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Quantum computers (QC) could harbor the potential to significantly advance materials simula-
tions, particularly at the atomistic scale involving strongly correlated fermionic systems where an
accurate description of quantum many-body effects scales unfavorably with size. While a full-scale
treatment of condensed matter systems with currently available noisy quantum computers remains
elusive, quantum embedding schemes like dynamical mean-field theory (DMFT) allow the mapping
of an effective, reduced subspace Hamiltonian to available devices to improve the accuracy of ab
initio calculations such as density functional theory (DFT). Here, we report on the development
of a hybrid quantum-classical DFT+DMFT simulation framework which relies on a quantum im-
purity solver based on the Lehmann representation of the impurity Green’s function. Hardware
experiments with up to 14 qubits on the IBM Quantum system are conducted, using advanced er-
ror mitigation methods and a novel calibration scheme for an improved zero-noise extrapolation to
effectively reduce adverse effects from inherent noise on current quantum devices. We showcase the
utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic
structure of a real material, Ca2CuO2Cl2, and by carefully benchmarking our quantum results with
respect to exact reference solutions and experimental spectroscopy measurements.

Keywords: Quantum computing, noisy quantum devices, DMFT, DFT, Anderson impurity model, quantum
equation of motion, VQE, error mitigation, strongly correlated materials, superconductor, ARPES

I. INTRODUCTION

Technological advances heavily rely on the design of
innovative functional materials, a task chiefly driven by
understanding and optimizing inherent relationships be-
tween processing, structure, and property. While AI-
driven materials exploration are on the verge of gaining
popularity and practical utility, numerical simulations at
various length-scales are meanwhile routinely employed
to support these efforts, with methods ranging from con-
tinuum and phase field modeling at the macro and meso-
scale down to ab initio approaches at the atomic level [1–
3]. For the latter, density functional theory (DFT) has
emerged as the most popular technique due to its con-
venient accuracy at moderate computational cost [4], de-
spite the limitations arising from the use of approximated
exchange-correlation functionals. For strongly correlated
materials, however, semi-local DFT fails to correctly cap-
ture the underlying physics, thus calling for methods
reaching beyond the mean field treatment of the electron
interactions [5].

An increasingly prevalent approach is to tackle such
strongly correlated systems by extending DFT with an
embedding scheme where a small subspace of correlated
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orbitals is treated with a many-body method [6]. Dynam-
ical mean field theory (DMFT) is a common choice [7],
which is based on describing correlated orbitals within
a lattice as impurities embedded in a self-consistent,
time-dependent mean field, and on the assumption that
the lattice self-energy is local. Constructing DMFT or-
bitals from DFT for the subspace of partially occupied
d and f shells in transition metal and rare earth ele-
ments, respectively, significantly improves the descrip-
tion of the electronic structures of strongly correlated
condensed matter systems [8, 9]. Such DFT+DMFT cal-
culations have been meanwhile applied to describe the
physics of a wide range of materials, including supercon-
ducting cuprates [10, 11], nickelates [10–12], and other
Perovskite-type materials [13–18].

The computational complexity of DMFT itself depends
on the method employed to solve the underlying Ander-
son impurity model (AIM). Exact diagonalization meth-
ods are only applicable to small systems [9, 19], since the
Hamiltonian matrix scales exponentially with the num-
ber of orbitals. Alternatively, an exact solution, within
statistical errors, can be computed using quantum Monte
Carlo (QMC) methods by expressing the impurity prob-
lem in a Lagrangian formulation in imaginary time [20].
The limitations of its most popular flavor, the continuous
time hybridization-expansion QMC (CTHYB) [21–23],
arise from the potential Monte-Carlo sign problem and
the possibly slow convergence particularly in the limit of
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low temperatures [24]. Further, to obtain any physically
meaningful quantities, the measured Green’s function has
to be analytically continued to the real frequency axis, a
task that can be tedious and is, in general, ill condi-
tioned [25]. In addition, approximate impurity solvers
have been developed, such as Hubbard I [26, 27], den-
sity matrix [28] or numerical renormalization group [29],
which often trade better scaling for accuracy.

Quantum computers (QC) offer the potential to sig-
nificantly improve upon the above mentioned classical
impurity solvers [30–34] by providing an algorithm with
advantageous, i.e., polynomial scaling or by improving
the accuracy. The core advantage of quantum computing
impurity solvers is achieved by mapping each fermionic
spin orbital to a qubit, thus reducing the exponential
complexity to a Hilbert space that can be expressed with
a linearly increasing number of qubits. Several avenues to
obtain the AIM Green’s function have been proposed in
the literature, the majority of which can be categorized as
based on either the Lehmann representation [32, 35, 36],
a subspace expansion [37], or time-evolution [31, 33, 38],
all with their respective advantages and disadvantages.
For instance, time-evolution in fermionic systems leads
to long circuits with large numbers of two-qubit oper-
ations, a challenge for current noisy quantum comput-
ers which only produce accurate impurity Green’s func-
tions for two-site toy models [33]. On the other hand,
the Lehmann representation requires, in addition to the
knowledge of the ground state (GS), the calculation of
electron and hole excited eigenstates, a task that de-
mands an appropriate algorithm to retain favorable scal-
ing for any applications beyond simple toy systems [36].
Common noisy quantum computing GS algorithms in-
volve variational approaches [39–41], while excited states
can be computed either with penalty function meth-
ods [42, 43], subspace search [44], or the quantum equa-
tion of motion [45].

In this work, we present our results on solving the dy-
namical mean field theory for a real materials system on a
quantum hardware using an automated hybrid quantum-
classical atomistic modeling workflow. Based on the
DFT+DMFT framework, we investigate the correlation
effects in Ca2CuO2Cl2 (CCOC) [46–48], a cuprate su-
perconductor [49, 50] exhibiting physical properties that
are believed to arise from a single correlated d band in
the low-energy spectrum [51, 52]. We map the electronic
structure of CCOC to an effective Hubbard Hamiltonian,
and extract the Green’s function of a single-site AIM
with up to 6 bath sites based on the Lehmann repre-
sentation. To this end, we employ the quantum equa-
tion of motion (qEOM) approach [35, 45] with truncated
excitations to reduce computational cost resulting in ex-
cellent scaling, and a hierarchy of mitigation schemes to
alleviate the inherent errors of the quantum device. In
particular, we introduce a novel algorithm to effectively
suppress the variance arising from stochastic errors in
zero-noise extrapolation schemes with equivalent or even
lower computational cost, thereby reducing the average

squared deviation from the state vector results by at least
a factor of two. Using this scheme, we present QC results
that show excellent agreement with classical ED refer-
ence calculations, and are able to correctly reproduce the
renormalized single-particle spectrum from experimental
angle-resolved photoemission spectroscopy (ARPES) of
CCOC.

II. METHODS

We study CCOC given the structural parameters as
determined experimentally in Ref. 48, with Cu–Cu dis-
tances of 3.868 Å within the CuO-planes. The overall
computational workflow to map this system to a prob-
lem that is solved within a hybrid quantum-classical
DFT+DMFT cycle using a quantum impurity solver is
shown in Fig. 1. In the following subsections, we describe
in detail all components of the flowchart, thereby illus-
trating the steps involved in the relevant self-consistency
cycles.

A. DFT

To construct the effective model Hamiltonian, we start
out by computing the single-particle Bloch energy bands
using density functional theory (DFT) as implemented
in the Quantum ESPRESSO package [53] which expands
the wave function in a plane-wave basis. We employ the
Perdew-Burke-Ernzerhof (PBE) approximation to the
exchange-correlation functional [54] and norm-conserving
pseudopotentials [55]. The Kohn-Sham (KS) equations
are solved self-consistently to obtain converged KS en-
ergies ϵk and orbitals φk, as shown in the DFT (green)
block in Fig. 1a. For CCOC, a plane-wave cutoff energy
of 100 Ry together with a 12 × 12 × 12 k-points mesh
with a spacing smaller than 0.15/Å result in total ener-
gies that are converged to within 5 meV/atom (see details
in Sec. IXA of the SI).

B. Wannierization and cRPA

The converged KS eigenstates are fed into a Wannier-
ization framework to obtain localized orbitals, as shown
in the red block in Fig. 1a. We construct a low-energy
model for the subsequent DMFT calculations by Wan-
nierizing the single dx2−y2 state crossing the Fermi level
by using the Wannier90 package [56], with a large dis-
entangling window of 18 eV and the lower and upper
bounds at −8 eV and 10 eV w.r.t. the Fermi energy,
respectively.
To obtain the effective, screened Coulomb interac-

tion parameter U , we perform constrained random phase
approximation (cRPA) calculations as implemented in
RESPACK [57]. For this purpose, the Wannier orbital is
converted with wan2respack [58] to a suitable format. For
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(a) (b)

FIG. 1. Flowcharts illustrating the hybrid quantum-classical DFT+DMFT workflow. Subfigure (a) shows the overall flowchart,
which starts out with solving the DFT self-consistency cycles as shown in green. The red blocks indicate the steps required
to parametrize the subspace Hamiltonian by constructing localized Wannier orbitals and computing the interaction onsite and
exchange parameters U and J , respectively, as well as the hopping parameters t, t′, which serves as an input to the DMFT
self-consistency cycle shown in blue. The impurity solver is denoted by the purple box, while the steps required for a charge-
self-consistent DFT+DMFT or any post-processing steps are included in the orange block. The detailed flowchart of the QC
AIM solver is shown in subfigure (b).

the cRPA calculation, we include 168 virtual orbitals in
addition to the 32 occupied states, resulting in converged
interaction parameters that we obtain from the static
limit of the real part of the screened direct Coulomb in-
tegrals (see details in Sec. IXB of the SI).

C. DMFT

The resulting, parametrized Hubbard model from the
preceding step is then treated within the self-consistent
DMFT Green’s function formalism with a single impu-
rity site, as illustrated by the blue block in Fig. 1a. The
DMFT calculations are performed with the software in-
frastructure provided by the Toolbox for Research on In-
teracting Quantum Systems (TRIQS) [59].

In general terms, the DMFT self consistency cycle
starts out by constructing the local Green’s function Gloc

by integrating the lattice Green’s function Glatt over k,
where

Glatt(ω, k) =
1

ω + µ− Σ(ω) + ϵ(k)
(1)

with the chemical potential µ and the non-interacting
single-particle DFT dispersion ϵ(k). We use the Dyson
equation (2) to define a non-interacting Weiss field G0,

Σ(ω) = G−1
0 (ω)−G−1

imp(ω). (2)

An impurity solver is required to self-consistently com-
pute the impurity Green’s function Gimp, a task that
can be either performed by a classical solver, or, as dis-
cussed later in Sec II E, with a quantum algorithm. After

computing the self energy Σ in Eq. (2), the DMFT cy-
cle repeats until convergence in Gimp is reached. The
computationally expensive part of solving the impurity
problem is shown in purple in Fig. 1a, while the details
of the QC-based solver is shown in Fig. 1b.

Initially, classical reference results are obtained using
the CTHYB QMC impurity solver [23] at a tempera-
ture of 386 K in a paramagnetic setting. The total num-
ber of QMC cycles for each DMFT iteration is set to
1 × 108 with a cycle length of 400, resulting in an auto-
correlation time of roughly 4. We perform a total of
25 DMFT iterations with the solid dmft workflow man-
ager [60, 61], which conveniently incorporates DFT cal-
culations with the DMFT toolbox of TRIQS. These pre-
converged results subsequently serve as a starting point
for self-consistent DMFT calculation with a discretized
bath and an exact diagonalization (ED) solver at 0 K
with the same frequency mesh as in CTHYB.

In principle, the solid dmft framework offers the possi-
bility to feed a charge correction from the DMFT results
back into the DFT cycle (e.g., in Quantum ESPRESSO)
within an upfolding scheme, allowing a fully charge-self-
consistent DFT+DMFT loop (shown by the orange box
in Fig. 1a). In this work, however, we terminate the cycle
after one full DFT+DMFT step, a procedure commonly
referred to as one-shot (OS) DFT+DMFT. In many
cases, OS DFT+DMFT alone already offers a good de-
scription of the many-body effects governing the physics
of strongly correlated materials [61].
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D. Mapping to Anderson Impurity Hamiltonian

The following sections outline the methods involved to
prepare and execute the quantum impurity solver within
the DMFT cycle. The sequence of steps are illustrated
in Fig. 1b, which will be referenced throughout.

1. Bath Discretization

In contrast to QMC impurity solvers, methods based
on exact diagonalization or quantum computing work in
a Hamiltonian formulation of the impurity problem and
require a mapping to an AIM with a finite number of
bath sites, i.e., qubits. In our algorithm we perform this
mapping (first block in Fig. 1b) by fitting a discrete, non-
interacting model with Nb bath sites to the hybridization
function describing the impurity problem:

∆(iωn) = iωn −G−1
0 (iωn)− ϵ0. (3)

Here, G0 is the non-interacting impurity Green’s func-
tion of our submodel and ϵ0 is the effective atomic energy
level obtained from the Wannier orbital. The functions
depend on the discrete, imaginary, fermionic Matsubara
frequencies iωn. We use the discretization function from
the TRIQS toolbox [59], which fits the parameters of an
impurity problem with a bath where each site is directly
connected to the impurity site but not to other bath sites
(star topology, denoted by a bar, see Fig. 2). The hy-
bridization of such a model is given by

∆disc(iωn) =

Nb∑
j=1

V̄j
2

iωn − ϵ̄j
, (4)

where V̄j are the hopping strengths between the impurity
and bath site j, and ϵ̄j are the corresponding energy lev-
els. We optimize the bath parameters with an additional
1/|ωn| weight to improve the fitting in the vicinity of the
Fermi level, which is especially important for the DMFT
convergence when Nb < 3,

min
{ϵ̄j},{V̄j}

∑
ωn

|∆disc(iωn)−∆(iωn)|
|ωn|

. (5)

For our AIM derived for CCOC, we carefully examine the
convergence behavior with respect to the number of bath
sites, and conclude that Nb = 6 is more than sufficient to
accurately reproduce the CTHYB hybridization function
(see Sec. IXC in the SI).

In order to obtain a model with suitable topology for
current noisy quantum devices we perform a Lanczos
tridiagonalization procedure, which produces an impu-
rity model in a chain bath topology (see Fig. 2) [62].
This model, with the impurity denoted with site index

j = 0, is described by the Hamiltonian

Ĥ =ϵ0n̂0 + Un̂0↑n̂0↓+

Nb∑
j=1

∑
σ

[
ϵj n̂jσ + Vj

(
ĉ†jσ ĉj−1σ + h.c.

)]
,

(6)

and can be efficiently mapped to a linear chain of 2 ×
(Nb + 1) qubits by enumerating the orbitals in the fol-
lowing order: Nb↑, · · · , 1↑, 0↑, 0↓, 1↓, · · · , Nb↓. In this

notation ĉ†jσ, ĉjσ, and n̂jσ are the creation, annihila-
tion, and number operators on site j with spin σ, re-
spectively, henceforth referred to as computational basis
operators. Using the Jordan-Wigner transformation [63],
the energy expectation value can be obtained by measur-
ing the quantum circuit three times (independent of Nb),
as all terms only involve a coupling of nearest neighbors.
The sampling in the Pauli bases XX · · ·XX, Y Y · · ·Y Y
and ZZ · · ·ZZ thus suffices to construct the expectation
value of all terms in the Hamiltonian and subsequently
obtain the energy.

2. Exact Diagonalization

Up to a small number of bath sites (Nb ≈ 7) one
can obtain with reasonable numerical effort the zero-
temperature Green’s function by exact diagonalization
using the Lehmann representation:

Gimp(z) =
∑
k>0

| ⟨k| ĉ†0 |0⟩ |2

z + (E0 − Ek)
+

| ⟨k| ĉ0 |0⟩ |2

z − (E0 − Ek)
, (7)

where the sum runs over all energy eigenstates |k⟩ with
their associated energies Ek, and k = 0 denotes the
ground state. Depending on the purpose, we can choose
the complex argument z of the impurity Green’s function
in different ways: (i) we select the Matsubara frequencies
z = iωn to continue DMFT iterations, or (ii) a real fre-
quency with a small imaginary part z = ω+i0+ to obtain
the final quantities of interest like the spectral function
or the density of states (DOS). In contrast to the QMC
methods operating on the imaginary time axis where the
measured Green’s function has to be analytically contin-
ued to the real frequency axis [25], this process is unnec-
essary for the real frequency Green’s functions obtained
by the Lehmann representation, offering a significant ad-
vantage.
However, a challenge remains when the impurity

Green’s function Gimp from a discrete spectrum is used
to calculate the electronic self-energy in the Dyson equa-
tion on the real axis (2). The peaks in the inverse Weiss
field G−1

0 (ω) need to be cancelled by peaks in G−1
imp(ω),

otherwise the imaginary part of the self-energy will be
positive at some frequencies. This would lead to a nega-
tive, unphysical spectral function, which is given by−1/π
times the imaginary part of the lattice Green’s function
of Eq. (1). Such spurious artifacts may arise not only
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(a) (b)

(c)

(d)

imp

bath 1

bath 2bath 3

bath 4
imp bath 1 bath 2 bath 3 bath 4

imp ↑ imp ↓ bath 1 ↑ bath 1 ↓ bath 2 ↑ bath 2 ↓ bath 3 ↑ bath 3 ↓ bath 4 ↑ bath 4 ↓

bath 4 ↑ bath 3 ↑ bath 2 ↑ bath 1 ↑ imp ↑ imp ↓ bath 1 ↓ bath 2 ↓ bath 3 ↓ bath 4 ↓

FIG. 2. An AIM for 4 bath sites in subfigure (a) for the star topology and in (b) for the chain topology. Subfigure (c) shows
the Jordan-Wigner mapping of spin-orbitals to qubits, where the order is based on qubit indexing, and subfigure (d) illustrates
the same mapping with re-indexed qubits. The grey lines in (c) and (d) connect sites which are coupled in the Hamiltonian.

due to the noise of current quantum devices, but already
appear from the limited machine precision of classical
computers.

To avoid this issue, we adapt the ideas of Lu et al. in
Ref. 62 where the Green’s function is stored as N poles
(Ek0, λk), while Ek0 := Ek − E0 is the energy difference
in the denominator of Eq. (7) and λk is the correspond-
ing overlap in the numerator. The inverse of the Green’s
function can again be stored as a pole Green’s function
by diagonalizing an N×N matrix. In order to reduce the
size of this matrix, one can eliminate some of the poles by
distributing the overlap of small poles onto their neigh-
bors. Ref. 62 describes a method to perform this proce-
dure that locally preserves the 0th and 1st moments, a
method we also use in the evaluation of the Dyson equa-
tion in Eq. (2) to redistribute the peaks of G−1

0 (ω) with
positive weights until only poles with negative weights re-
main. In our workflow, we use this pole-reduction purely
as a post processing step to compute, e.g., the spectral
function or the quasi particle weight (see orange box in
Fig. 1a).

E. Quantum Algorithms

1. Ground State

After constructing the AIM Hamiltonian as described
in Sec. IID 1, preparing an accurate GS is a neces-
sary prerequisite for the quantum equation of motion
method in Sec. II E 2 to compute the impurity GF in
the Lehmann representation (second block in Fig. 1b). In
fact, the preparation of the GS of a many-body Hamilto-
nian Ĥ is a central challenge in accurately characterizing
the electronic structure of any system. Here, we em-
ploy the variational quantum eigensolver (VQE) for this
task [39–41]. However, it is essential to highlight the ver-
satility of our implementation, enabling the application
of alternative approaches besides variational methods to
construct the GS.

VQE is a hybrid quantum-classical algorithm designed
to find an approximate solution to the Schrödinger equa-
tion for a given Hamiltonian Ĥ. It utilizes a parameter-
ized quantum circuit to prepare an ansatz wavefunction
|ψ(θ)⟩, where θ is a set of variational parameters. These
parameters are iteratively adjusted using classical opti-
mization techniques to minimize the energy expectation
value of the Hamiltonian ⟨ψ(θ)|Ĥ|ψ(θ)⟩ estimated on a
quantum device. The iterative refinement continues un-
til convergence, at which point the ansatz with the final
converged parameters provides an approximation to the
GS of the system.
Challenges in applying VQE for GS preparation in-

clude the selection of a valid ansatz and the initialization
of the circuit parameters for the classical optimizer, the
overcoming of barren plateaus and local minima in the
energy landscape, and the mitigation of inherent noise
on near-term quantum devices. The choice of ansatz and
the number of variational parameters significantly impact
the accuracy of the GS approximation in VQE. Balanc-
ing ansatz expressiveness with computational resource re-
quirements is essential for a successful application of the
VQE.
Our implementation utilizes a hardware-efficient

ansatz with the linear entanglement structure [64, 65]
illustrated in Fig. S4 of the SI. This ansatz choice shows
a good circuit expressibility for our Hamiltonians while
featuring shallow circuit depths and supporting the lim-
ited qubit connectivity on IBM Quantum hardware. The
ansatz circuit is complemented by an initial state circuit
for preparing an initial state for the classical optimiza-
tion. The initial state circuit can be either an empty cir-
cuit for preparing a zero initial state [66], or a Slater de-
terminant circuit [67] for preparing the mean-field (MF)
state of the AIM Hamiltonian. The MF state is obtained
by solving the AIM Hamiltonian in a generalized Hartree-
Fock (GHF) approximation using the PySCF software
package [68]. The molecular orbital (MO) coefficients
from the GHF solution are then used to parameterize
the initial state circuit that prepares a Slater determi-
nant following the method of Jiang et al. [67].
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The VQE optimization is performed using the limited-
memory Broyden-Fletcher-Goldfarb-Shanno bound opti-
mizer (L BFGS B) [69, 70], which we identify as the most
robust method after comparing different approaches [40,
71], with finite difference gradients, employing Qiskit’s
default convergence criteria (2.22×10−15 as a relative tol-
erance for termination and 15000 as a maximum number
of iterations). For variational parameter initialization,
we adopt random initialization as well as several differ-
ent implementations of the identity block method [72].
When combined with the GHF initial state, the iden-
tity block approach ensures that the optimization starts
closer to the optimal point in the parameter space com-
pared to random initialization. This, in turn, reduces
the probability of encountering barren plateaus during
optimization. Since the focus of this work is mainly on
ultimately computing the impurity GF on a quantum
computer, we do not perform the VQE calculations on
the IBM Quantum hardware, but rather on a noiseless
state vector (SV) simulator.

2. Quantum Equation of Motion

We employ the quantum equation of motion (qEOM)
method to compute the excited states required for the
Lehmann representation of the impurity Green’s func-
tion. The qEOM was first introduced in Ref. 45 and was
initially applied to compute molecular excitation ener-
gies. The method was subsequently used to calculate the
Green’s function of a 2-site Hubbard model in Ref. 35 and
it has seen recent extensions and applications to indus-
trial use-cases by Asthana et al. [73]. Below we describe
the qEOM method in more detail.

In general, any excited state |ψ⟩k may be expressed as

an operator Ôk applied to the GS |0⟩ with N particles

|ψ⟩k = Ôk|0⟩. (8)

In the qEOM method, one imposes the extra so-called
annihilation condition on the operator Ôk

Ô†
k|0⟩ = 0. (9)

The time-independent Schrödinger equation for |ψ⟩k can
be re-expressed as

[Ĥ, Ôk]−|0⟩ = Ek0Ôk|0⟩, [Â, B̂]± := ÂB̂ ± B̂Â, (10)

where Ek0 = Ek − E0 corresponds to the excitation en-
ergy. Operating on both sides of Eq. (8) with the state

⟨0|Ô†
k and using the annihilation condition (9) gives

⟨0|[Ô†, [Ĥ, Ôk]−]+|0⟩ = Ek0⟨0|[Ô†
k, Ôk]+|0⟩. (11)

Finally, adding to the left and right hand side of Eq. (11)

their corresponding hermitian conjugate leads to1:

⟨0|[Ô†
k, Ĥ, Ôk]+|0⟩ = Ek0⟨0|[Ô†

k, Ôk]+|0⟩, (12)

where we used the definition of the double-commutator:

[Â, B̂, Ĉ]+ :=
1

2

(
[Â, [B̂, Ĉ]−]+ + [[Â, B̂]−, Ĉ]+

)
. (13)

The anti-commutator in Eq. (12) typically leads to can-
cellations in the operators (see also Sec. IXE in the SI),
such that the amount of operator terms is reduced com-
pared to another similar method to compute eigenstates,
called quantum subspace expansion [74].

The set {Ôk} can be written in terms of a set of
fermionic operators:

Ôk =
∑
j

(Xk)jR̂j , (14)

where the basis {R̂j} of excitation operators are them-
selves a sum of products of annihilation and creation op-

erators ĉk, ĉ
†
l of the fermions in the system. A generalized

eigenvalue problem (GEP) for the coefficients (Xk)j can
now be derived by solving for Ek0 and imposing the sta-
tionary condition ∂Ek0

∂(X†
k)j

= 0 in Eq. (12),

AXk = Ek0BXk, (15)

Aij = ⟨0|[R̂†
i , Ĥ, R̂j ]+|0⟩, Bij = ⟨0|[R̂†

i , R̂j ]+|0⟩. (16)

The matrix elements of A, B correspond to expectation
values (EV) of the operators and can be evaluated on a
QC.
For the GF, we are interested in the particle and hole

states with N +1 and N − 1 particles, respectively. This
corresponds to the ionization potential (IP-EOM) and
electron affinity equation-of-motion (EA-EOM) methods,
respectively, that are well established for calculating ex-
citation energies to ionized states with coupled-cluster
ansatz using classical computation [75–77]. After the en-
tries of A and B are calculated on the QC, we solve the
GEP (15) classically to find the coefficients (Xk)j and
the excitation energies Ek0 needed for the Lehmann rep-
resentation of the GF. The transition amplitudes in the
numerators of the impurity GF in Eq. (7) are expressed
in terms of EV w.r.t. the prepared GS that can be com-
puted on the QC,

⟨n|ĉ0|0⟩√
⟨n|n⟩

=
⟨0|Ô†

k ĉ0|0⟩√
⟨0|Ô†

kÔk|0⟩
=

(Xk)l⟨0|R̂†
l ĉ0|0⟩√

(Xk)i(Xk)j⟨0|R̂†
i R̂j |0⟩

,

(17)
with the Einstein-summation convention used above. A
graphical representation of the workflow for the impurity
GF is shown in Fig. 1b. Further details on our implemen-
tation of the qEOM method can be found in Sec. IXE of
the SI.

1 Eq. (12) also follows from applying the annihilation condition to
Eq. (11) once again.
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3. Excitation Operators

The choice of excitation operators R̂j in Eq. (14) signif-
icantly affects the solution of the GEP (15) and thereby
the precision of the resulting GF, whenever one restricts
the basis to a subset (of the complete basis of particle
and hole operators). The operators can be subdivided
into excitation orders singles (s), doubles (d), triples (t)
etc. and take the following general form for charged ex-
citations of particle states

R̂
(s)
i =

∑
j

αij ĉ
†
j , R̂

(d)
i =

∑
j,k,l

αijklĉ
†
j ĉ

†
k ĉl, . . . , (18)

with the same so-called computational basis operators
ĉ, ĉ† that enter the AIM Hamiltonian in Eq. (6).
In this work, we use a GHF MF solution of the AIM

Hamiltonian to derive our basis of excitation operators.
The PySCF software package [68] is used for the GHF
calculation. The GHF Slater determinant (SD) with N
particles that approximates the exact GS of the AIM is
then expressed as

|0⟩GHF = b̂†1 · · · b̂
†
N |vac⟩, b̂†j =

∑
k

Wjk ĉ
†
k, (19)

whereWjk are the molecular orbital coefficients obtained

from the GHF calculation. The operators b̂j are typ-
ically called Bogoliubov operators and diagonalize the

corresponding MF HamiltonianHMF =
∑

i>0 ϵib̂
†
i b̂i, with

ϵi ≤ ϵi+1 for all i.
The SD’s that approximate the particle and hole states

of the AIM are similarly subdivided into singles (s), dou-
bles (d), etc. and are defined by acting on the GHF GS

with the appropriate amount of creation b̂†i and annihi-

lation b̂i Bogoliubov operators for empty (i > N) and
occupied (i ≤ N) orbitals, respectively, of the GHF GS.
Inspired by this, we define our set of Bogoliubov excita-
tion operators (BEO) as

R̂
Bog,(s)
j = b̂†j , R̂

Bog,(d)
jkl = b̂†j b̂

†
k b̂l, . . . , (20)

where for each BEO, the indices of all creation opera-
tors, are either all simultaneously virtual (j > N) or all
simultaneously occupied (j ≤ N) orbital indices of the
GHF GS. The indices of the annihilation operators in
a BEO in Eq. (20) are all occupied orbital indices when
the creation operators are virtual orbital indices and vice
versa.

We note that the set of BEO’s (20) form a basis for

the excitation operators Ôk that results in particle states
when we apply Ôk on the GS, while it also forms a basis
for operators Ôk that give the hole states when applying

their adjoint, Ô†
k to the GS. The BEO’s therefore form

an independent set of fermionic operators, that make up
a complete basis set for deriving all charged particle and
hole eigenstates together in the qEOM method whenever
the maximal excitation order is taken (see also Sec. IXE

of the SI). In Sec. IXF of the SI we show a comparison
of the above BEO with another excitation operator basis
choice, by computing the impurity DOS, when the GS is
approximated by a VQE state.

4. Error Mitigation

We employ a hierarchy of error-mitigation techniques
to obtain accurate results from noisy quantum computing
experiments, which constitutes the 5th step shown in the
flowchart of Fig. 1b.

Readout Errors

First, we employ mitigation schemes to reduce read-out
errors (readout error mitigation, REM). A method pro-
posed in Ref. 78 suggests the construction of a readout
matrix to model the readout errors. However, the con-
struction of such a 2n× 2n matrix for an n-qubit simula-
tion would require large computational resources as the
size of the simulation increases, rendering this approach
unsuitable for practical applications.
The Twirled Readout Error eXtinction (T-REx)

method [79] as implemented in Qiskit [80] is frequently
used to mitigate noisy computation results for the esti-
mate of expectation values of observables. The T-REx
method is a model-free approach which scales well com-
pared to the previously proposed method, since the con-
struction of the readout matrix is not required.
However, in this work we cannot directly em-

ploy T-REx (as implemented in Qiskit Estimator)
since we need to exploit the functionality of Qiskit
Sampler which allows to leverage qubit-wise commuta-
tion rules [81] in order to reduce the amount of Pauli
string measurements (see also Sec. IXE of the SI). There-
fore, instead of T-Rex, here we employ the Matrix-free
Measurement Mitigation (M3) method [82]. The M3
method works on a subspace of the entire readout matrix
defined by the unique noisy bit strings to be corrected.
The matrix elements are approximately computed using
the single-qubit calibration data. The number of those
unique bit strings are typically smaller than the total 2n

bit strings, a behavior which is particularly advantageous
for mitigating readout errors of simulations for large sys-
tems.

Gate Operation Errors

Second, we utilize the zero-noise extrapolation (ZNE)
technique [83, 84] to mitigate other sources of errors such
as gate operation errors (gate error mitigation, GEM).
The ZNE method estimates the noiseless expectation val-
ues of observables by extrapolating the measured values
at different noise levels to the zero-noise limit. The noise
is systematically amplified by inserting additional gates
or by stretching the duration of the microwave pulses.
In this work, we amplify the noise by adding additional
CNOT gates, leveraging the fact that applying (2n + 1)
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CNOT gates to the same qubit pair produces the same
outcome as a single CNOT, but with larger noise. We
carefully investigate the error mitigation using the ZNE
method, and find that a linear extrapolation with scale
factors of n =1.0, 1.5, and 2.0 is most suitable for our
14 qubit system, while for the 12 qubit system we use
quadratic extrapolation at noise factors n =1.0, 2.0, and
3.0. The ZNE prototype code is used for our ZNE error
mitigation [85].

The M3 method plays an important role for small-scale
problems where gate noises from the device are relatively
low and the readout error is dominant, while ZNE is use-
ful for larger simulations with high number of gate opera-
tions. In this work, we find that combining the two meth-
ods is essential to obtain meaningful expectation values
for our observables. However, even the combination of
the two mitigation schemes (M3 and ZNE) is still not
enough to provide sufficiently accurate expectation val-
ues. To improve on that, in the next section we develop
an additional mitigation scheme that allows to achieve
results in qualitative agreement with the reference calcu-
lations.

ZNE-Calibration

In this section, we introduce a new error mitigation
strategy, which sits on top of the standard ZNE (see sec-
tion II E 4) and that we name ZNE-calibration (ZNEC).
The main idea of this approach is to calibrate a function
which maps results without gate-error mitigation (raw
data or REM results) to the mitigated results (GEM)
using ZNE data. Compared to standard ZNE, this pro-
cedure has the advantage of reducing the variance of the
mitigated results while correcting the systematic error
present in the raw as well as REM results (see Fig. 3a).
In contrast to methods like probabilistic error cancella-
tion or amplification (PEC [86] or PEA, [87]), ZNEC has
a similar or even reduced overhead compared to standard
ZNE. For any quantum algorithm that requires measur-
ing a large set of Pauli strings P̂i for a quantum state we
perform the following steps:

1. Choose a subset of calibration Pauli strings Ĉj of

the complete set P̂i.

2. Measure the Pauli strings Ĉj using ZNE for dif-
ferent noise factors. This will give the raw/REM
expectation values C̄j at noise factor c = 1 and the

expectation values C̃j at noise factor c = 0 using
an extrapolation method. Additionally measure all
remaining Pauli strings of P̂i without using ZNE to
obtain their raw/REM expectation values P̄i.

3. Fit the parameter α of the function f(x) =
2
π tan−1

(
α
(
tan

(
π
2x

)))
to map all raw/REM re-

sults to the GEM results C̃j ≈ f(C̄j). The idea
here is to fit only one value α for all Pauli strings
simultaneously (see Fig. 3b). This function corrects
the damping of the expectation values due to noise

of the hardware, which manifests in a slope smaller
than 1 in Fig. 3a.

4. Apply the calibrated function f(x) to the
raw/REM results to obtain the final expectation
value Pi = f(P̄i).

We demonstrate the ZNEC procedure in Fig. 3 for a 14
qubit qEOM calculation on the “ibm torino” device. We
clearly see the advantage of ZNEC over ZNE or REM (la-
beled with M3), without additional measurements com-
pared to ZNE. While ZNE is strongly affected by the
statistical errors of the measurements at each noise fac-
tor ci, ZNEC uses the data from 1949 operators, which
is a subset of all 23354 measured operators and can be
sorted into 100 commuting groups, to calibrate a func-
tional mapping f(x). This reduces the required quan-
tum resources by a factor of approximately 3 compared
to standard ZNE. For our 12 qubit results we calibrate
using ZNE measurements for all Pauli strings as the to-
tal number of Pauli strings is significantly smaller than in
the 14 qubit calculation. The influence of the statistical
error in ZNEC is much lower than in the M3+ZNE case,
and therefore we believe that this new approach can be
used to significantly increase accuracy, or lower the shot
budget for the evaluation of expectation values. Fur-
ther details concerning the ZNEC scheme are discussed
in Sec. IXG of the SI.

III. RESULTS AND DISCUSSION

We apply the DFT+DMFT formalism with our im-
plementation of a QC impurity solver to study the elec-
tronic structure of a high-temperature superconductor
(HTS). Our material system of choice is CCOC [46–48],
for which a maximal superconducting transition temper-
ature of around 30 K has been observed in sodium-doped
samples [88]. While this value is far below some of other
HTS cuprates, e.g., YBa2Cu3O7 [89], CCOC represents
a suitable model system that exhibits the main physics
of an unconventional HTS. The characteristic structural
motif of copper-oxide planes within a checkerboard lat-
tice with squares composed of O2– and Cu2– ions at the
centres is shown in the inset of Fig. 4.
We start out by constructing a low-energy model from

the converged DFT electronic structure of CCOC, and
transform the relevant Bloch states to localized orbitals
by Wannierizing the Cu dx2−y2 state, resulting in an ef-
fective tight-binding model that reproduces well the non-
interacting single-particle band crossing the Fermi level,
as shown by the red interpolating line in Fig. 4. The
screened interaction parameter from our cRPA calcula-
tion of U = ℜ [U(ω = 0)] = 3.2 eV is in good agreement
with values for other, similar cuprate materials, e.g., of
CaCuO2 in Ref. 11. To obtain classical reference values
and pre-converged impurity Green’s functions for subse-
quent QC experiments, we first perform sufficient DMFT
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FIG. 3. Demonstration of the ZNE-calibration technique for our 14 qubit experiment performed on the “ibm torino” quantum
device. Subfigure (a) shows the different set of expectation values obtained using only the readout error mitigation M3 (orange,

C̄j), using M3 and ZNE (blue, C̃j), and using the ZNE-calibration technique (ZNEC, green, Cj = f(C̄j)). The y-value of each
cross represents the expectation value obtained on “ibm torino” for the calibration Pauli strings used in the ZNEC measurements
of the qEOM algorithm, while the corresponding x-value stems from the simulated SV result. The data obtained with a perfect
quantum computer would be placed on the diagonal black line. Subfigure (b) illustrates the calibration procedure. The red
crosses show the expectation value with ZNE versus without ZNE for all calibration Pauli strings, again from the “ibm torino”
device. The purple line shows the fitted function f(x), used to obtain the green data in panel (a).

iterations with the CTHYB QMC impurity solver at fi-
nite temperatures to reach self consistency.

The converged results from the CTHYB-DMFT cycles
are then fed into our fitting procedure to construct a non-
interacting model with up to 6 bath sites based on the
hybridization function describing the impurity problem.
We then proceed by performing a self-consistent DMFT
update using the ED solver at 0 K with the identical fre-
quency mesh as in CTHYB-DMFT, then iterate by again
refitting the bath parameters. A small number of merely
10 iterations suffices to reach self-consistency. The out-
put from the final ED iteration, namely the self energy
and bath parameters, serves as the input to our quantum-
algorithm for computing the impurity Green’s function,
the detailed procedures of which will be discussed next.

A. Groundstate Calculations with VQE

Our converged ED-DMFT AIM parameters are used to
construct an AIM Hamiltonian in the qubit representa-
tion to be used in quantum hardware experiments. The
first step within our quantum impurity solver is to com-
pute an accurate, high-quality GS, which we obtain using
the VQE algorithm on the noiseless SV simulator [39–41].
To this end, we use a hardware-efficient ansatz with linear
entanglement strategy [64, 65], and follow the procedure
as described in Sec. II E 1 to produce shallow quantum

circuits that support the limited qubit connectivity on
IBM Quantum hardware.
We quantify the quality of our GS by measuring the

fidelity with respect to the exact GS from the ED re-
sults. To obtain an accurate GS, we optimize this figure
of merit with respect to: ansatz architecture (number of
layers and types of rotation and entangling gates), ini-
tial state circuit (zero or GHF), initialization procedure
for parameters θ (random or identity block [72]), and
random seed (used to generate initial values of param-
eters θ) [71], using a grid-search based global optimiza-
tion [66, 71, 90]. This strategy explores diverse regions of
the parameter space, improving the likelihood of finding
a globally optimal solution with the highest fidelity with
respect to the ED GS.
In total, we sample 12 candidate ansatz architectures,

encompassing all possible combinations of the following
parameters:

• Number of layers = 4, 6, 8,

• Rotation gates = RY, RY + RZ,

• Entangling gates = CZ, CX.

For each architecture, we explore various combinations
of initial state and initial parameters θ:

• Zero initial state and random initial parameters θ,
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FIG. 4. The electronic structure of CCOC, where the DFT
Kohn-Sham bands are shown in blue (thin lines) and the inter-
polated Wannier band is shown in red (bold line). The Fermi
level is set to zero. The inset shows a unit cell of CCOC
along (001), with the large blue, small blue, and small red
spheres representing the Ca, Cu, and O atoms, respectively
(note that the Cl atoms are not depicted here). The positive
and nevative lobes of the maximally localized Wannier func-
tion are shown as red and green isosurfaces, respectively.

• GHF initial state and random initial parameters θ,

• GHF initial state and four variants of the identity
block method [72] for initializing parameters θ:

– Initialization close to 0 [91] (adding a small
random noise with an amplitude of 0.01),

– Initialization close to π [92] (adding a small
random noise with an amplitude of 0.01),

– The onion-initialization approach [66],

– The inverse-initialization approach, where the
ansatz circuit with random initial parameters
θ is inverted and appended to the original cir-
cuit, creating an identity block and doubling
the number of layers.

Each set of initial variational parameters undergoes repli-
cation using 64 different random seeds. This results in
4608 combinations of explored parameter sets and ini-
tializations. Among all candidate states, we select an
ideal GS that balances low circuit depth and high fidelity
F [90]. We reach F = 0.959 with 1026 single-qubit and
164 two-qubit gates for the 5-bath system, and F = 0.989
with 252 single-qubit and 104 two-qubit gates for the 6-
bath system, on the SV simulator (see Fig. S4 in the SI).
These GS serve as the basis for the subsequent qEOM al-
gorithm to compute the impurity GF on a quantum com-
puter. While the VQE optimization itself is not carried
out directly on the IBM Quantum hardware, we note that
the complexity of the circuit structure is sufficiently low

to be mapped onto a noisy quantum device. Preparing
the GS state and measuring all qEOM operators, as de-
scribed in the next sections, on the IBM Quantum hard-
ware to high precision however remains a significant feat.

B. Converged Selection of the Excitation Order

To compute the impurity GF, we employ the qEOM
method as described in Sec. II E 2. Since it is challeng-
ing to a priori determine the excitation order required
to achieve a desired precision for the GF of our AIM, we
first carefully compare the results for singles and dou-
bles BEO’s to determine the convergence behavior, using
noiseless SV simulation for all EV. Fig. 5 (a) and (b) com-
pare the impurity DOS with 5 and 6 bath sites (12 and
14 qubits), respectively, taking into account single and
double excitations using SV with the ED results. Here,
and in all subsequent sections, we use the VQE state as
described in Sec. III A to approximate the true GS.
We observe that singles and doubles together suffice

to obtain a DOS in good agreement with the ED result,
both for 5 and 6 bath sites. The remaining small differ-
ence between SV and ED arise from the infidelity of the
VQE state and the missing higher order excitations. For
other, smaller number of bath sites we find the same be-
havior. Based on this observation, we elect to use singles
and doubles for the calculation on noisy quantum hard-
ware. The crucial finding that we can safely neglect all
excitations exceeding doubles is the foundation for the
favorable polynomial O(N5) scaling (further supporting
details can be found in Sec. IXH of the SI).

C. Hardware Results with ZNE-Calibration

Next, we compute the impurity GF on the real quan-
tum computing QPU “ibm torino”, using a hierarchy
of error-mitigation techniques to improve the inherently
noisy hardware results. To evaluate the circuits we set
the number of shots to 8192, a value that produces
sufficiently low statistical variances. As discussed in
Sec. II E 4, we then employ at the first stage the M3
method to mitigate read-out errors.
The resulting DOS of the impurity GF using up to dou-

ble excitations is shown by the orange lines in Fig. 5 (c)
and (d) for 5 and 6 bath sites, respectively, using conven-
tional ZNE and M3 data from the real hardware. Note
that for the 14 qubit experiment we do not show the
ZNE results due to limited compute resources. A com-
parison with the SV DOS (blue, dashed line) shows that
the ZNE DOS in Fig. 5 (c) and the M3 DOS in Fig. 5 (d)
exhibit the overall qualitative features of the SV results,
and in particular reproduces relatively accurate excita-
tion energies. However, the QC ZNE results produces
inaccurate DOS values close to the Fermi level for the
12 qubit experiment, while the M3 DOS for the 14 qubit
experiment lacks the precision required to capture the
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FIG. 5. Impurity DOS for 5 and 6 bath sites using 12 and 14 qubits, respectively. Subfigures (a) and (b) show the results
computed with the SV qEOM method using excitation operators singles, doubles, and exact diagonalization (ED) for 5 and 6
bath sites, respectively. Subfigures (c) and (d) show the results computed with the qEOM method using excitation operators up
to doubles with SV and on IBM hardware. The plots show the qEOM results with (red) and without (orange) ZNE calibration.
The hardware experiments are conducted on “ibm torino” with 8192 shots to evaluate the circuits, as well as with M3 (orange
in (d)), ZNE (orange in (c)), and ZNEC (red in (c) and (d)) error mitigation as explained in Sec. II E 4. In all plots a small
imaginary part of 0.1 is added in the denominators of the GF in Eq. (7).

correct overlaps, and the peak positions and amplitudes
diverge significantly the further away we move from the
Fermi energy.

To mitigate this issue, we employ our a new error cali-
bration scheme, ZNEC, which we introduce in Sec. II E 4.
The resulting calibrated DOS is shown as a red, solid line
in Fig. 5 (c) and (d) for the 12 and 14 qubit experiment,
respectively (QC ZNEC). The improvement of the impu-
rity DOS using ZNEC with respect to conventional ZNE
is evident from Fig. 5 (c) for the system with 5 bath sites,
especially at the Fermi level. Compared to M3, the cal-
ibrated ZNEC in Fig. 5 (d) effectively eliminates large
portions of the remaining artifacts and corrects the ma-
jority of overlaps, in particular also those in the vicinity
of the Fermi level, the most relevant portion in the en-
ergy spectrum. Residual discrepancies only remain at the
peaks close to ω = 3 eV, an energy regime we deem not
very pertinent for the subsequent steps in our workflow.
The significantly improved agreement with the reference
SV result demonstrates that it is of utmost importance
to include our newly developed ZNEC error mitigation

scheme to capture the correct physics close to the Fermi
energy.

While our choice of the ZNEC calibration function is
well justified in Sec. II E 4, further improvements of the
error mitigation could be potentially achieved by:

• adding auxiliary Pauli strings to the subset mea-
sured for the calibration. If these strings are chosen
to commute with the existing measurements, there
is no additional measurement effort but results in
more data to train the regression model f(x).

• improving the functional form of the regression
model f(x) under the constraint that it remains
monotonic in the interval [−1, 1] and maps the val-
ues −1 and +1 to itself. In most of our calculations,
the presented function f(x) is able to correct a large
portion of the systematic error, but a more flexible
functional form, e.g., using Gaussian processes with
an appropriate, monotonic and noise-aware kernel,
might further improve the results.
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• applying the same calibration scheme to other gate-
error mitigation methods, e.g., for probabilistic er-
ror cancellation or amplification [87].

D. Comparison of Spectral Properties

To obtain any physically meaningful quantities that
can be compared to experimental measurements, the lat-
tice Green’s function has to be constructed from the im-
purity self-energy and the non-interacting single-particle
dispersion. The imaginary part of this Green’s func-
tion corresponds to the renormalized spectral function
A(k, ω), which depends on the wavevector k and en-
ergy ω, a quantity that is in fact experimentally accessi-
ble through angle-resolved photo-emission spectroscopy
(ARPES). However, before diving into a comparison of
our results with ARPES data, we discuss the convergence
behavior of our QC spectral properties with respect to
classical reference calculations.

Fig. 6a shows the spectral functions along a predefined
path in reciprocal space Γ → X (where X corresponds to
(π, π) in the 2D Brillouin zone of the CuO plane), using
the classical CTHYB and QC impurity solver for the 6
bath sites in the left and right panel, respectively. The
heat map corresponds to the spectral intensity A(k, ω),
clearly showing the quasiparticle band crossing the Fermi
energy at around 0.43 × (π, π). Within an energy win-
dow of ±0.2 eV around the Fermi level, there is good
agreement between the CTHYB and QC results. How-
ever, stronger deviations are observed at energies further
away from the Fermi level. These discrepancies can be
attributed on one hand to the different temperatures em-
ployed for the two calculations, but predominantly to the
bath discretization required for the QC solver, an artifact
that would disappear with larger number of bath sites.

To quantify the differences in the spectral properties,
we compare the quasi particle weight (QPW)

Z =

[
1− ∂ℜΣ(ω)

∂ω

]−1

=

[
1− ∂ℑΣ(iωn)

∂ωn

]−1

(21)

at the Fermi level ω → 0, or in Matsubara frequen-
cies iωn → 0 [95]. This quantity can be directly com-
puted from the real or imaginary part of the self energy
Σ, which contains the information about the renormal-
ization of the bare electronic dispersion, and is readily
available within each DMFT cycle. We obtain values of
ZCTHYB = 0.256, ZED = 0.271, and ZQC = 0.265 for the
converged DMFT results using the CTHYB, ED, and QC
impurity solver, respectively. While the value of ZED

is slightly larger than ZCTHYB, the difference is within
the range one would expect from the bath discretiza-
tion. In fact, the self energy obtained from the Lehmann
representation contains spurious peak structures, which
influence the numerical robustness when computing the
derivatives in Eq. (21). We therefore eliminate and re-
distribute all peaks within |ω| < 0.1 as described in

Sec. IID 2. The relative error between ZED and ZQC is
merely 2.2%, demonstrating the excellent agreement of
our QC results with respect to the ED reference values.
Finally, we turn our attention to comparing the compu-

tational results to the experimentally measured ARPES
spectra of CCOC available in the literature [93, 94]. The
first panel in Fig. 6b plots the single-electron ARPES
spectra with subtracted background signals, showing the
evolution of the quasi particle peak at various wavevec-
tors (see also Sec. IX I of the SI). The second, third, and
fourth panels contain the corresponding spectral lines
computed from the converged DMFT results using the
CTHYB, ED, and QC impurity solver with 6 bath sites,
respectively, however convolved with a Fermi-Dirac func-
tion around the Fermi level to eliminate any spurious
signals from the unoccupied states. Again, the peak evo-
lution within an energy window of −0.2 eV below the
Fermi level is in good agreement between the ARPES
and all computed spectra.
Since the self-energy cannot be directly extracted from

the ARPES spectrum to quantify the agreement, we ap-
proximate the QPW using an alternate, approximate
approach by fitting a line through the maxima along
the energy as a function of the wavevector k close to
the Fermi level (fit within ϵ ∈ [−0.4, 0] eV and k ∈
[0.25, 0.5] × (π, π), shown as a dash-dotted line in the
right panel of Fig. 6a). The ratio of its slope mARPES

and the bare electron dispersion mTB, which we approxi-
mate with the TB band and is shown as a solid line in the
right panel of Fig. 6a, provides an estimate of the QPW,
ZARPES = mARPES

mTB
[96]. Using this procedure, we obtain

for the ARPES data a value of ZARPES = 0.274, in excel-
lent agreement with our values for ZCTHYB = 0.256, and
the respective quantities from ED and QC. The resid-
ual discrepancies between the computed QPW and the
ARPES values may be attributed to the inherent ap-
proximations involved in DMFT, such as the insufficient
description of short-range correlations.

IV. CONCLUSIONS

In this work, we present a (charge) self-consistent
DFT+DMFT simulation workflow that incorporates a
QC impurity solver, and demonstrate its utility by inves-
tigating the electronic structure of a prototypical HTS
material on noisy quantum hardware using up to 14
qubits. The quantum algorithm to solve the underly-
ing AIM relies on the impurity Green’s function in the
Lehmann representation. To obtain the excited states
required for its computation, we implement the qEOM
algorithm and show that a truncation after the second
excitation order suffices to accurately reproduce the im-
purity DOS from ED results. This approximation limits
the computational complexity of our algorithm toO(N5),
a scaling behavior that would allow applications for up
to some few dozen degrees of freedom, i.e., around 10-20
bath sites for a single site AIM. Note, however, that the
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FIG. 6. A comparison of spectral properties. Subfigure (a) shows the spectral function along Γ → X in the 2D Brillouin zone of
the CuO-planes, with minimal and maximal values in light blue and yellow, respectively. The left panel is computed with the
classical impurity solver CTHYB, while the right panel stems from our QC experiments with 14 qubits on “ibm torino” with
6 bath sites. The inscribed dashed line stems from a linear fit to the quasi particle peaks at fixed energies from experimental
ARPES data (ARPES), and the solid orange line (TB) shows the non-interacting single-particle band derived from the Wannier-
ized tight-binding model. Subfigure (b) contains a comparison of the spectral functions at discrete points along the reciprocal
path Γ → X. The first panel shows the experimental ARPES data from Ref. 93 and 94 with a subtracted background using a
Gaussian process regression model. The panels denoted by CTHYB, ED, and QC show the corresponding spectral functions
using the QMC impurity solver CTHYB, the ED impurity solver for the discretized representation, and the QC algorithm
executed on the “ibm torino” quantum device, respectively. All panels also include the non-interacting single-particle δ-peaks
from the TB model in orange.

quantum computation can be trivially parallelized over
the qEOM matrix elements, a feature that we can read-
ily exploit on next generation quantum devices to further
reduce the time to solution and hence would allow to fur-
ther increase the degrees of freedom of the model.

Our experiments on IBM devices with up to 14 qubits
implements the largest qEOM simulation on a real QC
hardware to the best of our knowledge. This achieve-
ment is only possibly by addressing the inherent noise
on current quantum computers, which poses a signifi-
cant challenge as recognized in the literature [36]. Even
the deployment of conventional error mitigation schemes
like M3, T-Rex, and ZNE is insufficient to obtain any
meaningful results. To address this issue, we develop a
novel mitigation strategy, ZNEC, which relies on training
a calibration function on noisy expectation values and
the corresponding, gate-error-corrected counterparts to
reduce systematic expectation value variances. In this
work, we train an analytic calibration function that de-
pends merely on a single fitting parameter, but more
complex functional forms or an additional dependence
on the circuit structure and properties of the measured
observables are possible to improve the performance of
the ZNEC error mitigation scheme (see also Sec. IXG of
the SI).

Devising efficient and more scalable quantum algo-
rithms for GS calculations would represent a key step
to improve our workflow and enable the solution of
challenging state-of-the-art problems. Variational VQE-
type algorithms [39–41] suffer from slow convergence
due to the potential presence of local minima, barren
plateaus, and an overall ill-conditioned optimization be-

havior [41, 97, 98], and are thus only suited for small
system sizes [39, 64]. While incremental progress is con-
stantly proposed to improve the efficiency of variational
approaches [66], more effective quantum algorithms like
quantum phase estimation [99] and quantum imaginary
time evolution (QITE) [100, 101] remain impractical on
noisy quantum devices due to their associated deep quan-
tum circuits. Variational QITE [102] or Krylov subspace
expansion [103] might offer an affordable compromise
between circuit complexity and attainable accuracy on
near-term noisy quantum hardware.

Future efforts will be aimed at extending the present
formalism to more complex Hamiltonians, in particu-
lar to describe multi-orbital systems as well as materi-
als with several, symmetrically inequivalent lattice sites.
Further, the implementation of the cluster extension to
DMFT [96] would improve the description of short-range
correlations, a feature required to better model the intri-
cate phase diagrams of, e.g., HTS cuprates or nickelates.
However, such an assessment of the phase diagram addi-
tionally requires a quantum impurity solver at finite tem-
peratures, e.g., based on the efficient mapping of thermal
states using the variational quantum thermalizer [90].

In conclusion, the present work based on applying a
scalable hybrid quantum-classical workflow to challenges
beyond a simple toy model marks an important milestone
en route to quantum utility for materials simulations.
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[29] R. Žitko and T. Pruschke, Energy resolution and dis-
cretization artifacts in the numerical renormalization
group, Phys. Rev. B 79, 085106 (2009), publisher:
American Physical Society.

[30] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and
M. Troyer, Hybrid Quantum-Classical Approach to Cor-
related Materials, Phys. Rev. X 6, 031045 (2016), pub-
lisher: American Physical Society.

[31] S. Endo, I. Kurata, and Y. O. Nakagawa, Calculation of
the Green’s function on near-term quantum computers,
Phys. Rev. Res. 2, 033281 (2020), publisher: American
Physical Society.

[32] I. Rungger, N. Fitzpatrick, H. Chen, C. H. Alderete,
H. Apel, A. Cowtan, A. Patterson, D. M. Ramo, Y. Zhu,
N. H. Nguyen, E. Grant, S. Chretien, L. Wossnig, N. M.
Linke, and R. Duncan, Dynamical mean field theory al-
gorithm and experiment on quantum computers (2020),
arXiv:1910.04735 [cond-mat, physics:quant-ph].

[33] T. Keen, T. Maier, S. Johnston, and P. Lougov-
ski, Quantum-classical simulation of two-site dynamical
mean-field theory on noisy quantum hardware, Quan-
tum Sci. Technol. 5, 035001 (2020), publisher: IOP Pub-
lishing.

[34] B. Jaderberg, A. Agarwal, K. Leonhardt, M. Kiffner,
and D. Jaksch, Minimum hardware requirements for hy-
brid quantum-classical DMFT, Quantum Sci. Technol.
5, 034015 (2020), publisher: IOP Publishing.

[35] J. Rizzo, F. Libbi, F. Tacchino, P. J. Ollitrault,
N. Marzari, and I. Tavernelli, One-particle green’s
functions from the quantum equation of motion algo-
rithm, Physical Review Research 4, 10.1103/physrevre-
search.4.043011 (2022).

[36] J. Ehrlich, D. Urban, and C. Elsässer, Perspectives of
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IX. SUPPLEMENTARY INFORMATION

A. Convergence of DFT

We perform careful convergence tests with respect to the plane-wave cutoff energy and the k-points sampling of
the irreducible Brillouin zone. Fig. S1 shows in the left panel the convergence of the total energy as a function of the
cutoff energy, while the right panel shows the convergence behavior with respect to the number of k-points. Note that
the x-axis in the right panel corresponds to the number of k-points in one dimension only, i.e., a value of 8 corresponds
to a Monkhorst-Pack k-points mesh of 8× 8× 8.
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FIG. S1. Convergence results of the DFT calculations with respect to the plane-wave cutoff energy and the k-points mesh. The
total energy is shifted such that the most accurate results are set to zero.

B. Convergence of cRPA

We perform careful convergence tests with respect to the number of k-points, cutoff energy, and the number of
bands included in the cRPA calculations. Fig. S2 shows the real and imaginary part of the screened interaction
parameter U(ω) for different number of bands N . Note that the static limit U = ℜ[U(0)] is already well converged
for N = 100 despite larger fluctuations at finite frequencies ω > 1 eV.
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FIG. S2. Convergence results of the RESPACK cRPA calculations with respect to the total number of included orbitals (N).
The real and imaginary part of the dynamical screened interaction is plotted for three values of N = {100, 150, 200}.
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C. Convergence with Respect to the Number of Bath Sites

The convergence with respect to the number of bath sites can be monitored by checking the ability of the bath to
approximate the hybridization function after the final CTHYB iteration. In Fig. S3 we show the loss function of the
minimization in Eq. (5) normalized by the number of Matsubara frequencies Nω:

L(ϵ, V ) =
∑
ωn

|∆disc(iωn)−∆(iωn)|
Nω|ωn|

(22)

We clearly see that up to 4 bath sites (10 qubits) the loss function decreases exponentially to values around 10−3.
Further improvement, which is only possible for 5 and 6 bath sites, is challenging as the minimization process depends
on more variables and the fitting gets stuck in local minima or exceeds the maximum number of iterations. As a
consequence, the parameters for the up and down spin bath sites differ and we need to take the average of both for our
implementation as the system is expected to have spin symmetry. Further up-scaling beyond 10 to 14 qubits requires
an improvement of the fitting procedure by, e.g., using a continued fraction approximation, which can be performed
iteratively and gives the AIM already in chain topology. The overall accuracy of our calculations is not only limited
by the discretization of the bath, but also the approximate ground state on the quantum device from VQE.

1 2 3 4 5 6
Nb

10 3

10 2

L(
ε,
V
)

up
down

FIG. S3. Convergence of the discrete bath fitting with respect to the number of bath sites. The plot shows the normalized loss
function for spin up and down of the minimization problem as a function of the number of bath sites Nb.

D. Circuits for VQE and qEOM

This section contains the full quantum circuits post-selected from 4608 circuits as described in Sec. III A that are
used to perform the VQE calculations and subsequently compute the matrix elements for the qEOM method. For
the system with 5 bath sites, the quantum circuit has the fidelity of 0.959, 4 layers, RY and RZ rotation gates, CX
entangling gates, GHF initial state, the second half inverted for implementation of the identity block initialization,
and random seed equal to 10. For the system with 6 bath sites, the quantum circuit has the fidelity of 0.989, 8 layers,
RY and RZ rotation gates, CZ entangling gates, zero initial state, random initial parameters θ, and random seed
equal to 43. The circuits are shown in Fig. S4.

E. Detailed Implementation of qEOM

For an exact GS and complete excitation basis set, an eigenstate with a positive eigenvalue Ek from the GEP (15)

corresponds to a particle state Ôk|0⟩ with Ek0 = Ek − E0 = Ek, whereas an eigenstate with a negative eigenvalue
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FIG. S4. The full circuits, showing the measurement gates and the hardware-efficient ansatz with linear entanglement strat-
egy [64, 65] used for the construction of the GS featuring (a) 4 layers, RY and RZ rotation gates, CX entangling gates, GHF
initial state, and the second half inverted for implementation of the identity block initialization for the system with 5 bath
sites, and (b) 8 layers, RY and RZ rotation gates, CZ entangling gates, and zero initial state for the system with 6 bath sites.
The blue boxes represent the Pauli strings of X, Y, and Z gates to perform the measurements of the Pauli strings.

Ek corresponds to a hole state Ô†
k|0⟩ with (−Ek0) = E0 − Ek = Ek. In both cases, the denominator in the Lehmann

representation of Eq. (7) can be written as z − E , where E is an eigenvalue of the GEP (15). However, in the case

of an inexact GS and not complete excitation operator basis {R̂k} (e.g., not using the maximal excitation order) or
when hardware noise is present, the eigenvalues are shifted with an error, such that an eigenstate with a positive
eigenvalue does not necessarily correspond to a particle state anymore and, similarly, a negative eigenvalue state may
not correspond to a hole state. This is in particular true for the small eigenvalues where sign changes might occur
due to errors. Therefore, for an eigenstate with a small eigenvalue, it is unclear if it corresponds to a particle state

Ôk|0⟩ or a hole state Ô†
k|0⟩.

To address the above issue, we note that in Eq. (17) we can replace Ô, Ô† with Ô+ Ô†, which is valid whenever the

annihilation condition is satisfied and is an approximation otherwise. The same holds when we replace ĉ0 with ĉ†0 for
computing the first overlap terms in Eq. (7). This form of Eq. (17) has therefore the advantage of avoiding the problem

of assigning the eigenvalues to particle (Ôk|0⟩) or hole states (Ô†
k|0⟩) after solving the GEP. Our implementation is

therefore more noise resilient, which is advantageous for applications using noisy quantum devices, compared to earlier
implementations. In summary, the impurity GF computed after solving Eq. (15) with the qEOM method equals

G
(qEOM)
imp (z) =

∑
k

|(Xk)j⟨0|(R̂j + R̂†
j)(ĉ0 + ĉ†0)|0⟩|2

|(Xk)i(Xk)j⟨0|(R̂†
i + R̂i)(R̂

†
j + R̂j)|0⟩|

× 1

(z − Ek0)
. (23)

The EV w.r.t. the (approximate VQE) GS that are needed for computing the matrices A,B and those in Eq. (23)
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can be expressed as a sum of Pauli strings after mapping the fermionic system to qubits on the QC, using, e.g., the
Jordan-Wigner transformation. After collecting the unique Pauli strings needed to compute all EV, we observe that
the amount of Pauli strings increases rapidly with system size, as shown in the Tab. S1 of the SI. Hence, we apply the
following procedures to reduce the required Pauli strings in order to efficiently execute the qEOM method on IBM
hardware with up to 14 qubits:

• We choose the fermionic, anti-commutator version with [. . . ]+ of qEOM as shown in Eq. (12). The commutator
qEOM version [. . . ]+ → [. . . ] in Eq. (12) results in an increase in the amount of Pauli strings by a factor of

≈ 3− 4 for our AIM systems. This overhead arises since the excitation operators R̂j and AIM Hamiltonian are
made up of fermionic operators ĉ, ĉ† that naturally satisfy the usual anti-commutation relations.

• The spin up and down GEPs decouple, i.e. the matrix elements in Eq. (16) are only non-zero whenever the two

states R̂i|0⟩, R̂j |0⟩ are in the same spin-sector. We derive and solve the GEP for spin up and down excitations
therefore separately, which further reduces the amount of matrix elements by a factor of 2.

• The total set of required Pauli strings are combined into qubit-wise commuting groups [81], using the
AbelianGrouper class in Qiskit. The EVs of each commuting Pauli group can then be computed on the QC
with a single circuit by making a corresponding single-qubit basis rotation before performing the measurement.
The amount of Pauli groups are about a factor of 4 less than the total amount of Pauli strings.

• We only keep the explicitly real parts of the matrix elements of A,B. This is exact whenever the VQE state does
not involve complex phases in its superposition and is in particular true for the exact GS. In our implementation,
we could thus drop all Pauli strings with an uneven amount of Y -Pauli operators, which reduced the amount of
measurements by about another factor of 2.

F. Comparison of qEOM using Bogoliubov and computational basis excitation operators

The impurity GF computed with the qEOM method depends strongly on the choice of excitation operator basis in
Eq. (18). There are an exponentially large (in system size) amount of alternatives to the BEO in Eq. (20), which makes
it difficult to find a good excitation operator basis. In our study we found empirically that for our material system,
the BEO in Eq. (20) typically works best for producing an accurate impurity GF, when using an inexact GS prepared
with the VQE algorithm. To support this observation, we show an example in this section for the 2 bath sites case (6
qubits) and a VQE state with fidelity 0.853. Namely we compare two options for the excitation operators: the product

form as in Eq. (20), with either b̂ (called the BEO in this paper) or with replacing b̂ → ĉ (called the computational
basis). The VQE state has the ansatz form of the inverse-initialization approach as explained in Sec. III A and shown
in Fig. S4 (a), now for 6 qubits, with 2 layers and zero initial state. In Fig. S5 we show the impurity DOS for the
two cases, computed with SV qEOM. The BEO gives a better approximation than the computational basis one, in
particular crucially around the Fermi energy. This behaviour was seen across all system sizes considered and with
varying VQE fidelities. The remaining difference with the ED result arises almost exclusively from the infidelity in
the VQE state.

G. Detailed Analysis of the ZNE-Calibration

ZNEC fits one calibration function for all Pauli strings measured on the ground state. The assumption made in
the procedure, namely that the noise is independent of the operator measured on the individual qubits and even the
number of identities in the Pauli string, needs some justification.

Fig. S6 shows numerical results which justify the validity of the above assumption for our use-case of the 12 qubit
calculation of Ca2Cl2CuO2 performed on “ibm torino”, laying the basis also for 14 qubits. In these experiments all
11259 Pauli-strings appearing in the A, B qEOM matrices are measured using ZNE, and different subsets of operators
are used to calibrate the ZNEC-function and obtain the fitted value α. In the subfigure Fig. S6a the calibration subset
is chosen to contain Pauli-strings which only measure a certain amount of qubits, and therefore need to have a specific
number of identities. In the subfigure Fig. S6b on the other hand we choose the calibration subset by selecting Pauli-
strings which have a certain operator (I, X, Y or Z) on a specific qubit, the index of which represents the x-axis. We
also show an error bar which is obtained as the standard deviation of the fitted parameter α of 100 random subsets of
the calibration set, where the subsets contain half as many operators as the calibration set. The parameter obtained
by using all Pauli-strings as the calibration set is shown as a black line and its error as the grey region (corresponds
to the fit shown in Fig. 3 of the main manuscript).
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FIG. S5. The impurity DOS for 2 bath sites (6 qubits) from the ED (green) and using the two types of doubles excitation
operators, BEO and computational basis in blue and red, respectively, with SV qEOM as explained in the manuscript.

In Fig. S6a we see that the fitted parameter of the calibration function is largely independent of the number of
measured qubits in the operators used to calibrate the ZNEC function. For low number of measured qubits, the data
points are further away from the black line and have an increased error as there are only a few Pauli strings with 1 to
3 measured qubits. We also observe that measuring a Pauli Z operator on the first or last qubit of the chain behaves
differently to the other measurements and results in a smaller fitted value α in Fig. S6b.

From the results shown in this paper, we conclude that the approximation of ZNEC might not be accurate for all
quantum devices, circuits, or operators, but it nevertheless significantly improves over plain ZNE results. In cases
where the approximation does not hold we suggest to add more flexibility to the ZNEC function, and make it explicitly
dependent on the properties (e.g., number of identities) of the Pauli strings.

H. Scaling of the qEOM Algorithm

The measurement of the A, B qEOM matrices constitutes the most QC-resource intensive part of the qEOM
method. The amount of A and B matrix elements in the qEOM method scales quadratically with the amount of
excitation operators, which itself scales exponentially with the system size. For this reason one needs to limit the
excitation order for the computation and in this work we took singles and doubles into account. An insightful metric
for assessing the scaling of the quantum part of the qEOM algorithm is the quantity of Pauli strings that must be
measured for the A and B matrices2.

2 The Pauli-strings appearing in the transition probabilities for
the impurity GF are only computed after solving the GEP and
are therefore dependent on the approximate GS prepared on the

QC. In our experience, the amount of Pauli strings needed for
the GF is about an order of magnitude less than those in the A,
B matrices.
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FIG. S6. Dependence of the fitted parameter of ZNEC on the set of calibration measurements. (a) The blue crosses show the
parameter α fitted for Pauli strings measuring a fixed number of qubits and therefore containing a specific number of identity
operators. (b) The subsets of calibration measurements are chosen to either, not measure (I, blue), or measure the Pauli X
(orange), Y (green) or Z (red) operator on a specific qubit (x-axis). In both subplots the black line shows the fitted parameter
using all Pauli strings and has an error denoted by the grey region.

TABLE S1. The total number of Pauli strings appearing in the A, B matrices with the singles and doubles excitation operators
for Ca2CuO2Cl2.

Qubits 4 6 8 10 12 14
Paulis 39 326 1497 4632 11259 23354

Tab. S1 shows the number of Pauli-strings needed for performing the qEOM method with singles and doubles
excitation operators for the material Ca2CuO2Cl2. From the table it follows that the Pauli strings count increases
polynomially with a power of 5. Scaling the method to 20 qubits therefore requires about ∼ 120000 Pauli string
measurements. To perform the large number of measurements, further simplifications beyond those conducted in this
paper are necessary. One such extension is to study the relevance of the excitation operators by considering their
contributions to a GHF state for the GS, but we leave this for future study.

I. Background Subtraction of ARPES Data

We extract the ARPES results by digitizing the plots from Fig. 20b in Ref. 94. Before comparing with the computed
results, we subtract the background based on fitting a flexible function to the signal within the range of wavevectors
and energies where no spectroscopic data due to single electron scattering is expected. For this purpose we fit a
Gaussian process regression model to the 7 spectra closest to X with the energy range up to the Fermi level. A radial
basis function (RBF) kernel with an initial length scale of 1 eV together with a small noise fraction of 0.01 is used to
train the model, and the hyperparameters are optimized by maximizing the log-marginal-likelihood. Fig. S7 shows
the raw and background subtracted ARPES data, together with the Gaussian process background model.
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FIG. S7. The raw and background subtracted ARPES data in the left and right panel, respectively. The red lines indicate the
background model, together with the 99% confidence interval shown with the orange shaded domain.
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