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Global prediction of nuclear charge density distributions using deep neural network
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A deep neural network (DNN) has been developed to generate the distributions of nuclear charge
density, utilizing the training data from the relativistic density functional theory and incorporating
available experimental charge radii of 1014 nuclei into the loss function. The DNN achieved a
root-mean-square (rms) deviation of 0.0193 fm for charge radii on its validation set. Furthermore,
the DNN can improve the description in both the tail and central regions of the charge density,
enhancing agreement with experimental findings. The model’s predictive capability has been further
validated by its agreement with recent experimental data on charge radii. Finally, this refined
model is employed to predict the charge density distributions in a wider range of nuclide chart,
and the parameterized charge densities, charge radii, and higher-order moments of charge density
distributions are given, providing a robust reference for future experimental investigations.

I. INTRODUCTION

Charge density distribution is a fundamental property
of atomic nuclei. It not only reflects the abundant nuclear
structure information, such as shell structure, shape co-
existence, and shape transition but also is an important
reference for validating, developing, and perfecting nu-
clear structure models [1–4]. The nuclear charge density
can also constrain the key parameters in the equation of
state of nuclear matter and provide important inputs for
nuclear astrophysics research, where nuclear symmetry
energy and its density dependence play a significant role
in understanding the astrophysical observations [5–7]. In
atomic physics, the spectroscopic properties of atoms af-
fected by electron-nucleus hyperfine interactions are sen-
sitively dependent on the charge densities of nucleus, so
reliable nuclear charge densities are equally critical to
understand atomic structure and precise spectroscopic
properties [8–10]. In addition, the accurate information
of nuclear charge density distribution lays a foundation
for validating the accuracy of Quantum Electrodynamics
under extremely strong electromagnetic field conditions
[11–13].
High-energy electron elastic scattering is a primary ex-

perimental technique for precisely measuring the charge
density distribution of nuclei [14–17]. At present, the
experimental distribution is limited to stable nuclei and
long-lived unstable nuclei [18]. There are two main meth-
ods for fitting experimental data to obtain charge density:
model-dependent analysis and model-independent anal-
ysis [18–20]. The former include the harmonic-oscillator
model, the two-parameter Gaussian model, and the two-
parameter Fermi model, which fit fewer parameters and
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are convenient to use. Because the specific form of the
charge density distribution is often unknown, and there
is a need to accurately fit experimental data of electron
elastic scattering over a large momentum transfer range,
model-independent analysis methods are frequently used,
such as the Fourier-Bessel (FB) series expansion and sum
of Gaussian method [21, 22]. The parameters of these em-
pirical models depend on the structural properties of spe-
cific nuclei and are usually derived from the experimental
data of each nucleus, which lacks the support of micro-
scopic physical mechanisms and is difficult to extrapolate
to other nuclei, especially unstable nuclei without exper-
imental data. In view of the demanding description and
prediction of experimental data of unstable nuclei and
the developing trend of nuclear theoretical models, it is
necessary to use microscopic models to study the charge
densities of nuclei, develop methods suitable for a wider
range of nuclei with more accurate prediction capabili-
ties, and study the micro physical mechanism.
The most widely used microscopic model to describe

nuclear charge properties is density functional theory
(DFT), which includes both the non-relativistic [23–25]
and relativistic [26–33] DFTs. DFT has become one
of the standard theoretical methods for studying nu-
clear structure [1], which can achieve a unified, micro-
scopic, and self-consistent description of almost all nu-
clei on the nuclide chart without introducing any ad-
ditional parameters. Nuclear relativistic density func-
tional theory is a relativistic quantum theory based on
the effective field theory and DFT to describe nuclear
many-body problems. In particular, relativistic DFT
takes into account the Lorentz covariance and the time
and space components of the corresponding nucleon four-
dimensional Lorentz electromagnetic current correspond
to the charge density and current, respectively, and can
self-consistently and microscopically describe the electro-
magnetic properties of the atomic nuclei, including the
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FIG. 1. Comparison of charge radii obtained by the deep neural network (DNN) and the relativistic continuum Hartree-
Bogoliubov (RCHB) theory on the nuclide chart. The blue (red) squares indicate that the charge radii obtained by DNN are
closer to (further deviate from) the experimental values compared with those by the RCHB theory. The mean square error of
charge radii by DNN is 0.0183 fm on the training set and 0.0193 fm on the validation set, while that of the RCHB method is
0.0430 fm.

charge density and radius, originating from the electro-
magnetic density and current. Relativistic DFT has re-
ceived increasing attention in recent years and has been
successfully used to study the ground-state and excited-
state properties of stable and exotic nuclei [27, 28, 30, 33–
43].
At present, the charge density of nuclei based on rel-

ativistic DFT is poorly studied, with the main focus on
the charge radius. Relativistic DFT not only gives a good
global description of charge radius but also has a strong
ability to predict the evolution of some isotopic chains
[34, 44–46]. However, the accuracy of the description
of charge radius by DFT needs to be further improved
compared with the methods that take into account the
Garvey-Kelson local relations [47], and the obtained ac-
curacy varies considerably with different nuclei. Mean-
while, the accuracy of the resulting nuclear charge den-
sity distribution still faces challenges, which further lim-
its the application of its charge density.
Employing neural network techniques can further en-

hance the accuracy of results from microscopic models
based on existing data. Neural networks have been val-
idated as universal data approximators, with deep neu-
ral networks (DNN) demonstrating exceptional data pro-
cessing capabilities. As early as the 1990s, machine learn-

ing, and neural networks began to be applied to the mod-
eling of observational data in nuclear physics and have
been widely adopted across various fields [48, 49]. Sum-
marizing these studies, it is concluded that the applica-
tion of machine learning techniques in the field of nu-
clear physics requires not only meticulous consideration
of model construction but also the integration of physical
information into the networks [50–52]. This approach en-
sures that these models not only serve as excellent data
fitters but also generate accurate extrapolative data. In
the realm of nuclear charge distribution, machine learn-
ing methods have also shown impressive capabilities. In
studies of charge radii, artificial neural networks [53, 54],
Bayesian neural networks [55–57], convolutional neural
networks [58, 59], and kernel ridge regression [60, 61]
methods have all achieved considerable accuracy. More-
over, existing research confirms the promising applica-
tion prospects of machine learning methods in density
distribution. Whether by directly learning density dis-
tribution values [62, 63], or by fitting empirical model
parameters [64] or density functionals [65] to derive den-
sity distributions, machine learning has demonstrated its
ability. However, there are challenges, including the lack
of globally applicable charge density models and a unified
description of charge density and charge radius.
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In this paper, we construct a DNN model with four
hidden layers, which can build a complex mapping re-
lationship between inputs and outputs through multi-
ple combinations of simple nonlinear functions, and use
this to train the nuclear charge density distribution de-
rived from the relativistic continuum Hartree-Bogoliubov
(RCHB) theory [27, 34, 66, 67], which is given in the form
of FB coefficients. Finally, the information of the exper-
imental charge radii is incorporated into the network to
constrain the charge density, which makes it possible to
improve the accuracy of the final results.
The basic formulae of FB expansion and DNN methods

are presented in Sec. II, the results are shown in Sec. III,
and the summary and perspectives are presented in Sec.
IV.

II. THEORETICAL FRAMEWORK

A. The Fourier-Bessel Analysis

The Fourier-Bessel series expansion was introduced by
Dreher et al [21]. For practical reasons, the nuclear
charge density ρc(r) is assumed to be zero beyond a cer-
tain cutoff radius R. The first N (= Rqmax/π) coeffi-
cients aν (ν = 1, 2, ..., N) of this series expansion are
determined directly from the experimental data. The
FB expansion of density distribution with the spherical
symmetry imposed reads

ρc(r) =















N
∑

ν=1

aνj0(
νπr

R
) for r 6 R,

0 for r > R,

(1)

where j0(x) = (sinx)/x denotes the spherical Bessel
function of order zero. The normalization gives

4π

∫

∞

0

ρc(r)r
2dr = 4π

N
∑

ν=1

(−1)ν+1aνR
3

(νπ)2
= Z, (2)

where Z is the proton number. The coefficient aν can be
directly determined by the charge form factor:

aν =
q2
ν

2πR
Fc(qν) with qν =

νπ

R
. (3)

The charge form factor Fc(q) can be regarded as the rep-
resentation of charge density distribution in momentum
space, and it is given by a FB transformation of charge
density,

Fc(q) =
4π

Z

∫

∞

0

ρc(r)j0(qr)r
2dr. (4)

Combining Eq. (3) with Eq. (4), the FB coefficients can
be determined directly when the charge density is given.
By expanding ρc(r) into FB series with finite terms using

TABLE I. The hyperparameter set of DNN.

The i-th layer Name
Number of

neurons

Activation

functions

0 Input Layer 2

1 Dense Layer 20 Tanh

2 Dense Layer 100 Tanh

3 Dense Layer 100 Tanh

4 Dense Layer 20 Tanh

5 Output Layer 17

Other hyperparameters Values and properties

Normalization Factor 14.85

Batch Size 16

Objective (Target) Function Loss1, Loss2

Optimizer Adam

λ in Eq. (8) 0.7

Learning Rate lr = 5× 10−3 for Loss1

lr = 5× 10−4 for Loss2

Eq. (1), one can calculate the n-th moment Rn of the
charge density distribution as

Rn ≡ 〈rn
c
〉 =

4π

Z

∫

R

0

ρc(r)r
2rndr. (5)

In particular, Rc is used in this paper to represent the
square root of the second moment, i.e., the charge radius

Rc ≡
√

〈r2c 〉. (6)

To get the dataset of nuclear charge density distribu-
tion, systematic spherical calculations over the nuclide
chart in the framework of RCHB theory with PC-PK1
[39] is performed. As one of the most successful relativis-
tic energy density functionals, PC-PK1, which is fitted
to the binding energies, charge radii, and empirical pair-
ing gaps of 60 selected spherical nuclei, has been used
successfully in describing not only nuclear ground-state
properties [68–70] but also various excited-state proper-
ties [71–78]. In particular, PC-PK1 provides a good de-
scription for the isospin dependence of binding energy
along either the isotopic or isotonic chain, which makes
it more reliable for describing exotic nuclei [39, 70]. Af-
ter taking into account the intrinsic nucleon contribu-
tions and nucleon spin-orbit contribution, the relativistic
nuclear charge density ρc can be self-consistently con-
structed [79].
Using RCHB to calculate nuclear charge density dis-

tributions and calculating the corresponding FB coeffi-
cients from Eqs. (1) and (2), the dataset that can be
learned by the neural network will be obtained. Mean-
while, the experimental charge radius is introduced into
the loss function to embed the experimental information,
and the charge density is constrained to make it more
consistent with the experimental data, so as to obtain a
more reliable global description of charge density distri-
butions. To do this, deep neural networks are reliable
and efficient.



4

B. The Deep Neural Network Approach

In the present study, we build a six-layer fully con-
nected neural network, which includes an input layer, an
output layer, and four hidden layers. Each layer con-
tains multiple neurons, which receive incoming informa-
tion and pass it to the next layer through an activation
function. The information ultimately reaches the output
layer. The network calculates the target function (i.e.,
the loss function) to obtain the error between the target
and the actual network output and propagates the error
gradually up the layer through the backpropagation algo-
rithm to update the weight and bias parameters between
layers. After several iterations, the final network output
is close to the target value and tends to be stable, and
then the network training can be considered complete.
The carefully modulated hyperparameter set is listed in
Table I.
The charge radii of about 1,000 nuclei have been mea-

sured [80, 81]. Among them, 67 nuclei are given by FB
analysis, with a maximum of 17 coefficients [18]. There-
fore, the number of output neurons of DNN is selected as
17, standing for each of FB coefficients. In order to real-
ize the return of experimental charge radius information
to charge density, the training of the neural network is
divided into two steps in this work. Firstly, the network
learns the FB coefficients of charge density distribution
derived from RCHB, and the loss function used is the
mean square error (MSE) function, which reads

Loss1 (ytar,ypre) =
1

Ns

Ns
∑

i=1

(ytar − ypre)
2
, (7)

where ytar and ypre represent the target value (the result
of RCHB) and the network output value, respectively.
They are all vectors of 17 FB coefficients. Ns is the batch-
size hyperparameter of the network, which does not have
a significant impact during this study and is selected as
16. Through this step, DNN learns the charge density
information of RCHB. The second step is to consider the
experimental charge radii and incorporate this informa-
tion into the loss function on the basis of the existing
neural network that has been trained by RCHB data.
The expression of the loss function is given as

Loss2 (ytar,ypre) = (1− λ)
1

Ns

Ns
∑

i=1

(ytar − ypre)
2

+ λ
1

Ns

Ns
∑

i=1

(

Rtar
c −Rpre

c

)2
,

(8)

where λ is the weight hyperparameter, and Rtar
c

is the
constraint, that is, the experimental charge radii. The
DNN’s charge radii Rpre

c
can be obtained by combining

Eqs. (1) and (5). The value of λ and the learning rates of
the two steps can be found in Table I. Through the above
two steps of training, the outputs of DNN are expected to
be close to the experimental charge density distribution.

The whole training process is completed under the
PyTorch framework. Each training step converges well
within 10,000 epochs, which typically takes around
an hour of GPU time for training (performed on the
NVIDIA GeForce RTX 3070 Ti), while the predictions
take just a few milliseconds.

III. RESULTS AND DISCUSSION
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FIG. 2. Differences in charge radii from DNN and RCHB rel-
ative to experimental values. The red dots indicate deviations
for DNN, and blue triangles for RCHB. The gray shaded area
represents a range of ±0.02 fm.

To assess the impact of information of experimental
charge radii on DNN, a total of 1014 measured nuclei
[80, 81] are used for the dataset. The theoretical FB coef-
ficients of these nuclei are derived from the RCHB calcu-
lations. The dataset are randomly split into the training
and validation sets in an 8:2 ratio, and this dataset split
is fixed for the subsequent training. For the training set,
the DNN initially learns the theoretical FB coefficients,
and incorporates the experimental charge radii into the
loss function for the second step, as mentioned in Sec. II.
The outputs of DNN are the FB coefficients, from

which the corresponding charge radius can be calculated
using Eqs. (5) and (1). Figure 1 presents the overall
comparison of the charge radii calculated by this method
and those calculated by RCHB on the nuclide chart, with
the experimental values as the benchmark. If the DNN’s
result is closer to the experimental charge radius than
that of RCHB, it is represented by a blue square; other-
wise, it is represented in red. In Fig. 1, it is evident that
the DNN shows significant improvements over RCHB in
the light-to-medium mass region, especially in the area
of 20 < Z < 65, where only a few nuclei are slightly
worse than RCHB’s calculations, mostly distributed at
the ends of the isotopic chains.
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FIG. 3. Charge radii predicted by DNN for the Mg,Cu,Kr, In,Yb, and Rn isotopes, where the training regions are indicated by
shadows and the magic numbers of neutron are indicated by the vertical dashed lines. The RCHB results and the corresponding
experimental data are also shown for comparison.

It is worth discussing that DNN cannot accurately rep-
resent the evolutionary trend of the charge radius of Ca
isotopes: Ca isotopes exhibit a strong kink structure
at N = 28, a peak between the two closed shells at
N = 20 and 28, and a rapid increase in charge radius
after N = 28. This evolution may be attributed to com-
plex physical effects, such as the collective effect [88, 89].
Since the unique evolution of charge radius in Ca isotopes
is not present in other isotopic chains, it is challenging for
neural network methods to replicate such kink structures
without overfitting.
A similar situation occurs around Z = 80. For Au

isotopes, at N = 107 and 108, the experimental charge
radius suddenly decreases, indicating a strong deforma-
tion exists at N = 107 [90]. For Hg isotopes, there is a
noticeable odd-even staggering in the experimental val-
ues of charge radius for N ≤ 105, while the evolution
trend becomes smoother for N > 105. These complex
patterns significantly impact the accuracy of DNN. On
the one hand, it attempts to learn the corresponding evo-
lutionary trends, but the unconventional numerical fluc-
tuations make it difficult to achieve success; on the other
hand, these evolution patterns affect the DNN’s judg-
ment on the surrounding isotopic chains, as seen in its

unsatisfactory performance in the rich-proton regions of
Tl and Pb isotopes, where the experiences of Au and Hg
isotopes lead it to exhibit even more peculiar behavior,
but this only yields poorer results.
It is noteworthy that the difference of the target func-

tion values on the training and validation sets is quite
small. As demonstrated in Fig. 1, the root mean square
errors (RMSE) on the training and validation sets with
respect to the corresponding experimental charge radii
are 0.0183 fm and 0.0193 fm, respectively. This rep-
resents a significant improvement over the RMSE of
0.0430 fm for RCHB. Additionally, the stability of the
DNN’s results has been validated. Repeatability tests are
conducted with random initialization of network param-
eters, and the fluctuations in the charge radius RMSE do
not exceed 5%. The normalization test is also used in the
DNN. The error between the proton numbers calculated
by Eq. (2) and the actual ones is about 0.2%, and thus
we do not impose the relevant penalties on the network.
Quantitative data are presented in Fig. 2, where the

red (blue) dots represent the deviation of charge radii
between the DNN (RCHB) results with respect to the
corresponding experimental values. The gray area in the
background marks the deviation less than 0.02 fm, which



6

24 26 28 30 32

3.60

3.65

3.70

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

30 35 40 45 50

3.85

3.90

3.95

4.00

4.05

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

C
ha

rg
e 

R
ad

ii 
(fm

)

DNN
RCHB
exp

24Cr

(a)

C
ha

rg
e 

D
en

si
ty

 (f
m

-3
)

 DNN
 RCHB
 exp

52Cr

(b)

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

54Cr

(c)

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

C
ha

rg
e 

R
ad

ii 
(fm

)

Neutron Number

30Zn

(d)
C

ha
rg

e 
D

en
si

ty
 (f

m
-3

)

r (fm)

68Zn

(e)

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

r (fm)

70Zn

(f)

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

FIG. 4. (a) and (d): Charge radii for the Cr and Zn isotopes. The training regions are indicated by shadows and the magic
numbers are indicated by the vertical dashed lines. (b), (c), (e), and (f): Charge density distributions of 52Cr,54 Cr,68 Zn, and
70Zn. The RCHB results and the corresponding experimental data are also shown for comparison.

is the error margin of the charge radii of several dozens of
nuclei used by RCHB for fitting experimental data [39].
As shown in Fig. 2, the corrections made by DNN are sig-
nificant, especially in the region where the mass number
A < 150. In the range of larger mass numbers, RCHB
itself demonstrates a high accuracy, and DNN achieves a
comparable or better accuracy.
DNN has learned the charge density distribution and

charge radius information on the entire nuclide chart,
which not only makes it perform well from a global per-
spective but also allows it to show advantages in detail.
Figure 3 shows the charge radii of the Mg, Cu, Kr, In, Yb,
and Rn isotopes obtained from DNN as well as RCHB,
and compares with the corresponding experimental val-
ues. In several isotopic chains shown in Fig. 3, the varia-
tion of charge radius with the number of neutrons, includ-
ing the evolution trend and values, is in a good agreement
with experiment data. In the Kr isotopes, the kink struc-
ture at N = 50 and the previous decline as well as the
subsequent sharp rise are successfully evolved by DNN;
In the Yb and Rn isotopes, the DNN provides not only
a correct evolutionary trend but also a better fit experi-
mental data than RCHB. In addition, to test the extrap-
olation performance of DNN, several nuclei are extended

outward for each isotopic chain in Fig. 3, and most of
these results are consistent with the evolutionary trends.
Repeatable tests are employed to obtain the error bars
for the DNN data, and the network’s exceptional stability
resulted in error bars smaller than the size of the points
in Fig. 3 for 100 repeated tests.
Further, to demonstrate the predictive performance of

DNN, we compare the newly measured charge radii on
four isotopic chains of Z = 28, Z = 46, Z = 80 and Z =
83, which are shown in Table II. In the situations where
extrapolations by DNN extend several nuclei beyond the
training region, the extrapolated charge radii can still be
deemed reliable. For example, in the isotopic chains with
Z = 46 and Z = 83, where extrapolations span more
than a dozen nuclei from the training region, most of the
predicted outcomes closely match the experimental data.
In the isotopic chain of Z = 28, despite the DNN not
delivering sufficiently precise figures, it nevertheless offers
a more gradual downward trend within the N = 54− 56
range compared to the RCHB predictions. The last row
of Table II shows the rms deviation of the corresponding
model with respect to the experimental values. The DNN
results are closer to the experimental values than those
of RCHB and are optimized by about 0.01 fm.
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When focusing on the charge density distribution it-
self, the DNN also provides satisfactory results. Figure
4 displays the outcomes for charge radii and densities in
the Cr and Zn isotopes. Given the lack of experimental
data on charge density, two nuclei per isotopic chain are
selected for detailed presentation. Besides offering im-
proved data on charge radii, the DNN also makes good
corrections to the charge density. On the one hand, the
DNN optimizes the central density predicted by RCHB,
making it more consistent with the experimental distri-
bution; on the other hand, the DNN is capable of repli-
cating the distribution of the experimental density tails,
as demonstrated in Figs. 4(b) and (c). While the RCHB
density shows an exponential decline, the experimental
density exhibits a tail. The DNN, by leveraging informa-
tion from experimental charge radii, keenly captures this
feature and reproduces it accurately.
Finally, the well-trained deep neural network is uti-

lized to predict nuclear charge density distributions. The
prediction range is selected to include nuclei listed in
AME2020 with Z ≥ 8. Figure 5 shows the specific distri-
bution of the prediction range. These results are detailed
in the supplemental material.

IV. SUMMARY AND PROSPECTS

A deep neural network model is trained to generate nu-
clear charge density distributions. The training data for
the model is based on the distributions generated by the
RCHB theory, together with 1014 experimental data of
charge radii. The model not only provided more accurate
charge radii on a global scale but also corrected the den-
sity distribution curves to align more closely with exist-
ing experimental outcomes. The predictive capability of
the model is validated by comparing it with the recently
measured experimental data on charge radii. Finally, the
model is used to predict a broader range of charge density
distributions, offering a reference for future experiments.
While the model achieved overall high accuracy, it still

failed to replicate specific features such as the kink struc-
ture in the charge radii of Ca isotopes and the dramatic
decline in charge radii near Z = 80. Furthermore, in-
terpreting the results of the neural network remains a
challenge. How to better apply machine learning meth-
ods to physics research remains an open question that
requires further investigation in the future.
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TABLE II. Comparison of charge radii of the Ni, Pd, Hg,
and Bi isotopes obtained by DNN with the corresponding
RCHB and experimental values. The corresponding exper-
imental data are from the references mentioned in the last
column.

Z A N
RDNN

c

(fm)

RRCHB
c

(fm)

R
Exp.
c

(fm)
Ref.

28

54 26 3.7851 3.7220 3.7366 [82]

55 27 3.7808 3.7074 3.7252 [83]

56 28 3.7785 3.6974 3.7226 [83]

59 31 3.7967 3.7423 3.782 [84]

63 35 3.8618 3.8058 3.842 [84]

65 37 3.8828 3.8365 3.856 [84]

66 38 3.8895 3.8513 3.870 [84]

67 39 3.8949 3.8703 3.873 [84]

70 42 3.9099 3.8914 3.910 [84]

46

98 52 4.4303 4.3950 4.4192 [85]

99 53 4.3940 4.4025 4.4316 [85]

100 54 4.4834 4.4192 4.4532 [85]

101 55 4.4528 4.4280 4.4646 [85]

112 66 4.5881 4.5422 4.5957 [85]

114 68 4.6033 4.5586 4.6094 [85]

116 70 4.6166 4.5132 4.6189 [85]

118 72 4.6279 4.5872 4.6268 [85]

80
207 127 5.4834 5.4952 5.4923 [86]

208 128 5.4917 5.5100 5.5033 [86]

83

187 104 5.4253 5.4186 5.4345 [87]

188 105 5.4330 5.4250 5.4907 [87]

189 106 5.4400 5.4279 5.4428 [87]

191 108 5.4519 5.4381 5.4473 [87]

σ 0.0273 0.0374
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