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Abstract. We prove a Kato square root estimate with anisotropically degenerate
matrix coefficients. We do so by doing the harmonic analysis using an auxiliary
Riemannian metric adapted to the operator. We also derive L2-solvability esti-
mates for boundary value problems for divergence form elliptic equations with
matrix degenerate coefficients. Main tools are chain rules and Piola transforma-
tions for fields in matrix weighted L2 spaces, under W 1,1 homeomorphism.

Contents

Introduction 1
Preliminaries 4
1. Two scalar weights in one dimension 6
2. The (µ,W ) manifold M 12
3. Matrix degenerate Boundary Value Problems 18
Appendix A. W 1,1 pullbacks and Piola transformations 24
Acknowledgements 26
References 26

Introduction

Our point of departure is the celebrated Kato square root estimate

∥
√
−divA∇u∥L2(Rd) ≂ ∥∇u∥L2(Rd) (0.1)

proved by [Aus+02], where the complex valued coefficient matrix A is assumed only
to be bounded, measurable and accretive. After its formulation by Tosio Kato in
[Kat61], [Kat95, p. 332], already the one dimensional result, d = 1, was only solved
20 years later by Coifman, McIntosh, and Meyer [CMM82]. The higher dimensional
result [Aus+02] in d ≥ 2 took some additional 20 years, and a reason was that
the non-surjectivity of ∇ requires a more elaborated stopping time argument in the
Carleson measure estimate at the heart of the proof. That the estimate (0.1) is
beyond the scope of classical Calderón–Zygmund theory for d ≥ 2 is clear from the
fact that, in general, the Kato square root estimate may hold in Lp(Rd) only for p
in a small interval around p = 2, depending on the matrix A.

In this paper we consider the extension of (0.1) to weighted L2 estimates. Cruz-
Uribe and Rios [CR15] proved the weighted Kato square root estimate

∥
√

−(1/w)divA∇u∥L2(Rd,w) ≂ ∥∇u∥L2(Rd,w) (0.2)
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for Muckenhoupt weight w ∈ A2(Rd) and degenerate coefficient matrices A satisfying

ℜe⟨A(x)v, v⟩ ≳ w(x)|v|2 , |A(x)| ≲ w(x) for all x ∈ Rd, v ∈ Cd.

It should be noted that Rubio de Francia extrapolation is not applicable here, since
the operator −(1/w)divA∇ and the L2(w)-norm are coupled. However, under addi-
tional assumption on w, Cruz-Uribe, Martell, and Rios [CMR18] proved (0.2) with
degenerate coefficients also in the unweighted L2(Rd)-norm.

We shall however follow a different path, where we seek to decouple A from w
in the operator −(1/w)divA∇. To this end, we consider more general anisotropi-
cally degenerate elliptic operators −(1/a)divA∇, where the complex-valued scalar
function a(x) is controlled by a scalar weight µ, as

ℜe a(x) ≳ µ(x) , |a(x)| ≲ µ(x) (a)

and the complex matrix function A(x) is controlled as

ℜe⟨A(x)v, v⟩ ≳ ⟨W (x)v, v⟩ , |W (x)−1/2A(x)W (x)−1/2| ≲ 1 (A)

by a matrix weight W , meaning that W (x) is a positive definite matrix at almost
every point x ∈ Rd. The second condition in (A) is equivalent to

⟨A(x)v, v⟩ ≲ ⟨W (x)v, v⟩ for all x ∈ Rd, v ∈ Cd.

Note carefully that for such degenerate elliptic operators −(1/a)divA∇, not only
the size of the two coefficients a and A can differ unboundedly, but the size of A(x)v
can vary unboundedly between different directions v ∈ Cd, |v| = 1, at x ∈ Rd.

The natural norms for the operator −(1/a)divA∇ appear using the standard
duality proof of the Kato square root estimate in the special case of self-adjoint
coefficients a = µ and A = W :

∥
√
−(1/µ)divW∇u∥2L2(µ)

= ⟨−(1/µ)divW∇u, u⟩L2(µ) = ⟨W∇u,∇u⟩L2(Rd) = ∥∇u∥2L2(Rd,W ).

Our problem is thus to understand under what conditions on µ and W the matrix-
weighted Kato square root estimate

∥
√

−(1/a)divA∇u∥L2(Rd,µ) ≂ ∥∇u∥L2(Rd,W ) (0.3)

holds for general a and A satisfying (a) and (A) respectively. We study (0.3) using
a framework of first order differential operators, which goes back to [AMN97] and
[AKM06]. The approach consists in proving boundedness of the H∞ functional cal-
culus for perturbations of a first order self-adjoint differential operator D, perturbed
by a bounded and accretive multiplication operator B. In our context, we set

D =

[
0 −(1/µ)divW
∇ 0

]
, B =

[
µ/a 0
0 W−1A

]
. (0.4)

The operatorsD and B act on the Hilbert space H= L2(µ)⊕L2(W ). The perturbed
operator

BD =

[
0 −(1/a)divW

W−1A∇ 0

]
(0.5)

has spectrum in a bisector around the real line, and we show the boundedness of the
H∞ functional calculus for BD, as defined in §0.2. The Kato square root estimate
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(0.3) then follows from the boundedness of the sign function of BD, namely from
the estimate ∥∥∥√(BD)2

[
u
0

]∥∥∥
H
≂
∥∥∥BD[u0]∥∥∥

H
(0.6)

since
√

(BD)2 = sgn(BD)BD and

√
(BD)2 =

√− 1
a
divA∇ 0

0
√
−W−1A∇ 1

a
divW

 ,
while the right hand side of (0.6) is equivalent to ∥∇u∥L2(W ) as desired.

In the isotropically degenerate case with W = µI, boundedness of the H∞ func-
tional calculus of BD, and in particular (0.6), was proved in [ARR15]. Important
to note is that the proof in [ARR15] does not require B to be block diagonal, as
compared to the one in [CR15], as [ARR15] uses a more elaborate double stop-
ping argument for test function and weight. Our results in the present paper do
not require B to be block diagonal either. Non-block diagonal B are important in
applications to boundary value problems: we extend [AMR22, §4] to anisotropic
degenerate elliptic equations in §3.

When trying to prove boundedness of the H∞ functional calculus for our operator
BD from (0.5), following the local Tb argument in [ARR15], one soon realises that
the main obstacle when W ̸= µI is the L2 off-diagonal estimates for the resolvents
of BD. In all previous works, one has an estimate

∥(I + itBD)−1u∥L2(F,µ) ≲ η
(dist(E,F )

t

)
∥u∥L2(E,W ) (0.7)

with η(x) rapidly decaying to 0 as x→ ∞ and dist(E,F ) being the distance between
sets E,F ⊆ Rd. So the resolvents are not only bounded, but act almost locally
at scale t. When W ̸= µI, this crucial estimate in the local Tb theorem may
fail. Indeed, the commutator estimate used in the proof of (0.7) fails, as it uses
boundedness of

[D, η] =

[
0 − 1

µ
[div, η]W

[∇, η] 0

]
.

This is a bounded multiplier on L2(µ)⊕L2(W ), with norm ∥∇η∥L∞ , only if |W | ≲ µ.
But even assuming this latter bound, it is still unclear to us how to extend the
remaining part of the euclidean proof from [ARR15] which seems to require non-
trivial two-weight bounds.

The way we instead resolve this problem is to replace the euclidean metric by a
Riemannian metric g adapted to the operator BD. We show in §2 that the euclidean
operator BD on L2(Rd, µ)⊕ L2(Rd;Cd,W ) is in fact similar to an operator BMDM

acting on L2(M, ν)⊕L2(TM, νI) for a auxiliary Riemannian manifoldM with metric
g and a single scalar weight ν associated with µ,W .

Note that the scalar weight ν determines the norms both on scalar and vector
functions. Thus we have reduced to the situation in [ARR15], but with Rd replaced
by a manifold M . The euclidean proof in [ARR15] has been generalised to a class
of manifolds in [AMR22], notably those with positive injectivity radius and Ricci
curvature bounded from below. Applying [AMR22] to BMDM gives boundedness
of its H∞ functional calculus and, via similarity, also for our anisotropically de-
generate operator BD on Rd. This in particular shows the matrix-weighted Kato
square root estimate (0.3) for a class of weights (µ,W ) determined by properties
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HM := L2(M, ν)⊕ L2(TM, νI) HM

H := L2(Rd, µ)⊕ L2(Rd;Cd,W ) H

P

DMBM

DB

P−1

Figure 1. We will use a unitary map P and its inverse, introduced in §1
and defined in (2.1).

of (g, ν). The examples at the end of §2 show that indeed this class covers weights
beyond [ARR15]. In forthcoming papers, we shall relax further the hypotheses on
the auxiliary manifold (M, g).

Preliminaries

Notations. For two quantities X, Y ≥ 0, the expression X ≲ Y means that there
exists a finite, positive constant C such that X ≤ CY . The expression X ≳ Y
means that Y ≲ X. When both expressions hold at the same time, with possibly
different constants, we will write X ≂ Y . Given a matrix W the quantities |W | and
∥W∥op denote any of the equivalent matrix norms of W .

As discussed in the introduction, the Kato square root estimate follows from the
boundedness of functional calculus for a bisectorial operator BD. Here we recall
these concepts.

0.1. Bisectorial operators. For an angle θ ∈ [0, π/2), consider the closed bisector

Sθ := {z ∈ C : |arg(z)| ≤ θ} ∪ {0} ∪ {z ∈ C : |arg(−z)| ≤ θ}.

Definition 0.1 (Bisectorial operator). A closed, densely defined operator D on a
Hilbert space is bisectorial if there exists an angle θ ∈ [0, π/2) such that

• the spectrum σ(D) is contained in the bisector Sθ;
• outside Sθ we have resolvent bounds: ∥(λI −D)−1∥ ≲ 1/dist(λ, Sθ).

Given a densely defined operator D, its domain will be denoted by dom(D). If D
is bisectorial, we have the topological (not necessarily orthogonal) splitting [AAM10,
Proposition 3.3 (ii)]

H= ker(D)⊕ im(D)

where ker(D) := {u ∈ dom(D), Du = 0} is always closed and im(D) := {Du ∈
H, u ∈ dom(D)}. In particular, restricting D to the closure of its range gives an
injective bisectorial operator.

0.2. Bounded holomorphic functional calculus. Given θ′ > θ, with θ′, θ ∈
[0, π/2), let S̊θ′ be the interior of the bisector Sθ′ . Denote by H∞(S̊θ′) the space

of bounded holomorphic functions on S̊θ′ . Given an injective operator D which is
bisectorial on Sθ, we say that D has bounded H∞ functional calculus on S̊θ′ if any
function f ∈ H∞(S̊θ′) defines a bounded operator f(D) with norm bound

∥f(D)∥H→H ≲ ∥f∥L∞(S̊θ′ )
.

For a non-injective operator D, the H∞ functional calculus can be extended to
the whole space H by setting f(D)↾ker(D) := f(0)I↾ker(D), for f : {0} ∪ S̊θ′ → C such

that f↾S̊θ′
∈ H∞(S̊θ′).
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0.3. Quadratic estimates. A bisectorial operator D acting on a Hilbert space H

satisfies quadratic estimates if( ˆ ∞

0

∥ψt(D)u∥2H
dt

t

)1/2
≲ ∥u∥H for all u ∈ H, (0.8)

where ψt(ζ) := ψ(tζ) and ψ is any function in H∞(S̊θ′) which is non-vanishing on
both sectors and decaying |ψ(ζ)| ≲ |ζ|s(1 + |ζ|2s)−1 for some s > 0. Since quadratic
estimates for one such ψ implies quadratic estimates for all such ψ, for simplicity
we take ψ(ζ) = ζ/(1 + ζ2). Bisectorial operators D, for which both D and D⋆

satisfy the quadratic estimates (0.8) have H∞ functional calculus. See [ADM96],
where this is shown for sectorial operators. The extension to bisectorial operators
is straightforward.

0.4. Weights. A scalar weight is a function x 7→ µ(x) which is positive almost
everywhere, while a matrix weight is a matrix-valued function x 7→ W (x) such that
W (x) is symmetric, positive definite matrix at almost every x. We will consider
weights on Rd and on a complete Riemannian manifoldM with Riemannian measure
dy.

Definition 0.2. Let W be a matrix weight. A multiplication operator B is said to
be W -bounded if

|W 1/2BW−1/2| ≲ 1 a.e.

and it is said to be W -accretive if

ℜe⟨W 1/2BW−1/2v, v⟩ ≳ |v|2 a.e. and ∀v ∈ Cd.

Note that

• B is W -bounded if and only if the map v 7→ Bv is bounded in the norm
v 7→ |W 1/2v|

• B is W -accretive if and only if the map v 7→ Bv is accretive with respect to
the inner product ⟨Wv, v⟩ associated to the norm |W 1/2v|.

• For scalar weights W = w this reduces to standard unweighted notions of
boundedness and accretivity.

When W is a block diagonal matrix
[
µ 0
0 w

]
, we will use the notation (µ ⊕ w), and

say that a multiplication operator is (µ⊕ w)-bounded and (µ⊕ w)-accretive.
A special class of weights are Muckenhoupt weights, which are defined in terms

of averages. Let B = B(x, r) be a geodesic ball of radius r > 0 centred at x. If |B|
denotes the Riemannian measure of a ball B, the average of a scalar weight ν over
B is

ffl
B
ν dy := |B|−1

´
B
ν dy.

Definition 0.3 (Muckenhoupt AR
2 weights). Let R > 0 be fixed. A scalar weight

ν : M → [0,∞] belongs to the Muckenhoupt class AR
2 (M), with respect to the

Riemannian measure dy, if

[ν]AR
2
:= sup

y0∈M
r<R

(  
B(y0,r)

ν(y) dy
)( 

B(y0,r)

1

ν(y)
dy
)
<∞.

We say that a weight ν ∈ A2(M) if [ν]A2
:= supR>0[ν]AR

2
is finite.

We also introduce local Muckenhoupt weights, as these are used to apply domi-
nated convergence locally, for example in proving the density of smooth functions
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in matrix-weighted Sobolev spaces. Note that we do not use the Aloc
2 property

quantitatively.

Definition 0.4 (Local Muckenhoupt weights). Let Ω ⊆ Rd be an open set, and let
µ and W be a scalar and a matrix weight, respectively. We say that µ is in Aloc

2 (Ω)
if for any compact K ⊂ Ω

sup
B⊂K

( 
B

µ(x)dx
)( 

B

1

µ(x)
dx
)
<∞,

where the supremum is over balls B. Similarly, W is in Aloc
2 (Ω) if for any compact

K ⊂ Ω

sup
B⊂K

∥∥∥∥( 
B

W (x)dx
)1/2( 

B

W−1(x)dx
)1/2∥∥∥∥2

op

<∞

where ∥ · ∥op is the operator norm on the space of linear operators acting on Cd.

As in Definition 0.4 we define Aloc
2 (M) on a manifold M for scalar weights. One

can show that for scalar weights it holds that AR
2 ⊂ Aloc

2 for any R > 0.
Defining matrix weights on a Riemannian manifold M is more subtle. At any

y ∈M ,W (y) should be a positive definite map of TyM , and in a chart φ : Rd →M , it
should be represented by Wφ := (dφ)−1W (dφ⋆)−1. However, the following example
indicates that the matrix A2 condition on Wφ is not in general invariant under
transition maps between different smooth charts φ.

Example 0.5. Let W : R → R2×2 be the matrix weight

W (x) =

[
cos(x) sin(x)
− sin(x) cos(x)

] [
1 0
0 1 + 2r

] [
cos(x) − sin(x)
sin(x) cos(x)

]
.

The constant diagonal matrix W (0) = [ 1 0
0 1+2r ] is trivially a matrix A2 weight with

[W (0)]A2 = 1 for any r ≥ 0. A direct computation shows that

lim
r→+∞

∥∥∥∥(  π

0

W (x)dx
)1/2(  π

0

W−1(x)dx
)1/2∥∥∥∥2

op

= ∞.

See also [Bow01, Proposition 5.3] and [BLM17, Example 4.3].

Therefore, we make the following auxiliary definition:

Definition 0.6. A matrix weight W ∈ End(TM) belongs to Aloc
2 (M) if at each

y ∈M there exists a chart φ such that (dφ)−1W (dφ⋆)−1 is a weight in Aloc
2 (Rd).

1. Two scalar weights in one dimension

Following the historical tradition of the Kato square root problem, we first con-
sider the one dimensional problem. We treat this case separately since all one-
dimensional manifolds are locally isometric, so no hypothesis on the Riemannian
metric g is needed, only hypothesis on the weight ν.
In dimension d = 1 the matrix weight W (x) reduces to a scalar weight w(x), and

∇ = div = ∂x is the derivative. Consider the differential operator

D =

[
0 −(1/µ)∂xw
∂x 0

]
. (1.1)
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Let ρ : R → R be a “rubber band” parametrisation, a map stretching the real line,
with y = ρ(x) for x ∈ R. To see g, ν appear, we consider the pullback

P :

[
v1(y)
v2(y)

]
7→
[

v1(ρ(x))
v2(ρ(x))ρ

′(x)

]
=

[
u1(x)
u2(x)

]
. (1.2)

The basic observation is the following.

Lemma 1.1. Let µ,w be two weights that are smooth on an interval I ⊂ R. Let
ρ : I → R be such that ρ′(x) =

√
µ(x)/w(x). Set M := ρ(I) ⊂ R. Let ν(ρ(x)) :=√

µ(x)w(x) and

DM :=

[
0 −(1/ν)∂yν
∂y 0

]
. (1.3)

Then the map P is an isometry between the Hilbert spaces H= L2(I, µ)⊕ L2(I, w)
and HM := L2(M, ν)⊕ L2(M, ν), and P−1DP = DM .

Proof. We verify that PDM = DP. This amounts to check the equality (!) in

PDM

[
v1
v2

]
=

[(
(−1/ν)∂yνv2

)
◦ ρ

ρ′(∂yv1) ◦ ρ

]
(!)
=

[
−(1/µ)∂xw(v2 ◦ ρ) ρ′

∂x(v1 ◦ ρ)

]
= DP

[
v1
v2

]
.

The identity for the second component is the chain rule in Theorem A.2 in one
dimension. The identity for the first component is seen by multiplying and dividing
by ρ′;

1

ν(ρ(x))ρ′(x)
· ρ′(x)∂y(ν v2)(ρ(x))

(!)
=

1

µ(x)
∂x(w(x)ρ

′(x)(v2 ◦ ρ)(x)),

and noting that {
µ(x) = ν(ρ(x))ρ′(x),

w(x)ρ′(x) = ν(ρ(x)).
(1.4)

Using the identities in (1.4) and the definition of P, the weighted norms ∥u1∥L2(µ)

and ∥u2∥L2(w) becomeˆ
|u1(x)|2µ(x) dx =

ˆ
|v1(ρ(x))|2ν(ρ(x))ρ′(x) dx =

ˆ
|v1(y)|2ν(y) dy,ˆ

|u2(x)|2w(x) dx =

ˆ
|v2(ρ(x))ρ′(x)|2w(x) dx =

ˆ
|v2(y)|2ν(y) dy.

This shows that P is an isometry and concludes the proof. □

Lemma 1.1 shows that formally, D in L2(I, µ)⊕L2(I, w) is similar to DM defined
in (1.3) acting on L2(M, ν)⊕ L2(M, ν), to which [ARR15] applies. To this end, for
non-smooth µ and w, we need that ν ∈ A2(R, dy) and the map ρ to be absolutely

continuous, which amounts to ρ′ =
√
µ/w ∈ L1

loc. This holds in particular if µ,w ∈
Aloc

2 which we need in order to apply Theorem A.2. Somewhat more subtle, to
ensure that we obtain a complete manifold, we must also take into account the
completeness of the y-axis, that is, M . This corresponds to the problem of defining
D as self-adjoint operator in L2(µ) ⊕ L2(w). Indeed, if ρ maps onto an interval
M ⊊ R, boundary conditions need to be imposed for DM to be self-adjoint in HM ,
and hence for D = PDMP−1 to be self-adjoint. Although this can be done, here we
limit our study to the case in whichM is a complete manifold. See also Example 1.6
below.
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Theorem 1.2. Consider a possibly unbounded interval I = (c1, c2) ⊆ R. Let µ,w
be weights in Aloc

2 (I) and assume thatˆ c

c1

√
µ

w
dt =

ˆ c2

c

√
µ

w
dt = ∞ for c1 < c < c2.

For some fixed c ∈ (c1, c2), let

ρ(x) =

ˆ x

c

√
µ

w
dt and ν(y) :=

√
µ(ρ−1(y))w(ρ−1(y)).

Assume that ν ∈ A2(R, dy). Let D be the operator defined in (1.1) and let B be a
(µ⊕w)-bounded and (µ⊕w)-accretive multiplication operator on L2(I, µ)⊕L2(I, w)
as in Definition 0.2. Then BD and DB are bisectorial operators satisfying quadratic
estimates and have bounded H∞ functional calculus in L2(I, µ)⊕ L2(I, w).

Proof. The operator DM in (1.3) has domain H1
ν ⊕ (H1

ν)
⋆ where

H1
ν := {v ∈ L2(ν) : ∂yv ∈ L2(ν)}

and the adjoint space (H1
ν)

⋆ = {v ∈ L2(ν) : (1/ν)∂yνv ∈ L2(ν)}. The operator D
has domain H1

µ,w ⊕ (H1
µ,w)

⋆ where

H1
µ,w := {u ∈ L2(µ) : ∂xu ∈ L2(w)}

and the adjoint space (H1
µ,w)

⋆ = {u ∈ L2(w) : (1/µ)∂xwu ∈ L2(µ)}. Note that the

operator (1/µ)∂xw : L2(w) → L2(µ) is unitary equivalent to ∂x : L
2(w−1) → L2(µ−1),

since the multiplication by w is a unitary map from L2(w) → L2(w−1).
The pullback transformation P maps between the domains of DM and D. Indeed,

if v ∈ H1
ν , then by Theorem A.2 applied with v = ν and V = ν, we have that

u := ρ∗v ∈ L2(µ) and

∂xu = ∂x(ρ
∗v) = ρ∗(∂yv) = ρ′ (∂yv) ◦ ρ ∈ L2(w)

since vρ = µ and Vρ = w. Similarly, we see that the L2-adjoint of ρ∗, ρ∗/ρ
′, maps

{u ∈ L2(w−1) : ∂xu ∈ L2(µ−1)} → H1
ν−1 .

By applying Theorem A.3 with v = w−1 and V = µ−1, we see that both vρ and V ρ

equals 1/ν, so we have that (ρ′)−1ρ∗u ∈ L2(ν−1) and

∂y
(ρ∗
ρ′
u
)
=
ρ∗
ρ′
(∂xu) ∈ L2(ν−1).

Let BM := P−1BP. We show that B is (µ⊕ w)-bounded and (µ⊕ w)-accretive if
and only if the operator BM is (ν ⊕ ν)-bounded and (ν ⊕ ν)-accretive. The (ν ⊕ ν)-
boundedness of BM means thatˆ (

[ ν 0
0 ν ]P

−1BPv,P−1BPv
)
dy ≲

ˆ ∣∣[ ν 0
0 ν ]

1/2v
∣∣2 dy. (1.5)

Let u = Pv, then the left hand side of (1.5) equals

⟨P−1Bu,P−1Bu⟩
L2
(
[ ν 0
0 ν ]
) = ⟨PP−1Bu,Bu⟩

L2
([

µ 0
0 w

])
where we used that P−1 = P⋆, since P is an isometry, as shown in Lemma 1.1. The
same applies to show that BM is (ν⊕ν)-accretive if and only if B is (µ⊕w)-accretive.

Now, to prove the theorem, apply [ARR15, Theorem 3.3] to DMBM , where DM :=
P−1DP. It follows that DMBM satisfies quadratic estimates. The same holds for
the operator DB via the isometry P, and for BD = B(DB)B−1. □
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Remark 1.3. Since the Riemannian measure of ρ(J) for any subinterval J ⊆ I is´
J
ρ′(x) dx, the condition ν ∈ A2(R, dy) explicitly means that for all intervals J , we

have (ˆ
J

µ(x) dx
)(ˆ

J

1

w(x)
dx
)
≲
(ˆ

J

√
µ

w
dx
)2
. (1.6)

Note that the hypothesis µ,µ−1,w,w−1 ∈ L1
loc and more precisely µ,w ∈ Aloc

2 , is not
used quantitatively, but only to ensure that:

(1) L2(I, µ) and L2(M, ν) are contained in L1
loc(dx), so that the derivatives in

the operator D can be, and are, interpreted in the sense of distributions;
(2) the isometry P maps dom(DM) bijectively onto dom(D).

A way to extend Theorem 1.2 to more rough weights would be to define the domain
dom(D) as the image of dom(DM) under the isometry P. In this way, one only

requires that
√
µ/w ∈ L1

loc and (1.6) uniformly for all J ⊆ I, but, in this generality,
the derivatives in D do not have the standard distributional definition.

Curiously, in one dimension we have the following

Proposition 1.4. If µ,w ∈ A2(I, dx), then ν ∈ A2(R, dy).

Proof. The weight ν is in A2(R, dy) if (1.6) holds for all J ⊂ R. The A2 condition
on an interval J for µ and w meansˆ

J

µ(x) dx ≲
|J |2´

J
1/µ(x) dx

,

ˆ
J

1

w(x)
dx ≲

|J |2´
J
w(x) dx

.

Applying Cauchy–Schwarz twice gives as claimed(ˆ
J

µ dx
)( ˆ

J

1

w
dx
)
≲

|J |4( ´
J
1/µ
)( ´

J
w
) ≤

(
|J |2´

J

√
w/µ dx

)2

≤
(ˆ

J

√
µ

w
dx
)2
.

□

Remark 1.5. It is not clear to us if such relation between (µ,w) and ν exists in higher
dimension. Moreover note that, since the Jacobian |ρ′| is not necessarily bounded,
but only locally integrable, the composition µ ◦ ρ−1 is not guaranteed to be in L1

loc,
and so it is not a Muckenhoupt weight. Still ν can be in A2, as Case 2 in the next
example shows.

Example 1.6. Consider the power weights µ(x) = xα and w(x) = x−β for x > 0.

Then ρ′(x) =
√
x
α+β

and ν(ρ(x)) =
√
x
α−β

. In computing ρ−1, we distinguish three
cases.

Case 1: α + β + 2 > 0. In this case ρ(x) = 2
α+β+2

√
x
α+β+2

is strictly positive

and increasing. Thus ν(y) = (α+β+2
2

y)
α−β

α+β+2 . The weight ν ∈ A2(dy) if and

only if −1 < α−β
α+β+2

< 1, or equivalently if α > −1 and β > −1.

Case 2: α + β + 2 < 0. In this case ρ is negative and equals 1
c
xc where

c = α+β+2
2

< 0 and ν(y) = (−cy)
α−β

α+β+2 > 0. The weight ν ∈ A2(dy) if and

only if −1 < α−β
α+β+2

< 1, or equivalently if α < −1 and β < −1.

Case 3: α + β = −2. In this case ρ′(x) = 1/x and so ρ(x) = ln x. Then
ρ−1(y) = ey and ν(y) = (ey)(α−β)/2 is in A2(dy) if and only if α = β = −1.
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x

y

(a) Case 1.

x
y

(b) Case 2.

x

y

(c) Case 3.

Figure 2. Completeness of the y-axes. In Case 1, ρ(x) =
√
x on R+ can be

extended to an odd bijection R → R. In Case 2, ρ(x) = −1/x
is not surjective onto R. In Case 3, ρ(x) = ln(x) is a bijection
from R+ to R.

In either case ν ∈ A2 if and only if sgn(α + 1) = sgn(β + 1). Case 2 shows that
it is possible that ν ∈ A2 even if µ and w are not. Note that in the extension of
Case 1 to an odd bijection, and in Case 3, the map ρ is a bijection and maps onto
a complete manifold, while in Case 2 the map ρ is not surjective. See Figure 2.

Assuming that |α|, |β| < 1 and extending to power weights µ(x) = |x|α and
w(x) = |x|−β, Theorem 1.2 applies and gives quadratic estimates for the operator
BD, where

D =

[
0 −|x|−α∂x|x|−β

∂x 0

]
,

on the weighted space L2(R, |x|α)⊕ L2(R, |x|−β).

Corollary 1.7. Let I ⊆ R and let µ,w ∈ Aloc
2 (R) satisfy the assumptions of Theo-

rem 1.2. In particular ν ∈ A2(R, dy). Let a, b be two complex-valued functions on I
such that

µ(x) ≲ ℜe a(x) , |a(x)| ≲ µ(x) ,

w(x) ≲ ℜe b(x) , |b(x)| ≲ w(x)
(1.7)

for a.e. x ∈ I. Then the following Kato square root estimate holds:

∥
√
−(1/a)∂xb∂xu∥L2(I,µ) ≂ ∥∂xu∥L2(I,w).

Proof. Consider the multiplication operator B =
[
µ/a 0
0 b/w

]
. The hypothesis in (1.7)

implies that B is bounded and accretive. Since

B =

[√
µ 0
0

√
w

]
B

[√
µ 0
0

√
w

]−1

holds for any diagonal matrix B, then B is [ µ w ]-bounded and [ µ w ]-accretive. The
desired estimate follows by applying Theorem 1.2 to B and D as defined in (1.1).
Indeed, the perturbed operator BD equals

BD =

[
0 −(1/a)∂xw

b
w
∂x 0

]
and so

∥
√

−(1/a)∂xb∂xu∥L2(I,µ) =
∥∥√(BD)2

[
u
0

]∥∥
H
.

The boundedness of the H∞ functional calculus for BD on H= L2(I, µ)⊕L2(I, w)

implies that sgn(BD) is a bounded and invertible operator on H. Since
√
(BD)2 =
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sgn(BD)BD, we have∥∥√(BD)2
[
u
0

]∥∥
H
≂
∥∥BD[ u0 ]∥∥H ≂

∥∥D[ u0 ]∥∥H ≂ ∥∂xu∥L2(I,w).

□

Example 1.8 (Cauchy integral on rectifiable graphs). Consider a curve γ := (t, φ(t))
as the graph of a function φ : R → R. The curve γ is Lipschitz if and only if φ′ ∈ L∞.

The Cauchy singular integral

Cγ(x) :=
i

π
p.v.

ˆ ∞

−∞

u(y)

y + iφ(y)− (x+ iφ(x))
(1 + iφ′(y)) dy

and its boundedness on L2(γ) for Lipschitz curves is a classical and famous problem
in analysis. It was first showed by Calderón [Cal77] that Cγ : L

2(γ) → L2(γ) for a
curve γ ⊆ C with small Lipschitz constant ∥φ′∥L∞ . This smallness assumption was
removed by Coifman–McIntosh–Meyer in [CMM82], where only ∥φ′∥L∞ < ∞ was
assumed. and finally David [Dav84] showed that Cγ is bounded on L2(γ) if and only
if the curve γ is Ahlfors–David-regular, meaning that the 1-dimensional Hausdorff
measure H 1 restricted on the curve satisfies

H 1(γ ∩B(x, r)) ≂ r

for any ball B(x, r) centred at x ∈ γ. A crucial observation due to Alan McIntosh
which led to the seminal work [CMM82] is that the Kato estimate

∥
√

−(1/a)∂xb∂xu∥L2(R) ≂ ∥∂xu∥L2(R),

for b = 1/a, implies the L2-estimate for Cγ on Lipschitz curves. See also Kenig and
Meyer [KM85].

One can ask if the weighted estimates in Corollary 1.7 can be used to prove that
Cγ is bounded on Ahlfors–David-regular graphs more general than Lipschitz graphs.
This is still unclear to us. The natural strategy is as follows. As in [MQ91], the
Cauchy singular integral can be written as sgn((1/a(x))i∂x), for multiplier a(x) =
1+ iφ′(x), see also [AKM06, Consequence 3.2]. Note that the arclength measure on

γ is ds :=
√
1 + (φ′)2 dx = µ dx. Boundedness of Cγ in L2(γ, ds) thus amounts to

∥sgn
(
(1/a)i∂x

)
u∥L2(R,µ) ≲ ∥u∥L2(R,µ).

By functional calculus, this is equivalent to

∥
√
−(1/a)∂x(1/a)∂xu∥L2(R,µ) ≲ ∥(1/a)∂xu∥L2(R,µ) = ∥∂xu∥L2(1/µ).

The latter estimate would follow from Corollary 1.7 with b = 1/a, w = 1/µ, if

the hypotheses were satisfied, since in this case
√
µ/w = µ =

√
1 + (φ′)2 and

ν(y) =
√
µw = 1. However Corollary 1.7 does not apply here, since the accretivity

condition ℜe a(x) = 1 ≳ µ(x) is not satisfied, unless φ′ is bounded.

We end this section by noting that the matrix-weighted Kato square root estimate
(0.3) which we consider in this paper, despite looking like a two-weight estimate,
should be seen as a one-weight estimate, as the proof of Theorem 1.2 clearly shows.
In the following example we see that our results apply only when the weights in the
square root operator correctly match the weights in the norms.
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Example 1.9 (Two-weight Hilbert transform). Consider the two-weight estimate

∥Hu∥L2(µ) ≲ ∥u∥L2(w) (1.8)

for the Hilbert transform

Hu(x) :=
i

π
p.v.

ˆ
R

u(y)

y − x
dy.

The problem of characterising for which weights µ,w the estimate (1.8) holds was

solved in [Lac+14]. If we use functional calculus to write H as
√
−∂2x(i∂x)−1, then

(1.8) amounts to

∥
√

−∂2xu∥L2(µ) ≲ ∥∂xu∥L2(w). (1.9)

Changing variables y = ρ(x) and u(x) = v(ρ(x)) as in Lemma 1.1, and using the
chain rule: ∂x = ρ′∂y, the two-weight estimate (1.8) becomesˆ ∣∣√−(ρ′∂y)2v(ρ(x))

∣∣2µ(x) dx ≲
ˆ
|(ρ′(x)∂yv)(ρ(x))|2w(x) dx.

Choosing ρ′(x) =
√
µ(x)/w(x) gives (ρ′)2w = µ in the right hand side. Changing

variables and using ν ◦ ρ = √
wµ yields

µ(x) dx =
√
µ(x)w(x) ·

√
µ(x)/w(x) dx = (ν ◦ ρ)(x) · ρ′(x) dx = ν(y) dy.

Thus estimate (1.8) holds if and only if the one-weight estimate∥∥√−(λ∂y)2v
∥∥
L2(ν)

≲ ∥∂yv∥L2(ν) (1.10)

holds with the weight λ(y) := ρ′(ρ−1(y)) =
√
µ(ρ−1(y))/w(ρ−1(y)) in the Kato

square root operator. Corollary 1.7 does not apply directly to (1.10), nor to (1.9),
since it requires that the weights in the Kato square root operator correctly match
the weights in the norms.

2. The (µ,W ) manifold M

We now seek to generalise the results in §1 to higher dimension d ≥ 2, starting
with Lemma 1.1. To cover general matrix weights W , we need to allow for more
general diffeomorphisms ρ : Rd → M , where now M is some auxiliary smooth d-
dimensional Riemannian manifold. The metric g for M will be determined by µ
and W , but not the differential structure on M . In general, smooth weights (µ,W )
will define a metric g for a manifold with non-zero curvature. For this reason we
need to allow for curved manifolds. The natural pullback generalising (1.2) for the
differential operator D in (0.4) is now

P :

[
v1(y)
v2(y)

]
7→
[

v1(ρ(x))
(dρx)

⋆v2(ρ(x))

]
=:

[
u1(x)
u2(x)

]
. (2.1)

Here v1 : M → C is a scalar function onM and v2 is a section of the cotangent bundle
T ⋆M , which we identify with TM using the metric g. This is important because,
although we can view v2 as a vector on M , it is actually a 1-form, so its pullback
is obtained by multiplying v2 ◦ ρ by the transpose (dρ)⋆ of the Jacobian matrix
dρ. Below Jρ denotes the determinant of the Jacobian matrix det(dρ) := det(g)1/2,
where g = (dρ)⋆dρ is the Riemannian metric on M pulled back to Rd.

Here and below, to ease notation, we shall identify maps defined on Rd and on
M through ρ, writing for example ∇Mv1 for (∇Mv1) ◦ ρ. We use v(y) for functions
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defined onM and u(x) for functions defined on Rd. With a slight abuse of notation,
we use the abbreviations Jρ(y), dρy and u(y) for Jρ(ρ

−1(y)), dρρ−1(y), u(ρ
−1(y)). The

differential operators ∇ and div are always defined on Rd.
In order to write the operator DM similar to D we need the chain rule:

∇u1 = (dρ)⋆∇Mv1,

which holds in the weak sense by Theorem A.2. We also require the L2-adjoint result
for vector fields u2 : Rd → Cd in Theorem A.3. We compute

P−1DP

[
v1
v2

]
= P−1D

[
v1 ◦ ρ

(dρ⋆xv2) ◦ ρ

]
= P−1

[
−(1/µ)divW [(dρ⋆xv2) ◦ ρ]

∇(v1 ◦ ρ)

]
= P−1

[
−(1/µ)divM

{
J−1
ρ dρx

(
W (dρx)

⋆v2
)}
Jρ

∇u1

]

=

[
−(1/µ)JρdivM

{
J−1
ρ dρy

(
W (dρy)

⋆v2
)}

∇Mv1

]
. (2.2)

We obtain the following generalisation of Lemma 1.1.

Lemma 2.1. Assume that µ is a scalar weight on Rd and that W is a matrix weight
on Rd. Assume that µ and W are smooth around ρ(x0) ∈ Rd. Set

g := µW−1 and ν := µ/
√
det g.

Let M be a Riemannian manifold with chart (U, ρ) around x0 and metric g in this
chart. Let

DM :=

[
0 −(1/ν)divMν

∇M 0

]
. (2.3)

Then P : L2(U, ν) ⊕ L2(TU, νI) → L2(ρ−1(U), µ) ⊕ L2(ρ−1(U);Cd,W ) defined in
(2.1), is an isometry, and P−1DP = DM .

Remark 2.2. There is one-to-one correspondence between the pairs of weights (µ,W )
and the pairs (g, ν) of Riemannian metric and weight, since inversely µ = ν

√
det g,

and W = (ν
√
det g)g−1.

Proof of Lemma 2.1. To obtain the operator DM with a single scalar weight ν on a
manifold, in (2.2) we require that

(1/µ)Jρ = 1/ν and J−1
ρ dρW dρ⋆ = νI,

where I is the identity matrix. The first condition yields µ = Jρν. Since the volume
change is Jρ =

√
det g, we have ν = µ/

√
det g as stated. For the second one, since

the metric in a chart ρ is g = dρ⋆dρ, and the matrices dρ and dρ⋆ commute with
the scalars ν and Jρ, we have

W

Jρν
= dρ−1( dρ⋆)−1 =

(
dρ⋆dρ

)−1
= g−1,

and so g = µW−1. To see that the map P in (2.1) is an isometry, it is enough to
compute ˆ

Rd

|u1(x)|2µ(x) dx =

ˆ
M

|v1(y)|2
µ√
det g

(y)︸ ︷︷ ︸
= ν(y)

dy (2.4)
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where dy is the Riemannian measure on M . Alsoˆ
Rd

⟨W (x)u2(x), u2(x)⟩ dx =

ˆ
Rd

⟨W (x)(dρx)
⋆v2(ρ(x)), (dρx)

⋆v2(ρ(x))⟩ dx

=

ˆ
M

⟨Wdρ⋆v2(y), dρ
⋆v2(y)⟩

dy√
det g

=

ˆ
M

⟨ 1√
det g

dρWdρ⋆v2(y), v2(y)⟩ dy

=

ˆ
M

|v2(y)|2ν(y) dy.

(2.5)

This concludes the proof. □

We aim to prove a matrix weighted Kato square root estimate on Ω ⊆ Rd, by
applying [AMR22, Theorem 1.1] to the one-scalar-weight operator DM on M in
(2.3) and pulling back the result to Rd. However, this requires a modification of
Lemma 2.1 since [AMR22, Theorem 1.1 and Theorem 1.2] only apply to prove in-
homogeneous Kato square root estimates, since only local square function estimates
can be proved on M without further hypothesis on its geometry at infinity. As in
[AMR22, Eq. (2.4)] we introduce inhomogeneous first order differential operators

D̃ =

 0 I −(1/µ)divW
I 0 0
∇ 0 0

 acting on H̃ :=

 L2(Ω, µ)
L2(Ω, µ)

L2(Ω;Cd,W )

 , (2.6)

D̃M =

 0 I −(1/ν)divMν
I 0 0

∇M 0 0

 acting on H̃M :=

 L2(M, ν)
L2(M, ν)
L2(TM, ν)

 , (2.7)

where divergence and ∇ in (2.6) are on Rd. The domains of the operators ∇ and
∇M are weighted Sobolev spaces

H1
µ,W (Ω) :=

{
f ∈ W 1,1

loc (Ω), f ∈ L2
loc(Ω, µ) with ∇f ∈ L2

loc(Ω;Rd,W )
}
,

H1
ν(M) :=

{
f ∈ W 1,1

loc (M), f ∈ L2
loc(M, ν) with ∇Mf ∈ L2

loc(TM, νI)
}

respectively, so dom(∇) = H1
µ,W (Ω) and dom(∇M) = H1

ν(M). The closed operator
−div with domain

dom(div) =
{
h ∈ L2

loc(Ω;Rd,W−1), divh ∈ L2
loc(Ω, µ

−1)
}

is the adjoint of ∇ with respect the unweighted L2 pairing. In the same way, −divM
is the closed operator with domain

dom(divM) =
{
h ∈ L2

loc(TM, ν−1), divMh ∈ L2
loc(M, ν−1)

}
and it is the adjoint of ∇M with respect the unweighted L2 pairing on M . Consider

the pullback P̃ : H̃M → H̃ given by

P̃ :

v1(y)v0(y)
v2(y)

 7→

 v1 ◦ ρ
v0 ◦ ρ

dρ⋆v2 ◦ ρ

 =:

u1(x)u0(x)
u2(x)

 .
The map P̃ preserves the domains of the operators D̃ and D̃M .

Lemma 2.3. The map P̃ is an isometry and P̃(dom(D̃M)) = dom(D̃).
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Proof. For scalar-valued functions, apply Theorem A.2 with v = ν and V = νI.
Note that since ν ◦ ρ = µ/Jρ, then vρ = µ. Also, since the metric dρ−1(dρ−1)⋆ =
g−1 = µ−1W , it follows that Vρ = W . For vector fields, if u⃗ ∈ L2(Ω;Rd,W−1)
with divu⃗ in L2(Ω, µ−1), apply Theorem A.3 with V = W−1 and v = µ−1. Indeed,
V ρ = ν−1I and vρ = ν−1, so J−1

ρ ρ∗u⃗ = J−1
ρ dρu⃗ ◦ ρ−1 ∈ L2(TM, ν−1I) and

div
(ρ∗
Jρ
u⃗
)
=
ρ∗
Jρ

(divu⃗) ∈ L2(M, ν−1).

□

As in the proof of Lemma 2.1, one sees that P̃ is an isometry. A calculation as in
(2.2) shows that

P̃−1D̃P̃ = D̃M .

We have the following generalisation of Theorem 1.2.

Theorem 2.4. Let Ω ⊆ Rd be an open set, and let ρ : Ω → M be a W 1,1
loc home-

omorphism onto a complete, smooth Riemannian manifold M . Let µ,W be scalar
and matrix weights in Aloc

2 (Ω). Assume that the metric on M pulled back via ρ is

g = µW−1

and define the scalar weight ν = µ/
√
det g on M . Let D̃ be the differential operator

in (2.6) and let B̃ be a (µ⊕ µ⊕W )-bounded, (µ⊕ µ⊕W )-accretive multiplication

operator on H̃ as in Definition 0.2. If the manifold M has Ricci curvature and

injectivity radius bounded from below, and if ν ∈ AR
2 (M), for some R > 0, then B̃D̃

and D̃B̃ are bisectorial operators that satisfy quadratic estimates and have bounded

H∞ functional calculus in H̃.

Remark 2.5. The Riemannian manifold M is assumed to be smooth with smooth
metric. But since the map ρ is not smooth in general, the pullback g of the smooth
metric of M on Ω may be non-smooth. See Figure 3.

M

Ω ⊆ Rd Rd

ρ

φ−1◦ρ

φ

Figure 3. The Riemannian manifold M with a chart φ from its smooth
atlas. A function f on M is smooth if f ◦ φ is smooth. But
f ◦ ρ is not in general smooth since the map φ−1 ◦ ρ is only in
W 1,1.

Proof of Theorem 2.4. Given the differential operator D̃ as in (2.6), consider the

operators D̃M := P̃−1D̃P̃ given in (2.7) and the operator B̃M := P̃−1B̃P̃.

Lemma 2.1 shows that the extended pullback transformation P̃ is an isometry

between the weighted spaces H̃M and H̃. Indeed, let u = P̃v, then

⟨P̃−1(B̃u), P̃−1(B̃u)⟩
H̃M

= ⟨P̃P̃−1(B̃u), B̃u⟩
H̃

from which follows that B̃M is (ν ⊕ ν ⊕ νI)-bounded, and (ν ⊕ ν ⊕ νI)-accretive if

and only if B̃ is (µ⊕ µ⊕W )-bounded, (µ⊕ µ⊕W )-accretive.
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[AMR22, Lemma 2.3] implies that D̃M is self-adjoint, and so is the operator

D̃ = P̃D̃M P̃−1, since P̃ is unitary. By [AMR22, Theorem 1.1], the operator B̃MD̃M

has bounded H∞ functional calculus in L2(M ;Cd ⊕ TM, νI). The same holds for

the operator B̃D̃ via the isometry P̃, and for D̃B̃ = B̃−1(B̃D̃)B̃. □

Analogous to Corollary 1.7, we derive from Theorem 2.4 the following Kato square
root estimate.

Corollary 2.6. Assume that ρ : Ω →M , µ,W , g, ν satisfy the hypotheses of Theo-
rem 2.4. Consider the operator

Lu := − 1

µ
divA∇u− 1

µ
div(⃗bu) +

1

µ
⟨c⃗,∇u⟩+ d · u,

where the coefficient matrix[
d µ−1/2c⃗W−1/2

W−1/2⃗bµ−1/2 W−1/2AW−1/2

]
is bounded and accretive. Then the following Kato square root estimate

∥
√
aLu∥L2(Ω,µ) ≂ ∥∇u∥L2(Ω;Cd,W ) + ∥u∥L2(Ω,µ)

holds for any complex-valued function a ∈ L∞(Ω) such that infΩℜe(a) ≳ 1.

Proof. Apply Theorem 2.4 to D̃ defined in (2.6) and coefficients

B̃ =

a 0 0
0 d µ−1c⃗

0 W−1⃗b W−1A

 .
By the hypothesis on the coefficient, and the property of a, the matrix B̃ is (µ ⊕
µ ⊕ W )-bounded and accretive. By Theorem 2.4 the operator B̃D̃ has bounded

H∞ functional calculus on H̃= L2(Ω, µ)2 ⊕ L2(Ω;Cd,W ). This implies the bound-

edness and invertibility of the operator sgn(B̃D̃), and so by writing

√
(B̃D̃)2 =

sgn(B̃D̃)B̃D̃ we have∥∥∥√(B̃D̃)2
[
u
0
0

]∥∥∥
H̃
≂
∥∥∥B̃D̃[ u

0
0

]∥∥∥
H̃
≂
∥∥∥D̃[ u

0
0

]∥∥∥
H̃
≂ ∥∇u∥L2(Ω,W ) + ∥u∥L2(Ω,µ).

This concludes the proof, since

√
(B̃D̃)2 applied to [u 0 0]⊺ equals [

√
aLu 0 0]⊺. □

We end this section with some examples of matrix weights, and discuss when the
hypotheses on the manifold M associated with µ,W are met. To obtain examples
of µ,W , we consider manifolds M embedded in RN obtained as graphs of functions
φ : Rd → Rm, with N = d+m. In Theorem 2.4 we thus have

ρ : Rd →M

x 7→ (x, φ(x)) = (x, y)

with Jacobian matrix dρx = (I, dφx)
⊺. By reverse engineering, we get from φ an

example of a Riemannian metric on Rd

g = dρ⋆xdρx = I + dφ⋆
xdφx.

For any choice of scalar weight µ, this yields an example of a matrix weight W =
µg−1.
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Example 2.7. Consider the graph of

φ(x1, x2) =
( x1
x21 + x22

,
x2

x21 + x22

)
= (y1, y2), (2.8)

for x = (x1, x2) ∈ R2 \ {(0, 0)}. Here ρ(x1, x2) = (x1, x2, φ(x1, x2)) and M ⊆ R4 is
complete and asymptotically isometric to R2 both when |x|2 = x21 + x22 → +∞ and
when |x|2 → 0. Therefore Ricci curvature and injectivity radius is bounded from
below by a compactness argument. In this case

gφ = I + dφ⋆
xdφx =

(
1 +

1

|x|4

)[
1 0
0 1

]
is a conformal metric. Therefore this only gives scalar weighted examples of W to
which Theorem 2.4 applies. To see a more general matrix weight W appear, we can
tweak (2.8) by composing φ with a non-conformal diffeomorphism. Consider

ϕ(x1, x2) =
(
h
( x1
x21 + x22

)
,

x2
x21 + x22

)
where h(t) = t

√
1 + t2, for t ∈ R. Again M is asymptotically isometric to R2 both

as |x|2 → ∞ and when |x|2 → 0, so the geometric hypotheses onM are satisfied. To
see that the metric gϕ obtained from ϕ, and hence the matrix W , is not equivalent
to a scalar weight, we verify that the singular values of dϕx do not have bounded
quotient. We calculate

∂x1ϕ(t, 0) =
(
h′(1/t) · (−1/t2), 0

)
∂x2ϕ(t, 0) =

(
0, 1/t2

)
so the ratio |∂x1ϕ|/|∂x2ϕ|(t, 0) = |h′(1/t)| ≂ 1/t→ +∞ as t→ 0+.

-0.3 -0.2 -0.1 0 0.1 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

Figure 4. Geodesic discs in the metric gϕ of Example 2.7 are ellipses
shrinking anisotropically towards the origin.
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Example 2.8. Let M be the graph of the scalar function φ(x, y) = (x2 + y2)−a, for
a > 0. One checks that Gaussian/Ricci curvature Ric(M) ∼ −(x2 + y2)2a when
x2 + y2 → 0+, so the Ricci curvature is bounded below, but the injectivity radius is
not bounded away from zero. Indeed, as discussed in [AMR22, §2.1], the geometric
hypothesis in [AMR22, Theorem 1.1] implies in particular that geodesic balls of
radius 1 are Lipschitz diffeomorphic to Euclidean balls. But this is not true in this
example, so [AMR22] does not apply to this manifold.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5. Geodesic discs in the metric of Example 2.8 for a = 1.

3. Matrix degenerate Boundary Value Problems

We show in this final section how the methods in this paper yield solvability esti-
mates of elliptic Boundary Value Problems (BVPs) for matrix-degenerate divergence
form equations

divA∇u = 0 (3.1)

on a compact manifold Ω with Lipschitz boundary ∂Ω. We assume that there exists
a matrix weight V that describe the degeneracy of the coefficients A, in the following
way.

Lemma 3.1. Let V be a matrix weight and let A be a multiplication operator. The
following are equivalent:

• V −1/2AV −1/2 is uniformly bounded and accretive;
• V −1A is V -bounded and V -accretive;
• for all vectors v, w ∈ Cd+1 we have

ℜe⟨Av, v⟩ ≳ ⟨V v, v⟩ and |⟨Av,w⟩| ≲ ⟨V v, w⟩. (3.2)

A weak solution u to (3.1) is a function such that ∇u ∈ L2
loc(TΩ, V ), where TΩ

is the tangent bundle on Ω. Since the weighted space L2
loc(TΩ, V ) ↪→ L1

loc(TΩ),
then A∇u ∈ L1

loc(TΩ) and ∇u ∈ L1
loc(TΩ), so u ∈ W 1,1

loc (TΩ) by Poincaré inequality.
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Further we assume given a closed Riemannian manifold M0 and, for δ > 0, a bi-
Lipschitz map

ρ0 : [0, δ)×M0 → U ⊆ Ω ,

(t, x) 7→ ρ0(t, x)

between a finite part of the cylinder R×M0 and a neighbourhood U of the boundary
∂Ω, so that ρ0({0} ×M0) = ∂Ω. See Figure 6.

To analyse a weak solution u of (3.1) near ∂Ω, we define the pullback u0 := u ◦ ρ0
on the cylinder C0 := [0, δ)×M0. Then u0 satisfies

divC0A0∇C0u0 = 0, (3.3)

with coefficients A0 := Jρ0(ρ0)
−1
∗ A(ρ∗0)

−1 where (ρ0)∗ denotes the pushforward via ρ0,
so J−1

ρ0
(ρ0)∗(v) := J−1

ρ0
dρ0(v◦ρ−1

0 ) is the Piola transformation, and ρ∗0v = (dρ0)
⋆v◦ρ0

denotes the pullback via ρ0. See [Ros19, §7.2 and Example 7.2.12] for more details
on this transformation. The differential operators in (3.3) are

∇C0u0 := [∂tu0,∇M0u0]
⊺,

divC0 v⃗0 := ∂t(e0 · v⃗0) + divM0(v⃗0)∥,
(3.4)

where e0 denotes the vertical unit vector along the cylinder, and (v⃗0)∥ is the tangetial
part of v⃗0. Define the pulled back matrix weight V0 := Jρ0(ρ0)

−1
∗ V (ρ∗0)

−1.

Lemma 3.2. The matrix V −1/2AV −1/2 is uniformly bounded and accretive on a

neighbourhood U of the boundary ∂Ω if and only if V
−1/2
0 A0V

−1/2
0 is uniformly

bounded and accretive on [0, δ)×M0.

Indeed, the condition (3.2) for A and V is seen to be equivalent to (3.2) for A0

and V0. To obtain solvability estimates, we require that the matrix weight V0 has
the structure

V0(t, x) =

[
µ(x) 0
0 W (x)

]
,

meaning that V0 is constant along the cylinder C0 and that the vertical direction is
a principal direction of V0. The functions µ and W are assumed to be scalar and
matrix weights on M0, respectively. Using a transformation of coefficients A 7→ B
from [AAM10], the divergence form equation (3.3) can be turned into an evolution
equation

(∂t +DB)f0 = 0 (3.5)

for the conormal gradient f0 := [(1/µ)∂νA0
u0,∇M0u0]

⊺ of u0 on the cylinder [0, δ)×
M0. Here ∂νA0

u0 := e0 · A0∇C0u0 is the conormal derivative. We make this corre-
spondence precise in the following lemma.

Lemma 3.3. A function u0 is a weak solution to the divergence form equation

divC0A0∇C0u0 = 0 , with A0 =

[
a b
c d

]
,

if and only if its conormal gradient f0 solves the Cauchy–Riemann system (3.5) with

D =

[
0 −(1/µ)divM0W

∇M0 0

]
and B =

[
µa−1 −a−1b

W−1ca−1µ W−1(d− ca−1b)

]
.

The operator D is self-adjoint on L2(M0, µ)⊕L2(TM0,W ) and B is (µ⊕W )-bounded
and (µ⊕W )-accretive.
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Proof. Consider the transformation of the coefficient A0 7→ I(A0) given by

I

([
a b
c d

])
=

[
a−1 −a−1b
ca−1 d− ca−1b

]
.

This map is an involution and preserves accretivity and boundedness [AAM10,
Proposition 3.2]. Following [AAM10; AMR22] the divergence form equation (3.3) is
equivalent to (

∂t +

[
0 −divM0

∇M0 0

]
I(A0)

)[
∂νA0

u0
∇M0u0

]
=

[
0
0

]
. (3.6)

Then a computation shows that

I

([
v1 0
0 W1

] [
a b
c d

] [
v2 0
0 W2

])
=

[
v−1
2 0
0 W1

]
I(A0)

[
v−1
1 0
0 W2

]
. (3.7)

We introduce weights into the system (3.6) as following:[
1/µ 0
0 I

](
∂t +

[
0 −divM0

∇M0 0

] [
1 0
0 W

] [
1 0
0 W−1

]
I(A0)

[
µ 0
0 I

] [
1/µ 0
0 I

])
=
(
∂t +D

[
1 0
0 W−1

]
I(A0)

[
µ 0
0 I

]) [
1/µ 0
0 I

]
,

where we used that multiplication by (1/µ) and ∂t commute since µ is independent
of t. Using (3.7) we define

B :=

[
1 0
0 W−1

]
I(A0)

[
µ 0
0 I

]
= I

([
µ−1 0
0 W−1

]
A0

[
1 0
0 I

])
.

The argument of I on the right hand side is (µ ⊕ W )-bounded and (µ ⊕ W )-
accretive. Since I preserves accretivity and boundedness, B is uniformly bounded
and accretive. The reader can check that B coincides with the expression in the
statement of the lemma. □

We note that DB, with D and B from Lemma 3.3, has the same structure as the
operators considered in §2, if we replace Rd by a compact manifold M0. As in §2,
we use a metric on M0 adapted to the weights µ,W : we assume the existence of a
smooth, closed Riemannian manifold (M1, g1) and aW 1,1

loc -homeomorphism ρ : M0 →
M1 such that the pullback of the metric g1 on M1 via ρ is

g0 := ρ∗g1 = µW−1,

and we defined the scalar weight ν := ρ∗µ/
√
det g1 on M1, where ρ∗µ = µ ◦ ρ−1

denotes the pushforward via ρ. We extend the map ρ to a map between the corre-
sponding cylinders by setting

ρ1 : [0, δ)×M0 →[0, δ)×M1

(t, x) 7→(t, ρ(x)).

The extension of the Riemannian metric on the cylinder and its pullback via ρ1 are

g̃1 :=

[
1 0
0 g1

]
, g̃0 = ρ∗1g̃1 :=

[
1 0
0 µW−1

]
. (3.8)

In the following, the variable x is in M0, while y = ρ(x) ∈M1. We denote by dx, dy
and dz the Riemannian measures on M0, M1 and on Ω, respectively. See Figure 6.



THE METRIC FOR MATRIX DEGENERATE KATO SQUARE ROOT OPERATORS 21

We also denote by dist0 and dist1 the distance functions on M0 and M1 induced by
g0 and g1.

Figure 6. The neighborhood U of ∂Ω in Ω is transformed by the bi-
Lipschitz map ρ−1

0 into the cylinder [0, δ)×M0 with anisotropic
degenerate coefficients A0. The coefficients A1 on the cylinder
[0, δ) ×M1 are isotropically degenerate.

Note that A1 is isotropically degenerate, meaning that V1 = νI is a scalar weight
in each component. Weak solutions to the anisotropically degenerate equation (3.3)
correspond to weak solutions to an isotropically degenerate equation on [0, δ)×M1.

Lemma 3.4. Define the coefficients A1 on the cylinder [0, δ)×M1 by

A1 :=
1

Jρ1
(ρ1)∗A0ρ

∗
1 =

1

Jρ1
dρ1(A0 ◦ ρ−1

1 )dρ⋆1.

Then A1/ν is uniformly bounded and accretive. Moreover, the function u1 = u0◦ρ−1
1

on C1 = (0, δ)×M1 is a weak solution to

divC1A1∇C1u1 = 0 (3.9)

if and only if u0 is a weak solution to

divC0A0∇C0u0 = 0 (3.10)

on C0 = (0, δ)×M0.

Proof. Define the matrix weight V1 :=
1

Jρ1
(ρ1)∗V0(ρ1)

∗ on [0, δ)×M1. Replacing ρ
−1
0

by ρ1 in Lemma 3.2 shows that V
−1/2
1 A1V

−1/2
1 is uniformly bounded and accretive.

We have

V1 =
1√

det g1

[
1 0
0 dρ

] [
µ 0
0 W

] [
1 0
0 dρ⋆

]
=

[
ν 0
0 νI

]
,

since Jρ =
√
det g1 and J

−1
ρ dρW dρ⋆ = νI. Thus V

−1/2
1 A1V

−1/2
1 = A1/ν. If ∇C0u0 ∈

L2(V0), then (ρ−1
1 )∗∇C0u0 = ∇C1(u0 ◦ ρ−1

1 ) is in L2(TC1, νI) Moreover A0∇C0u0 ∈
L2(TC0, V −1

0 ), so the non-smooth Piola transformation in Theorem A.3 shows that

divC1
(ρ1)∗
Jρ1

(
A0∇C0u0

)
=

(ρ1)∗
Jρ1

(
divC0A0∇C0u0

)
= 0

in L2(C1, ν−1). This completes the proof. □
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Since A1 is isotropically degenerate, we can apply results from [AMR22, §4] to
obtain solvability estimates of BVPs for divC1A1∇C1u1 = 0. One can then translate
to matrix-weighted norms on the cylinder C0 and in Ω to obtain the corresponding
results for our BVPs for matrix-degenerate equations. To illustrate this, we consider
the L2 non-tangential maximal Neumann solvability estimate

∥∇u∥X ≲ ∥∂νA0
uρ↾M∥L2(M,ω−1

0 ) (3.11)

proved in [AMR22, Theorem 1.4]. In the notation of the present paper, the right
hand side of (3.11) is ( ˆ

M1

|e0 · A1∇C1u1|2
1

ν
dy
)1/2

where ∇C1u1 is the full gradient of u1 as defined in (3.4). Note that

∇C1u1 = (ρ∗1)
−1∇C0u0,

1

ν
dy =

(Jρ
µ

)
(Jρdx) =

J2
ρ

µ
dx. (3.12)

Since A1 = J−1
ρ1

(ρ1)∗A0 ρ
∗
1, we get

e0 · A1∇C1u1 = J−1
ρ1

(ρ∗1e0) · A0∇C0u0 = J−1
ρ1
e0 · A0∇C0u0

and since Jρ1↾M0
= Jρ, by using (3.12) we haveˆ
M1

|e0 · A1∇C1u1|2
1

ν
dy =

ˆ
M0

|e0 · A0∇C0u0|2
1

µ
dx.

As for the left hand side in (3.11), translating the Banach norm in [AMR22, eq.
(4.13)] to our present notation gives

∥∇u∥2X =

ˆ
M1

|Ñ∗(η∇C1u1)|2νdy +
ˆ
Ω

⟨V∇u,∇u⟩(1− η)2dz,

where η(t) is a smooth cut-off towards the top of the cylinder, for example η(t) =
max{0,min(1, 2 − 2t/δ)}. Note that in the second term, with abuse of notation,
we denoted again by η the pullback η ◦ ρ−1

0 on Ω. We recall the definition of the

modified non-tangential maximal function Ñ∗ used on the cylinder [0, δ)×M1.

Definition 3.5 (Modified non-tangential maximal function). Let c0 > 1, c1 > 0 be
fixed constants. For a point (t, y) ∈ [0, δ)×M1, we define the Whitney region

W1(t, y) := (t/c0, c0t)×B1(y, c1t)

where B1 denotes the geodesic ball of M1 with respect to the metric dist1. Then the
non-tangential maximal function at a point y1 ∈M1 is

Ñ∗f(y1) := sup
t∈(0,c0δ)

(
1

ν
(
W1(t, y1)

)¨
W1(t,y1)

|f(s, y)|2ν(y) ds dy

)1/2

,

where the measure ν
(
W1(t, y1)

)
is taken with respect to the weighted measure ν ds dy

and equals t(c0 − c−1
0 ) ν(B1).

Consider on M0 the distance dist0(x, ξ) := dist1(ρ(x), ρ(ξ)) which is the geodesic
distance on M1 pulled back to M0. The Whitney regions on [0, δ)×M0 are

W0(t, x) := (t/c0, c0t)× {ξ ∈M0 : dist0(x, ξ) < c1t}.
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Changing variables with y1 = ρ(x1), since W0(t, x1) = ρ1
(
W1(t, y1)

)
, we get¨

W1(t,y1)

ν(y) ds dy =

¨
W0(t,x1)

µ(x) ds dx =: µ
(
W0(t, x1)

)
(3.13)

Changing variables using ρ1 and the expression of the metric g̃1 in (3.8), we also get¨
W1(t,y1)

|η(s)∇C1u1|2ν(y) ds dy

=

¨
W0(t,x1)

η(s)2⟨dρ−1
1 (dρ−1

1 )⋆∇C0(ρ
∗
1u1),∇C0(ρ

∗
1u1)⟩µ(x) ds dx

=

¨
W0(t,x1)

η(s)2⟨
[
µ 0
0 W

]
∇C0u0,∇C0u0⟩ ds dx

since dρ−1
1 (dρ−1

1 )⋆ = g̃−1
1 and ρ∗1u1 = u0. We also haveˆ

M1

|Ñ∗(η∇C1u1)|2ν(y) dy =

ˆ
M0

|Ñ0(η∇C0u0)|2µ(x) dx,

where the new modified non-tangential maximal function is

Ñ0f(x1) := sup
t∈(0,c0δ)

(
1

µ
(
W0(t, x1)

)¨
W0(t,x1)

⟨
[
µ 0
0 W

]
f(s, x), f(s, x)⟩ ds dx

)1/2

,

and µ
(
W0(t, x1)

)
is as in (3.13).

Figure 7. Non-tangential approach regions. On the left the µ,W -adapted
approach regions: in the first µW−1 → ∞ at M0, in the second
region µW−1 → 0. On the right hand side, the corresponding
non-tangential conical approach regions to M1.

Note that the approach regions for Ñ0 shown in Figure 7 left are intimately con-
nected to the failure of standard off-diagonal estimates for the resolvent of the op-
erator DB from Lemma 3.3. On the other hand, such off-diagonal estimates do
hold for the corresponding operator associated to divC1A1∇C1u1 = 0, from [AMR22,
Proposition 4.2]. And indeed on M1 we have standard non-tangential approach
regions on the right in Figure 7, and in [AMR22, Theorem 1.4].

For our solvability result, we also need the analogue of the Carleson discrepancy
∥ · ∥∗ from [AMR22, Eq. (4.10)] for a multiplier E on the cylinder [0, δ) ×M0 with
Whitney regionsW0 and balls B0 ⊆M0 taken with respect to the distance dist0(·, ·).
The quantity ∥E∥2∗ is given by

sup
ζ∈M0
r<δ

¨
{

0<t<r
x∈B0(ζ,r)

}
(

sup
(s,ξ)∈W0(t,x)

∣∣V0(ξ)−1/2E(s, ξ)V0(ξ)−1/2
∣∣)2 dt

t

µ(x) dx

µ(B0(ζ, r))
,
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where µ(B0(ζ, r)) =
´
B0(ζ,r)

µ(x) dx.

Summarising, we have obtained the following solvability result for the Neumann
BVP for anisotropically degenerate divergence form equations (3.3).

Theorem 3.6. Let Ω,V ,A,ρ0,M0,V0 =
[
µ 0
0 W

]
, A0, ρ, M1, and ν be as above and

summarized in Figure 6. Assume that:

• ν ∈ A2(M1) and that µ and W are scalar and matrix weights,
• the matrix degenerate coefficients A0(t, x) has trace

A0(x) := A0(0, x) = lim
t→0

A0(t, x)

such that
(1) the Carleson discrepancy ∥A0 − A0∥∗ < ε1,
(2) A0 is close to its adjoint as operator on L2(C0, V0),

sup
x∈M0

∣∣V0(x)−1/2
(
A⋆

0(x)− A0(x)
)
V0(x)

−1/2
∣∣ < ε2,

with ε = max{ε1, ε2} small enough.

Then the Neumann solvability estimateˆ
M0

|Ñ0(η∇C0u0)|2µ dx+
ˆ
Ω

⟨V∇u,∇u⟩(1− η)2 dz ≲
ˆ
M0

|∂νA0
u0|2

1

µ
dx

holds for all weak solutions u to divA∇u = 0 in Ω, with near boundary values u0 of
u, in C0, as above.

Moreover ε depends only on [ν]A2(M1), ∥V
−1/2
0 A0V

−1/2
0 ∥L∞ and the accretivity con-

stant of V
−1/2
0 A0V

−1/2
0 , other than the structural geometric constants of M1: dimen-

sion, injectivity radius and lower bound on the Ricci curvature.

Proof. Apply [AMR22, Theorem 1.4] to the isotropically degenerate equation (3.9)
on [0, δ) × M1 (see Figure 6). Translation of this result to the anisotropically
degenerate equation divA∇u = 0 in Ω (and the Lipschitz equivalent equation
divC0A0∇C0u0 = 0 on the cylinder [0, δ) × M0, near ∂Ω) gives the stated result.
We have seen above the translation of the solvability estimate. The translation of
the Carleson discrepancy and almost self-adjointness hypothesis is done similarly
using Lemma 3.2 with A,A0 replaced by A1, A0 and a change of variables in the
integrals. □

The solvability estimates for the L2 Dirichlet and Dirichlet regularity BVPs from
[AMR22, Theorem 1.4] and the Atiyah–Patodi–Singer BVPs from [AMR22, Theo-
rems 4.5, 4.6] can similarly be extended to anisotropically degenerate equations. We
leave the details to the interested reader.

Appendix A. W 1,1 pullbacks and Piola transformations

We generalise the commutation theorem [Ros19, Theorem 7.2.9, Lemma 10.2.4]
for external derivatives and pullbacks to W 1,1

loc homeomorphisms and weighted L2

fields. (We only deal with the scalar and vector case which we need).
Throughout this section, ρ : Rd → Rd is assumed to be a W 1,1

loc homeomorphism,
meaning that ρ,ρ−1 are continuous with weak Jacobian matrix dρ,dρ−1 in L1

loc.
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Theorem A.1 (Change of variables). If ρ is a W 1,1
loc homeomorphism thenˆ

Ω

f(ρ(x))Jρ(x) dx =

ˆ
ρ(Ω)

f(y) dy

holds for all integrable, compactly supported functions f .

See [Haj93, Thorem 2 and §3].
For f ∈ C∞

c (Rd) and h ∈ C∞
c (Rd;Rd), the chain rule in the weak sense reads

−
ˆ
f(ρ(x))divh(x) dx =

ˆ
(dρx)

⋆(∇f)(ρ(x))h(x) dx. (A.1)

This holds for W 1,1
loc homeomorphism ρ, as readily seen by mollifying ρ and passing

to the limit. We first extend to non-smooth f :

Theorem A.2 (Non-smooth chain rule). Assume v, V ∈ Aloc
2 and f ∈ L2(v) is com-

pactly supported with weak gradient ∇f ∈ L2(V ). Let ρ be a W 1,1
loc homeomorphism.

Define the weights

vρ(x) := Jρ(x)v(ρ(x)), Vρ(x) := Jρ(x)dρ
−1
x V (ρ(x))(dρx)

⋆)−1

and assume vρ, Vρ ∈ Aloc
2 . Then ρ∗f = f ◦ ρ ∈ L2(vρ) has weak gradient

∇(ρ∗f) = ρ∗∇f = dρ⋆(∇f ◦ ρ) ∈ L2(Vρ).

Proof. Mollify ft := ηt∗f , so that ∇ft = ηt∗∇f . It follows that ft → f in L2(v) and
∇ft → ∇f in L2(V ) using dominated convergence and bounds for the vector Hardy–
Littlewood maximal operator introduced by Christ and Goldberg [CG01], see [Gol03,
Theorem 3.2]. Note that ∥ρ∗f∥L2(vρ) = ∥f∥L2(v) and ∥ρ∗(∇f)∥L2(Vρ) = ∥∇f∥L2(V ).
Apply the chain rule (A.1) to ft and ρ for a fixed test function h. We can pass to
the limit in t and conclude since the left hand side of (A.1) is bounded asˆ

|ft(ρ(x))− f(ρ(x))|vρ(x) dx ≲
(ˆ

|ft(ρ(x))− f(ρ(x))|2vρ(x) dx
)1/2

=
( ˆ

|ft(y)− f(y)|2v(y) dy
)1/2

→ 0

where the first integral is on the compact support of h and we used Theorem A.1
when changing variables. For the right hand side in (A.1), using that |V −1

ρ | ∈ L1
loc,

we boundˆ
|⟨V 1/2

ρ

(
ρ∗(∇ft)− ρ∗(∇f)

)
, V −1/2

ρ h⟩| dx ≲
( ˆ

|V 1/2
ρ

(
ρ∗(∇ft)− ρ∗(∇f)

)
|2 dx

)1/2
=
( ˆ

|V 1/2(∇ft −∇f)|2 dy
)1/2

→ 0.

This concludes the proof. □

Changing variables in (A.1) gives

−
ˆ
f(y)

1

Jρ(ρ−1(y))
(divh)(ρ−1(y)) dy =

ˆ
∇f(y) ·

( 1

Jρ
dρ h

)
(ρ−1(y)) dy. (A.2)

We refer to the transformation applied to h on the right hand side of (A.2) as
the Piola transformation J−1

ρ ρ∗, where ρ∗ denotes the pushforward via ρ. This

transformation is the adjoint of the pullback ρ∗ with respect to the unweighted L2

pairing.
We extend identity (A.2) to non-smooth vector fields h.
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Theorem A.3 (Non-smooth Piola transformation). Assume that v, V ∈ Aloc
2 and

h ∈ L2(Rd;Rd, V ) is compactly supported with weak divergence divh ∈ L2(Rd, v).
Let ρ be a W 1,1

loc homeomorphism. Define the weights

vρ(y) := Jρ(ρ
−1(y))v(ρ−1(y)), V ρ(y) :=

(
Jρ(dρ

⋆)−1V dρ−1
)
◦ ρ−1(y)

and assume vρ, V ρ ∈ Aloc
2 . Then J−1

ρ ρ∗h =
(

1
Jρ
dρh

)
◦ ρ−1 ∈ L2(V ρ) and has weak

divergence

div(J−1
ρ ρ∗h) =

( 1

Jρ
divh

)
◦ ρ−1 ∈ L2(vρ).

The proof is analogous to the one of Theorem A.2, where we pass to the limit
ht → h in (A.2).
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Email address: brocchi@chalmers.se

Email address: andreas.rosen@chalmers.se

https://doi.org/10.2307/2007065
https://doi.org/10.2307/2007065
https://doi.org/10.2140/apde.2018.11.609
https://doi.org/10.2140/apde.2018.11.609
https://doi.org/10.1090/S0002-9947-2015-06131-5
https://doi.org/10.24033/asens.1469
https://doi.org/10.2140/pjm.2003.211.201
https://doi.org/10.4064/cm-64-1-93-101
https://doi.org/10.2969/jmsj/01330246
https://doi.org/10.1215/00127094-2826690
https://doi.org/10.1215/00127094-2826690

	Introduction
	Preliminaries
	1. Two scalar weights in one dimension
	2. The (μ,W) manifold M
	3. Matrix degenerate Boundary Value Problems
	Appendix A. Sobolev pullbacks and Piola transformations
	Acknowledgements
	References

