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Emerging two-dimensional (2D) materials bring unprecedented opportunities for electronic applications. The
design of high-performance devices requires an accurate prediction of carrier mobility in 2D materials, which
can be obtained using state-of-the-art ab initio calculations. However, various factors impact the computational
accuracy, leading to contradictory estimations for the mobility. In this work, targeting accurate and efficient
ab initio calculations, transport properties in III-V monolayers are reported using the Boltzmann transport equation,
and the influences of pseudopotential, quadrupole correction, Berry connection, and spin-orbit coupling (SOC)
on mobilities are systematically investigated. Our findings are as follows: (1) The inclusion of semi-core states in
pseudopotentials is important to obtain accurate calculations. (2) The variations induced by dynamical quadrupole
and Berry connection when treating long range fields can be respectively 40% and 10%. (3) The impact of SOC
can reach up to 100% for materials with multi-peak bands. Importantly, although SOC notably modifies the
electronic wavefunctions, it negligibly impacts the dynamical matrices and scattering potential variations. As
a result, the combination of fully-relativistic electron calculation and scalar-relativistic phonon calculation can
strike a good balance between accuracy and cost. This work compares computational methodologies, providing
guidelines for accurate and efficient calculations of mobilities in 2D semiconductors.

I. INTRODUCTION

Two-dimensional (2D) materials exhibit exotic phenomena
which can be used in electronic and spintronic devices [1–3].
The atomical thickness of 2D semiconductors enables the effi-
cient engineering of electronic properties through gate volt-
age control, making them promising for transistor applica-
tions [4, 5]. Drift mobility quantifies the transport of carrier in a
material in response to an electric field, and the prediction of car-
rier mobility is critical for the design of high-performance de-
vices. A prevalent approach is to employ density functional the-
ory (DFT) and density functional perturbation theory (DFPT)
to evaluate the electron-phonon coupling (EPC) matrices [6].
However, the accurate calculation of mobility requires very
dense momentum grids, which is generally too expensive to
be performed by direct DFPT calculations. To solve the prob-
lem of computational cost, Wannier functions can be used to
interpolate EPC from coarse grids to fine grids [7]. Using this
technique, efforts have been devoted to discovering 2D mate-
rials with high mobilities [8–13]. However, conclusions are
found to be contradictory due to the various approximations
used in different studies. A high-throughput work reports that
III-V monolayers with atomically flat structures can present
high electron mobility (µe) and high hole mobility (µh). For
example, in the case of BSb monolayer, Refs. [14] and [15]
report a higher hole mobility (µh) than electron mobility (µe)
with different values: µh/ µe = 6935 / 5167 cm2/Vs [14] and
µh/ µe = 16397 / 9520 cm2/Vs [15]. In contrast, Ref. [16] finds
a larger µe = 16221 than µh = 7882 cm2/Vs. These discrepan-
cies illustrate that an accurate prediction for carrier mobility
can be complicated since many factors are involved, creating
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confusion on ab initio values of computed mobilities in 2D
materials.

The atomic motions in 2D semiconductors generate long-
range dynamical dipole and quadrupole that should be con-
sidered to accurately interpolate EPC. Moreover, spin-orbit
coupling (SOC) can significantly modify the electronic struc-
tures in materials with heavy elements. The semi-core states
in pseudopotentials may also influence the hole effective mass.
To understand and facilitate the computation, it is necessary to
elucidate the impacts on the mobilities in 2D materials caused
by these factors in order to optimize the balance between the
accuracy and the computational cost in ab initio calculations.

In this work, we focus on the III-V monolayers MX (M = Ga,
In and X = P, As, Sb) considering the moderate bandgap and
SOC strength. The influences on mobilities caused by pseu-
dopotentials with different semi-core states [17], dynamical
quadrupole [18–20], Berry connection [12, 21], and SOC are
systematically studied. Their impacts are interpreted by inves-
tigating the momentum- and mode-resolved scattering rates.
Besides, DFPT results are found to be negligibly affected by
SOC, thus it can be neglected to accelerate computation. After
discussing methodologies, the temperature-dependent drift and
Hall mobilities are computed. Rather than the unity which is
commonly assumed in experiments, it is found that the Hall
factors range from 1.0 to 1.7.

II. DRIFT MOBILITY

The phonon-limited drift mobility of carrier in 2D semicon-
ductor is calculated as [22, 23]:

µαβ =
–1

Sucnc
∑

n

∫
d2k

ΩBZ vnkα∂Eβ
fnk, (1)
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TABLE I. Methodologies employed in this work. PP is the abbreviation for pseudopotential. Quad and Berry respectively indicate whether
dynamical quadrupole and Berry connection are considered. FR denotes the fully-relativistic calculation with SOC, while SR denotes the
scalar-relativistic calculation without SOC. e denotes the treatment of electronic calculation for wavefunctions, and ph denotes the treatment of
phonon calculation for scattering potential variations. The methodology #7 strikes a good balance between accuracy and cost when a “mix”
approach is used for the treatment of e and ph.

Number Methodology notation PP Quad Berry e ph
#1 valencePP+Quad+Berry+FR valence Yes Yes FR FR
#2 standardPP+Quad+Berry+FR standard Yes Yes FR FR
#3 stringentPP+Quad+Berry+FR stringent Yes Yes FR FR
#4 standardPP+Quad+FR standard Yes No FR FR
#5 standardPP+FR standard No No FR FR
#6 standardPP+Quad+Berry+SR standard Yes Yes SR SR
#7 standardPP+Quad+Berry+mix standard Yes Yes FR SR

where α, β are Cartesian directions and α = β in the plane for
the III-V monolayers. The ∂Eβ

fnk = (∂fnk/∂Eβ)|E=0 indicates
the linear variation of the electronic occupation function fnk in
response to the electric field E. Suc is the unit cell area, and
ΩBZ the first Brillouin zone (BZ) area. The band velocity of
state εnk is given by vnkα = h̄–1∂εnk/∂kα, and nc denotes the
carrier concentration in a vanishing limit. ∂Eβ

fnk can be ob-
tained by solving the linearized Boltzmann transport equation
(BTE) [23]:

∂Eβ
fnk =evnkβ

∂f 0
nk

∂εnk
τnk +

2πτnk
h̄

∑
mν

∫
d2q

ΩBZ |gmnν (k,q)|2

×
[
(nqν + 1 – f 0

nk)δ(εnk – εmk+q + h̄ωqν )

+ (nqν + f 0
nk)δ(εnk – εmk+q – h̄ωqν )

]
∂Eβ

fmk+q,

where τnk is the total scattering lifetime, and its inverse τ–1
nk is

the scattering rate, given as

τ–1
nk =

2π
h̄

∑
mν

∫
d2q

ΩBZ |gmnν (k,q)|2

×
[
(nqν + 1 – f 0

mk+q)δ(εnk – εmk+q – h̄ωqν )

+ (nqν + f 0
mk+q)δ(εnk – εmk+q + h̄ωqν )

]
,

(2)

where gmnν (k,q) is the EPC matrix element denoting the am-
plitude of scattering between the |nk⟩ state and the |mk + q⟩
state via the phonon of frequency ωqν , nqν is the Bose-Einstein
distribution, and f 0

nk is the Fermi-Dirac occupation function.

III. COMPUTATIONAL DETAILS

To solve these equations, we compute wavefunctions and
potential variations using the QUANTUM ESPRESSO pack-
age [24]. The norm-conserving pseudopotentials PSEUDO
DOJO [17] have been employed within the Perdew-Burke-
Ernzerhof (PBE) parametrization of the generalized gradient
approximation (GGA) [17]. Variable cell relaxation is per-
formed with total energy convergence of 10–8 Ry, force conver-

gence of 10–4 Ry/Bohr, and pressure convergence of 0.1 kbar.
The cutoff energy for wavefunctions is set to 120 Ry. We use
the 2D Coulomb truncation scheme of Ref. [25] with a vac-
uum distance over 19 Å. Note that in the calculation at the
zone-center q = Γ, a denser k-grid is used in DFPT to get
convergent electrostatic properties. Electron and hole mobili-
ties are calculated using the EPW package [26, 27], where the
electron-phonon coupling is interpolated from coarse k/q-grids
to fine k/q-grids using Wannier functions with the considera-
tions of dipole, quadrupole, and Berry connection [12, 21]. A
coarse 12×12×1 k/q-grid is adopted in ab initio calculations,
then a fine k/q-grid of 720×720×1 is used for electron mobil-
ity, and k/q-grid of 360 × 360 × 1 for hole mobility. A Fermi
surface window of 0.3 eV is used in all calculations. Conver-
gence tests have been performed with respect to the grid density
and Fermi surface window. An adaptive smearing is applied in
the energy-conserving delta functions, and a phonon frequency
cutoff of 1 cm–1 is employed. The temperature is set at 300 K
if not mentioned. The dynamical quadrupole is computed us-
ing linear response as implemented in ABINIT [28, 29] with a
k-grid of 32 × 32 × 1, together with the PSEUDO DOJO pseu-
dopotentials without non-linear core corrections or spin-orbit
coupling [30]. For reproducibility, all information including
input files, software, pseudopotentials, and additional details
are provided on the Materials Cloud Archive [31].

IV. METHODOLOGY

In the present section, we focus on the impacts on mobili-
ties induced by pseudopotentials, dynamical quadrupole, Berry
connection, and SOC. Using the stringent pseudopotential ta-
ble from PSEUDO DOJO [17] and considering SOC, the atomic
structures of all the materials have been relaxed. We find that all
the III-V monolayers present a buckled structure, in agreement
with Refs. [16, 32–34]. This buckling breaks the inversion sym-
metry, leading to a Rashba splitting when SOC is considered.
Details related to atomic structures are given in Section S1 in
the Supplemental Material (SM) [35]. InAs monolayer is taken
as a representative material due to its moderate bandgap and
SOC strength. Results for the other monolayers can be found
in SM [35]. Methodologies are listed in Table I. Three types
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of control experiments are implemented for the drift mobility
calculations, respectively evaluating the impacts of pseudopo-
tentials (#1, #2, and #3), dynamical quadrupole and Berry con-
nection (#2, #4, and #5), and fully-relativistic SOC effect (#2
and #6). Another evaluation is performed for the computational
efficiency (#2 and #7) by employing the wavefunctions from
the fully-relativistic calculation and the scattering potential
variation from the scalar-relativistic calculation.

IV.1. Impact of pseudopotential

Three types of norm-conserving pseudopotentials from
PSEUDO DOJO are used in this work. For elements with the
principal quantum number n ≥ 3, the valence pseudopotential
only includes the valence electrons, the standard pseudopoten-
tial includes one full d orbital, and the stringent pseudopotential
includes full s, p, and d orbitals. Details of included orbitals
can be found in Table S2 in SM [35].

Figure 1 shows the electron and phonon dispersions of InAs
monolayer computed by valence, standard, and stringent pseu-
dopotentials, respectively. Different pseudopotentials introduce
small changes to the valence bands. The valence band maxi-
mum (VBM) is always located at the Γ point. For the valence
pseudopotential, εK = EF – 140 meV. However, for the stan-
dard and stringent pseudopotentials, the highest valence band
presents εK ≈ EF – 90 meV, demonstrating that the semi-core
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FIG. 1. InAs monolayer electronic band structures (a)-(c) and phonon
dispersions (d)-(f) for fully-relativistic calculations of valence, stan-
dard, and stringent pseudopotentials, respectively. The insets in (a)-(c)
show a zoomed-in figure around the Fermi energy. Phonon modes
are marked by ZA for the out-of-plane acoustic mode, TA for the
transverse acoustic mode, LA for the longitudinal acoustic mode, ZO
for the out-of-plane optical mode, TO for the transverse optical mode,
and LO for the longitudinal optical mode.

states can cause a discrepancy of 50 meV on the valence bands.
More intriguingly, phonon dispersions are strongly affected
as illustrated in Figs. 1(d)-(f). Imaginary frequencies emerge
around the Γ point in the valence pseudopotential calculation.
Besides, the translational invariance is violated by the stringent
pseudopotential, and the former can be recovered by the acous-
tic sum rule as demonstrated by Fig. S9 in SM [35]. Overall,
the quadratic ZA mode is derived with the standard pseudopo-
tential.

The convergence of mobility requires a fine grid to sample
BZ, making DFPT calculation too expensive to be afforded.
Thus, maximally localized Wannier functions (MLWFs) are
used for EPC calculation. To assess the quality of the Wannier
interpolation, we compare the interpolated band structures in
Figs. 1(a)-(c), and EPC matrix element with those obtained
from a direct DFPT calculation. For simplicity, we compute
the total deformation potential [36] in the BZ center zone:

Dν (Γ,q) =
1

h̄Nw

[
2ρΩh̄ωqν

∑
nm

|gmnν (Γ,q)|2
]1/2

, (3)

where the k = Γ point is chosen, the sum over bands is carried
over the Nw states of the Wannier manifold, and ρ is the mass
density of the crystal. It is found that deformation potentials
calculated by different pseudopotentials are quite similar, thus
only the result of standard pseudopotential is presented in Fig. 2,
results of valence and stringent pseudopotentials are given in
Fig. S2 in SM [35]. The Wannier interpolation reproduces
the direct DFPT calculation quite well, hence validating its
quality as well as the following computed transport properties.
It should be noted that the convergence of DFPT calculations of
q-points around Γ requires a denser k-grid of DFT calculations.
Here a 32× 32× 1 k-grid is employed at q = Γ, a 18× 18× 1
k-grid is used for q-points around Γ, and a 12 × 12 × 1 k-grid

M/3 K/3
0

10

20

D
CB

(
,q

) (
eV

/B
oh

r)

(a)
ZA
TA
LA
ZO
TO
LO

M/3 K/3
0

1

2(b)

M/3 K/3
0

10

20

D
VB

(
,q

) (
eV

/B
oh

r)

(c)

M/3 K/3
0

1

2(d)

FIG. 2. Comparison between the deformation potentials of InAs
monolayer with the initial state k = Γ along high-symmetry lines,
the DFPT and Wannier interpolation results are respectively denoted
by dots and lines. The standard pseudopotential is employed. Con-
duction (a) and valence (c) bands are given in the left column, the
corresponding zoomed-in figures (b) and (d) of the shadowed region
from 0 to 2 eV/Bohr are given in the right column.
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TABLE II. Dynamical dipole Z (e) and quadrupole Q (eBohr), separation length L (Bohr), dielectric and polarizability tensors (ε and α) of all
the pristine monolayers. Only independent components are presented. Note that the crystal symmetry constants Zκxx = Zκyy, Qκxxz = Qκyyz,
Qκxxy = Qκyxx = –Qκyyy, Qκzxx = Qκzyy, ε||

xx = ε||
yy, and α||

xx = α||
yy.

2DM Ga P In P Ga As In As Ga Sb In Sb
Zκxx 2.956 -2.956 3.223 -3.223 2.946 -2.946 3.222 -3.222 2.765 -2.765 3.039 -3.039
Zκzz 0.132 -0.132 0.153 -0.153 0.089 -0.089 0.118 -0.118 0.046 -0.046 0.075 -0.075

Qκxxz -0.858 -1.209 -1.007 -1.809 -1.444 -1.650 -0.260 -5.396 -1.996 -1.578 -2.139 -2.110
Qκxxy 14.158 -4.579 15.039 -4.345 16.900 -7.106 18.077 -6.348 21.026 -10.996 21.485 -10.062
Qκzxx -11.905 7.813 -17.423 11.754 -26.850 20.669 -34.642 26.327 -41.400 34.332 -45.725 37.248
Qκzzz 0.638 -0.569 0.775 -0.666 1.150 -1.070 2.599 -6.637 1.454 -1.352 1.553 -1.434

L 9.852 12.257 16.218 18.973 27.624 26.270
ε||

xx 3.034 3.408 3.874 4.449 5.372 5.768
ε⊥ 1.152 1.160 1.161 1.169 1.174 1.180
α||

xx 6.117 7.245 8.644 10.375 13.150 14.341
α⊥ 0.458 0.483 0.486 0.509 0.525 0.544

is employed for q-points around M/3 and K/3.
Figure 3 displays the mobilities of the III-V monolayers.

Large electron mobilities around 1000 cm2/Vs are presented,
while the hole mobilities of GaP, InP, and GaAs are significantly
suppressed, and relatively large µh are found in InAs, GaSb,
and InSb. To have a more intuitive comparison, the ratios of
the valence and stringent pseudopotential results to the stan-
dard pseudopotential result are displayed in Figs. 3(c) and (d),
respectively for electron and hole mobilities. For the electron
mobility, the variation is limited to ∼ 10%. For the hole mo-
bility, considerable variations are observed: InAs monolayer
presents ηh = 151%, and two phosphides even present ηh over
200%. It should be noted that in the valence pseudopotential
results, imaginary frequencies appear in the phonon dispersions
of InAs, GaP, and InP monolayers as shown in Fig. 1(d), Fig. S3,
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FIG. 3. Electron (a) and hole (b) mobilities calculated using different
pseudopotentials according to #1, #2, and #3 methodologies. Taking
the result of standard pseudopotential as a benchmark, variations of
the results of valence and stringent pseudopotentials are given as ratios
in (c) for electron and (d) for hole, respectively.

and Fig. S5 in SM [35], thus the calculated mobility may be
questioned. Besides, the standard and stringent pseudopoten-
tials present consistent behaviors in most cases, except for the
µh of GaP since it is minimal thus vulnerable to numerical
errors for a ratio. The above discussion shows that the semi-
core states will influence the electronic structure and phonon
dispersions, leading to variations in mobilities. Considering
that standard and stringent pseudopotentials present consistent
behaviors, applying the former can produce correct phonon
dispersion without acoustic sum rule, we conclude that the
standard pseudopotential is the most appropriate for mobility
calculation.

IV.2. Impacts of dynamical quadrupole and Berry connection

In the case of infrared active 2D materials, the Fröh-
lich interaction leads to a direction-dependent gmnν (k,q) for
|q| → 0 [37], hindering the application of Wannier interpola-
tion. This non-analytic behavior can be solved by separating
gmnν (k,q) into a short-range (S) and long-range (L) contribu-
tion [38], as

gmnν (k,q) = gSmnν (k,q) + gLmnν (k,q), (4)

where the short-range part is smooth and analytic in q. The
non-analyticity is included in the long-range part, which is
given by an explicit expression. Once it is obtained, gmnν (k,q)
can be accurately calculated: firstly subtracting gLmnν (k,q) to
obtain gSmnν (k,q) on the coarse grid, then applying the Wannier
interpolation to gSmnν (k,q), and finally adding back gLmnν (k,q)
to the interpolated gSmnν (k,q) on the fine grid to obtain a com-
plete gmnν (k,q). Using the long-range scattering potential
VL
qκα which refers to the displacement of atom κ in the direc-

tion α along a phonon mode q, the expression of gLmnν (k,q) is
given as [21, 38]
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gLmnν (k,q) =
[ h̄

2ων (q)

] 1
2
∑
κα

eκαν (q)√
Mκ

∑
sp

× Umsk+q⟨uW
sk+q|VL

qκα|uW
pk⟩U

†
pnk, (5)

where eκαν is the phonon eigenvector, Mκ is the atomic mass,
Umsk denotes the Wannier rotation matrices applied to the
periodic part of the wavefunctions expressed in the Wannier
basis |uW

nk⟩.
Truncating the expansion at the order ofO(q), the long-range

scattering potential is given as [12]

VL
qκα(r) =

πe
Suc

f (|q|)
|q|

e–iq·τκ

[
1

ϵ̃∥(q)

{
2iq · Zκα

+ q · q ·Qκα – |q|2Qκαzz – 2q · Zκαq · VHxc,E (r)/e
}

+
1

ϵ̃⊥(q)

{
2|q|2Zκαz

[
z + VHxc,Ez (r)/e

]}]
, (6)

where VHxc,E denotes the self-consistent potential change in-
duced by the electric field perturbation, τκ denotes the position
of atom κ within the cell, Zκα is the dynamical dipole along α
direction, andQκα is the dynamical quadrupole. The range sep-
aration function f (|q|) = 1 – tanh(|q|L/2) is a low-pass Fourier
filter that ensures the macroscopic character of the potential,
where the parameter L defines the length scale. ϵ̃∥ and ϵ̃⊥ are
the dielectric functions given by Eqs. (38)-(39) in Ref. [12].
The above parameters of III-V monolayers are given in Table II.

Beside the expansion of VL
qκα, the Wannier-gauge eigen-

states are also expanded to the first order of Taylor series as

⟨uW
sk+q| = ⟨uW

sk| +
∑
α

qα

〈
∂uW

sk
∂kα

∣∣∣∣∣ . (7)

By introducing the Berry connection AW
spk,α ≡ –i⟨∂uW

sk
∂kα |uW

pk⟩
and φq as the form factor for VL

qκα, we obtain

⟨uW
sk+q|φq|uW

pk⟩ ≈ δsp+iq·
[
⟨uW

sk|VE |uW
pk⟩+AW

spk

]
. (8)

The term of VE in Eq. (8) is omitted in our calculations due to
its negligible contribution [18, 21]. The term of AW

spk involves
the Berry connection, which is crucial since it ensures the
smoothness of gSmnν (k,q) and restores gauge covariance to the
lowest order in q [12, 21].

The effects of two corrections mentioned above, namely the
dynamical quadrupole and the Berry connection, on the carrier
mobility in III-V 2D semiconductors are investigated in the
present section. The standard pseudopotential and SOC are
applied to the calculations. The quality of the Wannier interpo-
lations are checked with the deformation potentials of the InAs
monolayer. Figure 4 shows the result of the Wannier interpola-
tion without Berry connection, which leads to slight deviations
from DFPT results for the LO modes. Figure 5 presents the
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FIG. 4. Comparison between the InAs deformation potentials of
DFPT and Wannier interpolation. Dynamical quadrupoles are con-
sidered while the Berry connection is neglected for the Wannier in-
terpolation. Conduction (a) and valence (c) bands are given in the
left column, the corresponding zoomed-in figures (b) and (d) of the
shadowed region from 0 to 2 eV/Bohr are given in the right column.
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FIG. 5. Comparison between the InAs deformation potentials of
DFPT and Wannier interpolation in the absence of both dynamical
quadrupole and Berry connection. Conduction (a) and valence (c)
bands are given in the left column, the corresponding zoomed-in
figures (b) and (d) of the shadowed region from 0 to 2 eV/Bohr are
given in the right column.

Wannier result in the absence of both Berry connection and dy-
namical quadrupole. For the ZO mode, neglecting quadrupole
introduces large deviations from the DFPT results for both
conduction and valence bands.

Figure 6 shows the impacts on the mobilities caused by the
two types of corrections. For µe in phosphides, the impact of
Berry connection is large since the ZA, ZO, and TO modes
are not well interpolated, see details in Fig. S4 and Fig. S6 in
SM [35]. In other cases, the impact of the Berry connection
is limited to 10%, attributed to the relatively good fittings as
manifested by the InAs result in Fig. 4. Further neglecting
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dynamical quadrupole leads to a mobility underestimation for
both electron and hole for all the III-V monolayers. The un-
derestimation can reach up to 40% for the electron mobilities
of all the materials, as well as for the hole mobilities in InAs
and antimonides. Regarding phosphides and GaAs where the
hole mobilities are strongly suppressed by band structures with
multi-peaks in BZ, the effect of quadrupole is also suppressed.
Note that this conclusion, i.e. neglecting quadrupole will un-
derestimate the mobility, can not be generalized for all the
materials, since scattering rates depend on not only the EPC
matrix elements but also on the conservation of energies and
momenta. Moreover, Fig. 5 shows that the behavior of Wannier
deformation potential of ZO mode is not systematic, namely,
Wannier deformation potential is higher than the DFPT around
Γ but lower away from Γ. Thus, the influence of neglecting
quadrupole can only be given by calculations. In any case,
neglecting quadrupole will lower the quality of the Wannier
interpolation, leading to unconvincing computational results.

The behavior of the carrier mobility can be interpreted by the
scattering rates, which can be decomposed by phonon energy.
Here, we focus on the electron mobility in InAs monolayer.
Considering the energy of 3/2kBT = 39 meV away from the
band edge (see details in Ref. [39]), the phonon energy re-
solved scattering rates τ–1, computed in the presence or in
the absence of both corrections, are respectively presented in
Figs. 7(a) and (b). The total scattering rate is enhanced by
the absence of corrections from 48 to 68 THz, increased by
∼ 40%, demonstrating the main influence is caused by the
dynamical quadrupole. In both cases, the scatterings are de-
termined by the high-frequency phonons, i.e., the LO mode.
Indeed, InAs is a polar material with one isotropic and parabolic
conduction band, and its behavior can be described by the Fröh-
lich model [40]. Since quadrupole has negligible influence
on the LO mode, the scatterings contributed by the LO mode
(the area of the right peak) is nearly unchanged. On the other

GaP InP GaAs InAs GaSb InSb
0

900

1800

e  (
cm

2 /V
s)

(a) Quad+Berry
Quad
No correction

GaP InP GaAs InAs GaSb InSb
0

600

1200

h  (
cm

2 /V
s)

(b)

GaP InP GaAs InAs GaSb InSb
60

100

140

e  (
%

)

(c)

GaP InP GaAs InAs GaSb InSb
0

100

200

h  (
%

)

(d)

FIG. 6. Electron (a) and hole (b) mobilities calculated with and
without corrections according to #2, #4, and #5 methodologies. Taking
the result with quadrupole and Berry connection as a benchmark,
variations of the results of neglecting Berry connection and neglecting
both corrections are given as ratios in (c) for electron and (d) for hole,
respectively.
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FIG. 7. Spectral decomposition of the electron scattering rates as a
function of phonon energy of InAs monolayer (a) in the presence and
(b) in the absence of both dynamical quadrupole and Berry connection.
The peaks represent ∂τ–1/∂ω (left axis), and the dashed lines represent
the cumulative integral τ–1 (right axis). The percentages indicate the
cumulative contribution to the total value of τ–1.

hand, the quadrupole strongly affects the ZO mode. When the
quadrupole is neglected, the scattering contributed by the ZO
mode is enhanced from 7.2 to 12.2 THz given by the areas of
middle peaks, explaining the mobility underestimation by the
absence of quadrupole. The above discussion illustrates that
the impacts of Berry connection are materials dependent. More
importantly, the dynamical quadrupole can strongly affect the
computed mobility by up to 40% for materials with high mobil-
ities, illustrating the necessity to include quadrupole for their
accurate predictions.

IV.3. Impact of spin-orbit coupling

Arising from the interaction between the spin and orbital
angular momenta, SOC impacts the motion of electrons and
modifies the electronic structures, especially for materials with
heavy atoms. In the fully-relativistic calculation including SOC
[see Fig. 1(b)], the conduction band minimum (CBM) presents
a Rashba splitting at the Γ point, analog to a single valley in the
BZ. In InAs monolayer, the VBM is also located at the Γ point
where the SOC splitting occurs, and εK = EF – 88 meV. In the
scalar-relativistic case [see Fig. 8], the edge of the conduction
band becomes a single valley at the Γ point, and the valence
bands are changed: the VBM is moved to the K point, the
degeneracy at the Γ point is recovered due to crystal symmetry,
and εΓ = EF – 19 meV. The modifications are even more
striking in GaSb and InSb, see Fig. S11 and Fig. S13 in SM [35].
In contrast to the electronic structure, SOC induces a negligible
change to the phonon dispersion as shown in Fig. S9 in SM [35],
since the phonon dispersion is associated with lattice vibrations
which are primarily determined by the masses of the nuclei and
the interatomic forces in the lattice. The deformation potential
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FIG. 8. InAs monolayer electronic band structure (a) calculated
without SOC, and the corresponding zoomed-in figure (b) around
Fermi energy.

from the SR calculation is very similar to that from the FR
calculation, see Fig. S10 in SM [35].

The comparisons between the FR and SR calculated mobili-
ties are shown in Fig. 9. The absence of SOC causes limited
changes in electron mobilities for all materials, while more
prominent variations emerge in hole mobilities. For phosphides
and GaAs, the hole mobilities are strongly suppressed in both
cases, since the VBMs are always located at the K points in
these materials. For InAs and antimonides, the hole mobilities
are greatly suppressed by the absence of SOC.

The significant influence caused by SOC can be explained
by the scattering rates of holes. The k-resolved scattering rates
in FR and SR calculations of InAs monolayer are respectively
presented in Figs. 10(a) and (b). Compared with the FR scatter-
ing rates, SR scattering rates are enhanced especially around
the K points. This is because in the FR calculation, the VBM
is located at the Γ point which is a single scattering peak. Be-
sides, eigenstates at the Γ and K points are separated by a large
energy of 88 meV, increasing the barrier of scattering between
Γ and K. In contrast, in the SR case, the VBMs are located at
the K points which present multi-peaks of scattering in the BZ.
Moreover, the energy barrier between eigenstates at the Γ and
K points is reduced to 19 meV, increasing the interpeak scatter-
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FIG. 9. Electron (a) and hole (b) mobilities calculated with FR and
SR according to #2 and #6 methodologies. Taking the FR result as a
benchmark, variations of the SR result are given as ratios in (c) for
electron and (d) for hole, respectively.

FIG. 10. Momentum-resolved scattering rates of holes in InAs mono-
layer in (a) FR and (b) SR calculations, given by τ–1

k = 1
Nw

∑
n τ

–1
nk.

ing. Consequently, the hole mobility in the SR calculation is
notably reduced.

Additional understanding of the hole mobility can be gained
by mode-resolved scattering analysis, whose behavior is deter-
mined by the electron and phonon dispersions due to the energy
and momentum conservations. Figure 11(a) shows that in the
FR calculation, the LO mode makes the dominant contribution
in the energy range from VBM to εK = –88 meV, since there
is only one band peak at the Γ point, analog to a Fröhlich sys-
tem. The increase at –30 meV is attributed to the LO mode
with ωLO ≈ 30 meV. Below εK, multi-peaks at K points are
involved in the Fermi surface window, and the ZA mode starts
to contribute to the intrapeak and interpeak scatterings with
small phonon energies. As indicated by Fig. 11(b), in the FR
case, ZA phonons dominate the scattering due to the intrapeak
scattering at K point. A sharp increase of ZA contribution
occurs around –4 meV since more phonons of ωZA ≈ 4 meV
at q = K point [see Fig. 1(e)] are enabled for interpeak scat-
terings between K points in k-space. When εΓ = –19 meV
enters into the Fermi surface window, ZA contribution is fur-
ther enhanced by the interpeak scattering between the Γ and
K points. Furthermore, expanding the Fermi surface window
allows LO mode with ωLO ≈ 30 meV to participate in the
scattering. Since more phonons are involved, the scattering is

FIG. 11. Mode-resolved scattering rates of hole mobility in InAs
monolayer in (a) FR and (b) SR calculations.
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enhanced in the SR calculation. The above discussion shows
that SOC can significantly modify the electronic structure and
lead to large mobility variations ∼ 100%, demonstrating the
importance of considering SOC, especially for materials with
heavy atoms and multi-band edges.

IV.4. Balance between accuracy and cost

Although SOC induces significant changes in the electronic
structures, it negligibly affects the phonon dispersion and scat-
tering potential variation. Considering the cost of DFPT calcu-
lations, we can use the electronic wavefunctions from the FR
calculation and the scattering potential variations from the SR
calculation to perform the Wannier interpolation for EPC com-
putation. The quality of the interpolation has been validated by
the corresponding Wannier and DFPT deformation potentials
as shown in Fig. S10 in SM [35].

Figure 12 presents the comparison between the complete FR
calculation and the mix methodology. For the electron mobility,
the discrepancies are limited below 3%, while for the hole
mobility, the discrepancies can be up to 7% in GaP and InSb.
Still, the mix methodology produces a result consistent with
the complete FR calculation, demonstrating its effectiveness.

Although paying a small accuracy loss, the mix methodology
can significantly enhance the calculation efficiency. The com-
putational costs of various methodologies mentioned above are
summarized in Fig. 13 where dynamical quadrupole and Berry
connection are always considered. DFPT is always the most ex-
pensive calculation for all methodologies. The valencePP+FR
and standardPP+SR methodologies are inexpensive but un-
reliable. Both standardPP+FR and stringentPP+FR produce
consistent results, while the latter is more expensive since more
semi-core states are included. The standardPP+mix methodol-
ogy exhibits the same computational cost as the standardPP+SR
in DFPT calculation, and the similar computational cost to the
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FIG. 12. Electron (a) and hole (b) mobilities calculated with the FR
and the mix scheme according to #2 and #7 methodologies. Taking
the FR result as a benchmark, variations of the mix methodology are
given as ratios in (c) for electron and (d) for hole, respectively.
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FIG. 13. Computational costs for different methodologies in InAs
monolayer. DFPT denotes the phonon calculation for potential varia-
tion with a self-consistency threshold of 10–18. Real space denotes
the EPW calculation for representation transform from reciprocal to
real space on the coarse grid. Interpolation denotes the interpolation
from real to reciprocal space for transport properties on fine grid. All
the calculations are performed using 24 AMD EPYC 7H12 cores with
a base clock speed of 2.6 GHz.

standardPP+FR in EPW calculation. Consequently, the total
cost of standardPP+mix methodology significantly decreases,
which is 28% of the standardPP+FR cost, and 17% of the strin-
gentPP+FR cost. The above discussion suggests that the stan-
dardPP+mix methodology can strike a good balance between
accuracy and cost.

V. TEMPERATURE-DEPENDENT MOBILITIES

To show the most accurate results, we present the
temperature-dependent mobilities calculated by the stan-
dardPP+Quad+Berry+FR methodology in Fig. 14. All the
mobilities go down with increasing temperature. For the elec-
tron mobilities, all materials present a high µe over 100 cm2/Vs,
attributed to the single valley of conduction bands. The mo-
bilities increase with the atomic number due to the decreasing
effective mass, and the antimonides can reach µe ≈ 104 cm2/Vs
at 100 K. The decay of µe can be one order of magnitude from
100 K to 500 K. For the hole mobilities, µh decays much faster
with temperature. Still, antimonides can present high hole
mobilities thanks to their single-peak VBMs.

Instead of drift mobility, Hall mobility is more commonly
measured experimentally, since it can be determined using a
well-established setup, i.e., the Hall effect measurement. In-
deed, such a transport measurement is performed under an
external magnetic field, which induces a Lorentz force on the
carriers and then changes the drift mobility µ to be the Hall
mobility µH. Denoting the ratio between the Hall mobility and
the drift mobility, the Hall factor is commonly assumed to be
unity [41]. However, the suitability of this assumption should
be carefully evaluated. The Hall mobility can be calculated by
adding the external magnetic field to the BTE, see details in
Eqs. (6)-(9) in Ref. [27]. In the present computations of Hall
factors, we apply an external magnetic field along z direction
with Bz = 10–10 T, and we focus on the tensor element rH

xy
which indicates the ratio of µH

xy over µxx, the subscripts will be
omitted in the following discussions.

Figure 15 presents the temperature-dependent Hall mobilities
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FIG. 14. Temperature-dependent (a) electron and (b) hole drift
mobilities.
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FIG. 15. Temperature-dependent (a) electron and (b) hole Hall
mobilities, as well as (c) electron and (d) hole Hall factors.

and Hall factors, depicting the materials with high mobilities
which are more promising for experiments. For the electron
transport, the magnetic field introduces limited changes to the
mobility, as demonstrated by re,H which is below 1.3 in all the
materials. However, for the hole transport, rh,H can be as large
as 1.7, as shown by the GaSb monolayer at high temperature.
These theoretical results demonstrate that the unitary Hall factor
can be a rough approximation, which may sometimes lead to
the overestimation of the drift mobility in experiments.

VI. SUMMARY

Carrier mobilities investigated using DFPT and Wannier
functions are reported herewith for 6 semiconductors in the
III-V monolayer family. The quality of the Wannier interpola-
tion has been validated by the comparison with DFPT calcula-
tions. To show the impacts induced by different approximations,
several methodologies have been proposed to investigate the
influences on mobilities caused by semi-core states, dynam-
ical quadrupole, Berry connection, and spin-orbit coupling.
Semi-core states in pseudopotentials are found to be essen-
tial for accurate mobility calculations, dynamical quadrupole
can induce a variation of ∼ 40%, Berry connection causes an
impact of ∼ 10%, and SOC can even yield an influence of
∼ 100% for materials with multi-peak electronic structures.
The different mechanisms are interpreted by the momentum-
and mode-resolved scattering rates. Besides, DFPT results are
negligibly affected by SOC, which can be neglected to accel-
erate computation with a precision loss of less than 7%. After
evaluating the various methodologies, temperature-dependent
drift mobilities are computed, illustrating that the temperature
can change the mobilities by one or two orders of magnitude,
and the Hall factors range from 1.0 to 1.7. From the point
of view of ab initio modeling, it is mandatory and commonly
accepted to implement certain approximations. Consequently,
it is crucial to understand the extent of their impacts and eval-
uate their suitability. Striking the balance between accuracy
and cost, this research can definitely provide guidelines for
accurate and efficient calculations of carrier mobilities in 2D
semiconductors.
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