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We consider Fokker-Planck equations that interpolate a pair of supersymmetrically related Fokker-
Planck equations with constant coefficients. Based on the interesting property of shape-invariance,
various one-parameter interpolations of the solutions of the supersymmetric pair of Fokker-Planck
systems can be directly constructed.

I. INTRODUCTION

One of the basic tools widely employed to study the effecst of fluctuations in macroscopic systems is the Fokker-
Planck equation (FPE) [1, 2]. Owing to its broad applicability, it is of great interest to obtain solutions of the FPE
for various physical situations.

However, as for any equation in science, it is generally not easy to find analytic solutions of FPEs. In most
cases, one can only solve the equation approximately, or numerically. Nevertheless, methods of solving the FEP
have been developed in the past. These include a change of variables, eigenfunction expansion, variational approach,
perturbation expansion, Green’s function, moment method, path integral, the continued-fraction method, etc. [1, 2].
Lie symmetry methods [3] and similarity method [4–6] have also been considered in solving and classifying the FPE.

Needless to say, any method to obtain exactly solvable FPE is always welcome. Some recent work on various aspects
of solution of the FPE can be found in [7–13].

It is an interesting fact that the one-dimensional FPE with constant drift and diffusion coefficients can be trans-
formed into a corresponding Schrödinger equation. As such, any method that solves a Schrödinger equation exactly can
be carried over to solving the FPE. An important such method is the Darboux transformation (the time-independent
version is more commonly known as the supersymmetric (SUSY) method in physics literature) [14]. This method has
been employed to enlarge the number of solvable FPEs [15–20]. Recently, we have further considered FPEs which are
related by Darboux transformation through their corresponding Schrödinger equations. Under appropriate conditions,
we have studied how an exactly solvable FPE can be obtained by the SUSY transformation from the solutions of a
known FPE. These two FPEs we shall call the SUSY FPE partners [20].

In this note, we would like to present a simple way to generate exactly solvable FPE with solutions that interpolate
those of two SUSY partners of FPEs. They form a one-parameter family of deformed FPEs between the pair of SUSY
FPEs.

II. FOKKER-PLANCK AND SCHRÖDINGER EQUATIONS

The FPE is

∂

∂t
P (x, t;a0) =

[
− ∂

∂x
D(x;a0) +

∂2

∂x2

]
P (x, t;a0). (1)

The function P (x, t;a0) describes the distribution of particles in a system. a0 is a set of parameters characterizing
the system. D(x;a0) is the drift coefficient that represents the external force acting on the particle. The constant
coefficient of the second derivative term in (1), which represents diffusion effect, is set to unity without loss of generality.
The drift coefficient can be given by a drift potential W (x;a0) as D(x;a0) = −2W ′(x;a0), where the prime denotes
the derivative with respect to x. The function W (x;a0) is called the prepotential because, as will be shown below,
it determines the potential of a Schrödinger equation related to the FPE. As we will encounter various functions
involving parameters other than a0, we find it convenient to use subscript/superscript to indicate the parameters
involved, so we write P0(x, t) ≡ P (x, t;a0), D0(x) ≡ D(x;a0) and W0(x) ≡ W (x;a0).
By setting

P0(x, t) = e−W0(x)Ψ(x, t), Ψ(x, t) = e−λ(a0) tϕ(x;a0), (2)

we can recast (1) into

H(0)ϕ = λ(0)ϕ(0), (3)
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where

H(0) ≡ − ∂2

∂x2
+W ′2

0 −W ′′
0 , (4)

λ(0) ≡ λ(a0) and ϕ(0)(x) ≡ ϕ(x;a0). In these cases we use superscript to indicate the parameter involved. The
function ϕ(0) satisfies the stationary Schrödinger equation with the Hamiltonian H(0) and eigenvalue λ(0) (for clarity
of presentation, we will not indicate the independent variables and parameters if no confusion arises). It is clear that

W0 defines the potential of the Schrödinger equation and the zero-mode ϕ
(0)
0 ≡ exp(−W0) : H

(0)ϕ
(0)
0 = 0.

So every FPE (1) with constant diffusion can be associated with a Schrödinger equation (3). As such every solution

of the Schrödinger equation gives a solution of the FPE. Suppose all the normalized eigenfunctions ϕ
(0)
n ≡ ϕn(x;a0)

(n = 0, 1, 2, . . .) of H(0) with eigenvalues λ
(0)
n ≡ λn(a0) (λ

(0)
0 = 0) are solved, then by (2) the general solution of the

FPE is

P0(x, t) = ϕ
(0)
0 (x)Ψ(0)(x, t), (5)

Ψ(0)(x, t) =
∑
n

cnϕ
(0)
n (x) exp(−λ(0)

n t).

The constant coefficients cn (n = 0, 1, . . .) are determined from the initial profile P0(x, 0) = ϕ
(0)
0 (x)

∑
n cnϕ

(0)
n (x) by

cn =

∫ ∞

−∞
ϕ(0)
n (x)

(
ϕ
(0)−1
0 (x)P0(x, 0)

)
dx. (6)

The stationary distribution as t → ∞ is P0(x) = ϕ2
0 = exp(−2W0). If P0(x, t) is normalized, i.e.,

∫
P0(x, t)dx = 1,

then c0 = 1.

III. SUPERSYMMETRIC PAIR OF FPES

The connection between FPE and the Schrödinger equation allows one to generate a Fokker-Planck system from a
known one by using the supersymmetric structure of the Schrödinger equation [11]. Note that H(0) is factorizable,
H(0) = A† A, where A = ∂x + W ′

0 and A† = −∂x + W ′
0. The supersymmetric partner (Darboux transformed)

Hamiltonian is given by

H̃ = AA† = − ∂2

∂x2
+W ′2

0 +W ′′
0 . (7)

The eigenvalues and the normalized eigenfunctions of the corresponding Schrödinger equation

H̃ϕ̃n = λ̃nϕ̃n, n = 0, 1, 2, . . . (8)

are related to those of (3) by

λ̃n = λ
(0)
n+1, ϕ̃n =

1√
λ
(0)
n+1

Aϕ
(0)
n+1, n = 0, 1, 2, . . . . (9)

H̃ has the same spectrum as that of H(0) except λ
(0)
0 = 0 since A0ϕ0 = 0. The ground state of the SUSY partner has

the same energy λ
(0)
1 as the first excited state of the original system.

The SUSY Hamiltonian H̃ does not allows us to associate it with a FPE because of the “plus” sign between the two
prepotential terms in (7). However, this is made possible if the potentials in the two Hamiltonians are shape-invariant.
Shape invariance means that the two potentials are similar in shape and differ only in the parameters appearing in
them [14]. It turns out to be a sufficient condition for exact-solvability, and it is amazing that most of the known
one-dimensional exactly solvable quantal systems possess this property. Mathematically shape invariance means the
condition

W ′(x;a0)
2 +W ′′(x;a0) = W ′(x;a1)

2 −W ′′(x;a1) +R(a0). (10)
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Here a1 is a function of a0 and R(a0) is an x-independent function of a0. It turns out that for all the well-known
SUSY one-dimensional solvable potentials, a1 differs from a0 only by constant shifts, i.e., a1 = a0 + δ. The condition
(10) then gives the eigenvalues as [14]

λ(0)
n = λn(a0) =

n−1∑
k=0

R(a0 + kδ). (11)

The presence of shape invariance permits us to associate a FPE with the Hamiltonian

H(1) ≡ W ′2
1 −W ′′

1 , (12)

where W1(x) ≡ W0(x;a1). It is obvious that the eigenvalues λ
(1)
n and the normalized eigenfunctions ϕ

(1)
n (x) of H(1)

are given by

λ(1)
n = λn(a1), ϕ(1)

n =
α√
λ
(0)
n+1

Aϕ
(0)
n+1, n = 0, 1, 2, . . . , α = ±1. (13)

The first relation in (13) is obtained as follows. From (9) and (11) we have

λ(1)
n = λ̃n −R(a0)

=

n∑
k=1

R(a0 + kδ) (14)

=

n−1∑
k=0

R(a1 + kδ) = λn(a1).

The FPE corresponding to H(1) has drift coefficient D(1)(x) = −2W ′
1. The two FPEs with drift coefficients related

by a0 and a1 are called the supersymmetric pair FPEs. The phase α = ±1 depends on the SUSY systems.
The general solution of the partner FPE is

P1(x, t) = e−W1 Ψ(1)(x, t), (15)

Ψ(1)(x, t) =
∑
n

dnϕ
(1)
n exp(−λ(1)

n t).

But in order for P1(x, t) to be SUSY-related to the solution P0(x, t) (5) of the original FPE, we require Ψ(1)(x, t) ∼
AΨ(0)(x, t), i.e., we want Ψ(1)(x, t) to be the SUSY transform of Ψ(0)(x, t). Now we have

AΨ(0)(x, t) = A0

(
ϕ
(0)−1
0 P0(x, t)

)
=

∞∑
n=0

cn

(
Aϕ(0)

n

)
exp(−λ(0)

n t)

= e−R(a0)t
∞∑

n=0

cn+1α

√
λ
(0)
n+1ϕ

(1)
n exp(−λ(1)

n t). (16)

Hence we can take

dn = α

√
λ
(0)
n+1cn+1, (17)

Ψ(1)(x, t) = eR(a0)tAΨ(0)(x, t).

This gives the SUSY partner solution of P0(x, t)

P1(x, t) = e−(W1−R(a0)t) (∂x +W ′
0)

(
eW0 P0(x, t)

)
= ϕ

(1)
0

∞∑
n=0

α

√
λ
(0)
n+1cn+1ϕ

(1)
n exp(−λ(1)

n t). (18)



4

IV. INTERPOLATING SUSY PAIR OF FPES

Using the above relation between a pair of SUSY FPEs with shape invariance, we can generate a one-parameter
family of FPEs that interpolates between the two FPE SUSY pair.

Take a parameter s ∈ [0, 1]. Suppose we can construct a set of s-dependent parameters as such that

as = a0 for s = 0; as = a1 for s = 1. (19)

Then we can associate with each s a prepotential Ws(x) ≡ W (x;as) so that Ws(x) = W0(x) for s = 0, and Ws(x) =
W1(x) for s = 1. The FPE interpolating the SUSY pair of FPEs is defined by the drift coefficient Ds(x) = −2W ′

s(x).
Let us call this FPE the s-defomed FPE of the SUSY pair of FPEs.
Now comes a simple observation that allows us to construct solutions of the s-deformed FPE that interpolates those

of the two SUSY-related FPEs defined by W0 and W1. It is clear that the Schrödinger equation associated with the

s-deformed FPE has eigenfunctions ϕ
(s)
n (x) ≡ ϕn(x;as) with eigenvalues λ

(s)
n ≡ λn(as). Then by (14), we have

ϕ(s)
n (x ) = ϕ(0)

n (x), λ(s)
n (x) = λ(0)

n (x) when s = 0, (20)

ϕ(s)
n (x ) = ϕ(1)

n (x), λ(s)
n (x) = λ(1)

n (x) when s = 1.

The normalized solution interpolating the solutions of the SUSY pair is then given by

Ps(x, t) = Nϕ
(s)
0

∞∑
n=0

[
(1− s)cn + sα

√
λ
(0)
n+1cn+1

]
ϕ(s)
n exp(−λ(s)

n t), (21)

where the noramlizing constant is

N =

[
(1− s)c0 + sα

√
λ
(0)
n+1c1

]−1

. (22)

The above construction is valid for any as as a function of s satisfying (19). There could be many ways to construct
such as. For illustration purpose, in the next section, we present two examples with the simplest choice of as. As
mentioned before, for all the well-known one-dimensional exactly solvable shape-invariant quantum systems possessing,
the relevant parameters of the two SUSY partner potentials are simply related by constant shifts, i.e. a1 = a0 + δ
where δ is a set of constants. Thus the simplest choice of as is

as = a0 + sδ. (23)

As shown in [21], this choice appears naturally in most of the one-dimensional solvable quantum models, if one
interpolates the SUSY pair of the Hamiltonians by their transformed versions, i.e.,

(1− s)
[
eW0H0e

−W0
]
+ s

[
eW1H1e

−W1
]
. (24)

This requirement, which involves the Hamiltonians H0 and H1, is more restrictive than (19), which only involves the
parameters a0 and a1. The construction presented here is valid for general a2.

V. EXAMPLES

As illustration, we construct the one-parameter deformed families of two examples of SUSY FPE pairs, with the
dirft potential related to the radial oscillator and the Morse potential.

The radial oscillator

The prepotential for the radial oscillator potential is W0(x;a0) = ωx2/4−(ℓ+1) lnx, where x ∈ [0,∞) and ω, ℓ > 0.
In this case a0 = (ω, ℓ) and δ = (0, 1), i.e., a1 = (ω, ℓ + 1) [14]. As only the parameter ℓ is shifted in the SUSY
transformation, we shall use its values to label the two SUSY pair.

The wavefunctions are

ϕ(ℓ)
n (x) ≡ ϕn(x;a0) = Nnℓy

ℓ+1
2 e−

y
2 L

ℓ+ 1
2

n (y), y ≡ 1

2
ωx2, (25)
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The normalization constant is

Nnℓ = (2ω)
1
4

[(
n+ ℓ+ 1

2
n

)
Γ(ℓ+

3

2
)

]−1

, (26)

where the two factors in the square-bracket are the binomial coefficient and the Gamma function, respectively.

Eigenvalues are given by λ
(0)
n = 2nω, n = 0, 1, 2, . . ..

It is easy to check that

Aϕ
(ℓ)
n+1(x) = −

√
λ
(ℓ)
n+1ϕ

(ℓ+1)
n (x), (27)

so the factor α in (13) is α = −1 in this case.
The choice (23) leads to the interpolating prepotential Ws(x) = W (x;as) with as = (ω, ℓ+ s).
Fig. 1 gives the plots of the radial oscillator drift potential Ws(x) and several normalized Ps(x, t) for different s

with ω = ℓ = 1. For the graphs of Ps(x, t), we have scaled down the prepotential W0(x) 3 times for a better visual
comparison with Ps(x, t). The coefficients cn used in (21) are c0 = 5, c1 = c2 = 1 and cn = 0(n ≥ 3).

The Morse potential

In this case the drift potential is W0(x;a0) = αx + βe−x, α, β > 0, a0 = (α, β). Under SUSY transformation,
a1 = (α − 1, β) [14]. Similar to the precious example, here we shall use the only changing parameter α to label the
two SUSY pair.

Wavefunctions are given by:

ϕ(α)
n (x) ≡ ϕn(x;a0) = Nnαy

α−ne−
y
2 L2(α−n)

n (y), y ≡ 2βe−x, (28)

with normalization constant

Nnα =

[
2(α− n)Γ(n+ 1)

Γ(2α− n+ 1)

] 1
2

. (29)

and the corresponding eigenvalues λ
(0)
n = α2 − (α− n)2, n = 0, 1, 2, . . . , largest integer < α. It is easy to check that

the factor α in (13) is α = 1 in this case. The choice (23) gives as = (α− s, β).
In Fig. 2 we plot the Morse drift potential Ws(x) and Ps(x, t) for α = 5, β = 1, c0 = 3, c1 = 2, c2 = 1 and

cn = 0(n ≥ 3). Again for easy visual comparison, we have plotted (W0)+3)/4 instead of W0 in the graphs of Ps(x, t).
.

From both Fig. 1 and 2, it is seen that the function Ps(x, t) is confined within the potential well Ws(x). For small
times, Ps(x, t) could look very different for different values of s. But for large times, they become quite similar. This

is expected as t → ∞, only the n = 0 term in Ps(x, t) remains as λ
(s)
0 = 0, i.e., Ps(x, t) ∼ ϕ

(s)2
0 , which are similar in

shape.

VI. SUMMARY

We have presented a simple construction of one-parameter deformed FPEs with solutions that interpolate a pair of
SUSY FPEs. The construction is very general: it only requires the condition of shape-invariance, which amazingly is
satisfied by most of the well-known exactly solvable one-dimensional quantum systems, and the interpolating condition
of the parameters related by the shape-invariance, namely, Eq. (19).

We have demonstrated the procedure by two examples using the simplest interpolation rule, the linear shift (23).
Other deformations are possible, as long as the rule (19) is satisfied. For instance, following [21], one can consider
simply interpolating the two SUSYHamiltonians,

(1− s)H0 + sH1 (30)

instead of the gauge-transformed Hamiltonians as in (24). In this case the parameters as are mostly nonlinear in s
[21]. In this case the parameters as are mostly nonlinear in s [21]. For example, in the radial oscillator case, the

parameter ℓ is deformed to [
√
4(ℓ+ 1)(ℓ+ 2s)− 1]/2. Nonetheless, our construction is applicable.
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FIG. 1: The first plot presents graphs of Ws(x, t) of the radial oscillator. The next three plots show the scaled radial oscillator
drift potential W0(x)/3 (large dashed line) and the normalized Ps(x, t) versus x with ω = ℓ = 1, c0 = 5, c1 = c2 = 1 and
cn = 0(n ≥ 3), time t = 0.1, 0.03, 0.5, 1.0. The deformed parameter s are s = 0 (solid), 0.3 (dashed), 0, 7 (dotdashed), and 1.0
(dotted).
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FIG. 2: The first plot presents the graphs of Ws(x, t) of the Morse potential. The next three plots show the scaled Morse drift
potential (W0(x) + 3)/4 (large dashed line) and Ps(x, t) versus x for α = 5, β = 1, c0 = 3, c1 = 2, c2 = 1 and cn = 0(n ≥ 3) and
time t = 0.01, 0.05, 1.0, 5.0. The deformed parameter s are s = 0 (solid), 0.3 (dashed), 0, 7 (dotdashed), and 1.0 (dotted).
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