
LR-FHSS-Sim: A Discrete-Event Simulator for
LR-FHSS Networks

Jean Michel de Souza Sant’Ana, Arliones Hoeller Jr., Hirley Alves, Richard Demo Souza
Centre for Wireless Communications, University of Oulu, Oulu, Finland

Telecommunications Engineering Department, Federal Institute of Santa Catarina, São José, Brazil
Electrical & Electronics Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil

{jean.desouzasantana, hirley.alves}@oulu.fi, arliones.hoeller@ifsc.edu.br, richard.demo@ufsc.br

Abstract—This work presents the LR-FHSS-Sim, a free and
open-source discrete-event simulator for LR-FHSS networks.
We highlight the importance of network modeling for IoT
coverage, especially when it is needed to capture dynamic
network behaviors. Written in Python, we present the LR-FHSS-
Sim main structure, procedures, and extensions. We discuss the
importance of a modular code, which facilitates the creation of
algorithmic strategies and signal-processing techniques for LR-
FHSS networks. Moreover, we showcase how to achieve results
when considering different packet generation traffic patterns and
with a previously published extension. Finally, we discuss our
thoughts on future implementations and what can be achieved
with them.

Index Terms—Internet-of-Things, LR-FHSS, discrete-event
simulation, open-source, traffic generation.

I. INTRODUCTION

Non-terrestrial networks (NTN) can enable global access to
the Internet of Things (IoT) services regardless of geographical
location or terrain. Services in remote areas like transportation,
fleet management, logistics, solar, oil and gas extraction,
offshore monitoring, utilities smart metering, farming, envi-
ronment monitoring, and mining are some examples [1]. Using
Low Power Wide Area Networks (LPWANs) combined with
satellite technologies is a promising solution to integrate ter-
restrial networks with NTNs [2]. A promising technology for
satellite communication for IoT applications is the Long Range
Frequency Hopping Spread Spectrum (LR-FHSS) [3], [4]. As
part of the Long Range Wide Area Network (LoRaWAN)
specification [5] but focused on satellite communication, this
technique divides the payload into small pieces and transmits
it across different physical channels. On top of that, it also
transmits several redundant copies of the header into different
frequency bandwidth channels.

Research on LR-FHSS shows us that modeling such net-
works can be quite challenging, where one can make several
assumptions to make a simpler model [6], or work with very
detailed models [7] even considering the channel effects due
to satellite movement. Additionally, the adoption of “smart”
signal processing and resource allocation techniques is in-
creasing as 6G research moves toward AI integration [8]. All
of this can be impractical to describe with relatively simple
mathematical frameworks [9]. The use of simulations is quite
common, mostly based on discrete Monte Carlo techniques,
usually tailor-made to the problem being studied [2], [4]. This

raises some issues like low re-usability and low flexibility for
future research.

An alternative approach is the use of discrete-event simu-
lations. The main idea of this technique is to model a system
whose global state changes over time. This is relevant, for
example, in cases where there is a strong temporal corre-
lation (e.g., sequential transmissions, different transmission
durations), especially because they are not easily modeled by
relatively simple mathematical frameworks or Monte Carlo
simulations. Moreover, in discrete-event simulations, isolating
and analyzing parts of a system and changing specific network
functionalities without compromising or even changing the
rest of the setup becomes easier. Frameworks like ns-3 [10]
and OMNeT++ [11], for example, implement robust discrete-
event simulations for several different technologies and en-
vironments, from traditional TCP/UDP internet to complex
wireless network environments. Alternatively, Python presents
a package called SimPy [12], which allows the creation of
customized simulation environments.

The development and use of discrete-event simulators for
LPWAN, particularly for the Chirp Spread Spectrum (CSS)
LoRa modulation [13], is very common in the literature. We
can cite at least four different modules developed for ns-
3 [14]–[22]1 2 3, the FLoRa (Framework for LoRa) for the
OMNeT++ [23]–[27]4 and the LoRaSim [28], [29]5 built with
the SimPy framework for Python. From the listed simulators,
FLoRa and the LoRaWAN ns-3 module [14] are the most
organized and structured, from which we may attribute their
success. However, the modules and simulation setups with
them are not centralized, while the original repository still
contains only the basic modules. Although LoRaSim was not
officially published on a repository and its last update was in
2018, it was the most used and extended LoRa simulator [30]–
[40]. We can refer to its popularity partially due to being the
first simulator openly available for LoRa networks. However,
even more recent works still considered using it, highlighting
that its simplicity may be a decisive factor in such a choice.

1https://github.com/signetlabdei/lorawan
2https://github.com/drakkar-lig/lora-ns3-module
3https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan
4https://flora.aalto.fi
5https://mcbor.github.io/lorasim/

ar
X

iv
:2

40
4.

09
53

9v
1

 [
cs

.N
I]

 1
5

A
pr

 2
02

4

TABLE I
LIST OF REPRESENTATIVE LORA PUBLICATIONS USING DISCRETE-EVENT

SIMULATORS GROUPED IN DIFFERENT CATEGORIES.

Category Publications

Performance and scalability analysis [14], [16], [21], [26], [28],
[30], [32], [33], [38]

Access and scheduling algorithms [17], [18], [19], [20], [24],
[34], [35], [36], [39]

Parameters optimization [15], [22], [23], [25],
[27], [37], [40]

Multiple gateways analysis [29], [31]

We list in Table I what we consider to be the main cate-
gories of works utilizing discrete-event simulators for LoRa
networks, along with a list of some representative papers in
each category. As expected, several works on performance
and scalability analysis are used since they tend to be the
first step when validating a simulator. However, we can see
many works on scheduling algorithms, optimizations, and even
multiple gateways. These techniques can be very challenging
to model only mathematically. For example, scheduling and
online parameter optimization algorithms tend to evolve with
time until they reach a certain stability. Ultimately, in the case
of dynamic networks, mathematical modeling might become
of utmost complexity. Finally, the analysis of multiple-gateway
scenarios is very dependent on the position of the gateways;
thus, closed-form equations are impractical in most cases.

A. Contributions

Drawing inspiration from LoRaSim for CSS LoRa, this
work introduces an open-source LR-FHSS discrete-event sim-
ulator coded in Python utilizing the SimPy framework. Unlike
prior LR-FHSS works, our simulation environment is not
tailored to specific scenarios and can accommodate various
algorithms and signal processing techniques. Unlike LoRaSim,
we have enhanced the code structure and publication methods
to foster usability across diverse research projects. Unlike
FLoRa, LR-FHSS-Sim is designed to be modular, allowing
researchers to employ the necessary structures for simulations
selectively and develop new modules with additional function-
alities.

B. Organization

This paper is organized as follows. In Section II, we
present a brief description of the LR-FHSS technology, the
simulator architecture, and an example of an extension module.
Section III presents some results with the simulator for a
baseline model, reproducing one published result using one
extension and an example of a novel extension module.
Finally, Section IV concludes the paper.

II. LR-FHSS-SIM

This section presents the LR-FHSS-Sim (LoRa - Frequency
Hopping Spread Spectrum Simulator). The simulator is avail-

able freely on its online repository6. However, before diving
into it, we discuss some basic concepts of LR-FHSS.

LR-FHSS is a Frequency-Hopping Spread Spectrum tech-
nique, part of the LoRaWAN specification, designed mainly
for uplink IoT direct-to-satellite communications [41]. An LR-
FHSS transmission hops over multiple frequencies (the so-
called physical channels) while employing GMSK modulation
at a bandwidth of 488 Hz. The total bandwidth of the LR-
FHSS channel and the minimum physical channel separation
of the LR-FHSS hopping depend on regional specifications [5].
This results in a different number of physical channels of
488 Hz available for use during one single transmission. For
example, in Europe, there are 8 options of 35 or 86 physical
channels to hop, depending on the chosen data rate. These
options are the so-called channels’ grids, illustrated in [3],
[9].

The LR-FHSS packet structure comprises a header and a
payload [5]. The header contains metadata about the transmis-
sion parameters and, most importantly, the seed to generate the
pseudorandom hop sequence defining the physical channels
assigned to the packet elements during that transmission.
Usually, the end device sends two or three header copies of
theader = 233.472 ms sequentially across different physical
channels. The payload is channel coded according to a convo-
lutional code of coding rate (CR) of 1/3 or 2/3 and split into
small fragments of duration tf = 102.4 ms [5]. The number
of payload fragments is given by [9]

f =

⌈
b+ 3

6 CR

⌉
, (1)

where b is the payload length (in bytes) and CR ∈ {1/3, 2/3}
represents the coding rate.

Data transmission follows the unslotted ALOHA multiple
access protocol, where end devices randomly pick one seed
and generate a pseudorandom sequence of physical channels.
During transmission, the end device hops to a new physical
channel for every packet element (headers and fragments).
A receiver that successfully decodes a header can recover
the pseudorandom sequence and acquire knowledge of the
physical channels used for the transmission. Finally, a packet
is successfully decoded if at least one header and 1/3 or 2/3 of
the total fragments are received, depending on the employed
coding rate.

A. Architecture

The LR-FHSS-Sim mainly comprises some core classes in
the file lrfhss_core.py. These classes represent the main
structures of the simulator. They are depicted in Fig. 1 and
described below:

• Fragment: The Fragment class is the simplest structure
in the simulator. It contains its own information about
duration, the Packet to which it belongs, its type (header
or payload), and if it was transmitted, received with

6https://github.com/Xexell/LR-FHSS-sim

LR-FHSS-Sim

Extensions

Core

generates

Node

Packet
Base

Fragment

1..*

Settings Run
uses

1..*

1..*

creates

creates 0..*

0..*

Traffic

ConstantTraffic

UniformTraffic

ExponentialTraffic

MarkovianTraffic

uses

BaseACRDA

Fig. 1. Simplified UML [42] diagram of the LR-FHSS-Sim package, showing the Core and Exensions components and their respective classes.

success, and, in case of collision, the information about
the other collided fragments.

• Packet: The Packet class generates the packet structure
with headers and payload fragments using the Fragment
class. It also selects the OBW channels for each of
its fragments and can deliver the next Fragment to be
transmitted. The packet also contains information about
the Node to which it belongs and if it was successfully
received.

• Node: The Node class represents the end devices and
is the one with the transmission routine. This routine
runs until the end of the simulation time for each end
device in the network. The transmission routine triggers
all other parts of the simulation. The Node generates one
new Packet to be transmitted following a specific traffic
pattern, implemented by the Traffic class. Finally, it has
information on the number of Packets transmitted.

• Traffic: Traffic is an abstract class used by the Node
class and responsible for generating the packet inter-
arrival intervals for each node following a specific traffic
model. Since it is common in network simulations to
evaluate different traffic models, we choose to design
the traffic model as an extensible component. The traffic
model class includes functions that return the interval, in
seconds, to the next packet transmission. Different traffic
models have been developed as extensions, as discussed
later in the paper.

• Base: The Base class represents the receiver, i.e., the
gateway. It contains information on the transmitted frag-
ments and evaluates whether a fragment transmission was
successful. During the configuration of the simulation,
instances of the Node class are aggregated to the Base,
so they can be processed during simulation. In the case
of the simple Base class, it checks if there is a collision,

considering that all end devices are in the Base coverage
area. Moreover, it tries to decode packets when their
transmission ends according to the coding rate used and
stores information about how many successful packet
transmissions each node made.

There are two other files in the repository for running a
simple simulation. Although they are not exactly parts of
the simulation package, we provided them as examples in
case someone needs a starting point when building their
simulations. The first file is settings.py. Here, inspired
by the Parametric Singleton Design Pattern [43], we defined
a Settings class that has all the necessary parameters to run
a simulation. It makes simulations easy, as we calculate the
number of headers and fragments automatically, and it presents
standard inputs for all simulation parameters. Thus, one can
focus only on the variables in which they are interested.

The later file is run.py, where we design the simulation
using the network components and possibly return the numeric
results we seek.

To generate the simplest network, one needs to create
the SimPy environment, the Base class, and the Nodes (end
devices), add each node to the Base, add the Node transmit
method to the environment process handler, and finally start
the simulation for a determined amount of time. The results
can be obtained by accessing the network objects of interest.
All these steps and others, such as selecting different exten-
sions, are present in the run.py file.

B. Extensions

An interesting feature of the simulator is the development
of extensions of different signal processing and machine
learning algorithms and aspects of network modeling, like
traffic patterns, channel modeling, and others. Here, we present
two extensions to serve as examples for future developments.

1) Traffic Modeling: The first set of extensions refers
to the transmission generation model, stored in the file
traffic.py. Note that the traffic generator is a mandatory
part of the simulation, so at least one version of this class must
be available. The selection of the traffic model is made by
adjusting the corresponding parameter in the settings.py
file. For example, one implementation models the inter-arrival
time as an exponentially distributed random variable, corre-
sponding to a Poisson traffic model, possibly the most used
traffic model in simulations and mathematical modeling. We
have also modeled the inter-arrival time as a uniform random
variable and a constant value with a small Gaussian drift to
avoid collisions by the same end devices.

These three options model sparse and uniform traffic in the
long term. To model less uniform traffic, we implemented a
simple two-state Markov chain traffic model inspired by [44].
We consider State 0 as not transmitting and State 1 as
transmitting. The probability of staying in State 0 is pi, and
the probability of going from State 1 to State 0 is qi. Since
this is a discrete model, we have to consider that each step
represents a certain amount of time SM = Tπ1, where T is
the desired average inter-arrival time and π1 is the State 1
steady-state probability given as

π1 =
pi − 1

pi − qi − 1
. (2)

Note that small values of pi imply in many transmissions (or
small T for a fixed SM), and values of qi << pi represent
traffic with burst behavior, where there is a higher probability
of transmitting several messages subsequently.

2) Asynchronous Contention Resolution Diversity Aloha
(ACRDA): A second extension, is the recently proposed
ACRDA-enabled LR-FHSS network [9], contained in file
acrda.py. For this extension, we need to implement a
receiver with ACRDA capabilities. To do so, we extended
the Base class into the BaseACRDA class and modified it
accordingly. In short, we override the core Base decoding
method by implementing the ACRDA decoding procedure.
Moreover, we included in the BaseACRDA a memory buffer
for packets and a window procedure to be added as an
independent process in the SimPy environment, similar to the
Node transmission. This configuration is in the run.py file.

III. RESULTS

In this section, we present some numerical results acquired
using the LR-FHSS-Sim. We start with some basic results,
then compare the traffic modules presented in the previous
section and show the impact when using different models.
Finally, we compare different traffic models when using the
ACRDA-LR-FHSS extension. For all results, whenever not
explicitly mentioned, we considered DR8 (3 headers and CR
1/3), 20 bytes of payload, simulation time of 24 hours, 100
iterations, average interval between transmissions T of 900
s (4 transmissions per hour), 1 grid of 35 OBW channels,
where we scale the total number of end devices multiplying
by 8 (considering 8 different channel grid available), ACRDA

20 k 40 k 60 k 80 k 100 k
Average number of end-devices

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

av
er

ag
e s

uc
ce

ss

Exponential
Uniform
Markov

0

10 k

20 k

30 k

40 k

50 k

Av
er

ag
e t

hr
ou

gh
pu

t [
m

es
sa

ge
s p

er
 h

ou
r]

Fig. 2. Network average success (red left) and throughput (blue right)
for regular LR-FHSS network for different number of end devices N with
different traffic models.

normalized window size of 2 and normalized window step
of 0.5. For the two-state Markov traffic model we used
pi = 0.99998 and qi = 0.15. These two last parameters, used
as an example, present a network with a burst traffic behavior,
with a high probability of transmitting messages in sequence.
It is important to note that we validate the simulator with
literature theoretical results in [9], where the network average
success behavior follows a basic mathematical framework.

In Fig. 2, we present the network’s average success rate
and throughput when using different device traffic models for
different numbers of end devices. In blue, it is important to
see that the average network throughput remains the same
for all models, which means that the simulator input value
of the average interval between transmissions holds true for
all models. Moreover, in red, we can see that the different
traffic models almost did not impact the average success of
the standard LR-FHSS network. This makes sense since we
are considering a long-run simulation of 24 hours with a large
number of end devices. Thus, it has enough time to generate
the average traffic result.

Fig. 3 depicts the cumulative distribution of the end device
success probability for different traffic models when using
a 5-hour simulation run. We used a reduced simulation run
window to better visualize the variance caused by the Markov
traffic. Here, we can see that, despite the network average
success of both traffic models being the same, they present
some differences. The Markov traffic model presents a slightly
higher variance in the end device probability than the expo-
nential model. This is due to the Markov traffic presenting a
more unpredictable traffic generation with burst behavior. This
shows us that even though the average result is similar, we still
impact the performance of the end devices, as there will be
more devices with lower reliability instead of a more uniform
distribution. This result is relevant because we consider a case
where all devices are in coverage; thus, they present the same

0.0 0.2 0.4 0.6 0.8 1.0
End-device success probability

0.0

0.2

0.4

0.6

0.8

1.0
En

d-
de

vi
ce

 su
cc

es
s C

DF
Exponential 30k devices
Exponential 60k devices
Markov 30k devices
Markov 60k devices

Fig. 3. Cumulative distribution function of the end device success probability
for different traffic models and number of end devices with 5 hours of
simulation time.

20 k 40 k 60 k 80 k 100 k
Average number of end-devices

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

av
er

ag
e s

uc
ce

ss

Exponential
Exponential ACRDA
Markov
Markov ACRDA

Fig. 4. Network average success for regular LR-FHSS network and ACRDA-
based LR-FHSS [9] for different number of end devices N with different
traffic models.

behavior, where the traffic distribution is the only difference.

Finally, Fig. 4 presents the network average success of the
ACRDA module [9] when using the exponential and two-state
Markov traffic modules. Unlike Fig. 2, we can see a difference
in network average success between the two traffics when
using the ACRDA. This result comes from the fact that devices
usually tend to transmit many messages in a sequence when
using Markov traffic with burst behavior. Thus, whenever two
or more devices transmit simultaneously, they are expected
to transmit new messages and more collisions occur. All
these transmitted messages subsequently impose difficulties on
the ACRDA mechanism, especially with a limited decoding
sliding window, when applying the interference cancellation
method and recovering the collided messages.

IV. CONCLUSIONS

In this work, using the SimPy framework, we introduced
the LR-FHSS-Sim, an open-source discrete-event simulator
for LR-FHSS networks in Python. We presented the simulator
architecture, how it works, and how to develop new functional-
ities. Moreover, we presented a traffic model extension, where
we can simulate different traffic patterns for the end devices
and evaluate the results regarding average network success and
network throughput. We showed that traffic models can present
similar average performance regarding success and throughput,
but there may be relevant differences in other performance
statistics. We hope that LR-FHSS-Sim can become a useful
tool for the wireless community and be further developed to
include other practical extensions.

ACKNOWLEDGEMENTS

This work or its authors have been partially supported in
Finland by the Research Council of Finland (former Academy
of Finland) 6G Flagship Programme (Grant Number: 346208),
and by the European Union through the Interreg Aurora project
ENSURE-6G (Grant Number: 20361812).; and in Brazil by
CNPq (Grant Numbers: 402378/2021-0 and 305021/2021-4)
and RNP/MCTIC 6G Mobile Communications Systems (Grant
Number: 01245.010604/2020-14).

REFERENCES

[1] M. Centenaro, C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista,
“A survey on technologies, standards and open challenges in satellite
IoT,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1693–1720, 2021.

[2] M. Asad Ullah, K. Mikhaylov, and H. Alves, “Massive machine-type
communication and satellite integration for remote areas,” IEEE Wireless
Communications, vol. 28, no. 4, pp. 74–80, 2021.

[3] J. A. Fraire, A. Guitton, and O. Iova, “Recovering headerless frames
in LR-FHSS,” Jun. 2023, arXiv:2306.08360 [cs]. [Online]. Available:
http://arxiv.org/abs/2306.08360

[4] G. Alvarez, J. A. Fraire, K. A. Hassan, S. Céspedes, and D. Pesch,
“Uplink transmission policies for LoRa-based direct-to-satellite IoT,”
IEEE Access, vol. 10, pp. 72 687–72 701, 2022.

[5] LoRaWAN Regional Parameters”, LoRa Alliance Technical
Committee Regional Parameters Workgroup, Sep. 2022,
rP002-1.0.4. [Online]. Available: https://resources.lora-alliance.org/
technical-specifications/rp002-1-0-4-regional-parameters

[6] M. A. Ullah, K. Mikhaylov, and H. Alves, “Analysis and simulation
of LoRaWAN LR-FHSS for direct-to-satellite scenario,” IEEE Wireless
Communications Letters, vol. 11, no. 3, pp. 548–552, 2022.

[7] A. Maleki, H. H. Nguyen, and R. Barton, “Outage probability analysis
of LR-FHSS in satellite IoT networks,” IEEE Communications Letters,
vol. 27, no. 3, pp. 946–950, 2023.

[8] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE Journal on
Selected Areas in Communications, vol. 40, no. 1, pp. 5–36, 2022.

[9] J. M. S. Sant’Ana, O. S. Neto, A. Hoeller, J. L. Rebelatto, R. D. Souza,
and H. Alves, “Asynchronous contention resolution-aided ALOHA in
LR-FHSS networks,” IEEE Internet of Things Journal, pp. 1–1, 2024.

[10] ns-3 network simulator. [Online]. Available: https://www.nsnam.org/
[11] OMNeT++ discrete event simulator. [Online]. Available: https:

//omnetpp.org/
[12] SimPy discrete event simulation for python. [Online]. Available:

https://simpy.readthedocs.io/
[13] LoRaWANTM L2 1.0.4 Specification, LoRa Alliance, Inc.,

Oct. 2020. [Online]. Available: https://resources.lora-alliance.org/
technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification

[14] D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation
of LoRa networks in a smart city scenario,” in 2017 IEEE International
Conference on Communications (ICC), 2017, pp. 1–7.

http://arxiv.org/abs/2306.08360
https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters
https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters
https://www.nsnam.org/
https://omnetpp.org/
https://omnetpp.org/
https://simpy.readthedocs.io/
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification

[15] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor
control in low power wide area networks,” in 2017 IEEE International
Conference on Communications (ICC), 2017, pp. 1–6.

[16] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability analysis of large-scale LoRaWAN networks in ns-3,” IEEE
Internet of Things Journal, vol. 4, no. 6, pp. 2186–2198, 2017.

[17] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of LoRaWANs through lightweight
scheduling,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1830–
1842, 2018.

[18] T.-H. To and A. Duda, “Simulation of LoRa in ns-3: Improving LoRa
performance with CSMA,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–7.

[19] M. Capuzzo, D. Magrin, and A. Zanella, “Confirmed traffic in Lo-
RaWAN: Pitfalls and countermeasures,” in 2018 17th Annual Mediter-
ranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2018, pp. 1–7.

[20] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead scheduling
of LoRa transmissions for improved scalability,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3097–3109, 2019.

[21] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of Lo-
RaWAN performance under different parameter settings,” IEEE Internet
of Things Journal, vol. 7, no. 1, pp. 116–127, 2020.

[22] J. Finnegan, R. Farrell, and S. Brown, “Analysis and enhancement of the
LoRaWAN adaptive data rate scheme,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7171–7180, 2020.

[23] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configu-
ration of LoRa networks for dense IoT deployments,” in NOMS 2018
- 2018 IEEE/IFIP Network Operations and Management Symposium,
2018, pp. 1–9.

[24] L. Leonardi, F. Battaglia, and L. Lo Bello, “RT-LoRa: A medium
access strategy to support real-time flows over LoRa-based networks
for industrial IoT applications,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10 812–10 823, 2019.

[25] G. Premsankar, B. Ghaddar, M. Slabicki, and M. D. Francesco, “Optimal
configuration of LoRa networks in smart cities,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 12, pp. 7243–7254, 2020.

[26] V. Toro-Betancur, G. Premsankar, M. Slabicki, and M. Di Francesco,
“Modeling communication reliability in LoRa networks with device-
level accuracy,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021, pp. 1–10.

[27] G. G. M. de Jesus, R. D. Souza, C. Montez, and A. Hoeller, “LoRaWAN
adaptive data rate with flexible link margin,” IEEE Internet of Things
Journal, vol. 8, no. 7, pp. 6053–6061, 2021.

[28] M. Bor, U. Roedig, T. Voigt, and J. Alonso, “Do LoRa low-power
wide-area networks scale?” in MSWiM ’16 Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems. ACM Press, Nov. 2016, pp. 59–67.

[29] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network
interference in LoRa networks,” in EWSN ’17 Proceedings of the 2017
International Conference on Embedded Wireless Systems and Networks.
ACM Press, Feb. 2017, pp. 323–328.

[30] A.-I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara, “Does bidi-
rectional traffic do more harm than good in LoRaWAN based LPWA
networks?” in GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, 2017, pp. 1–6.

[31] M. O. Farooq and D. Pesch, “Evaluation of multi-gateway LoRaWAN
with different data traffic models,” in 2018 IEEE 43rd Conference on
Local Computer Networks (LCN), 2018, pp. 279–282.

[32] S. Sugianto, A. A. Anhar, R. Harwahyu, and R. F. Sari, “Simulation
of mobile lora gateway for smart electricity meter,” in 2018 5th Inter-
national Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), 2018, pp. 292–297.

[33] C. M. S. Ferreira, R. A. R. Oliveira, and J. S. Silva, “Low-energy smart
cities network with LoRa and bluetooth,” in 2019 7th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), 2019, pp. 24–29.

[34] G. Lee and J. Youn, “Group-based transmission scheduling scheme for
building LoRa-based massive IoT,” in 2020 International Conference
on Artificial Intelligence in Information and Communication (ICAIIC),
2020, pp. 583–586.

[35] S. Cui and I. Joe, “Collision prediction for a low power wide area
network using deep learning methods,” Journal of Communications and
Networks, vol. 22, no. 3, pp. 205–214, 2020.

[36] Y. Lalle, M. Fourati, L. C. Fourati, and J. P. Barraca, “Routing strategies
for LoRaWAN multi-hop networks: A survey and an SDN-based solution
for smart water grid,” IEEE Access, vol. 9, pp. 168 624–168 647, 2021.

[37] L. Charles, B. Isong, F. Lugayizi, and A. M. Abu-Mahfouz, “Empirical
analysis of LoRaWAN-based adaptive data rate algorithms,” in IECON
2021 – 47th Annual Conference of the IEEE Industrial Electronics
Society, 2021, pp. 1–7.

[38] S. Francisco, P. Pinho, and M. Luı́s, “Improving LoRa network simu-
lator for a more realistic approach on LoRaWAN,” in 2021 Telecoms
Conference (ConfTELE), 2021, pp. 1–6.

[39] K. Wongwatthanaroek and R. Silapunt, “Transmission sequencing to
improve LoRaWAN performance,” in 2021 18th International Joint
Conference on Computer Science and Software Engineering (JCSSE),
2021, pp. 1–5.

[40] H. Wang, S. Lv, Y. Han, X. Zhang, Y. Zhang, W. Dong, J. Liao,
and H. Luan, “An energy-saving LoRa linear network system with
adaptive transmission parameter,” IEEE Open Journal of the Industrial
Electronics Society, vol. 4, pp. 476–485, 2023.

[41] G. Boquet, P. Tuset-Peiró, F. Adelantado, T. Watteyne, and X. Vila-
josana, “LR-FHSS: Overview and Performance Analysis,” IEEE Com-
munications Magazine, vol. 59, no. 3, pp. 30–36, 2021.

[42] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Addison-Wesley Professional, 2003.

[43] D. Lyon and F. Castellanos, “The parametric singleton design pattern.”
Journal of Object Technology, vol. 6, pp. 13–23, 03 2007.

[44] F. Qasmi, M. Shehab, H. Alves, and M. Latva-aho, “Fixed rate statistical
qos provisioning for markovian sources in machine type communica-
tion,” in 2019 16th International Symposium on Wireless Communication
Systems (ISWCS), 2019, pp. 474–479.

	Introduction
	Contributions
	Organization

	LR-FHSS-Sim
	Architecture
	Extensions
	Traffic Modeling
	Asynchronous Contention Resolution Diversity Aloha (ACRDA)

	Results
	Conclusions
	References

