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A Self-feedback Knowledge Elicitation Approach
for Chemical Reaction Predictions

Pengfei Liu, Jun Tao, and Zhixiang Ren

Abstract—The task of chemical reaction predictions (CRPs) plays a pivotal role in advancing drug discovery and material science.
However, its effectiveness is constrained by the vast and uncertain chemical reaction space and challenges in capturing reaction
selectivity, particularly due to existing methods’ limitations in exploiting the data’s inherent knowledge. To address these challenges, we
introduce a data-curated self-feedback knowledge elicitation approach. This method starts from iterative optimization of molecular
representations and facilitates the extraction of knowledge on chemical reaction types (RTs). Then, we employ adaptive prompt
learning to infuse the prior knowledge into the large language model (LLM). As a result, we achieve significant enhancements: a 14.2%
increase in retrosynthesis prediction accuracy, a 74.2% rise in reagent prediction accuracy, and an expansion in the model’s capability
for handling multi-task chemical reactions. This research offers a novel paradigm for knowledge elicitation in scientific research and
showcases the untapped potential of LLMs in CRPs.

Index Terms—Knowledge Elicitation, Prompt Learning, Large Language Model, Chemical Reaction Predictions.

✦

1 INTRODUCTION

THE applications of CRPs [1] span drug discovery, mate-
rial science, and synthetic pathway optimization, which

have a critical role in advancing various scientific fields. The
primary challenges within this domain arise from the vast
and uncertain chemical reaction space, coupled with the
complexities of reaction selectivity. Moreover, most existing
methods fail to harness the intrinsic knowledge within
reaction data. Traditional methods in CRPs [2] [3] struggle
to navigate the intricate and variable dynamics of chemi-
cal reactions, which rely on domain expertise and heuris-
tic strategies. While existing computational methods have
strived to predict chemical reactions, they often fall short
in handling the inherent complexity and selectivity due to
limited datasets and the lack of detailed reaction mechanism
guidance. With advancements in artificial intelligence (AI),
AI methods [4] [5] [6] have led to notable improvements in
the accuracy of CRPs. However, the challenge of general-
izing these improvements across diverse chemical reactions
persists.

With the emergence of ChatGPT [7] and GPT-4 [8], LLMs
have gained attention for their potential in various domains,
including science. LLMs contribute a new trend in scientific
language modeling (SLM) [9], with models like Galactica
[10] focusing on the scientific domain. Smaller pre-trained
models such as MolT5 [11] and BioT5 [12] have started to be
applied in molecular SLM tasks. Similarly, Text+Chem T5
[13] and InstructMol [14] cover CRP tasks, yet large models
still face challenges in interpretability and the demand for
extensive training data.
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Prompt learning, coupled with LLMs for fine-tuning,
has emerged as a standard paradigm, offering a way to
integrate domain-specific knowledge into model training
[15]. However, static template prompts can lead to rigid
guiding patterns in LLMs, potentially impacting their gen-
eralizability. The dynamic prompts can tackle the limitations
of static templates with the injection of prior knowledge
into LLMs. In CRPs, identifying RTs can narrow down the
chemical space to be explored. However, the datasets typi-
cally lack RT labels, including only reactants and products.
While too few categories in annotation methods limit their
effectiveness, too many can reduce annotation accuracy.
Meanwhile, the synergistic effect of multi-task cooperative
learning, treating chemical reactions as a unified domain
of molecular knowledge, has yet to be fully leveraged.
Therefore, we can conclude several key issues: (1) How can
we balance annotation accuracy and number of RTs in
knowledge elicitation by LLMs? (2) Can LLMs perform
better through prompt-based knowledge infusion? (3) Can
a multi-task collaborative approach improve the perfor-
mance of LLMs?

To address these issues, we introduce a prompt-based
knowledge elicitation [16] approach that combines knowl-
edge distillation and integration through adaptive prompts,
aiming to boost the accuracy of LLMs. The task of CRP is
broken down into RT prediction and molecule generation.
By applying a self-feedback knowledge elicitation method
for high-accuracy annotating RTs and utilizing prompt
learning for knowledge infusion into the LLM, we enhance
model performance and achieve the synergistic benefits of
multi-tasking.

In summary, our main contributions are the following:

• Self-Feedback Knowledge Elicitation: We propose a
novel knowledge elicitation approach by integrating
a self-feedback mechanism with data curation using
LLM, enhancing accuracy in CRPs.
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Fig. 1. Overview of tasks and approaches. (a) Chemical reaction prediction tasks, showcasing three tasks along with examples. (b) Current
LLM methods for CRPs, indicating rational predictions but lacking in reactive validity. (c) Self-feedback knowledge elicitation for enhancing
CRPs, demonstrating the enhancement of CRPs through the refinement of knowledge patterns, notably RTs, utilizing a self-feedback knowledge
elicitation technique. Knowledge elicitation serves as a method of data curation for knowledge distillation, where RT is integrated into large language
models via adaptive prompt learning, facilitating the planning of reaction pathways in CRPs.

• Dynamic Prompting for LLMs: We introduce a dy-
namic prompt learning to address the limitations of
static prompts, achieving a 10% additional increase
in the knowledge injection adaptability of LLMs.

• Synergistic Multi-Task Enhancement: By injecting
prior knowledge, we facilitate a synergistic improve-
ment of 14.9% across reaction prediction tasks.

The rest of this paper is organized as follows. Section 2
offers a review of existing studies, laying the ground-
work for our approach. In Section 3, we delve into the
methodology, detailing the data, models, and strategies
used. Section 4 is dedicated to evaluating our methods
and includes an ablation study to highlight key findings.

The discussion in Section 5 centers on our annotation ap-
proach, the knowledge-learning capabilities of large mod-
els, and the benefits of multi-tasking. Finally, Section 6
summarizes our main contributions and suggests future
research directions. The data and software can be accessed at
https://github.com/AI-HPC-Research-Team/SLM4CRP.

2 RELATED WORK

In this section, we focus on the models for CRPs, the appli-
cation of LLMs, and the innovative use of prompt learning
and knowledge priors [17], laying the groundwork for our
proposed approach.

https://github.com/AI-HPC-Research-Team/SLM4CRP
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2.1 Chemical Reaction Predictions
As illustrated in Figure 1 (a), CRP tasks involve determining
the products or reactants of chemical reactions from given
molecules. The key to the CRPs lies in accurately identifying
the mechanisms and outcomes involving bond breakage
and reformation under a variety of conditions. It makes
the predictions of reactions particularly complex due to the
vast number of possible reaction mechanisms and products.
It requires a deep understanding of chemical knowledge
and molecular interactions to forecast the most probable
pathways for forward reactions, retrosynthetic routes, and
necessary reagents for specific transformations.

For traditional methods, CAMEO [2] leverages detailed
heuristics across chemical classes to predict multistep re-
actions, while EROS [3] utilizes a graph-based rule library
enhanced by additional constraints from physical data and
kinetic simulations. Despite their sophistication, these tradi-
tional methods often struggle with the vast complexity and
variability of chemical reactions, leading to limitations in
predictive accuracy and scalability.

With the development of AI methods, the ReactionPre-
dictor [4] model narrows down the reaction space through
a filtering model and then ranks the prioritized likely reac-
tions. Another method [5] combines fingerprints of reactants
and reagents into a reaction fingerprint, used as input to
a neural network predicting probabilities across 17 RTs.
Additionally, the GTPN [6] model leverages graph neural
networks [18] (GNN) to comprehend the molecular graph
structures of input reactants and reagents, refining the pre-
diction of correct products through reinforcement learning.
The Molecular Transformer [19], based on Transformer [20],
treats reaction prediction as a machine translation issue be-
tween molecules represented in SMILES (Simplified Molec-
ular Input Line Entry System) [21] strings, further enabling
the assessment of prediction uncertainty.

Traditional methods in CRPs rely on heuristics and rule-
based systems, often limiting their adaptability and scala-
bility across the diverse landscape of chemical reactions. As
for AI approaches, despite their innovative frameworks and
predictive power, their challenges include data dependency,
model interpretability, and the generalization of predictions
to unseen reactions.

2.2 Knowledge Distillation and Elicitation
Knowledge distillation [22] is a machine learning tech-
nique in which knowledge is transferred from a larger,
more complex model (teacher) to a smaller, simpler model
(student). This method is commonly employed for model
compression [23], aiming to enhance model performance
while adhering to a fixed capacity constraint. It allows the
compact student model to mimic the behavior of the larger
teacher model, thereby achieving efficiency without signif-
icantly compromising the quality of the model. The survey
[16] categorizes the pipeline of distilling knowledge from
LLMs into two main phases: knowledge elicitation and the
distillation algorithm. Moreover, they identify six methods
of knowledge elicitation from teacher LLMs. Among these,
the data curation approach has gained attention for its focus
on producing high-quality and scalable data generation for
knowledge distillation purposes. Unlike data augmentation

[24], which primarily aims at increasing the quantity of
training data, data curation emphasizes constructing a high-
quality training dataset.

For instance, InPars [25] leverages the LLM to gener-
ate labeled data in a few-shot manner, creating synthetic
datasets that enhance performance in information retrieval
tasks. Similarly, ZEROGEN [26] employs LLMs to generate
unsupervised datasets, upon which a smaller task-specific
model is trained, facilitating efficient inference across vari-
ous Natural Language Processing (NLP) tasks. These data
curation techniques can act as variants of knowledge distil-
lation, producing high-quality datasets for CRPs and other
domains, thereby enriching the pool of strategies for effec-
tive knowledge distillation.

2.3 Large Language Models
Transformer-based models such as BERT [27], GPT [28] and
T5 [29], showcasing remarkable capabilities in understand-
ing and generating human language. As the scale of models
has grown with data availability, models like Chinchilla
[30], LLaMA [31], and GLM [32], which demonstrate an
enhanced capacity to process and generate text.

In specific fields, models are increasingly tailored to do-
main knowledge learning. In molecular science, MolT5 [11],
based on the T5 architecture, pioneers tasks in molecular
description and text-based molecular design. Text+Chem
T5 [13] represents a multi-task language model approach
capable of handling a variety of tasks across both chemical
and linguistic domains. GIT-Mol [33] introduces an innova-
tive approach by aligning and integrating molecular text,
graphs, and images through cross-attention mechanisms
and contrastive learning. Meanwhile, BioT5 [12] merges
knowledge from the molecular and protein domains, pre-
senting a cross-disciplinary pre-trained model that under-
scores the potential of LLMs to bridge and enhance research
across fields. The MOLGEN [34] model, built on the BART
[35] and utilizing SELFIES [36], is capable of generating
novel molecules and optimizing molecular structures based
on desired properties.

Although LLMs display enhanced generalization capa-
bilities and a stronger understanding of knowledge, as
shown in Figure 1(b), they may select incorrect synthetic
pathways in CRPs. Despite these advancements, they still
face challenges with data scarcity in specialized domains
and lack interpretability.

2.4 Prompt-based Knowledge Priors
Prompt learning involves designing input ‘prompts’ that
guide the LLMs to perform specific tasks or generate certain
types of responses. This technique leverages the knowl-
edge in pre-trained models, enabling them to apply their
understanding of language to new tasks without exten-
sive retraining. The Mol-Instructions [15] dataset facilitates
LLM fine-tuning with diverse molecule and protein in-
structions, including the CRPs datasets of USPTO [37] and
USPTO 500MT [38]. InstructMol [14], a multi-modal LLM,
employs instruction tuning to correlate molecular structures
with textual data, using a dual-phase training approach
that smartly leverages limited domain-specific datasets for
molecule captioning and CRPs. Following BioT5, BioT5+
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Fig. 2. Three-stage training scheme of prompt-based knowledge elicitation. Knowledge extraction, the datasets are divided into train, valid,
and test sets. The training dataset’s inputs and outputs are clustered using LLM-RT embeddings, leading to RT annotations. The annotation
accuracy of LLM-RT is refined by iteratively tuning cluster parameters and training with input and RT, aiming to improve precision and identify
the best cluster. Data curation, the trained LLM-RT annotates the RTs for the validation and testing datasets based on their inputs. Adaptive
knowledge injection, adaptability is calculated based on the embeddings of inputs and instructions, leading to the selection of adaptive instructions.
It is followed by fine-tuning the LLM with prompts that are enhanced with prior knowledge.

[39] extends training with International Union of Pure and
Applied Chemistry (IUPAC) [40] names of molecules and
broadens its application to additional tasks.

Knowledge priors refer to pre-existing, domain-specific
knowledge that can be integrated into AI models to en-
hance their understanding and prediction capabilities [41].
The knowledge can be fused with the model architecture,
training frameworks, or training data to enrich the model’s
insights and improve its outcomes. In molecular science,
knowledge priors, such as details on molecular struc-
tures, chemical properties, and reaction mechanisms, sig-
nificantly boost AI models’ predictive accuracy. The KPGT
[42] framework exemplifies this by utilizing a graph trans-
former for molecular graphs with a knowledge-guided pre-
training strategy, aiming to understand molecules’ struc-
tural and semantic knowledge. Similarly, PGMG [43], a
pharmacophore-guided deep learning method, innovatively
tackles the mapping challenges between pharmacophores
and molecules, thereby increasing the diversity of biolog-
ically active molecules generated. For prompt-enhanced
method, the KANO [44] method introduces a chemical
element-oriented knowledge graph to encapsulate funda-
mental knowledge of elements and functional groups. It em-
ploys this graph in a novel molecular contrastive learning
approach with functional prompts, effectively leveraging
deep domain knowledge throughout the pre-training and
fine-tuning stages.

Prompt-based knowledge priors represent an evolution
in leveraging domain-specific knowledge within AI models.
By crafting prompts that encapsulate molecular knowledge,
researchers can direct the focus of LLMs toward SLM prob-
lems. This strategy not only heightens the accuracy and
pertinence of model predictions but also streamlines the

integration of intricate scientific knowledge, reducing the
dependency on voluminous training data and augmenting
the model’s interpretability.

3 METHODOLOGY

In this chapter, we present an overview of our approach,
which leverages chemical knowledge through prompt learn-
ing to enhance the accuracy of CRPs. First, we introduce
the foundational data structure and the preparatory steps.
Next, we delve into the self-feedback knowledge elicitation
process, a pivotal mechanism to unearth knowledge pat-
terns. Finally, we describe how we train our LLM on specific
reaction prediction tasks.

3.1 Overview
The approach depicted in Figure 2 unfolds through a three-
stage training strategy. Initially, the dataset is divided into
training, validation, and testing sets, with an emphasis on
knowledge extraction to facilitate RT annotation. This stage
involves iteratively refining the selection of the optimal
clustering approach and training the LLM-RT, leading to the
formation of a self-feedback clustering mechanism. In the
data curation phase, the frozen LLM-RT employs prompts
alongside inputs to perform RT annotation on the valida-
tion and testing sets. Finally, the method incorporates the
promptenhanced for fine-tuning the LLM.

The CRP tasks are classified into three primary cate-
gories: forward reactions, reverse reactions, and reagent pre-
dictions. Each category can be represented mathematically
as follows:

• Forward Reaction Prediction aims to predict the
products (P) for a given set of reactants (R), formu-
lated as fforward : R → P .
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• Retrosynthesis Prediction seeks to identify potential
reactants (R) from known products (P), represented
as fretrosynthesis : P → R.

• Reagent Prediction focuses on determining the
reagents (G) required for the conversion of reactants
to products, expressed as freagent : (R,P) → G.

This scenario can be represented by a more generalized
function:

fgeneral : (R,P) → (R′,P ′,G) (1)

where R and P are the sets of reactants and products,
respectively, and the function aims to predict R′ (reactants),
P ′ (products), and G (reagents) for any given chemical
reaction. Let us define the knowledge-driven prompt, de-
noted as promptenhanced, as the combination of adaptive
instructions (IA) and knowledge priors RTs (K):

promptenhanced = IA+K (2)

Incorporating prior knowledge by promptenhanced enhances
the specificity and accuracy of the predictions, modifying
the general function to:

fenhanced : (R,P, promptenhanced) → (R′,P ′,G) (3)

In this function, the promptenhanced serves to guide the
prediction process by incorporating both adaptive instruc-
tions and the specified knowledge priors, leading to the
prediction of reactants R′, products P ′, and the necessary
reagents G.

Distinct from existing methods, our approach inte-
grates RT knowledge priors with LLMs through adaptive
prompt learning and self-feedback knowledge elicitation
techniques. It addresses the scarcity of RT information in
real-world datasets, and the dynamic prompts prevent rigid
pattern guiding in LLMs, offering a solution to enhancing
prediction accuracy.

3.2 Data
In this study, we utilize the ‘Molecule-oriented instructions’
from the Mol-Instructions [15] dataset, which encompasses
three chemical reaction tasks. Our data preparation involves
converting the ‘input’ into SMILES format, resulting in
dataset D. This dataset’s ‘instruction’ components are sorted
by different task types and integrated into our instruction
template library, aiding the infusion of domain-specific
knowledge into our models.

Data preprocessing: Before conducting our experiments,
we engage in a thorough data preprocessing regimen to
safeguard the dataset’s integrity and uniformity. The pri-
mary steps encompass transforming all molecular repre-
sentations into SMILES format to standardize the molecu-
lar data, thereby ensuring compatibility across our exper-
iments. We rigorously clean the data by removing entries
that fail the SMILES conversion process, thus mitigating
potential inconsistencies and errors in later analysis stages.

Data split: We follow the original test set partitioning
scheme of the dataset. However, in the ‘knowledge ex-
traction’ stage in Figure 2, the training subset Dtrain is
randomly divided in a 98:1:1 ratio to obtain D′

train, D′
valid,

and D′
test. This division facilitates the training of the LLM-

RT predictor, which subsequently annotates the testing set

Dtest. In the ‘Adaptive knowledge injection’ stage, the vali-
dation set Dvalid is split from Dtrain.

3.3 Knowledge Extraction and Data Curation

This subsection explains the process of self-feedback knowl-
edge elicitation in CRP problems and describes the method
of data curation for instruction-tuning dataset.

Knowledge annotation Knowledge extraction from the
LLM-RT begins by embedding inputs and outputs of the
training dataset Dtrain, followed by clustering into cor-
responding clusters, which are annotated as the RTs. For
the vector encoding of input and output embeddings, we
consider four alternative methods: directly using the output
vector (outputvec), subtracting input vector from output
vector (outputvec - inputvec), concatenating input and out-
put into a vector (concat(inputvec, outputvec), and the dot
product of output and input vectors (outputvec · inputvec).

The selection of our clustering method and number is
crucial to balance the accuracy and diversity of RT an-
notations. As the number of clusters increases, accurately
annotating Dtest becomes more challenging. There are sev-
eral common fundamental types of reactions, including but
not limited to synthesis reactions, decomposition reactions,
single-replacement reactions, and double-replacement reac-
tions. While these basic categories can be subdivided, over-
detailed classification may not be conducive to generaliza-
tion and efficiency for an effective prediction model. More-
over, as the number of clusters increases, the accuracy of
unsupervised labeling is likely to decrease. Furthermore, a
high number of clusters may complicate the interpretability
of the model, making it harder for users to understand
and trust the model’s predictions. Considering these factors,
a recommended number of clusters would be between 3
to 12 [45]. This range should adequately cover the main
types of chemical reactions while avoiding the pitfalls of
over-segmentation, such as increased model complexity or
reduced generalizability. Furthermore, we opt for the k-
means [46] algorithm as our clustering method, given its
efficiency and effectiveness in grouping data into cohesive,
distinct clusters that reflect underlying patterns within the
RTs.

En = Embedding(inputDtrain , outputDtrain) (4)

Rn = Cluster(En) (5)

Accn = ST (Rn, inputD′
train

, inputD′
valid

, inputD′
test

) (6)

The annotation results Rn in the nth iteration, where the
training dataset Dtrain,n is encoded and clustered. En

denotes the encoding function by LLM-RT, and Cluster
represents the clustering operation. The annotation accuracy
Accn achieved after conducting the supervised training
(ST ) using the annotation results Rn and the training
dataset Dtrain,n from the nth iteration.

Self-feedback cluster: After a round of RT annotation,
we conduct supervised training of the LLM-RT model
against inputs and RTs, adjusting the model weights to re-
fine annotation accuracy continually. After a training round,
RTs for Dtrain are re-annotated, thus iteratively optimizing
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Algorithm 1 Self-Feedback Knowledge Elicitation Process
1: Initialize the LLM-RT model for encoding methods

encodings, set cluster method and number range, and
prepare instruction templates library.

2: for each encoding e in encodings do
3: for number = 3 to 12 do
4: Set cluster number N = number, encoding

method E = e.
5: Embed inputs and outputs from Dtrain using

encoding method E.
6: Perform clustering on the embedded data to iden-

tify RTs.
7: Annotate Dtrain with the identified RTs.
8: Split Dtrain to D′

train, D′
valid and D′

test

9: Train the LLM-RT model on D′ using the RT
annotations.

10: Evaluate and record the annotation accuracy.
11: end for
12: Evaluate and record the overall best annotation ac-

curacy for encoding e.
13: end for
14: Freeze the LLM-RT model after identifying the optimal

E and N .
15: Use the optimized LLM-RT model to annotate RTs in

Dtest.

the LLM-RT training through a self-feedback mechanism,
forming an effective self-feedback clustering.

Optimal(Ebest, Nbest) = SF (Accn, En, Cluster,N) (7)

RTDtrain = ClusterNbest
(Ebest) (8)

The self-feedback (SF) process for selecting the optimal en-
coding method E and the number of clusters N to maximize
the annotation accuracy Accn, and Optimal indicates the
chosen optimal encoding method and cluster number after
the iteration process concludes. Then, the RTDtrain

anno-
tated for the training dataset Dtrain, derived from clustering
the dataset with the best embedding method Ebest into
Nbest clusters through ClusterNbest

. The selection process
aims to balance the annotation accuracy and the number of
RTs, ensuring optimal categorization.

RT annotation prompt:
This is the {task} reaction prediction task, where the
goal is to determine the type of chemical reaction
based on the given compounds, categorized as 0
through {cluster number}.
input: ...

Data curation: The RT annotation prompt is employed
to guide the LLM-RT model in annotating the RT during
the ST and Annotate process. The term ‘task’ in the prompt
can be dynamically substituted with specific tasks such as
forward reaction prediction, reverse reaction synthesis, or
reagent prediction, adapting the prompt to various contexts
of CRPs. Meanwhile, ‘cluster number’ corresponds to the
number of clusters N identified in the Self-feedback Clus-
ter process. Utilizing the trained and frozen LLM-RT, we
annotate the RTs for the validation and testing datasets

using RT annotation prompts and input information. The
RT performs annotation on the input data of Dtest using
the Annotate process facilitated by the LLM-RT.

RTDtest = Annotate(inputDtest) (9)

3.4 Adaptive Knowledge Injection

The application of prompt learning to infuse extracted
knowledge priors into our models demonstrates how this
approach boosts the predictive accuracy of chemical reac-
tions.

Instruction Templates:
forward:

• “Please suggest a potential product based on
the given reactants and reagents.”

• “Please provide a feasible product that could
be formed using the given reactants and
reagents.”

• “Based on the given reactants and reagents,
what product could potentially be pro-
duced?”

• . . .

retrosynthesis:

• “Provided the product below, propose some
possible reactants that could have been used
in the reaction.”

• “Please suggest potential reactants used in the
synthesis of the provided product.”

• “Given these product, can you propose the
corresponding reactants?”

• . . .

reagent:

• “Based on the given chemical reaction, can
you propose some reagents that might have
been utilized?”

• “Can you provide potential reagents for the
following chemical reaction?”

• “Please suggest some possible reagents that
could have been used in the following chemi-
cal reaction.”

• . . .

Adaptive instruction: To address the constraints of static
templates and improve model generalization, we introduce
an adaptive selector for template selection. We establish an
instruction template library, allocating 12 distinct templates
per task, for a total of 36 templates. During the embedding
process, the inputi from dataset D and all corresponding
templates from the task-specific list in the instruction tem-
plate library are embedded via the LLM-CRP model. The
adaptive selector then evaluates adaptability through vector
differences between the input embedding and each template
embedding within the library. For each batch, this process
entails matching a single input with multiple instructions
to determine the best fit based on adaptability scores. The
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Fig. 3. Performance of encoding vector self-feedback annotation and clustering. (a) Accuracy of RT annotations across encoding vectors
and clustering number, we compare the annotation accuracy Acc among four encoding methods alongside reasonable Cluster Numbers N .
The results indicate that the encoding method using (concat(input, output)vec) yields the best performance. (b) The test dataset vector
(concat(input, output)vec) clustering, with the N set to 6 and N set to 10, test dataset vectors are reduced to two dimensions via a linear
layer to display the clustering outcome.

template that exhibits the highest adaptability with the
input is chosen to facilitate precise knowledge injection.

Adaptabilityi,j = −∥Embinput − Embinstruction∥2 (10)

IAi = argmin
j

(Adaptabilityi,j) (11)

The Embinput is the embedding of the ith input, trans-
forming it into a vector representation that captures its se-
mantic properties within the model’s learned feature space.
Similarly, Embinstruction calculates the embedding of the
jth instruction template. The Adaptabilityi,j quantifies the
similarity score between the ith input and the jth instruction
template by maximizing the negative Euclidean distance,

thus indicating higher relevance when the value is larger.
The adaptive selector then determines the most suitable
instruction for the ith input by selecting the template that
maximizes the Adaptabilityi,j score. This process effectively
identifies the instruction that best aligns with the input,
optimizing the knowledge injection based on the adaptive
selector’s analysis.

Enhanced prompt: The selected adaptive instruction is
combined with the corresponding RT for the current input
to form an promptenhanced. This enhanced prompt is then
amalgamated with the input and injected into LLM-CRP,
aiming to refine the model’s response to the input based on
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TABLE 1
Performance comparison of various models on the reactions task. The results for Text+Chem T5 and nach0 are taken from their respective

publications, whereas T5, MolT5, and Text+Chem T5 (finetune) represent performance after finetuning on a specific dataset. The abbreviation RT
stands for reaction type, N denotes the number of clusters, and IA signifies Instruction-adaptive. Using Text+Chem T5 (finetune) as a baseline,

ours(RT+IA, N=10) shows improved EMscore performance, particularly in retrosynthesis and reagent prediction tasks.

Task Model Bleuscore Meteorscore EMscore Similarityscore V alidityscore improve

Forward

Text+Chem T5 — — 0.594 — — —
nach0 — — 0.890 — — —

T5 0.986 0.989 0.926 0.984 0.992 —
MolT5 0.986 0.988 0.897 0.978 0.992 —

Text+Chem T5 (finetune) 0.988 0.991 0.932 0.985 0.999 —

ours(RT ,N=10) 0.991 0.991 0.937 0.984 0.997 0.5%
ours(RT+IA, N=10) 0.991 0.993 0.945 0.986 0.997 1.4%
ours(RT+IA,N=6) 0.989 0.992 0.930 0.984 0.995 -0.2%

Retrosynthesis

Text+Chem T5 — — 0.372 — — —
nach0 — — 0.390 — — —

T5 0.920 0.921 0.649 0.855 0.989 —
MolT5 0.918 0.920 0.637 0.846 0.987 —

Text+Chem T5 (finetune) 0.926 0.929 0.663 0.858 0.997 —

ours(RT ,N=10) 0.941 0.947 0.749 0.895 0.996 13.0%
ours(RT+IA, N=10) 0.944 0.950 0.757 0.905 0.994 14.2%
ours(RT+IA,N=6) 0.920 0.921 0.654 0.848 0.998 -1.4%

Reagent

nach0 — — 0.140 — — —
T5 0.506 0.654 0.168 0.548 0.998 —

MolT5 0.515 0.660 0.178 0.559 0.997 —
Text+Chem T5 (finetune) 0.482 0.657 0.163 0.571 0.996 —

ours(RT ,N=10) 0.589 0.728 0.273 0.640 0.999 67.4%
ours(RT+IA, N=10) 0.617 0.744 0.284 0.649 1.000 74.2%
ours(RT+IA,N=6) 0.499 0.665 0.175 0.587 0.999 7.4%

the tailored guidance.

promptenhanced i = fuse(IAi, RT ) (12)

(inputi, promptenhanced i) → (R′,P ′,G) (13)

The promptenhanced i represents the process of creating an
enhanced prompt for the ith input by fusing the adap-
tively selected instruction instructionadaptive i with the
corresponding RT . This fusion process (fuse) generates
a promptenhanced that is specifically tailored to both the
context of the input and the instructional guidance deemed
most appropriate by the adaptive selection mechanism.
Subsequently, the pair (inputi, promptenhanced i) is fed into
LLM-CRP. The model’s output, represented as (R′,P ′,G),
encompasses the predictions of reactants R′, products P ′,
and the necessary reagents G.

4 EVALUATION AND RESULTS

In this chapter, we subject our proposed methodologies to a
rigorous evaluation aimed at addressing three fundamental
research questions that guide our investigation. For KI1,
we set the number of clusters to range from 3 to 12 and
tested four different embedding techniques, selecting the
optimal clustering number and encoding method based on
annotation accuracy. Regarding KI2, we infuse the RT into
the LLM using prompts and assess the effectiveness of adap-
tive prompt learning. Finally, for KI3, we integrate chemical
reaction data to perform comprehensive fine-tuning, achiev-
ing results from multi-task training.

• KI1: How can we balance annotation accuracy and
number of RTs in knowledge elicitation by LLMs?

• KI2: Can LLMs perform better through prompt-
based knowledge infusion?

• KI3: Can a multi-task collaborative approach im-
prove the performance of LLMs?

4.1 Experimental Setup
This subsection provides an overview of the training con-
figurations and evaluation metrics. We detail the model set-
tings and hyperparameter values in model training. In the
knowledge extraction phase of our RT annotation experi-
ments, we employ multi-class accuracy (Acc) as the primary
evaluation metric. This metric measures the proportion of
correctly identified RTs among all predictions, providing a
straightforward assessment of the model’s performance in
categorizing chemical reactions into their correct types.

Training settings: Training employs Tesla V100-SXM2-
32GB GPUs with CUDA 11.7 and PyTorch 2.0.0, leveraging
AdamW for optimization. Batch sizes vary from 24 to 48,
with the patience of 2 epochs for early stopping to curb
overfitting. Training spans up to 40 epochs, using adaptive
learning rates between 1e-4 and 1e-3 to finetune speed and
stability.

Evaluation metrics: During the knowledge injection
phase for CRPs, our evaluation strategy is more compre-
hensive, incorporating a blend of NLP evaluation metrics
and compound generation assessment metrics. We include
BLEU scores (Bleuscore), gauging the linguistic similar-
ity between the generated text and reference sequences,
and METEOR scores (Meteorscore), offering a more nu-
anced evaluation by considering sentence structure. Fur-
thermore, to assess the chemical relevance and accuracy
of the generated compounds, we introduce a similarity
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TABLE 2
Multi-task performance summary. T5, MolT5, and Text+Chem T5 models are finetuned with aggregated data from three tasks. The average

single-task results of Text+Chem T5 are compiled as Text+Chem T5 (avg-tasks), serving as the baseline. The integrated model with
promptenhanced exhibits a 14.9% improvement over this baseline. Joint training on multiple tasks tends to decrease performance, yet there is a

17.8% enhancement over Text+Chem T5 (finetune), highlighting the role of RT and IA in multi-task collaboration.

Model Bleuscore Meteorscore EMscore Similarityscore V alidityscore improve

T5 0.825 0.854 0.556 0.790 0.992 —
MolT5 0.837 0.859 0.586 0.797 0.996 —

Text+Chem T5 (finetune) 0.822 0.857 0.572 0.797 0.995 —
Text+Chem T5 (avg-tasks) 0.799 0.859 0.586 0.805 0.997 —

ours(RT+IA,N=10) 0.879 0.901 0.674 0.854 0.998 14.9%

metric (Similarityscore), quantifying the resemblance be-
tween generated and target compounds. The validity metric
(V alidityscore) ensures that every generated compound is
chemically valid. The exact match score (EMscore) disre-
gards the sequence in which compounds are generated,
focusing on the presence of correct chemical entities. These
metrics provide a comprehensive view of the model’s capa-
bility in CRPs.

4.2 Knowledge Elicitation

To address KI1, this section starts by outlining the objectives
of the analysis, emphasizing the importance of selecting op-
timal encoding vectors and the number of clusters N for RT
annotation accuracy. We introduce four encoding methods
evaluated in the study: direct output vector, output minus
input vector, concatenated input-output vector, and the dot
product of input and output vectors. These vectors are
encoded using LLM-RT Text+Chem T5. Then, we explain
the rationale behind exploring different cluster numbers,
highlighting the hypothesis that the choice of encoding and
clustering can significantly impact the annotation accuracy
Acc.

Encoding methods: We delve into a comparative anal-
ysis of Acc using various encoding vectors across dif-
ferent task types, with a focus on a range of N . As il-
lustrated in Figure 3 (a), Acc gradually declines within
the adaptable range of N from 3 to 12. The find-
ings underscore that the concatenated input-output vector
(concat(input, output)vec) consistently achieves the high-
est annotation accuracy among different tasks, maintaining
over 70% accuracy even when N is set to 10. It highlights
the concatenated vector’s capability to capture the nuances
of chemical RTs.

Clustering visualization and implications: We examine
the clustering outcomes for the test dataset, focusing on the
optimal encoding method (concat(input, output)vec) for se-
lected cluster numbers, N = 6 and N = 10, with visualiza-
tions depicted in Figure 3 (b). The process involves reducing
the high-dimensional encoded vectors to two dimensions
for visualization, enabling us to observe the cluster distri-
butions. These visualizations reveal that chemical reactions
for each task display distinct knowledge patterns. Although
the direct implications of these tasks remain unspecified, the
identified patterns serve as crucial prompt information for
generating reaction content.

4.3 Knowledge Injection

This subsection assesses the effectiveness of integrating
knowledge priors via prompt learning, directly respond-
ing to KI2 by comparing the predictive advantages gained
through our knowledge-infused model against baseline ap-
proaches. In our study, we utilize Text+Chem T5 as the
LLM-CRP. The adaptive selector chooses appropriate adap-
tive instructions, which are then fused with RT to create a
prompt-enhanced input. Subsequently, the input is fed into
the LLM-CRP for training and testing. The results are shown
in Table 1.

RT integration: Selecting an optimal N and integrating
RT leads to significant performance enhancement, espe-
cially in retrosynthesis and reagent prediction, with im-
provements of 14.2% and 74.2%.

Instruction adaptation: This effect is especially pro-
nounced in retrosynthesis and reagent prediction tasks, with
almost a 10% additional increase (13.0% → 14.2% and 67.1%
→ 74.2%)

Cluster number: When the cluster number N is set too
low, despite achieving high standard accuracy rates, the
potential benefits of RT knowledge injection may not be
fully realized, and could inadvertently result in a decline in
model performance.

4.4 Multi-Task Reaction Prediction

To tackle KI3, we evaluate the performance of our model
on multi-task reaction prediction, highlighting how prompt-
based knowledge injection influences the model’s ability to
accurately predict various chemical reaction tasks. In our
study, we amalgamate datasets from three distinct tasks for
fine-tuning models, including T5, MolT5, and Text+Chem
T5. Assuming each task is trained separately, we can estab-
lish an optimal performance baseline for each, denoted as
Text+Chem T5 (avg-tasks). The outcomes of this experiment
are detailed in Table 2.

The side effects of multi-tasking: Based on the experi-
mental results of Text+Chem T5 (avg-tasks) and Text+Chem
T5 (finetune), we observe that direct integration and train-
ing across multiple tasks can lead to conflicting gradient
updates and task interference, ultimately degrading the
model’s performance. This phenomenon, often referred to
as negative transfer, occurs when the optimization for one
task adversely affects the learning of another, resulting in
suboptimal performance across the board.
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Fig. 4. Case studies of RT annotation. To validate the practical significance of RT annotation, we filter through the concat(input, output)vec vector
with N = 10 labeled results, focusing on samples with an RT label of 0. The molecules in these instances transform simple atomic substitutions.
This analysis verifies the predominance of substitution reactions within these cases, demonstrating the real-world relevance of our RT annotation
method.

Synergy of prompt-enhanced learning: The Prompt-
Enhanced approach demonstrates a synergistic effect across
multiple tasks, not only counteracting the side effects but
also fostering synergy. This approach results in a signifi-
cant performance boost of 14.9% over Text+Chem T5 (avg-
tasks) due to improved task-specific adaptation and focused
learning. By guiding the model with task-specific prompts,
we effectively mitigate the issues of task interference, en-
abling the model to leverage shared knowledge bases while
honing in on the nuances of each task. The enhanced task
formulation provided by the prompts leads to more effective
learning strategies and superior overall performance.

5 DISCUSSION

In our exploration, we’ve highlighted the innovative ap-
proach to RT annotation as a solution to the pervasive chal-
lenge of data scarcity in real-world scenarios. Our methodol-
ogy showcases the LLM’s inherent ability to internalize and
utilize latent knowledge, asserting the necessity of precise
guidance to unlock its full potential. Further, our analysis
extends to the multi-task benefits derived from this guided

learning process. We aim to illuminate the critical insights
and limitations encountered throughout our study.

RT annotation significance: From Table 1 in Chapter
4, the practical effect of RT Annotation injection into lan-
guage models is evident. The model’s performance can be
improved with higher cluster numbers N, but this also in-
troduces challenges with annotation accuracy. Thus, finding
a balance between annotation accuracy and the quantity
of N emerges as a focal point of this part. More impor-
tantly, we scrutinize whether RTs annotated through self-
feedback knowledge elicitation correspond to actual chem-
ical RTs. This alignment between automated annotations
and human-understandable concepts can significantly pro-
pel the advancement of interpretability in LLMs. Figure 4
presents randomly selected instances of reactions with RT
annotations labeled as 0, with the reaction sites indicated.
Most of these reactions are identified as substitution reac-
tions, which confirms the practical significance of the knowl-
edge patterns that our knowledge elicitation methodology
extracts.

Knowledge learning in LLMs: LLMs might intrinsically
possess the capability to predict RTs. The slight improve-
ments in forward reaction predictions illuminate this ability
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of LLMs. LLMs can also grasp an understanding of reaction
mechanisms without explicit instruction. By deconstructing
the problem, we allow the models to gain prior knowledge,
facilitating the planning of reaction pathways and simpli-
fying the text generation task into more straightforward
classification issues and less complex text generation tasks.
Consequently, this can enhance the overall task performance
while also increasing the complexity of the process. This
approach to problem decomposition is also potentially ap-
plicable across various scientific domains, such as molecule
design and lead optimization, suggesting a broad utility of
this methodology in advancing research and understanding
in multiple fields.

Knowledge-enhanced multi-task synergy: We delve
into the mechanisms underlying the significant uptick in
model accuracy for multi-task learning facilitated by the use
of enhanced prompts and knowledge injection. The integra-
tion of contextually rich prompts and targeted knowledge
snippets acts as a catalyst, fine-tuning the model’s focus and
understanding of each task. This approach not only ampli-
fies task-specific performance but also harmonizes the learn-
ing process across disparate tasks. The prior knowledge acts
as an anchor, grounding the model’s learning process in
real-world phenomena and relationships, thereby reducing
the ambiguity inherent in complex tasks. For example, un-
derstanding the relationship between molecular structure
and pharmacological activity in one task can enhance the
model’s ability to predict drug toxicity in another, as both
tasks share underlying chemical knowledge. Furthermore,
this synergy underscores the potential of structured knowl-
edge and task-specific prompts in augmenting the intrinsic
multi-tasking capabilities of LLMs.

In future research, the adaptive algorithms can accu-
rately determine the optimal number and encoding strate-
gies for knowledge partners, thus avoiding the inefficient
trial-and-error approach. Exploring the potential of dynamic
prompts that not only derive from a broader, more random-
ized pool but also retain the ability to guide specific tasks
promises to improve model performance. While the extrac-
tion and injection of RTs have enhanced interpretability to a
degree, they fall short of revealing the model’s exploration
within the chemical space. The development of tools for
knowledge visualization and tracking would enable the
pinpointing of how RTs guide the text generation process,
underutilizing the potential of LLMs.

6 CONCLUSION

In this study, we reconceptualize the task at hand as SLM
and pioneer a data-curated, self-feedback knowledge elici-
tation method to identify knowledge partners, specifically
RTs. We then employ dynamic prompt learning to integrate
this prior knowledge into LLMs, thereby enhancing accu-
racy in CRPs and across multiple-task CRPs. This research
sets a novel paradigm for knowledge elicitation within sci-
entific domains and for the integration of knowledge priors,
laying foundational groundwork for the advancement of
SLM.
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