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Computable Domains of a Halting Function 
 

by Abel-Luis Peralta 

 
Abstract:  
 We discuss the possibility of constructing a function that validates the definition or  
not definition of the partial recursive functions of one variable. 
 This is a topic in computability theory, which was first approached by Alan M. Turing 
in 1936 in his foundational work “On Computable Numbers”. Here we face it using the Model  
of computability of the recursive functions instead of the Turing’s machines, but the results are 
transferable from one to another paradigm with ease. Recursive functions that are not 
defined at a given point, correspond to the Turing machines that “do not end” for a given input.  
What we propose Is a slight slip from the orthodox point of view: the issue of the self-reference 
and of the self-validation is not an impediment in imperative languages.  
  

 
§ 1. Definable versus calculable: principle of uncertainty. 

 
One of the problems that haunted mathematicians in the first decades of the twentieth 

century was to recognize when a well-defined function was actually calculable, because being 
properly defined does not ensure that it is effectively calculable. A widely used example is that 
of any sentence in the formal language of Peano’s arithmetic. Given a deduction, it is easy to 
verify if it is correct or not, and therefore, to know if that sentence is a theorem or not, following 
the rules of inference of the first order logic. Thus, we could say that the set of theorems is 
formally well defined. But there is no procedure that allows us to decide whether a sentence (or 
its negation) has a demonstration. We have procedures to verify if something is a 
demonstration, but not to find a demonstration from scratch. 

 
The result of these efforts were the recursive functions defined by Kurt Gödel [1931], 

within the framework of his incompleteness theorems; Church’s thesis, and the theorem of the 
non resolvability of the Halting Problem (Turing [1936]). 

 
Since the most notorious results were negative, it remains to investigate how much we 

can do positively, within the limits that these results have marked us. What we will try to 
convey is that, despite the spectacularity of the limiting events, what they leave out of our reach 
are very specific and restricted issues, linked to epistemological  and meaning issues rather than 
difficulty or impossibility of calculation. We propose to start considering the Halting Problem 
from the point of view of the computational model of recursive functions, because although 
Kleene demonstrated that the three computational models (recursive functions, Church’s lambda 
calculus, and Turing machines, in historical order) are comparable in many respects, recursive 
functions allow us to approach the extensional aspect of functions (such as ordered n-tuples) 
rather than the intensional aspect (such as lists of rules of calculation). It is the hard core of 
functions, and in a sense, if we are allowed to compare, like material substances in the physical 
sciences. It is so also because they have a spatial model, without resorting to geometry, if we 
imagine them as three-dimensional arrays of matrices. 

 
It may happen that we have a very precise rule for deciding whether a number is a 

member of a set or not; but that we don’t know if there is any number that complies with the 
rule (Fermat’s last theorem, until Andrew Wiles’s 1993/95 demonstration, Goldbach’s 
conjecture to this day). This usually happens when we start from an easily calculable function 
(for example a polynomial of a single variable), but then we define another function, based on 
the first, in inverse way. Since such an equation may have no solutions, the function is not 
directly calculable at all points. 
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f(x) = a1 . x + a2 . x2 + a3 . x3 + … + an . xn  
 
g(y) =  µx [ f(x) = 0  & x > y ]   (µx is the minimum value of x that satisfies the equation) 
 
In this example, f(x) is directly calculable for any x. While g(y) may not be defined in 

some values of y, because it depends on an inverse calculation of f, and on the existence of 
integer roots in the equation. And it may even happen that we cannot know by direct calculation 
whether it is not defined. 

 
The problem of the inverse values of a function is what algebra solved for centuries, but 

in the past the subject was not considered in these terms: as a function that is defined but not 
actually calculable. 

 
We will define the recursive functions as follows. 
 
A function is primitive recursive if defined from the basic functions: projection (defined 

on an n-tuple and an index, returns the component of the n-tuple corresponding to the index), 
constant (always returns the same natural number for any argument), and successor; or by 
combining other recursive functions (others already defined according to the previous rules), 
applying the rule of composition (Gödel [1931]): 

 
h(x) = f (g(w)) 
 
… Or the recursion rule: 
 
φi(0) = p 
φi(x+1) = g(q, φi(x)) 
 
It can also be defined indirectly (Kleene[1936]): 
 
φi(x) = µz[ f(x, z) = 0 ] 
 
... where f (x, z) is recursive primitive, and μ symbolizes the minimum value of z 

satisfying the equation, if any. If there is not, it is simply not defined for the value of x 
considered. In this case it is said to be a partial recursive function. If a function is defined 
indirectly, may be we do not know if it is defined for all natural numbers, we will say that it is 
general recursive if we can narrow the domain. Otherwise, it would not be recursive. 

 
Suppose we give an order to the recursive functions. Only if the functions φi(x) were all 

primitive recursive, there is a procedure to decide if the function is defined in its argument, but 
if they are general recursive, we do not always have a procedure to know if there is any solution 
of the internal equation. Then, we have the following possible situations (let’s call them degrees 
of uncertainty): 

 
1. φi(x) is primitive recursive, then φi is defined for all x, since it is total. 
 
2. φi(x) is general recursive, and we can show that there is a solution for the equation at 

x=x0, then φi(x0) is defined at that value. 
 
3. φi(x) is general recursive, and we can show that there is no solution for the equation at 

x=x0, then φi(x0) is not defined at that value (partial recursive). 
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4. φi(x) is general recursive, and we cannot prove that there is a solution to the equation, 
nor that there is no solution at the point x0. Then we don’t know what value has φi(x0), because 
by traversing all the numerical succession for z, at some point, we could find a solution for f(x0, 
z) = 0 (of that elementary method is treated when we have a μ operator) and in that case would 
be defined; or it could be that the verification never ends, and in that case it would be undefined, 
but we could never guarantee it. 

 
In the last case, we can’t know if there is any pair in the set of ordered pairs <x, y> in 

the i th function place (matrix number i) that x = x0, in the current situation of mathematical 
knowledge in our culture. If we assume mathematical realism (a classical, non-constructive 
viewpoint), φi(x) should have a given status, because considering only the extension (the 
ordered pairs), it follows that either the function φi is defined in a given x (there is an ordered 
pair whose first element is x0) or is not, independently of our current knowledge of that fact, and 
of the existence or otherwise of a procedure for calculating the value if any (Mendelson [1990]). 

 
It is very controversial to consider as “definition” a rule whose development can have 

infinite steps; consequently, the function may have a problem of definition and not of 
computability. However, because the internal function (to which the minimization operator, μ, is 
applied) is restricted to primitive recursive functions, it is possible that the methods of 
numerical analysis solve this case completely, and its application does not violate the terms in 
which it is raised, since the analytic theory of numbers has been applied for many years. To 
separate the roots it suffices that we see where the function changes its sign, without doing the 
same the first derivative, and without having zeros the second derivative. This knowledge, 
which comes from differential analysis, can be translated into methods that can be expressed in 
integer numbers. And when the interval has only length 1, we can just try the bounds to see if 
the root is integer or not. So the fourth uncertainty situation is reducible to the second or third. 

 
It is possible to affirm with totally constructive criteria that there is no limitation of the 

functions of second order that is not already established in the first order ones. The degrees of 
uncertainty we have detailed may serve as the basis for a second order procedure or function 
(those whose arguments are not simply natural numbers but a list of first order recursive 
functions or procedures), and cannot add further uncertainty since they are only a partition on an 
ordering of first-order functions. There is no loss in the second order: if we know something in 
the first order, we also know it in the second (about the functions, not in logic). 

 
It could be thought that there is no gain either. But it’s not like that. Although in the 

“realist” method (all ordered pairs) there would not be any gain (since exhaustive definitions 
may be lacking in practice), there may be gain in the syntactic analysis: we can know that 
certain equations have solutions and some do not, without necessity to scrutinize its ideal matrix 
of values. 

 
Therefore, if TMs form a computational model essentially equivalent to recursive 

functions, and first-order TMs (which do not process other TMs) compute the values of first-
order recursive functions, there can be no problems with order two neither for the TMs. 

 
However, results such as those of the non-resolvability of the Halting Problem seem to 

confront this conclusion. We will try to answer that question in the next paragraph. 
 
 
 

§ 2. Self-contradictory sentences versus reductio ad absurdum 
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Historically the problem of finiteness of calculations and automation of the revision of 
undefined values in the recursive functions is raised after Church’s thesis, and its version by 
Turing in 1936. In fact the problem was “imported” from the Turing machines to the recursive 
functions by Kleene and Davis. From then, it is classic that the literature on computability 
includes some kind of demonstration about the impossibility of constructing a second order 
function that detects the states of undefinition of the first order functions. 

 
As a previous step, let us see that given an enumeration of general recursive functions, it 

is always possible to construct from it, using only purely recursive operations, a function that is 
not recursive. The method is analogous to Cantor’s diagonalization: let <gi> be the list of 
functions; we can construct a function h as follows: 

 
h(i) = gi(i) + 1 
 
If h were recursive, then it would be in the list: there is an index i = k such that 
 
gk(x) = h(x)  
 
But by the definition of h: 
 
h(k) = gk(k)  = gk(k) + 1  0 = 1 :: absurd. 
 
Therefore, h(x) cannot be in the list, and as it is assumed exhaustive, the function that is 

not in it is not recursive. 
 
The non-recursive step in the construction of h is its transfinite condition: to construct h 

we need, besides an infinite number of functions, to locate a function that at the same time 
belongs to the list and transcends it, because it can not have a fixed order in the list. So, although 
it is used as an argument against the recursion of the construction of h, it is against the 
exhaustiveness of the list. In fact, for any finite subset of functions it is possible to construct such a 
function. 

 
This diagonalization over general recursive functions is sometimes interpreted as an 

absolute impossibility to construct second-order functions to determine the ranges of first-order 
recursive functions. Let us see below the construction of several types of contradiction in the 
terms that in texts often go through “demonstrations by the absurd” to substantiate this 
impossibility. 

 
2.1. Self-reference and self-application 
 
We will call self-reference to having a sentence of a descriptive language a subject that is 

part of the extension of the whole sentence that contains it (i.e., the subject of p satisfies p). We 
will speak of self-application when in an imperative language a free variable is instantiated by the 
code of the open formula that contains it. 

 
It might seem that the previous four degrees of uncertainty exhaust all possibilities. 

However, let us consider a function with two arguments and of second-order  (whose first 
argument is a list of first-order general recursive functions with one argument; see Kleene[1952], 
§ 58; Mendelson[1979], Chapter 5, Sec. 4): 

 
θ: <N x N>   {0, 1} 
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                  1    if     ∃k φi(x)=k    (φi is defined  for x) 
θ(i, x) =  
                  0    if   ¬∃k φi(x)=k    (φi is undefined  for x) 
 
 
Let us consider a special function1 (lets call this the diagonal formula):  
   
  ∂(x) = θ(x, x)  
 
Is there an index, say n, such that φn(x) = ∂(x)? If there is, then let as consider ∂(n). 
 
Suppose the result is 1. We see that it depends on the value of another instance of itself 

(n is its own index). But since there is no argument that we can apply to the second instance, it is 
the index of an open formula. Then it should be independent of the variable, a constant function 
equal to 1 for any value of the argument. (In case of supposing that implicitly has as its argument 
its own index would generate an infinite regress, which would make the final value undefined, and 
the result value must be 0: contradiction). But this would mean that in cases where the argument 
function is undefined, the value is 1, contradicting the definition, which assigns it 0 in that case. 
Absurd. 

 
Suppose the result is 0. In this case, according to the definition of θ, the function whose 

index is n should be undefined in n. But n is the index of ∂ (n); so it is undefined in n but also 0: 
nonsense. 

 
Therefore, the only consistent possibility is that ∂ is not defined at its own index. But then 

neither is θ(n, n).  
 
The usual conclusion is that by this contradiction θ is not an effectively calculable 

function. 
 
However, there is an insurmountable problem in that reasoning: diagonalization is a 

sintactic mistake, because the values of the arguments cannot be equal, since the first one indicates 
a list of functions, that is to say, an array, and the second a current natural number, since the 
functions of the list are from the first-order. If we have the pair <5, 5>, it is a purely notational 
equality: it denotes the fifth function of the list, with the number 5 as an argument; In fact the pair 
is <φ5, 5>, or best, < <i, j>5, 5> (the fifth matrix), and the order that has the function (matrix) in the 
list is not something inherent to it, but assigned with some criterion unrelated to its functionality, 
for example, the alphabetical order in the rules that defines them, or the numerical order of its 
array of values. 

 
But even if the unification of arguments is good, the self-reference raises a greater 

problem: the n-th function with the argument n again addresses the lack of argument in the 
second instance. The nth function is again ∂, but what is the argument? If we repeat n, we have 
that ∂ (n) = ∂ (∂(n)), and so: 

 
∂ (n) = ∂ (∂ (∂ (∂ (...))))  (infinite regression) 
 
If we do not repeat n, the function would remain without an established argument: 

                                                           
1 This is a step that used to be called impredicative before the hegemony of formalism, because it defines a function based 

on another defined on a list of which the first forms part. But for the moment we ignore the objection. 
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∂ (n) = ∂ (∂ (x))   (open formula) 
 
We leave it to the discretion of the one who reads the option, but in any case, it is not a 

value of the argument for which the function is not defined, but the argument itself is missing. But 
this is not a point against the second-order function, but a wrong formation of the function’s 
argument. 

 
Thus interpreted, although the diagonal formula is correct from the point of view of the 

formal language at a first level of analysis, it is not so if we examine its argument, and this failure in 
its formation is not consistently remediable. So it is not a first-order function for which θ is not 
defined, but the question is with the diagonalization method; in this case it is not possible to 
construct a well-formed self-referential formula. 

 
 
2.2. Contradiction in terms with recursive functions. 
 
Elliott Mendelson [1979] (“Undecidable Problems”, page 265), deduce a contradiction 

from self-reference. From a second order function θ as in the previous point, it defines another, 
of a single argument: 

 
α(z) = µy( θ(z, z) = 0 ∧ y = y ) 
 
In words, it is the minimum value of ‘y’‘ for which the function φz(z) (corresponding to θ 

(z, z)) is not defined. (The addition of ‘y = y’ is only to show that ‘y’ is an argument of the function 
over which we do not put any conditions.) 

 
Since all operations are recursive, and have been applied to the function θ, which is 

recursive by hypothesis, the function must be recursive. The values that can be deduced from the 
definition are: 

 
 
                    
                 0       if    ¬(∃k) φz(z)=k    (φz is not defined for z) 
α(z) =         
      --       if       (∃k) φz(z)=k    (φz is defined for z) 
 
 
Note that α is a converse or opposite function with respect to φz(z), for all z. 
 
Now, α is partial recursive, so it is in the list which is the first argument of θ. Then there 

exists some index w such that: 
 
α = φw 
 
But in this case: 
 
 

                    
                  0       if  ¬(∃k) φw(w)=k    (φw is not defined for w) 
φw(w) = 
                  --       if     (∃k) φw(w)=k    (φw is defined for w) 
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So, 
 
α(w)  is defined  α(w) is not defined. 
 
This contradiction is meant to imply that the function θ could not be recursive either 

partial or total. But the same objection as in point 2.1 holds: diagonalization is a syntactic mistake 
in this case, for the same reasons (the arguments of the function are of different type, therefore 
they can never be equal). To visualize it in the arrangement model, in θ (x, x) the first x is actually 
a matrix of two columns, a set of ordered pairs, and the second x is a natural number. Even if the 
index with which the matrix is identified coincides with the natural number, it is not possible to 
argue that a function so formed is of the first order, let alone that it is part of the list that θ is using. 

 
However, the type of reasoning that it uses deserves to be analyzed carefully. This 

demonstration does not follow the classical canons of the first order logic for the reductio ad 
absurdum. The contradiction does not result from the assumption of recursivity of the function θ, 
but it is a self-contradictory construction, which in traditional Aristotelian logic is called 
contradictio in terminis, also called oxymoron in contexts broader than logic (philosophy, 
rhetoric). The function α, which is used for the absurd, has been constructed as a contradictor of 
θ; no matter what properties may have θ, α contradicts it. Any function that is used, whether 
recursive or not, if it has as arguments a list of functions, can be able to generate this type of 
contradictors. But this function cannot produce any misunderstanding in the calculation of the 
main function, because it has two equal arguments, which are function indexes. That is, it is not a 
first-order function, the reason why it does not meet the syntactic requirements of the main 
function. 

 
 
2.3. Contradiction with language of Set Theory. 
 
Since many negative results are based on constructs and demonstrations that are 

ultimately tributaries of the Russell paradox, it is necessary to analyze this case, although it does 
not specifically deal with functions or TM. 

 
In his letter to Frege in June 1902 (see van Heijenort [1967], page 124), Russell thus 

symbolizes the statement of the paradox (using the formal language of Peano): 
 
w = cls ∩ x 3  ( x ¬∈ x ) .  : w ∈ w :=: w ¬∈ w. 
 
... that in an updated language would be: 
 
w = { x :  x ¬∈ x }    [ w ∈ w  w ¬∈ w ] 
 
Russell noted that Frege’s semi-formal theory allowed him to violate two rules of classical 

logic: A) the prohibition of self-reference, justifying because there are predicates that admit it (the 
predicate “is english”, is itself an English predicate, and the word “polysyllabic” is in turn, 
polysyllabic). It was not differentiated at that time between first-order predicates (which have as 
arguments only individuals) and second order (whose arguments can be, in turn, predicates), 
giving rise to its own paradox, and to that of Gelling-Nelson. B) The prohibition of instantiate a 
variable in the definiens, with the term being defined (definiendum); this rule was established by 
the Aristotelian logics, to avoid circularity, but Frege discarded it because he believed that some 
contextual definitions in mathematics need that substitution. 

 
The relation of belonging is much more ambiguous than that which descends the verb to 

be. If the arguments are different, the second must be a set, and the coherent interpretation is that 
the first term satisfies the law of formation of the second, and another that the first is a member of 
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the extension of the second: Let w = { x :  x ¬∈ x }. In a declarative language, the two 
interpretations coexist. In an imperative language the interpretation is that each member of the 
first must be part of the extension of the second. And the difficulty lies in that for the three cases 
the same symbol is used, without adverb modifiers or adjectives as there are in the natural 
language. Frege tried to remove from logic the ambiguities and the multiple synonymous of 
natural language, assimilating it to the language of mathematics, timeless and without modality. 

 
We could say that Russell’s paradox is more linguistic than set theoretic. 
 
{ x : x ¬∈ x } 
 
... is just another way of denoting the complement of: 
 
{ x : x ∈ x } 
 
Both sets are only partitions of the universal set, “the last totality”, so that treating them as 

sets “per se”, as new and separate totalities, is contradictory. 
 
If you give a name to the complement, and for the rules of the manipulation of the 

symbols of the formal language, it is treated as if it were not the negation of a concept, exotic 
questions are raised, such as: 

 
“The totality of the non-self-belonging sets, is it a member of the set of non-self-belonging 

sets?” 
 
If you answer affirmatively, the objection arises: “but the members must to be only those 

sets that do not belong to themselves”. 
 
If answered negatively, the objection is: “but the members must to be all sets that do not 

belong to themselves.” 
 
The first objection would be legitimate; the second is not, because if a complement 

contains itself (which is a complement), by the double negation, it returns to the base set (the 
complement of the complement). Understanding the relation of belonging from one set to 
another as the satisfaction of the law of formation of the second term, there is no paradox. If it is 
understood as forming part of the extension of the second, the very notion of self-belonging would 
be self-contradictory: an object cannot be at once the part and the whole. The complement as a 
whole collection is not a member of itself, nor of the original set, without any contradiction, 
because the totality of a partition of the universal set, is not an element pre-existent; is a new 
construction. The natural language has its own theory of types. 

 
A simpler example: 
 
“The set of objects that are not books is not a book, therefore it is a member of itself.” 
 
The complement of the set of books is not a book, but if it is a member of itself, is it the 

complement of the complement? Then (double negation) would be a book: absurd. Therefore it 
is not a member of itself. This raises another paradoxical question: taken as a whole, the set of 
objects that are not books is not a member of the set of all books, but neither of its complement. 

 
The solution is not so complex: by asking whether the whole of a set may or may not be a 

member of itself, Russell is imaginatively constructing an element that did not exist in the set of 
books, or in its complement.  
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For instance: 
 
U* = { 1, 2, 3, 4, 5, 6 } 
 
P* = { 2, 4, 6 } 
 
I* = { 1, 3, 5 } 
 
I* is the complement of P, but the set that has as a single member the set I*, { {1, 3, 5} } is 

not a member of neither, nor is it in the universal set. 
 
In the version of the paradox with the barber, and with the deliberately primitive language 

that he uses to construct it (for to approximate to the language of arithmetic), the barber can only 
be paralyzed by the contradiction: 

 
“Barber shaves x if and only if x does not shave x” 
 
Then: 
 
“Barber shaves barber if and only if barber does not shave barber”. 
 
But if we use the natural language in a normative mode (understood as a “deferred” form 

of the imperative mode) and in a temporal way (which is not that less scientific, because physics 
use a mathematical language, which incorporates time, for centuries, and language in normative 
mode is incorporated in all procedures, so less from Euclid’s algorithm): 

 
“The barber must shave to x, if and only if x has not shaved to x”. 
 
Then, by replacing x with “the barber,” it results: 
 
“The barber must shave the barber, if and only if the barber has not shaved the barber.” 
 
There is no contradiction, no paradox. The result is a bit trivial: if the barber has not 

shaved himself, he must shave. The Hume’s razor was counterproductive perhaps, in this case2. 
 
Russell’s solution was the theory of types, and Zermelo’s was to change the Frege’s 

Comprehension principle: 
 
∃A ∀x (x ∈ A  φ(x) ) 
 
... by the one of Separation: 
 
∀A ∃B ∀x (x ∈ B  (x ∈ A ∧ φ(x) )).  
 
If we interpret the relation of belonging as that the first term satisfies the law of the 

formation of the set in the second term, and we replace the name of the set in the first term by its 
Gödel’s number, we see how it could transform the paradoxical Russell’s sentence to an 
undecidable one. 

                                                           
2
 I refer to the famous text in which Hume states that there is no way to deduce a normative proposition from a descriptive one (“A 

treatise on Human Nature”). But the barber is not receiving moral lessons, but an order. And the orders that will be fulfilled in the 
future, curiously, take the same grammatical form as the moral norms. 
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If, on the other hand, we interprete belonging as the computation of the law of the 

formation of the second term, with the Gödel’s number of his own negation as the first term (‘w’ 
is the negated set), we see how the Halting Problem was devised. 

 
 
2.2.1. Declarative versus normative/imperative language. 
 
If we interpret the predicate “x ∈ w” as simply describing the members of the set w, and 

then instantiate x with w, the contradiction already mentioned occurs. But if we interpret it as 
prescribing an action, “add x to the extension of the set w if and only if x is not a member of w”, 
instantiating x with w produces a regressus ad infinitum; if we are using a mixed language, which 
has declarative and normative elements, the sentence will never be completed. We will expand on 
this topic later. 

 
 
2.3. The Turing Problem and the Davis’ proof. 
 
Alan M. Turing, in [1936], 8, “Application of the Diagonal Process” raises the problem 

that would later be known as the unsolvability of the Halting Problem. It does not use the formal 
language of first-order logic. He raises the possibility of a T.M. that given a standard description 
(S.D.) of any machine, can record the “u” (“Unsatisfactory”) symbol if it is circular, or “s” 
(“Satisfactory”) if it is not (if it is “circle-free”). 

 
From the way it is raised, it follows that such a machine would be circular itself, so he 

concludes that no machine that meets the definition is possible. The reason is that it must 
examine all the preceding descriptions, and when it arrives at the one which corresponds to its 
own description, it must begin again with all the preceding descriptions; and so ad infinitum. 

 
The reasoning is correct for that particular machine, but it does not follow that it is valid 

for any possible machine that tries to verify circularity. That is why the Turing demonstration is 
not found today in university texts and reference books, but the version popularized by Martin 
Davis [1958], Davis and Weyuker [1983], and which is now known both in the academic world 
and outside it, as the “demonstration of the insolubility of the Halting Problem,” and is attributed 
almost unanimously to Alan Turing. 

 
While the Turing’s demonstration is correct, but informal and restricted to a very 

particular type of circularity checking machine, Davis’ demonstration is much more formal, 
though not entirely (because he formalizes first-order logic, whereas second-order logic remains in 
an informal meta language), and pretends to be universally valid: he tries to transform it into a 
reductio ad absurdum of the very concept of validation of finitude. 

 
From the point of view of the logical form, it is a self-contradictory construction and not a 

demonstration by the absurd, like other cases that we have already analyzed. But the Davis 
demonstration brings together several elements that make it deserving of special attention. 

 
First, he defines the problem in terms of a recursive predicate, HALT(x, y), and then 

goes on to analyze the computability of any program written in a generic imperative language 
(described in detail in section 2 of the book quoted) that satisfies the requirement that HALT be 
valid if and only if the program ‘y’ ends with the input ‘x’. Then, he constructs a contradictor 
program, such that the function that computes is identical to the one we analyzed in 2.1. From 
that construction he ends up deducing a two-way contradiction, of which he records with a brief 
“But this is a contradiction”, but closes the proof without drawing further conclusions. Exactly as 
we analyze about Mendelson in 2.1. 
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He would have to use the contradiction to demonstrate the general non-computability of 

HALT, for which he would need some second-order logical tools, even in non-formal language. 
But with great cunning, he does not formally present this demonstration, nor does he use 
metalanguage to supply it, but rather comes to what Wittgenstein called “prose” as opposed to 
strict proof: he invokes Church’s thesis, to replace the lack of a second-order predicate that 
deprives HALT of any possibility of being computable, nor does it go to a second-order quantifier 
with reach over HALT. 

 
But Church’s thesis does not entail the HALT’s complete non computability. It would 

only support that HALT is not computable for the Gödel number of the contradictor program, 
with its own code as input. 

 
It is worth dwelling on the added commentary in support of the thesis of insolubility in 

Davis, Sigal and Weyuker [1994], ch. 4, Sec. 2, p. 69: 
 
 

 
 In the light of Church’s thesis, Theorem 2.1 tells us that there really is 
no algorithm for testing a given program and input to determine whether it 
will ever halt. Anyone who finds it surprising that no algorithm exists for 
such a “simple” problem should be made to realize that it is easy to 
construct relatively short programs such that nobody is in a position 
to tell whether they will ever halt. For example, consider the assertion 
from number theory that every even number > 4 is the sum of two prime 
numbers. This assertion, known as Goldbach’s conjecture, is clearly true for 
small even numbers: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc. It is easy to 
write a program P with the language L that will search for a counterexample to 
Goldbach’s conjecture, that is, an even number n > 4 that is not the sum 
of two primes. Note that the test that a given even number n is a 
counterexample only requires checking the primitive recursive predicate 
 
 ~∃x ∃y (x ≤ n) & (y ≤ n) & [ Prime(x) &Prime(y) & x + y = n ] 
 
The statement that P never halts is equivalent to Goldbach’s conjecture. 
Since the conjecture is still open after 250 years, nobody knows whether 
this program P will eventually halt.  

_____________________________________________________________________________ 
 

This Davis’ example far exceeds the scope of the original Halting Problem posed by 
Turing, and also of any formal system, because it implies a search, in an infinite universe, of the 
semantics of infinite sentences3. It is no longer a question of knowing whether an algorithm is 
circular or not, or whether, for the particular case of the argument provided, it reaches a solution 
in a finite number of steps, but rather seeks to investigate an infinite space of possibilities. What 
is insoluble, in that formulation, is the infinity of cases to be examined, not one in particular as 
was the original problem. Even syntactically it does not agree with the premises of the original 
problem: the new problem does not need any argument, it is implicitly clear that it must 
examine every even natural number greater than 4, until one of them meets the condition; no 
input is needed. And if none meet the condition, it continues ad infinitum. It is clear that for 
each number n it is possible to reach the answer in a finite number of steps. But not for all. It is 
easy for a formal system to detect that the problem of finding a counterexample to Goldbach’s 
                                                           
3 Evidence that the Halting Problem, as proposed by Davis, is a more epistemological problem than mathematical or computational, 
is that in the first edition [1983], the example was based on Fermat’s Last Theorem. Today, there is a demonstration by Andrew Wiles 
(in 1993 there was already a version) about its veracity, and we know that a program that seeks a solution in the universe of integers 
greater than zero and with power greater than two would never stop . But that demonstration of Wiles did not affect the computability 
of the function that Davis had defined. 
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conjecture is irresolvable  (by means of recursive, finite and extensional ways) from its 
definition, without having to enter in considerations about computability, since the formula that 
defines it has an unbounded quantifier, and therefore is a non-recursive predicate: 

 
∃n { ~∃x ∃y (x ≤ 2n) & (y ≤ 2n) & [ Prime(x) &Prime(y) & x + y = 2n ] } 
 
The first formula meets the conditions for the Halting Problem:  
 
 Does the Goldbach’s tester machine halt with the input n? 
 
But the second formula exceeds them: 
 
 Does the Goldbach’s tester machine halt with any input? 
 
 
2.3.1. Definability, demonstrability and computability. 
 
 
We will try to show that there is at least a recursive relation that meets the requirements of 

finitude verification, and that since it is recursive it is effectively calculable according to Church's 
thesis, and therefore, computable, according to the Turing’s thesis. 

 
Using the relations of substitution and demonstrability constructed by Gödel [1931], p. 186, 

Relationen 27, 30, 31, and 44, 45, in the Peano-Russell’s system PR, (for notation issues we will use 
Mendelson’s version[1979], chap. 3, sec. 4,  pg. 156, nº (9 b), Sub(y, u, v) and (13 b) Pf(x, y)), we have 
that: 

 
z=Sub(y, u, v) 
 
…is the Gödel’s number of the expression that results from substituting in the expression 

with the n.G. ‘y’, the free variable with n.G. ‘v’ for the expression with n.G. ‘u’; and: 
 
Pf(x, y) 
 
…is the relation between a chain of formulas that constitute a deduction, ‘x’, and the deduced 

formula ‘y’; then we can construct the predicate 
 
IsDef(#Fml, u)  (Ep) Pf(p, w)) 
 
where 
 
w = Sub(#Fml,  u,  13) 
 
#Fml is the Gödel’s number of the open formula which expresses in the Peano-Russell’s 

system the function φ, ‘u’ is the substitution value, and 13 is the Gödel’s number of the variable with 
symbol ‘x’ which is free in Fml formula. So ‘w’ would simply be the Gödel’s number of the closed 
formula. 

 
Therefore IsDef is valid if and only if the function expressed by the formula Fml is defined 

for the argument u. And if a Turing machine M computes the values of the function corresponding to 
Fml, then: 

 
IsDef(#Fml, u)  Halt(#M, u) 
 
Now, if we calculate the Gödel number of the negation of IsDef, #Neg, and apply it to the 

formula itself, we have a version of the well-known undecidable sentence: 
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IsDef(#Neg, #Neg) is demonstrable in PR  
 if and only if it is demonstrable 
~IsDef(#Neg, #Neg). 
 
And since Halt is the equivalent with Turing machines of the predicate IsDef, it is possible 

to demonstrate with equal rigor that, in any consistent first-order axiomatic theory, the Halt version 
is also undecidable. Therefore, it is not possible to draw any conclusion other than that, in a theory, 
to say Turing-Davis, TD, that formalize the Turing machine functionalism: 

 
 Halt(#NegM, #NegM) is demonstrable in TD  
  if and only if it is demonstrable 

~Halt(#NegM, #NegM)). 
 
Davis uses the formal declarative language of first-order logic, but the proper axioms of 

Turing’s machines theory are not made explicit, and he attributes the semantic values of true or false 
to the Halt predicate as if he could jump from a formalism without axioms to some model, without 
also defining the interpretation in Theory of Models. But let us suppose for a moment that the result 
that he attempts to rescue from his demonstration is valid, that is, that Halt is not computable. Since 
IsDef is its equivalent in the PR language, this would mean that IsDef is not effectively calculable, 
and therefore, that it is not recursive. Since it is constructed on the basis of the substitution function 
and the provability relation, which are primitive recursive, this is not possible. Therefore Halt is 
computable to the same extent and in the same domain where IsDef is effectively calculable. 

 
 

§ 3. Inverse Halting Problem. 
 
Behind the Halting Problem are several incompatible problems. 
 
We can identify three types of possible infinite computations, according to their cause: 
 
A) By circularity. 
 
B) Some variable(s) have infinite range. 
 
The last case can be divided into two: 
 
B.1. The domain is finite in the definition, but there are variables that in the invariants have 

no upper or lower bound. 
 
B.2. The definition formula of the problem in first order language contemplates an infinite 

domain. 
 
 
 
They are incompatible because the solution that could have one does not imply the solution 

of the others, and even any solution proposed to solve them together, can solve one and mask and/or 
aggravate the others. 

 
Problem A) is detectable by simple parsing if working in the realm of recursive functions. If 

it is Turing machines, or programs written in imperative languages analogous to that described by 
Davis, it would not be too difficult to prove that if an invariant repeats the values of its variables, its 
trace, or snapshot (as Davis and Weyuker [1983] ], Chapter 2, Sec. 4) is periodic. 

 
The problem B.1) by calculating the invariants of each sentence. 
 



Computable Domains of a Halting Function Page 14 

 

Problem B.2) is unsolvable, but it has nothing to do with computability: it is a matter of first 
order logic, and it is outside the scope of recursive definitions. A problem that in its approach uses 
formulas that express non-recursive relations, obviously is not solved in general with recursive 
methods. It is not necessary to prove incomputability, since the definition itself is not recursive. 

 
There is a fourth problem, which has nothing to do with infinity, but with the type of 

language used to reason about the problem. As we saw in 2.2.1, a contradiction in declarative 
language tells us nothing about what would happen with an implementation in an imperative 
language. In a metalanguage we could see that, since the contradiction is due to circularity in the 
definition, in an imperative language would become an infinite regress. 

 
If we consider the inverse Halting Problem, that is, in what ranges an imperative 

implementation becomes infinite, the problem is reduced to evaluating a system of two equations: 
the output condition of a cycle, and the previous invariant (the precondition). If the algebraic 
problem has no solutions, the computation is infinite. That is, it may have a precise answer. 

 
 

§ 4. Conclusions. 
 
1) In the domain of recursive functions the circularity is detectable as a syntactic failure in 

the construction of the formulas, so that the problem of the infinite loops of the Turing machines in 
the recursive functions is not irresolvable. The ties of Turing algorithms and similar languages could 
very well be avoided if each of them were constructed through transcription into their imperative 
language from a general recursive function expressed in a formal first-order language. And it can be 
done automatically. 

 
2) If each computer procedure corresponds to the transcription in imperative language from 

a primitive recursive function, expressed in the language of first order logic plus the “axiomatic” 
definitions of Gödel’s framework, something similar to the desideratum proposed by Sir Tony Hoare 
[2003]: A Verifying Compiler, could be reached. The reason is that these functions have a critical 
casuistry to verify the calculation. In the same way that the canonical bases of a linear vector space 
allow us to verify if a linear transformation leads from one space to another, by simply verifying that 
the canonical basis of the domain leads to the canonical basis of the range. 

 
3) In the uncertainty situation of type 4, of the first part (on a function defined with the use 

of the minimization operator, whose equation we don’t know if it has solutions), if the minimization 
operator is not bounded, it is not a recursive definition. It is an epistemological question, which 
concerns to the historical development of the knowledge of mathematics in a given context, and not 
to the mathematical entities themselves. The same applies to programs that calculate these functions. 

 
4) If, as Huizing, Kuiper, and Verhoeff [2010] argue, “Halting Still Standing”, it can be 

attributed to the linguistic presuppositions underlying natural language rather than to the logic or 
computability of functions. The construction of a self-contradictory sentence in a formalized or 
semi-formalized language can always give rise to widespread skeptical conclusions to the whole 
field of the discipline that uses that language. In this sense, Halting closely resembles the Berry-
Richard paradox: “let N be the first non-definable ordinal; if it is proved that it is effectively not 
definable in a language, the very statement of the problem is transformed into a definite description 
of N (the first non-definable ordinal); so, it is definable after all”. Chaitin [1990] formalizes the idea. 
In other words, if the blind spot of a Halting function is computable in some language, it is always 
possible to raise it by constructing another blind spot, by means of some different Gödelization, for 
example (see Hehner [2015], paragraph “How to compute unlimited halting”). But that does not 
make the whole function incomputable. 

 
It is possible to make a final distinction between semantics in the operative sense, as an 

extension of concepts, predicates and functions, on the one hand, and intentional (mental, psychic) 
semantics, on the other, the pure meaning of propositions, which they can be lightened but not fixed. 
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Doubts and concerns that may affect the academic field on the basis of the limitations of intentional 
semantics should not affect the ability to construct fully operative and effective formalisms. 
Contradictory constructions, along with the idea of common sense that a universal verification 
procedure is impossible, is the basis of skepticism. But it is not a matter of constructing a universal 
verifier of all possible propositions, but of a second-order function which validates that first-order 
functions are defined in the mathematical sense. And in turn, a translator of functional formulas to 
programs in imperative language. And this is perfectly feasible, we hope. 
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