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Majorana zero modes have been shown to be the simplest quasiparticles exhibiting pure odd-
frequency pairing, an effect that has so far been theoretically established in the static regime. In
this work we investigate the formation of Majorana modes and odd-frequency pairing in p-wave
spin-polarized superconductors under a time-dependent drive. We first show that the driven system
hosts multiple Majorana modes emerging at zero and π, whose formation can be controlled by an
appropriate tuning of the drive frequency and chemical potential. Then we explore the induced pair
correlations and find that odd-frequency spin-polarized s-wave pairing is broadly induced, acquiring
large values in the presence of Majorana modes. We discover that, while odd-frequency pairing is
proportional to ∼ 1/ω in the presence of Majorana zero modes, it is proportional to ∼ 1/(ω−πℏ/T )
in the presence of Majorana π modes, where T is the periodicity of the drive. Furthermore, we find
that the amount of odd-frequency pairing becomes larger when multiple Majorana modes appear
but the overall divergent profile as a function of frequency remains. Our work thus paves the way
for understanding the emergent pair correlations in driven topological superconductors

I. INTRODUCTION

Topological superconductors are characterized by the
emergence of Majorana zero modes (MZMs) [1–5], charge
neutral and zero energy quasiparticles with potential for
realizing topological qubits [6–11]. While charge neutral-
ity and zero energy signatures have been extensively pur-
sued to detect MZMs [11–16], they do not unambiguously
probe the emergence of Majorana physics [14, 17, 18].
Another less explored characteristic of MZMs is that
their pair amplitude is an odd function in the relative
time, or frequency, revealing odd-frequency pairing as
an intriguing property of MZMs [2, 19–24]. The odd-
frequency pairing of MZMs has so far only attracted the-
oretical studies, which predict a divergent pair amplitude
at zero frequency as an unambiguous signature of Majo-
rana physics [20–24].

The relationship between odd-frequency pairing and
MZMs has been theoretically studied in several systems
with topological superconductivity. Among these sys-
tems, we find heterostructures based on p-wave supercon-
ductors [25–29], d-wave superconductors [30], topological
insulators [31–44], Weyl semimetals [45, 46], semiconduc-
tors with Rashba spin-orbit coupling [30, 47–49], Majo-
rana nanowires [29, 50], Sachdev-Ye-Kitaev setups [51],
and interacting MZMs [52]. All these works helped to
establish a strong connection between MZMs and odd-
frequency pairing and revealed the exotic superconduct-
ing nature of MZMs [2, 20–22, 53]. In fact, the oddness
in frequency of the superconducting pairing implies that
odd-frequency pairing is an effect that is nonlocal in time
and, therefore, can be seen as an intrinsic dynamical phe-
nomenon [22, 54]. Despite the dynamical nature of odd-
frequency pairing, all previous studies addressed its rela-

FIG. 1. Sketch of a p-wave superconductor (gray cylinder)
under a time-periodic chemical potential µ(t) with periodicity
T . Here, µ(t) depends on time in a piece-wise manner, so
that the total time-dependent system is described by the same
Hamiltonian but with different chemical potentials at every
half-cycle, see blue and red colored regions.

tionship with MZMs only in static topological supercon-
ductors, leaving unexplored the time-dependent regime.

In this work, we consider p-wave superconductors
driven by a time-periodic field and investigate the emer-
gence of Majorana states and odd-frequency pairing. In
particular, we focus on time-periodic modulations in the
chemical potential of the superconductor and treat the
time-dependent problem within Floquet theory. Since
our system is a p-wave superconductor, it hosts a topolog-
ical phase with MZMs but, as expected, the drive also in-
duces a Floquet topological phase with Majorana modes
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at energies equal to πℏ/T , known as Majorana π modes
(MPMs), where T is the period of the drive [55]. We
also show that the driven p-wave superconductor can si-
multaneously host multiple MZMs and MPMs, an effect
that is supported by higher values of their topological in-
variants and can be fully controlled by the period of the
drive and chemical potentials. Furthermore, we discover
that odd-frequency spin-polarized s-wave pairs are in-
duced and enhanced in the presence of MZMs and MPMs,
acquiring a unique behaviour proportional to ∼ 1/ω and
∼ 1/(ω − πℏ/T ), respectively. This, therefore, suggests
a strong and intriguing relationship between dynamical
topological superconductivity and odd-frequency pairing.
Our results provide a new way to generate and manipu-
late odd-frequency pairing using Floquet engineering and
offer fundamental understanding of the emerging pair
correlations in driven topological superconductors.

The remainder of this article is organized as follows.
In Section II we introduce the time-periodic p-wave su-
perconductor model and discuss the Floquet method. In
Section III we study the emergence of MZMs and MPMs
obtained within a Floquet description. In Section IV we
apply the Floquet method to study the pair amplitudes
and obtain the odd-frequency pairing. Finally, in Section
V, we present our conclusions. To further support this
work, in Appendix A and B we present additional details
of the calculations.

II. TIME-PERIODIC TOPOLOGICAL
SUPERCONDUCTORS

We consider a finite one-dimensional chain of spin-
polarized fermions with p-wave pair potential subjected
to time-periodic modulations in the chemical potential,
which is modelled by

H(t) =

N∑
j=1

ψ†
j (−µ(t)τz)ψj

+

N−1∑
j=1

ψ†
j (−wτz + i∆τy)ψj+1 + h.c. ,

(1)

where ψj = (cj , c
†
j)

T is the Nambu spinor at site j, cj

(c†j) destroys (creates) an electronic state at site j, τj is
the j-th Pauli matrix in Nambu space, ∆ is the p-wave
order parameter, w is the nearest-neighbour hopping am-
plitude, and µ(t) represents the time-periodic chemical
potential. The length of the system is given by L = Na,
where N represents the number of sites and a the lattice
spacing chosen here to be a = 1 without loss of general-
ity. Here, we consider a driving protocol for the chemical
potential µ(t) such that it is given by piece-wise time-
periodic modulations as

µ(t) =

{
µ1, nT < t ≤ (n+ 1

2 )T ,

µ2, (n+ 1
2 )T < t ≤ (n+ 1)T ,

(2)

where T is the driving period and n ∈ Z. Therefore, the
total time-dependent Hamiltonian governing the driven
system is determined by two piece-wise constant Hamil-
tonians as a function of time, denoted here as H1,2, such
that

H(t) =

{
H1, nT < t ≤ ( 12 + n)T ,

H2, ( 12 + n)T < t ≤ (n+ 1)T .
(3)

The only difference between H1,2 is that they have dis-
tinct chemical potentials at every half-cycle given by
Eq. (2). In the static regime, when there is no time de-
pendence in the chemical potential, such that µ1,2 ≡
µ, the p-wave superconductor model given by Eq.(1)
describes the well-known Kitaev chain and has been
shown to host a topological phase with MZMs when
µ < |2w|, see e.g., Refs. [3, 5]. MZMs emerge as edge
states whose wavefunctions exponentially decay towards
the bulk of the superconductor and their energies reach
zero for sufficiently large systems. Recent experiments in
semiconductor-superconductor hybrids have shown that
realizing topological superconductivity based on the Ki-
taev model is within experimental reach [13–16].
Motivated by the exotic properties of the Kitaev chain,

here we are interested in exploring its behaviour and
how its topological properties vary by applying a time-
periodic modulation in the chemical potential. Specially,
we are interested in engineering and controlling the emer-
gent topological superconductivity, its Majorana modes,
and the superconducting pair correlations by means of
the time-periodic drive. For this purpose, we focus on the
stroboscopic evolution of the system which is defined at
integer multiple of the driving period T [56]. At strobo-
scopic times, the evolution is governed by the propagator
over one period UT [t0] ≡ U(t0 + T, t0), with

UT [t0] = T exp

(
− i

ℏ

∫ t0+T

t0

H(s)ds

)
, (4)

where T is the time-ordering operator, t0 is the ini-
tial time, and H is described by Eq. (1). We note that
UT [t0] is time-periodic, namely, UT [t0] ≡ U(t0 + T, t0) =
U(t0+2T, t0+T ), and is known as the Floquet time evo-
lution operator. Then, the effective Hamiltonian for the
stroboscopic evolution, at t0 + nT for n ∈ Z, also known
as the Floquet Hamiltonian [56], is obtained as

HF[t0] =
iℏ
T

log(UT [t0]) . (5)

where log here represents the natural logarithm. We note
that the effective Hamiltonian HF depends on the choice
of the initial time t0, which is a gauge choice and com-
pletely arbitrary, often taken to make HF acquire its sim-
plest form [57]. Moreover, HF also depends on the log-
arithm branch cut, considered in a way that the eigen-
values of HF, also known as quasienergies, belong to the
region [−πℏ/T, πℏ/T ) where | ⟨ψ|HF|ψ⟩| ≤ πℏ/T holds



3

for an arbitrary stationary state |ψ⟩ [57]. We are inter-
ested in exploring the formation of Majorana modes and
also their impact on the emergence of odd-frequency pair
correlations. Below we address these points by using the
effective Hamiltonian Eq. (5).

III. MAJORANA EDGE MODES:
TOPOLOGICAL INVARIANTS AND

QUASIENERGY SPECTRUM

We start by investigating the emergence of Majorana
edge modes, expected to appear when the driven system
described by Eq. (5) becomes topological. For this pur-
pose, we next identify these topological regimes by cal-
culating the topological invariants and also characterize
their Majorana edge modes in the energy spectrum.

A. Bulk energies and multiple Fermi surfaces

We first analyze the energies of the bulk Floquet
Hamiltonian given by Eq. (5). We find that the positive
bulk Floquet quasienergy is given by

EF(k) =
ℏ
T

arccos

[
cos(E1T/2ℏ) cos(E2T/2ℏ)

− E1 ·E2

E1E2
sin(E1T/2ℏ) sin(E2T/2ℏ)

]
,

(6)

while the negative band is given by −EF, and Ej = |Ej |,
with Ej = (0, 2∆ sin k,−µj − 2w cos k)T . We refer to
Appendix A for details on the derivation of Eq. (6). As we
see, the bulk quasienergies are symmetric with respect to
zero energy due to particle-hole symmetry, and they are
also symmetric with respect to energies ±ℏπ/T because
they are defined modulus 2π in Eq. (6).
To visualize EF(k), we show its momentum depen-

dence in Fig. 2 for distinct values of T and µ2, with
µ1 = 0. For clarity and completeness, we show the
bulk energies at zero and finite pair potential, which cor-
respond to ∆ = 0 and ∆ ̸= 0, depicted by solid red
and dashed black curves, respectively. The choice of the
chemical potentials is motivated by the fact that it allows
us to explore the trivial and topological phases of the Ki-
taev model, while the effect of T permits us to inspect
the response of the system to the driving field. In the un-
driven case, the average chemical potential (µ1 + µ2)/2
sets the topological transition, see Appendix B: thus, the
regime with µ2 = 3w and µ1 = 0 puts the system in the
topological phase, while µ2 = 6.5w and µ1 = 0 corre-
sponds to the trivial phase.

In the normal state, ∆ = 0, there are multiple Fermi
surfaces, which are seen by noting the crossings at en-
ergies EF = 0 and EF = πℏ/T in the solid red curves
in Fig. 2. At weak T in Fig. 2(a,b), a Fermi surface ap-
pears in the normal state ∆ = 0 at zero energy EF = 0
for µ2 = 3w but none for µ2 = 6.5w; intriguingly, Fermi
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FIG. 2. Bulk energy bands as a function of momentum k for
µ2/w = 3 (left column) and µ2/w = 6.5 (right column) at
µ1 = 0 and distinct values of the period T . Solid red and
black dashed curves depict the energies at ∆ = 0 and ∆ = w.
Top (a,b) , middle (c,d) , and bottom panels (e,f) correspond
to T = 0.3πℏ/w, 0.6πℏ/w, and 1.5πℏ/w, respectively.

surfaces appear at EF = πℏ/T , revealing an important
effect of the drive. By increasing T , multiple Fermi sur-
faces appear at EF = 0 and EF = πℏ/T for both cases
of µ2, as seen in Fig. 2(c-f). Interestingly, the multiple
Fermi surfaces only come from the log operation since H1

andH2 commute with each other for ∆ = 0. This effect is
seen by performing a Baker-Campbell-Hausdorff (BCH)
expansion of the Floquet Hamiltonian in T , where only
lowest order remains and higher orders vanish at ∆ = 0,
see Appendix B. At finite pair potential, we see a gap
openings at the Fermi surfaces (dashed black curves). At
this point it is worth noting that having a Fermi surface
is known to be important for inducing edge states. In
this regard, systems with multiple Fermi surfaces, as it
is in our case, are expected to host multiple edge modes,
with the number of states related to the number of Fermi
surfaces [24]. In our system, the multiple Fermi surfaces
are induced by T and occur at two particular energies,
at EF = 0 and EF = πℏ/T , which suggests that our sys-
tem can be engineered to host multiple edge states under
the presence of the drive. To known the number of edge
states, however, it is important to go beyond the Fermi
surfaces and explore the topological invariants which we
carry out in the next subsection.
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B. Topological Invariants

To understand the emergence of topological phases in
the driven system described by Eq. (5), we obtain the
topological invariants. In this case, it is required to iden-
tify the symmetry of the effective Floquet Hamiltonian
in Eq. (5). While H(t) anti-commutes with the chiral op-
erator Γ = τx, for chiral symmetry to be preserved in
the Floquet Hamiltonian, we need to find an initial time,
t0, that ensures a symmetric time evolution. Specifically,
it should satisfy the condition UT [t0] = ΓA†ΓA for a
unitary operator A. In our case, chiral symmetry is pre-
served at t0 = ±T/4, which then implies that the opera-

tor A is given by A = e−
iT
4ℏH2e−

iT
4ℏH1 for t0 = +T/4; for

−T/4 the operator A acquires a similar form but with H1

andH2 exchanged. We note that A can be also written as
UT (t0 +T/2, t0), which is the propagator for a half-cycle
and represents an evolution from t0 to some time t such
that the hamiltonian is time symmetric around t. For
our specific system, where chiral symmetry is preserved
at t0 = ±T/4, the one-period propagator is expressed as

U+
T ≡ UT [T/4] = e−

iT
4ℏH1e−

iT
2ℏH2e−

iT
4ℏH1 ,

U−
T ≡ UT [−T/4] = e−

iT
4ℏH2e−

iT
2ℏH1e−

iT
4ℏH2 ,

(7)

where H1,2 are given by Eqs. (3). Then, in the same
spirit as for the definition of the Floquet Hamiltonian
HF in Eq. (5), here we take Eqs. (7) and define two chiral-
invariant Floquet Hamiltonians denoted as H±

F , namely,

H±
F = (iℏ/T ) log

(
U±
T

)
. Thus, using these Hamiltonians,

we can define two winding numbers as follows

W± =
i

4π

∫ π

−π

dkTr
{
Γ
[
H±

F (k)
]−1

∂k
[
H±

F (k)
]}
, (8)

where H±
F (k) represents the effective Hamiltonian in

the momentum representation. These winding numbers
characterize the change in the total number of pairs of
edge modes. However, they do not provide detailed in-
formation about the number of MZMs and MPMs. This
can be remedied by defining two extra winding numbers
by combining W± as [58–60]

W0 =
W+ +W−

2
and Wπ =

W+ −W−

2
, (9)

where W0 and Wπ count the number of pairs of MZMs
and MPMs, respectively. In practice, to obtain W0,π, we
discretize the momentum space and perform the integrals
in Eqs. (8) numerically.

In Fig. 3(a,b) we present the winding numbers W0,π as
functions of the period T and chemical potential µ2 at
fixed ∆ and w. We also set to zero the chemical potential
of the first half of the cycle µ1 = 0 and introduce a non-
zero chemical potential during the second half µ2. More-
over, in Fig. 3(c,d) we also show line cuts of Fig. 3(a,b)
at fixed µ2. The first observation in Fig. 3(a,b) is that,
near T = 0, the winding number that counts MZMs takes

FIG. 3. Topological invariants W0 (a) and Wπ (b) as a func-
tion of the chemical potential µ2 and period T . Panels (c,d)
show line cuts of (a,b) as a function of T at fixed µ2. Param-
eters: ∆ = w, µ1 = 0.

two values W0 = 0, 1 as a function of µ2, an effect that
is consistent with the static p-wave superconductor (Ki-
taev chain) developing a trivial and a topological phase
[3, 5]. In fact, the Floquet Hamiltonian HF becomes
(H1 + H2)/2 near T = 0, which then implies that the
phase transition is dictated by (µ1 + µ2)/2 = 2w, which
is consistent with µ2 = 4w when µ1 = 0. For details on
the expansion of HF near T = 0, see Appendix B. We
also note that at T = 0, the winding number that counts
MPMs is zero (Wπ = 0) and does not change as µ2 in-
creases, as expected since no MPMs exist in the static
regime.
The behaviour discussed for W0,π above is preserved

also for very small values of T but undergoes consider-
able variations as T further increases, revealed in the
multicolor regions in Fig. 3(a,b). In fact, we obtain that
both W0 and Wπ can take integer numbers, with higher
values that interestingly predict the emergence of mul-
tiple MZMs and also multiple MPMs. It is worth not-
ing that the line µ2 = 4w, which corresponds to the
phase transition criterion for the static Kitaev chain,
persists throughout the entire range of T , thus reveal-
ing that the topological phase transition of the static
system remains robust even in the presence of a time-
periodic drive [Fig. 3(a)]. Moreover, from Fig. 3(a,b) we
observe that a notable effect of the drive is its poten-
tial to change the topology of the system. For instance,
by increasing T , a topologically trivial phase can en-
ter into a topologically nontrivial phase with nonzero
topological invariant, see blue (W0(π) = 0)-to-magenta
(W0(π) = 1) or blue (W0(π) = 0)-to-peach (W0(π) = −1)
in Fig. 3(a,b). Furthermore, if the system is topologically
nontrivial with a nonzero winding number, by increasing
T it is possible to enter into another topological phase
with higher winding number, as seen in the transitions
involving magenta (W0(π) = 1)-to-brown (W0(π) = 2) or
peach (W0(π) = −1)-to-violet (W0(π) = −2) colors, see
Fig. 3(a,b). A simpler visualization of these cases is pre-
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sented in Fig. 3(c,d) which shows two particular values
of µ2 where the system is initially topologically trivial
(orange curve) and nontrivial (blue curve). Therefore,
by an appropriate control of the chemical potential µ2

and the drive period T , topological phases with multiple
Majorana edge modes at zero and at πℏ/T energy can be
induced even if the static system is topologically trivial.

C. Quasienergy spectrum

Having understood the emergence of multiple topolog-
ical phases in driven p-wave superconductors, here we
explore their quasienergy spectrum. This is motivated
by the fact that MZMs are expected to appear at zero
energy (EF = 0) while MPMs at EF = πℏ/T . In this
regard, we consider a finite system with L = 100a de-
scribed by Eq. (5) and numerically obtain its eigenvalues.
In Fig. 4(a,b) we present the quasienergy spectrum as a
function of T at µ2 = 3w and µ2 = 6.5w, respectively.
We note that, for visualization purposes, we obtain the
spectrum of THF and that is why the energy gap vanishes
at T = 0. We fix the chemical potential for the second
half of the cycle to these values because it gives us the
possibility to explore how the effect of the time-periodic
drive impacts the already existent topology and also how
it can change the topology of the system, as we discussed
in the previous subsection, see Fig. 3(c,d). The immedi-
ate observation is that, in general, the quasienergy spec-
trum is composed of a dense spectrum which are strongly
dependent on T and also of dispersionless energy levels
around zero and πℏ/T quasienergies, which here we refer
to as MZMs and MPMs, respectively.

For µ2 = 3w in Fig. 4(a), a pair of MZMs appear in the
undriven regime, which is consistent with the topologi-
cal invariant W0 in Fig. 3(a). As T increases, the pair of
MZMs remain but, interestingly, a pair of MPMs appear
at quasienergies of πℏ/T , see orange lines in Fig. 4(a).
Moreover, at around T ≈ πℏ/(2w), the dense spectrum
reaches zero energy, giving rise to a gap closing and re-
opening which then leaves two extra MZMs and thus the
system hosts two pairs of MZMs. The appearance of
multiple MZMs can be seen to be a result of our driven
system having multiple Fermi surfaces, as discussed in
Subsection IIIA. Another possibility is that the consid-
ered system exhibits long-range pairing and hopping, an
effect that was shown before to lead to multiple Majo-
rana edge modes in the static regime [61], see also Refs.
[60, 62–64]. In Appendix B we show the emergence of
long-range pairing components in the fourth order BCH
expansion of HF in T , but higher orders are needed for
revealing the long-range hopping terms. Something sim-
ilar happens with the MPMs: at T ≈ πℏ/w, the dense
spectrum touches the energy πℏ/T and leaves two extra
MPMs. This behaviour also occurs in Fig. 4(b) but then
no MZMs at very low T since here µ2 = 6.5w and the
static regime is topologically trivial. Nevertheless, the
gap closings and emergence of multiple MZMs and MPMs

−π

0

π

T
E
F

[h̄
]

(a)
µ2 = 3w

(b)
µ2 = 6.5w

0 π 2π
T [h̄/w]

0

π

G
a
p

[h̄
]

(c)

0 π 2π
T [h̄/w]

(d)

Tg0

Tgπ

FIG. 4. (a,b) Quasienergy spectrum as a function of the pe-
riod T for µ2 = 3w and µ2 = 6.5w. Here, MZMs and MPMs
are depicted by blue and orange lines, respectively. (c,d) Bulk
energy gaps g0,π at energy 0 and πℏ/T for the two cases on
(a,b). Parameters: ∆ = w, µ1 = 0, N = 100.

is similar to what occurs in Fig. 4(a) for µ2 = 3w. Fur-
thermore, we have confirmed that the associated wave-
functions of these multiple Majorana modes are indeed
located at the ends of the system, as expected for Majo-
rana wavefunctions due to their spatial nonlocality.
To further confirm that the gap closings of the dense

spectrum discussed above indeed reflect bulk gap closings
giving rise to Majorana modes due to the bulk-boundary
correspondence, now we analyze the bulk gaps in momen-
tum space. For this purpose, we define two bulk energy
gaps associated to EF = 0 and EF = πℏ/T as [60]

g0 = min
k∈B.Z.

|EF(k)| , gπ =
πℏ
T

− max
k∈B.Z.

|EF(k)| , (10)

where B. Z. denotes the first Brillouin zone and EF(k)
represents the positive bulk Floquet quasienergy band
given by Eq. (6). We highlight that the bulk energy
gaps g0(π) are expected to characterize the gap closing
and reopening signalling a topological phase transition,
which predicts the emergence of Majorana edge modes
at quasienergies equal to 0 or ±ℏπ/T . These gaps also
measure the energy separation between MZMs (MPMs)
from the quasicontinuum in a finite system. Before go-
ing further, we would like to note that, at k = π, the
quasienergy given by Eq. (6) vanishes EF = 0 when
µ1 + µ2 = 4w. Thus, the system gap closes regardless
of the other system parameters, implying that the driven
system retains the gap closing of its undriven phase, in
agreement with the phase boundary at µ2 = 4w seen in
Fig. 3(a) when µ1 = 0.
We now proceed to visualize the behaviour of g0 and

gπ, in Fig. 4(c,d) we show them as a function of the period
T for the two cases with µ2 = 3w and µ2 = 6.5w. To
make contact with Fig. 4(a,b), we plot Tg0,π. We clearly
identify that each time MZMs appear in Fig. 4(a,b), the
bulk gap g0 Fig. 4(c,d) closes and reopens at zero energy,
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thus making this feature a clear signature of a topological
phase transition. Similarly, the emergence of MPMs in
Fig. 4(a,b) is accompanied by closings and reopenings of
gπ at energies of πℏ/T , in line with topological phase
transitions. Thus, dispersionless energy levels depicted in
blue and orange lines in Fig. 4(a,b) represent MZMs and
MPMs, which can be engineered by simply controlling
the chemical potential µ2 and the drive period T . Since
the MZMs and MPMs found here only appear at finite
T , they reveal a clear impact of the time-periodic drive
on p-wave superconductors.

IV. ODD-FREQUENCY SUPERCONDUCTING
PAIRING AT STROBOSCOPIC TIMES

In this part we investigate the nature of the emer-
gent superconducting correlations under the presence of
MZMs and MPMs. The superconducting correlations are
commonly obtained from the anomalous (electron-hole)
part of the system Green’s function in Nambu space, see
e.g., Refs. [65, 66]. Since the driven system in our case
is described by the effective Hamiltonian in Eq. (5) at
stroboscopic times, we can define an effective Green’s
function associated with such Hamiltonian. Thus, the
retarded (r) and advanced (a) Green’s functions at stro-
boscopic times can be obtained as

Gr(a)
F (ω) = (ω ± iδ −HF)

−1 , (11)

where δ is an infinitesimally small positive number that
helps defining the retarded (advanced) nature of the
Green’s function andHF is the effective Floquet Hamilto-
nian given by Eq. (5) and written in Nambu space. Due

to the basis of the effective Hamiltonian, Gr(a)
F has the

following Nambu structure

Gr(a)
F (ω) =

(
Gr(a)(ω) F r(a)(ω)
F̄ r(a)(ω) Ḡr(a)(ω)

)
, (12)

where Gr(a) and F r(a) represent the normal and anoma-
lous components of the system Green’s function. Here,
F r(a) enables the calculation of the superconducting pair
amplitudes at stroboscopic times which is the focus of
our discussion below.

Before going further, we discuss the expected sym-
metry of the superconducting pair correlations. To in-
spect the pair symmetries, it is important to identify
the quantum numbers appearing in the pair amplitudes
F r(a)(ω) and analyze the antisymmetry condition under
the exchange of all the quantum numbers, see e. g.,
Refs. [2, 21, 23, 67]. In this regard, we identify the fre-
quency ω, spin σ, and spatial coordinates, as the quan-
tum numbers appearing in the pair amplitudes. Because
the static superconductor is spin-polarized and the drive
does not modify the spin, the resulting spin symmetry
is the same as that of the static superconductor, namely,
spin-polarized which can be seen as equal spin-triplet (T).

Moreover, F r(a) is a matrix in lattice space and its ele-

ments here we denote by F
r(a)
ij where we dropped the F

subscript for simplicity in the notation. Thus, in general,
there are two spatial coordinates which correspond to the
lattice sites i, j, which run from 1 till N , with N being
the last lattice site. Hence, the pair amplitudes inside the
system can be decomposed into even and odd functions
under the exchange of i, j. In what follows, we focus on
the local pair amplitudes i = j, which are even in space
or parity, have s-wave symmetry, and are robust against
disorder [2, 26, 47, 68]. Given that the superconduct-
ing pair amplitude of our interest are expected to exhibit
spin-triplet and s-wave symmetries, the only possibility
for the frequency dependence is to be an odd (O) func-
tion of frequency. In time domain, the odd-frequency
dependence is revealed by an odd-function under the ex-
change in time coordinates [2, 21, 23, 67]. Thus, follow-
ing simple arguments, we showed that our driven system
should develop superconducting pair correlations with an
odd-frequency (O), spin-triplet (T), even-parity (E) sym-
metry, which is sometimes referred to as the OTE sym-
metry, see e.g.,Refs. [2, 21]. Since our system is already
spin-polarized, there is no need to decompose the spin-
symmetry. Then, using advanced and retarded Green’s
functions, the OTE pair amplitude is obtained as

F odd
ii (ω) =

F r
ii(ω)− F a

ii(−ω)
2

(13)

where F
r(a)
ii are the onsite components of the anomalous

Green’s function given by Eq. (12). Moreover, in the sec-
ond term of the right hand side of Eq. (13), we have used
the advanced Green’s function when ω → −ω due to the
analytic behavior of the retarded (advanced) in the upper
(lower) complex frequency plane [65, 66]. Since the spin
symmetry is preserved and taking the onsite components
means that we only take the even-parity term, there is no
need of performing the decomposition in Eq. (13). The
diagonal elements of the anomalous Green’s functions al-
ready give the OTE pair amplitudes in each site, which
we discuss below.

Before going further, it is worth pointing out that, in
static superconductors, the OTE pair amplitude accumu-
lated at the edge is known to be correlated to the topol-
ogy of the system [2, 21, 23, 67]. Specially, in the static
regime, it has been shown that the odd-frequency pair-
ing acquires a divergent profile in the presence of MZMs,
thus exhibiting a maximum value at the edges of the sys-
tem and can penetrate deep into it with a penetration
depth similar to that of MZMs. This behaviour implies
a strong correlation between topology and odd-frequency
pairing and here we numerically investigate whether this
effect persists in the time-driven regime.
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A. Accumulated odd-frequency pairing in driven
topological superconductors

To facilitate a meaningful comparison between odd-
frequency pairing and Majorana edge modes, we per-
form a summation of the values of odd-frequency pair-
ing over the leftmost sites [27]. The summation is ter-
minated at the midpoint of the lattice and the summed
odd-frequency pairing are referred to as “accumulated
odd-frequency pairing at the edge”, which is obtained as

Fodd(ω) =

N/2∑
i=1

F odd
ii (ω) , (14)

where F odd
ii are diagonal elements in lattice space defined

in Eq. (13). We also fix the initial time such that t0 =
T/4 because it allows to define Fodd as a gauge invariant
quantity and to establish a straightforward relationship
to the topological phases discussed in Section III.

In Fig. 5(a,b) we present the magnitude of the accu-
mulated OTE pair amplitude |Fodd| as a function of the
chemical potential µ2 and period T at fixed frequencies
ω = 0 and ω = πℏ/T that capture the MZMs and
MPMs, respectively. In Fig. 5(c,d) we show the same
as in (a,b) but as a function of frequency ω and T for
two fixed chemical potentials µ2 = 3w and µ2 = 6.5w.
The immediate observation is that |Fodd| in Fig. 5(a,b)
develops large (vanishing small) values in the range of
parameters where the topological invariants shown in
Fig. 3 are nonzero (zero), suggesting an intriguing rela-
tionship between topology and the multiple MZMs and
MPMs. This behaviour can be further seen by tak-
ing line cuts of Fig. 5(a,b) at fixed chemical potentials
µ2 = 3w and µ2 = 6.5w, which is shown in Fig. 6(a,b)
and Fig. 6(f,g), respectively. There we observe that |Fodd|
has indeed a similar behavior as the topological invari-
ants in Fig. 3(a,b), being zero where W0,π = 0 and devel-
oping plateaus of distinct heights, whose values depend
on the number of MZMs or MPMs. We note that the
resemblance at higher values of T is partially destroyed
because of finite-size effect. We have in fact verified that
for a large enough lattice, there exist a one-to-one cor-
respondence between topological invariants and |Fodd|,
see next subsection. Therefore, the OTE pair amplitude
enables a full mapping of the topological invariants in
the presence of the time-periodic drive. At this point we
point out that a relationship between MZMs and topo-
logical invariants has been discussed before but only in
the static regime [27]. Our results discussed in this part
thus demonstrate that such a relationship persists even
in the driven phase involving multiple MZMs and MPMs.

Further insights on the relationship between Majo-
rana modes and OTE pair correlations can be seen in
Fig. 5(c,d) where we present |Fodd| as a function of ω
and T . Interestingly, the odd-frequency pair amplitude
exhibits its largest values at ω = 0 and ω = πℏ/T , which
correspond to the quasienergies of MZMs and MPMs,
respectively, discussed in Section III C and Fig. 4. This

FIG. 5. (a,b) Absolute value of the accumulated odd-
frequency pair amplitude Fodd as a function of µ2 and T for
ω = 0 and ω = πℏ/T . (c,d) Same as in (a,b) but now as a
function of ω and T for µ2 = 3w and µ2 = 6.5w. Parameters:
∆ = w, µ1 = 0, N = 100, δ/w = 10−5.

implies that the odd-frequency pairing resonates at the
energies of the MZMs and MPMs, acquiring divergent
frequency profiles that follow ∼ 1/ω and ∼ 1/(ω−πℏ/T ).
This intriguing behaviour is confirmed in Fig. 6(b,g),
where the odd-frequency pair amplitude |Fodd| is plot-
ted as a function of ω at three fixed values of T . We also
show log|T−1ℏFodd| in Fig. 6(c,h), which clearly reveals
the divergent profile of |Fodd| at ω = 0 and ω = πℏ/T :
here, the divergent peak at log|Tω/ℏπ| = 0 depicts the
divergence of the OTE pair amplitude at ω = πℏ/T ,
while the linear behavior shows that the OTE pair am-
plitude is also divergent when log|Tω/ℏπ| takes large neg-
ative values which give at ω = 0 [69]. The multiple peak
structure appearing for log|Tω/ℏπ| < 0 corresponds to
contributions coming from the quasicontinuum of states
seen in the dense regions of Fig. 4(a,b); they are, how-
ever, much smaller than OTE pairing due to MZMs and
MPMs, as seen in Fig 6(b,g). Furthermore, we note that
the OTE amplitude develops larger values when the num-
ber of MZMs or MPMs is larger, seen by noting the green,
red and magenta colors in e.g., Fig. 6(b,g).

Having explored the frequency dependence of the OTE
pair amplitude, next we inspect its real space depen-
dence in order to gain even more understanding on its be-
haviour under the presence of Majorana modes. For this
purpose, we address the odd-frequency pair amplitude
before performing the summation in Eq. (14), namely,
we inspect the real space profile of F odd

ii . This is visual-
ized in Fig. 6(d,e,i,j), where we plot the absolute value of
the OTE pair amplitude |F odd

ii | as a function of x = ia
at ω = 0 (d,i) and ω = πℏ/T (e,j); here the top and
bottom rows correspond to µ2 = 3w and µ2 = 6.5w, re-
spectively. The main feature of the space dependence of
the OTE pair amplitude is that they exhibit maxima at
the edges of the system, in a very similar way as expected
from the spatial nonlocal wavefunctions of Majorana edge
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FIG. 6. Absolute value of the accumulated odd-frequency pair amplitude Fodd as a function of T (a,f), and ω (b,c,g,h). Panels
(d,e,i,j) show the onsite odd-frequency pair amplitude F odd

ii as a function of space x. The top and bottom rows correspond to
µ2 = 3w and µ2 = 6.5w, respectively. Parameters: ∆ = w, µ1 = 0, N = 100.

modes. The accumulation of large OTE pair correla-
tions at the edges is a well established effect in the static
regime of topological superconductors, which reinforces
the strong connection between MZMs and OTE pairing
[2, 21, 23, 24, 67]. Our findings therefore reveal that the
relationship between odd-frequency pairing and topology
also holds for driven superconductors containing multi-
ple MZMs and MPMs. In consequence, the nature of
the emergent superconducting pairs at the boundaries
of time-periodic topological superconductors is of OTE
symmetry.

B. Characterization of topology by the
odd-frequency pairing amplitude

So far we have seen that there is an intriguing rela-
tionship between the emergence of Majorana edge states
and odd-frequency pairing with OTE symmetry in time-
periodic topological superconductors. Here we further
investigate that this relationship is not accidental but it
stems from the so-called spectral bulk boundary corre-
spondence (SBBC), which predicts that the bulk wind-
ing number is related to odd-frequency pairing at bound-
aries in chiral symmetric systems [27, 70, 71]. The SBBC
was studied before in chiral symmetric static systems and
here we explore it in time-periodic domain.

We inspect the accumulated odd-frequency pairing
Fodd defined in Eq. (14) with t0 = T/4. For this pur-
pose we denote FN

odd(z) ≡ Fodd(z) and write

FN
odd(z) =

N/2∑
i

F odd
ii =

1

2
T̂r{ΓG(z)} , (15)

where Γ = τx is the chiral operator, G(z) = (z −HF)
−1

is the Green’s function, T̂r represents a special trace op-
eration that sums up the contributions from the leftmost

lattice sites up to the middle of the system only, and z
represents complex frequencies, whose analytic continu-
ation z → ω ± iδ gives the advanced (retarded) Green’s
functions studied in Eq. (14).
Then, taking N very large such that the system be-

comes semi-infinity, in the low-frequency limit we find,

lim
N→∞

FN
odd(z) =

1

2

Wω

z − Eω
, (16)

where Wω corresponds to the winding numbers W0(π)

obtained from Eq. (9), respectively. Moreover, Eω cor-
responds to energies E0 = 0 and Eπ = πℏ/T of
MZMs and MPMs, respectively. The accumulated odd-
frequency pairing in Eq. (16) diverges at energies of
MZMs or MPMs, in agreement with what we found in
Fig. 6(b,c,g,h). Eq. (16) clearly demonstrates the direct
relationship between odd-frequency pairing and topol-
ogy in time-periodic topological superconductors. Also,
it is worth noting that Eq. (16) extends the SBBC at
low frequencies, initially investigated for static systems
[27, 70, 71], to the time-dependent domain.

V. CONCLUSIONS

In conclusion, we considered a one-dimensional p-wave
superconductor under a time periodic chemical potential
and studied the relationship between the emergence of
Majorana edge modes and odd-frequency pairing. We
found that Majorana modes appear located not only at
energy EF = 0, but also at EF = πℏ/T , and, interest-
ingly, the number of such Majorana edge modes can be
controlled by the driving period and chemical potentials.
Moreover, we discovered that odd-frequency pairing is
finite and acquires large values in the presence of Majo-
rana edge zero and π modes, representing a unique out-of
equilibrium phenomenon that can be fully controlled by
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the drive. Specially, we found that the frequency depen-
dence of the formed odd-frequency pairing in the pres-
ence of Majorana zero and π edge modes is proportional
to ∼ 1/ω and ∼ 1/(ω−πℏ/T ), respectively. Moreover, we
showed that the divergent profile of odd-frequency pair-
ing remains even in the presence of multiple Majorana
edge modes. Our results thus establish an intimately re-
lationship between Majorana modes and odd-frequency
pairing in time-driven topological superconductors.
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Appendix A: Bulk quasienergy and bulk gaps

In this part we derive the bulk quasienergy given by
Eq. (6), which is the key ingredient to obtain the gaps
g0,π in Eqs. (10). For convenience, without loss of gener-
ality, we set t0 = 0 in Eq. (4) and write the one-period
propagator in momentum space in the following form

UT = e−i T
2ℏE2·τ e−i T

2ℏE1·τ , (A1)

with Ej = (0, 2∆ sin k,−µj − 2w cos k)T and τ =
(τx, τy, τz) the vector of Pauli matrices in Nambu space.
As we see, the one-period propagator is expressed as a
product of exponentials of Pauli matrices, which implies
that it should follow the group composition law of SU(2),
i.e., it can be written as an exponential of su(2) algebra.
Thus, using Euler’s formula for Pauli matrices, we can
write Eq. (A1) as

UT = 1

[
cos

E1T

2ℏ
cos

E2T

2ℏ
− Ê1 · Ê2 sin

E1T

2ℏ
sin

E2T

2ℏ

]

+ i

[
Ê1 sin

E1T

2ℏ
cos

E2T

2ℏ
+ Ê2 sin

E2T

2ℏ
cos

E1T

2ℏ
+ Ê1 × Ê2 sin

E1T

2ℏ
sin

E2T

2ℏ

]
· τ ,

(A2)

where Êj = Ej/Ej , Ej = |Ej |, and Ej is defined below
Eq. (A1). Then, we use the fact that bulk quasiener-
gies are eigenvalues of the eigenvalue problem defined by

UT |ψ⟩ = e−iT
ℏ HF(k) |ψ⟩, where HF(k) = EF · τ . Thus,

e−iT
ℏ HF(k) = 1 cos

EFT

ℏ
+ iÊF · τ sin

EFT

ℏ
, (A3)

At this point, we equate the Eq. (A2) and Eq. (A3), and,
by comparing their terms proportional to the identity, we
find that the Floquet quasienergy is given by

EF(k) =
ℏ
T

arccos

[
cos(E1T/2ℏ) cos(E2T/2ℏ)

− E1 ·E2

E1E2
sin(E1T/2ℏ) sin(E2T/2ℏ)

]
.

(A4)

This is the Floquet bulk quasienergy presented in Eq. (6)
of Subsection III C. Moreover, this quasienergy is then
used to calculate the bulk gaps following Eq. (10) in the
same Subsection. We note that the expression given by
Eq. (A4) is general as long as the one-period propagator

takes the form of Eq. (A1), suggesting its usefulness in
other time-periodic systems.
One particular point here is that, at k = π, Eq. (A4)

transforms into cos[TEf/ℏ] = cos[T (E1 + E2)/(2ℏ)] =
cos[T (|−µ1+2w|+|−µ2+2w|)/(2ℏ)]. Then, for µ1+µ2 =
4w, we get cos[TEf/ℏ] = 1, which gives quasienergies
equal to EF = (2πn)ℏ/T for n ∈ Z. Hence, for n = 0, the
quasienergy vanishes EF = 0, which can be seen as a gap
closing feature coming from the undriven phase because
it happens at µ1+µ2 = 4w which is the topological phase
transition in the undriven regime where the system is
described by (H1 +H2)/2. This gap closing is discussed
in Subsection III C.

Appendix B: Baker-Campbell-Hausdorff expansion
of the Floquet Hamiltonian

In this part we discuss the expansion of the Floquet
Hamiltonian HF given by Eq. (5) in terms of the driv-
ing period T . This is of particular relevance to under-
stand the topological phase transition at T = 0 and also
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the emergence of multiple Majorana modes due to long
range hopping, both in Sec III. For this purpose, we fix
t0 = 0 without loss of generality and perform a Baker-
Campbell-Hausdorff expansion of HF up to third order

in T , obtaining

HF(k) =

∞∑
j=1

hj

(
T

ℏ

)j−1

, (B1)

where

h1 =
1

2
(H1 +H2)

= −[(µ1 + µ2)/2 + 2w cos(k)]τz − 2∆ sin(k)τy ,

h2 =
1

2

1

22
[H1, H2]

=
i

2
∆(−µ1 + µ2) sin(k)τx ,

h3 =
1

12

1

23
([H1, [H1, H2]] + [H2, [H2, H1]])

=
−1

12
∆(µ1 − µ2)

2
sin(k)τy ,

h4 = − 1

24

1

24
[H2, [H1, [H1, H2]]]

=
i

24
∆(µ1 − µ2) sin(k)

[
− 2∆2 − µ1µ2 − 2w2 − 2(µ1 + µ2)w cos k + 2(∆2 − w2) cos(2k)

]
τx ,

(B2)

where H1,2 are given by Eq. (3) while ∆, w, and µ1,2 are
the order parameter, hopping, and chemical potentials
respectively, as discussed in Eqs. (1) and (2).

The first observation in Eqs. (B2) is that lowest term
(near T = 0) is given by h1 = (H1+H2)/2, implying that
the phase transition at T = 0 is given by |µ1+µ2|/2 = 2w.
Hence, for µ1 = 0, the topological phase transition is
given by |µ2| = 4w as we indeed obtain in Subsection
III B and Fig. 3. The second observation is the emer-

gence of momentum dependent terms proportional to
[sin(2k)]τx and [sin(k)cos(2k)]τx in the fourth order cor-
rection h4. Thus, when performing a Fourier transforma-
tion to real space, these elements give rise to longer range
pairing (next-nearest neighbor and second-next-nearest
neighbor), which is used to argue the emergence of multi-
ple Majorana modes in Subsection III C. By adding more
orders in the expansion, it is possible to also see the emer-
gence of long range hopping.
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[52] Z. Huang, P. Wölfle, and A. V. Balatsky, Odd-frequency
pairing of interacting Majorana fermions, Phys. Rev. B
92, 121404 (2015).

[53] A. A. Golubov, Y. Tanaka, Y. Asano, and Y. Tanuma,
Odd-frequency pairing in superconducting heterostruc-
tures, J. Phys.: Condens. Matter 21, 164208 (2009).

[54] A. V. Balatsky, P. O. Sukhachov, and S. Bandyopadhyay,
Quantum pairing time orders, Annalen der Physik 532,
1900529 (2020).

[55] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov,
D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin,
and P. Zoller, Majorana fermions in equilibrium and in
driven cold-atom quantum wires, Phys. Rev. Lett. 106,
220402 (2011).

[56] N. Goldman and J. Dalibard, Periodically driven quan-
tum systems: Effective hamiltonians and engineered
gauge fields, Phys. Rev. X 4, 031027 (2014).

[57] M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal
high-frequency behavior of periodically driven systems:
from dynamical stabilization to floquet engineering, Ad-
vances in Physics 64, 139 (2015).
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