five different training sets. The blue and red curves represent the loss
for the training and testing data sets, respectively, corresponding to
87.7% and 12.3% of the full dataset.

It can be observed that when using “CNN(𝑟)” alone, the loss
function on the training set decreases slower compared to other cases,
gradually converging to 0.77. However, incorporating “CNN(𝑘)” or
statistics significantly reduces the loss function value, indicating that
either the Fourier modes of the density field or the statistics can
greatly enhance network performance. Moreover, as the dimension
of each statistic is only 20, the random forest network exhibits rapid
decrease and convergence at about 20 epochs.

For the case of “CNN(𝑟 + 𝑘)+statistics”, the loss function drops
to the lowest value of 0.57 at epoch about 200, outperforming all
other cases. Importantly, comparing with the loss functions for the
testing dataset, combining both fields and statistics results in the
lowest loss values. Thus, as expected, this case demonstrates the best
performance for parameter estimation, as we will demonstrate later.
Additionally, we trained lCNN until achieving the lowest loss values
for the test set.

In Fig. 7, we present the actual predictions from our designed
lCNN using the entire test dataset. The corresponding 𝑅2 value for
each case is also listed in each panel. For comparison, black curves
are drawn to represent perfect parameter recovery (𝑅2 = 1), where
the correlation between the predicted and true values is 100%.

The five panels in each row correspond to the five input mod-
els for fixed cosmological parameters. Results for the seven cos-
mological parameters are presented from top to bottom, respec-
tively. The prediction accuracies for Ω𝑚, 𝜎8 and ℎ from lCNN
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Figure 6. Loss functions, as defined in Eq. 11, for five different cases for
both the training and testing datasets across epochs. The blue and red curves
represent training and testing losses, respectively, covering 87.7% and 12.3%
of the full dataset, respectively. When using “CNN(𝑟)” alone, the training
loss decreases gradually, converging to 0.77. Incorporating “CNN(𝑘)” or
statistics markedly reduces the loss, indicating significant performance en-
hancement. The random forest network achieves rapid convergence due to
the low dimensionality of each statistic. For “CNN(𝑟 + 𝑘)+statistics”, the loss
reaches its minimum approximately at epoch 200, outperforming all other
cases. Such case also yields the lowest testing loss values, demonstrating best
performance for parameter estimation.

are significantly higher compared to other parameters. Especially,
the predicted Ω𝑚 values closely match the ground truth (black
lines), with relatively small scatters. As expected, overall, the model
“CNN(𝑟 + 𝑘)+statistics” demonstrates the best performance for pa-
rameter predictions among other models, evident from its highest
average 𝑅2 value. However, none of the five models perform well for
predicting Ω𝑏 , 𝑀𝜈 , and 𝑤, with the highest 𝑅2 values only reaching
0.152, 0.037, and 0.196, respectively. This is because these param-
eters do not visibly imprint unique features in LSS in our simula-
tion mocks and also degenerate with other parameters. For example,
there is a percent-level suppression effect in the density fluctuations
at small scales from 𝑀𝜈 . Additionally, LSS is sensitive to the to-
tal density of Ω𝑚, rather than the relatively small quantity of Ω𝑏 ,
as no baryonic feedback is considered in the cold DM simulations.
Moreover, one snapshot at 𝑧 = 0.5 cannot effectively distinguish the
different dark energy equations of state 𝑤. Since both lCNN and the
random forest fail to provide effective predictions for Ω𝑏 ,𝑀𝜈 and 𝑤,
we do not display their results in the following.

In Tab. 1, the Bias, RMSE, and RSE metrics are presented for
detailed comparison across the four cosmological parameters among
the five models. The results agree with the 𝑅2 values depicted in
Fig. 7. The “CNN(𝑟 + 𝑘)+statistics” model demonstrates the smallest
RMSE and RSE values across almost all of these parameters, indi-
cating high accuracy and small uncertainty estimation compared to
other models. Notably, Bias values for all models closely match the
true values within a 2𝜎 level compared to RMSE, highlighting the
robustness of the networks and negligible systematic errors.

To emphasize the MSE values for different models, in Fig. 8, we
display the relative MSE values compared to the model “statistics”.
This is represented as the ratio of MSE for each model to that from
the random forest network. Since our trained lCNN models are in-
effective for Ω𝑏 , 𝑀𝜈 , and 𝑤, due to the much low 𝑅2 values, we
only compare MSE values of the four parameters (Ω𝑚, ℎ, 𝑛𝑠 , 𝜎8)

relative to that of model “statistics”. From this comparison, we ob-
serve that, except for the parameter 𝑛𝑠 with the model “CNN(𝑟)”,
lCNN performs significantly better than with “statistics”. Addition-
ally, the combination of the density field and the Fourier modes,
i.e., the model “CNN(𝑟 + 𝑘)”, performs better than using the den-
sity field alone, corresponding to the model “CNN(𝑟)”, except for
the parameter ℎ. Moreover, feeding the three measured statistics to
lCNN further enhances the accuracy of prediction, effectively lower-
ing the MSE values. The best performance is achieved for the model
"CNN(𝑟 + 𝑘)+statistics" (red line), reducing MSE by about 15–47%
when compared with "statistics" model across the parameters.

To further investigate the performance of lCNN in prediction, we
illustrate the joint distribution of each parameter pair and the his-
togram of each parameter in Fig. 9. Two models are presented for
comparison: “CNN(𝑟 + 𝑘)+statistics” and “statistics”.For clarity, the
plots display the distributions of the errors of cosmological parame-
ters, centered around the mean of the parameter space, i.e.

𝑝𝑖 = 𝑝
pred
𝑖

− 𝑝true
𝑖 + 𝑝true , (16)

where 𝑝true denotes the averaged true value over all 210 test samples
with varied cosmological parameters. The two-dimensional contour
plots illustrate the joint probability distribution at 68% and 95% lev-
els, respectively, providing information about the correlation between
each pair of parameters. Meanwhile, the one-dimensional distribu-
tion displays the marginalized probability of each parameter.

As observed, for each parameter, the model “CNN (𝑟 + 𝑘)+ statis-
tics” offers a more sharply marginalized probability distribution than
that for “statistics”. In other words, the former provides more accurate
predictions on the cosmological parameters. This finding is further
confirmed by the contour plots.

The contour area corresponds to the statistical uncertainty. As ob-
served, the scatters of the difference between the predicted values and
the true ones for all test datasets, derived from lCNN are considerably
smaller than those from the random forest. Both the centers of the
two-dimensional contour and the one-dimensional distribution for
each parameter are close to the averaged true value (black dashed),
and the deviation is significantly smaller than the statistical uncer-
tainty, indicating an unbiased estimate. In particular, the mean and
the associated standard deviation, 𝜎𝑝 , for the marginalized distribu-
tion are listed at the top of each one-dimensional plot. As observed,
all the mean values closely agree with the true ones. The deviation
for “CNN(𝑟 + 𝑘)+statistics” from the averaged true value is 2.8%
for Ω𝑚, 2.4% for ℎ, 2.5% for 𝑛𝑠 , and 0.6% for 𝜎8, respectively. In
comparison with using the model “statistics”, lCNN yields smaller
𝜎𝑝 values. Specifically, it is reduced by 33.3% for Ω𝑚, 20.0% for ℎ,
8.3% for 𝑛𝑠 and 40.0% for 𝜎8, respectively.

We also observe that there is almost no correlation between the pre-
dicted parameters overall, although weak correlations exist between
certain parameter pairs, such as 𝑛𝑠 and ℎ. Since the parameters in the
test sample were randomly generated and uncorrelated, there should
be no significant correlation between the values of the parameters
predicted by ICNN. The results in the test sample meet our expec-
tations, indicating that the estimates of the parameters by ICNN are
unbiased.

5 CONCLUDING REMARKS

In this study, we have designed a lightweight deep convolutional
neural network, lCNN, aimed at estimating cosmological parameters
from simulated three-dimensional DM halo number density field and
associated statistics. Our training dataset consists of 2000 realizations
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Figure 7. Comparison between the true values of (Ω𝑚,Ω𝑏 , ℎ, 𝑛𝑠 , 𝜎8, 𝑀𝜈 , 𝑤) (from top to bottom) from the test sample and their predictions from the five
models (from left to right) of lCNN. The black lines indicate perfect prediction matching the truth. The resulting 𝑅2 values for each case are also shown. On
average, the model “CNN(𝑟 + 𝑘)+statistics” exhibits better performance for prediction than other models. lCNN performs well for predicting parameters Ω𝑚, ℎ,
and 𝜎8, but the prediction ability becomes weaker for Ω𝑏 ,𝑀𝜈 , and 𝑤. For comparison, predictions from the random forest (the fifth column) trained with the
three statistics only, including the power spectrum, the 2PCF, and the WST coefficients, are shown.
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Parameter

Bias/RMSE/RSE Model
CNN(𝑟) CNN(𝑟 + 𝑘) CNN(𝑟)+statistics CNN(𝑟 + 𝑘)+statistics statistics

Ω𝑚 0.013/0.046/0.161 0.022/0.041/0.284 0.005/0.040/0.881 0.014/0.039/0.440 -0.005/0.050/0.950
ℎ 0.011/0.059/0.125 -0.038/0.073/0.429 0.004/0.062/0.717 -0.004/0.060/0.388 0.008 /0.077/0.915
𝑛𝑠 0.004/0.110/0.118 -0.009/0.099/0.314 -0.020/0.099/0.713 -0.020/0.091/0.293 -0.003/ 0.099/0.841
𝜎8 0.017/0.072/0.112 -0.014/0.067/0.295 -0.0007/0.059/0.610 -0.001/0.055/0.255 -0.0003/ 0.078/0.817

Table 1. Summary of the measured evaluation metrics of Bias, RMSE, and RSE for the five models across four cosmological parameters. A small value for
Bias, RMSE, or RSE indicates that the predictions made by the model are close to the true values, suggesting that the performance is relatively good.
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Figure 8. RMS values for different models relative to those of the model
“statistics” using the simple random forest network across cosmological pa-
rameters, including Ω𝑚, ℎ, 𝑛𝑠 , and 𝜎8. The smaller the value of MSE
indicates better performance in parameter prediction. Therefore, the model
“CNN(𝑟 + 𝑘)+statistics” (red) exhibits the best performance among other
models. As the predictions for Ω𝑏 ,𝑀𝜈 and 𝑤 are ineffective by lCNN, we do
not show their results.

of a cubic box with a side length of 1000 ℎ−1Mpc, each sampled with
5123 DM particles and 5123 neutrinos interpolated over a cubic grid
of 3003 voxels. Under the flat ΛCDM model, simulations vary the
standard six cosmological parameters, including Ω𝑚, Ω𝑏 , ℎ, 𝑛𝑠 , 𝜎8,
𝑤, along with the neutrino mass sum, 𝑀𝜈 .

Five distinct models have been considered to assess the optimal
input datasets, including: “CNN(𝑟)”, which utilizes solely the density
field; “CNN(𝑟 + 𝑘)”, incorporating both density field and its Fourier
modes; “CNN(𝑟)+statistics”, employing the density field along with
three statistics (i.e., the halo density power spectrum, the 2PCF, and
the WST coefficients); “CNN(𝑟+𝑘)+statistics”, combining “CNN(𝑟+
𝑘)” with three statistics; and “statistics”, utilizing the random forest
neural network trained solely with the three measured statistics, for
comparison with the lCNN.

Our findings reveal several key insights: 1) within the framework
of lCNN, extracting LSS information is more efficient from the halo
density field compared to relying on statistical quantities includ-
ing the power spectrum, 2PCF, and WST coefficients; 2) combining
the halo density field with its Fourier-transformed counterpart en-
hances predictions, and augmenting the training dataset with mea-
sured statistics further improves performance; 3) the neural network
model achieves high accuracy in inferring Ω𝑚, ℎ, 𝑛𝑠 , and 𝜎8, while
showing inefficiency in predicting Ω𝑏 ,𝑀𝜈 , and 𝑤; 4) moreover,
compared to the simple random forest network trained with three
statistical quantities, our proposed lCNN model yields essentially
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Figure 9. Probability distributions of the cosmological parameters predicted
from the model “CNN(𝑟 + 𝑘)+statistics” in lCNN (red) and “statistics” from
the random forest (blue). The averaged value (black dashed) of each parameter
over all test datasets is displayed for comparison.

unbiased estimations and provides smaller statistical errors, reduc-
ing the errors by about 33.3% for Ω𝑚, 20.0% for ℎ, 8.3% for 𝑛𝑠 , and
40.0% for 𝜎8, respectively.

Machine learning is highly effective at analyzing complex fea-
tures in complicated datasets. From this perspective, a limitation of
our study is that our training samples are composed of sparse halo
fields with a low number density of 2 × 10−4. Consequently, many
small-scale structures and clustering details are not captured in such
sparse fields. A promising direction for future investigation would be
to increase the number density by one to two orders of magnitude to
better mimic the observational data from stage-IV surveys. In such
scenarios, we expect that machine learning could significantly en-
hance performance and offer substantial advantages over traditional
statistical methods.

In future work, we intend to evaluate the ability of the network
to predict cosmological parameters from light-cone simulations, and
finally, apply it to real observational data.
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