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Derivatives of Risk Measures

Battulga Gankhuu∗

Abstract

This paper provides the first and second order derivatives of any risk measures, including
VaR and ES for continuous and discrete portfolio loss random variable variables. Also, we give
asymptotic results of the first and second order conditional moments for heavy–tailed portfolio loss
random variable.

Keywords: Risk measure, partial derivative, regular variation, Value–at–Risk, Expected Short-
fall.

1 Introduction

Derivatives of risk measures are useful for capital allocation, sensitivity analysis, and portfolio choice
problems. Capital allocation means that a risk measure of some investment is represented as a sum
over the quantities, which are related to each individual risk source. Understanding of the risk sources
can be applied in performance measurement, strategic planning, pricing, and communication with
regulators, rating agencies, and security analysts. Overviews of a variety of different methodologies
for capital allocation are given in Venter, Major, and Kreps (2006) and Guo, Bauer, and Zanjani
(2021).

The most popular and simple capital allocation principle is the Euler (gradient) allocation prin-
ciple. The Euler allocation principle requires that a differentiable risk measure must be a positive
homogeneous function. In this case, the risk measure is represented in terms of partial derivatives
of the risk measure. For formal analysis of the problem of capital allocation, which is based on the
Euler allocation principle of a risk measure, appeared in the banking and insurance industry, we refer
to Tasche (1999), Tasche (2004), and McNeil, Frey, and Embrechts (2015), among others.

Another important application of the partial derivative of a risk measure is the sensitivity analysis.
For example, the following question arises: if we add a new position in a portfolio or if we increase
(decrease) a particular position in the portfolio, how does the risk of the entire portfolio change? This
question can be answered using the partial derivative of a risk measure.

Also, the partial derivative of a risk measure is useful for the portfolio choice problem. For the
portfolio choice problem, if the objective function is the risk measure and a constraint set is convex,
then to check the problem has a unique solution, we must check the strict convexity of the risk
measure. Consequently, one needs the second order partial derivatives of the risk measure.

The most popular risk measures in practice are Value–at–Risk (VaR) and Expected Shortfall (ES),
which are two closely related. Roughly speaking, VaR is a maximum loss of the portfolio loss random
variable at a certain confidence level and ES is a mean of the portfolio loss random variable given
that the portfolio random variable is greater than or equal to the VaR at the same confidence level.

The first order partial derivatives of VaR go back to Tasche (1999, 2000) and Gourieroux, Laurent,
and Scaillet (2000). They have shown that the first order derivative of VaR equals a conditional
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expectation of the first order derivative of the portfolio loss random variable given that the portfolio
loss random variable equal to the VaR. By using the same method, Tasche (1999, 2000) also has shown
that the first order derivative of ES equals a conditional expectation of the first order derivative of
portfolio loss random variable given that the portfolio loss random variable greater than or equal to
the VaR. The second order derivatives of VaR were calculated by Gourieroux et al. (2000). The all
results of Tasche (1999, 2000) and Gourieroux et al. (2000) are relied on continuous portfolio loss
random variable. While Rau-Bredow (2003) has introduced the first and second order derivatives of
VaR and ES based on discrete portfolio loss random variable. Also, Glasserman (2005) has provided
simulation methods that calculate the first order derivatives of VaR and ES for credit portfolio. In
this paper, we obtain the first and second order derivatives of any risk measures for both continuous
and discrete portfolio loss random variable variables.

This paper is organized as follows: In Section 2, we give the first and second order derivatives
of any risk measures, including VaR and ES for discrete portfolio loss random variable. Section 3 is
dedicated to the first and second order derivatives of any risk measures, including VaR and ES for
continuous portfolio loss random variable. In Section 4, we provide asymptotic results of the first and
second order conditional moments for heavy–tailed portfolio loss random variable. Finally, in Section
4, we summarize the results.

2 Discrete Portfolio Loss Random Variable

Let L : Ω × R
d → R be a portfolio loss random variable, defined on probability space (Ω,F ,P) and

̺ : L2(Ω,F ,P) → R be a risk measure, where L2(Ω,F ,P) is the space of square integrable random
variables. We suppose that there are d assets and for each asset i = 1, . . . , d, let Li be a loss random
variable of i–th asset. Then, a portfolio loss is given by the following linear equation

L(x) = L1x1 + · · ·+ Lnxn, (2.1)

where the deterministic variable xi is a weight of i–th asset. In this paper, we assume that the risk
measure ̺(x) := ̺(L(x)) has second order derivatives with respect to argument x = (x1, . . . , xd)

′ ∈ R
d.

Which means the following Assumption holds

Assumption 1. Risk measure ̺(x) has second order partial derivatives.

To obtain partial derivatives of the risk measure ̺(x) with respect to its individual arguments,
we introduce the following notations: H(x) := L(x) − ̺(x) is the difference between portfolio loss
random variable L(x) and the risk measure ̺(x), for j = 1, . . . , d, L̃j := (L1, . . . , Lj−1, Lj+1, . . . , Ld)

′ ∈
R
[d−1]×1 is a random vector, which is composed of Lis except Lj , and L̃j(x) :=

∑

i 6=j xiLi = L(x)−xjLj

is a difference between the portfolio loss random variable L(x) and a random variable xjLj . To keep
calculations convenient, we assume the following Assumption holds throughout the paper:

Assumption 2. Integral and derivative operators can be interchanged.

For the necessary conditions of the integral and derivative operators to be interchanged in their
order, we refer to Tasche (1999), Tasche (2000), and Klenke (2013).

In this Section, we develop partial derivative formulas of the risk measure for discrete loss random
vector (L1, . . . , Ld)

′. In order to obtain partial derivatives of the risk measure, corresponding to the
discrete portfolio loss random variable L(x), we need first order partial derivatives of probabilities
P[H(x) = 0|L̃j ] and P[H(x) = 0] and an expectation E

[

Lj1{H(x)≥0}

]

for j = 1, . . . , d. In the following
Lemma, we give the partial derivatives of the probabilities and expectation.

Lemma 1. Let (L1, . . . , Ld)
′ be an integrable discrete random vector. Then, for i, j = 1, . . . , d, it

holds
∂

∂xi
P
[

H(x) = 0
∣

∣L̃j

]

= 0, (2.2)
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∂

∂xi
P
[

H(x) = 0
]

= 0, (2.3)

∂

∂xi
E
[

Lj1{H(x)≥0}

]

= 0, (2.4)

and
∂

∂xi
E
[

L(x)1{H(x)≥0}

]

= E
[

Li1{H(x)≥0}

]

, (2.5)

where for a generic event A ∈ F , 1A is an indicator random variable of the event A.

Proof. Let us fix i, j = 1, . . . , d. For a case P
[

H(x) = 0
∣

∣L̃j

]

= 0, it is clear that equations (2.2) and

(2.3) hold. Therefore, we assume that P
[

H(x) = 0
∣

∣L̃j

]

> 0. In this case, we consider a difference

quotient for the probability P
[

H(x) = 0
∣

∣L̃j

]

, that is,

m

(

P

[

H

(

x+
1

m
ei

)

= 0

∣

∣

∣

∣

L̃j

]

− P
[

H(x) = 0
∣

∣L̃j

]

)

, (2.6)

where ei ∈ R
d is a unit vector, whose i–th component equals 1 and others zero. Since P

[

H(x) =

0
∣

∣L̃j

]

> 0, there is an ε > 0 such that P
[

H(x) = 0
∣

∣L̃j

]

= P
[

|H(x)| < ε
∣

∣L̃j

]

. Because the risk measure
̺(x) is a continuous function at the point x, there is a δ such that for all m > 1/δ,

∣

∣

∣

∣

̺

(

x+
1

m
ei

)

− ̺(x)−
1

m
Li

∣

∣

∣

∣

< ε. (2.7)

As a result, since H
(

x+ 1
m
ei
)

= H(x)−
{

̺
(

x+ 1
m
ei
)

− ̺(x)− 1
m
Li

}

, for all m > 1/δ, the difference
quotients are equal to zero. That means equation (2.2) holds. For equation (2.3), by the iterated
expectation formula, we get that

∂

∂xi
P
[

H(x) = 0
]

= E

[

∂

∂xi
P
[

H(x) = 0
∣

∣L̃j

]

]

= 0. (2.8)

Thus, equation (2.3) is true. Due to the iterated expectation formula, for j 6= k, we have

∂

∂xi
E
[

Lj1{H(x)≥0}

]

= E

[

Lj
∂

∂xi
P[H(x) ≥ 0|L̃k]

]

. (2.9)

According to equation (2.2), we find that

∂

∂xi
P[H(x) ≥ 0|L̃k] = 0. (2.10)

As a result, it follows from equations (2.9) and (2.10) that equation (2.4) holds. As

E
[

L(x)1{H(x)≥0}

]

=

d
∑

j=1

E
[

Lj1{H(x)≥0}

]

xj , (2.11)

a partial derivative of the above equation with respect to the argument xi is obtained by

∂

∂xi
E
[

L(x)1{H(x)≥0}

]

=

d
∑

j=1

∂

∂xi
E
[

Lj1{H(x)≥0}

]

xj + E
[

Li1{H(x)≥0}

]

. (2.12)

Consequently, from equations (2.4) and (2.12), one gets equation (2.5).
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Since E
[

H(x)1{H(x)=0}

]

= 0, it holds

E
[

̺(x)1{H(x)=0}

]

=

d
∑

j=1

E
[

Lj1{H(x)=0}

]

xj (2.13)

If we take a partial derivative for both sides of above equation with respect to the argument xi, then
as ∂

∂xi
P[H(x) = 0] = 0, we have

E

[

∂̺(x)

∂xi
1{H(x)=0}

]

=

d
∑

j=1

∂

∂xi
E
[

Lj1{H(x)=0}

]

xj + E
[

Li1{H(x)=0}

]

. (2.14)

From equation (2.14), one can conclude that if the first term of the right–hand side of the equation

equals zero, that is,
∑d

j=1
∂
∂xi

E
[

Lj1{H(x)=0}

]

xj = 0, then E
[∂H(x)

∂xi
1{H(x)=0}

]

= 0. In the following
Proposition, we give results, which deal with the right–hand side of equation (2.14).

Proposition 1. Let (L1, . . . , Ld)
′ be an integrable discrete random vector and P

[

H(x) = 0
]

> 0.
Then, for k, i = 1, . . . , d, it holds

∂̺(x)

∂xi
= E

[

Li

∣

∣H(x) = 0
]

(2.15)

and
∂2̺(x)

∂xk∂xi
= 0. (2.16)

Proof. Since for k 6= j, by the iterated expectation formula,

∂

∂xi
E
[

Lj1{H(x)=0}

]

= E

[

Lj
∂

∂xi
P
[

H(x) = 0
∣

∣L̃k

]

]

, (2.17)

according to equation (2.2) in Lemma 1, we find that

∂

∂xi
E
[

Lj1{H(x)=0}

]

= 0 for i, j = 1, . . . , d. (2.18)

Substituting equation (2.18) into equation (2.14) and applying the iterated expectation formula, we
obtain the following equation

E

[

∂̺(x)

∂xi
1{H(x)=0}

]

= E
[

Li1{H(x)=0}

]

. (2.19)

for i 6= j, i, j = 1, . . . , d. For the second order partial derivative, by Lemma 2 and equation (2.19), we
have

E

[

∂2̺(x)

∂xk∂xi
1{H(x)=0}

]

=
∂

∂xk
E

[

∂̺(x)

∂xi
1{H(x)=0}

]

=
∂

∂xk
E
[

Li1{H(x)=0}

]

= 0 (2.20)

for k, i = 1, . . . , d. Since P[H(x) = 0] > 0, if we divide the both sides of equations (2.19) and
(2.20) by P[H(x) = 0], then we obtain equations (2.15) and (2.16). That completes the proof of the
Proposition.

It should be noted that it follows from equation (2.16) that higher order partial derivatives of the
risk measure ̺(x) are equal to zero.

It seems that the first and second partial derivatives of VaR and ES for discrete portfolio loss
random variable are first explored in Rau-Bredow (2003). However, it is worth mentioning that
Proposition 1 not only holds for the VaR and ES but also any risk measures. VaR and ES are two
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closely related and commonly used risk measures in practice. Mathematically, the risk measures at a
confidence level α ∈ (0, 1) are defined by

VaRα(x) := qα(x) = inf
{

t ∈ R
∣

∣FL(x)(t) ≥ α
}

(2.21)

and

ESα(x) :=
1

1− α

∫ 1

α

qu(x)du, (2.22)

respectively, where qα(x) is the α–quantile and FL(x)(t) is a distribution function, respectively, of the
portfolio loss random variable L(x). Following the ideas in Acerbi and Tasche (2002) (see also McNeil
et al. (2015)), for a generic portfolio loss random variable L(x), it can be shown that

ESα(x) =
1

1− α

(

E
[

L(x)1{L(x)≥qα(x)}

]

− qα(x)
(

P
[

L(x) ≥ qα(x)
]

− (1− α)
)

)

. (2.23)

Artzner, Delbaen, Eber, and Heath (1999) introduced four axioms, namely

(i) Monotonicity. L1 ≤ L2 implies ̺(L1) ≤ ̺(L2).

(ii) Translation invariance. For all t ∈ R, ̺(L+ t) = ̺(L) + t.

(iii) Subadditivity. For all L1, L2 ∈ L2(Ω,F ,P), ̺(L1 + L2) ≤ ̺(L1) + ̺(L2).

(iv) Positive homogeneity. For all λ ≥ 0, ̺(λL) = λ̺(L).

Artzner et al. (1999) suppose that every risk measure should satisfy the four axioms and they refer
to risk measure, satisfying the axioms as coherent. It can be shown that ESα(x) is a coherent risk
measure, see Acerbi and Tasche (2002) (see also McNeil et al. (2015)). By using the definition of
the quantile, one can prove that VaRα(x) satisfies the axioms: monotonicity, translation invariance,
and positive homogeneity. But, in general, VaRα(x) does not satisfy the third axiom subadditivity,
see McNeil et al. (2015). Therefore, it is not a coherent risk measure in general. However, it can be
shown that for elliptically distributed loss random vector (L1, . . . , Ld)

′, the risk measure VaRα(x) for
α ∈ [0.5, 1) satisfies the subadditivity axiom, see McNeil, Frey, and Embrechts (2005).

Now, we consider some results, which deal with partial derivatives of the expected shortfall ESα(x).
If we take the generic risk measure ̺(x) by the Value–at–Risk, ̺(x) = VaRα(x) = qα(x), then the
following Corollary holds.

Corollary 1. Let (L1, . . . , Ld)
′ be an integrable discrete random vector. Then, for i, j = 1, . . . , d, it

holds

∂

∂xi
ESα(x) =

1

1− α

(

E
[

Li1{L(x)≥qα(x)}

]

−
∂

∂xi
qα(x)

(

P
[

L(x) ≥ qα(x)
]

− (1− α)
)

)

(2.24)

and
∂2

∂xi∂xj
ESα(x) = 0. (2.25)

Proof. By the iterated expectation formula, it follows from equation (2.10) that

∂

∂xi
P
[

L(x) ≥ qα(x)
]

= 0. (2.26)

Therefore, due to equations (2.5), (2.23), and (2.26), one obtains equation (2.24). For the second
order derivatives of the expected shortfall ESα(x), by taking account equation (2.4), equation (2.16),
and (2.26) for equation (2.24), one gets equation (2.25).
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3 Continuous Portfolio Loss Random Variable

In this Section, we consider partial derivatives of risk measures of absolute continuous portfolio loss
random variable L(x). We denote for given L̃j , a conditional density function of the random variable
Lj by fLj |L̃j

(t) for j = 1, . . . , d, a density function and cumulative distribution function of the ran-

dom variable H(x) by fH(x)(t) and FH(x)(t), respectively, and the right tail probability of H(x) by
F̄H(x)(t) := P[H(x) > t] = 1 − FH(x)(t). We assume that second order partial derivatives of the tail
probability exist and are integrable. That is, the following Assumption holds

Assumption 3. The second order partial derivatives of the tail probability F̄H(x)(t) with respect to
the argument x exist and the partial derivatives are integrable with respect to the argument t.

Now, we give a main Lemma, which plays a major role in calculating partial derivatives of risk
measures of absolute continuous portfolio loss random variable L(x).

Lemma 2. Let for each j = 1, . . . , d, g
(

L̃j

)

be an integrable random variable, where g : Rd−1 → R is
a Borel function. Then, for j = 1, . . . , d and t ∈ R, we have

1

|xj |
E

[

g
(

L̃j

)

fLj |L̃j

(

̺(x) + t− L̃j(x)

xj

)]

= fH(x)(t)E
[

g
(

L̃j

)
∣

∣H(x) = t
]

. (3.1)

Proof. See McNeil et al. (2015).

It follows from Lemma 2 that the following Proposition holds.

Proposition 2. Let (L1, . . . , Ld)
′ be an integrable jointly continuous random vector. Then, for i =

1, . . . , d and t ∈ R, it holds

∂̺(x)

∂xi
= E

[

Li

∣

∣H(x) = t
]

−
1

fH(x)(t)

∂F̄H(x)(t)

∂xi
, (3.2)

∂̺(x)

∂xi
= E

[

Li

∣

∣H(x) ≥ t(x)
]

−
1

F̄H(x)(t(x))

∫ ∞

t(x)

∂F̄H(x)(z)

∂xi
dz, (3.3)

and
∂̺(x)

∂xi
= E

[

Li

]

−

∫ ∞

−∞

∂F̄H(x)(z)

∂xi
dz. (3.4)

Proof. Without loss of generality, let us suppose xj > 0. By the iterated expectation formula and
Lemma 2, one gets that for j 6= i,

∂FH(x)(t)

∂xi
=

∂

∂xi
E

[

P

(

Lj ≤
̺(x) + t− L̃j(x)

xj

∣

∣

∣

∣

L̃j

)]

=
∂̺(x)

∂xi

1

xj
E

[

fLj |L̃j

(

̺(x) + t− L̃j(x)

xj

)]

−
1

xj
E

[

LifLj |L̃j

(

̺(x) + t− L̃j(x)

xj

)]

=
∂̺(x)

∂xi
fH(x)(t)− fH(x)(t)E

[

Li

∣

∣H(x) = t
]

. (3.5)

Thus equation (3.2) holds. If we integrate the above equation from t(x) to positive infinity and from
negative infinity to positive infinity, then we obtain equations (3.3) and (3.4), respectively.

For the above Proposition, note that t(x) in equation (3.3) can depend on the argument x, while
t in equation (3.2) does not depend on the argument x. Henceforth, we will use the notations t(x)
and t for the same reason. Since for the risk measure Value–at–Risk ̺(x) = qα(x), FH(x)(0) = α,

6



we get the well–known formula of the first order derivative of the Value–at–Risk, namely, ∂
∂xi

qα(x) =

E
[

Li

∣

∣L(x) = qα(x)
]

, see Tasche (1999, 2000), Gourieroux et al. (2000), and McNeil et al. (2015).
As we compare equations (2.15) and (3.2), for absolute continuous portfolio loss random variable,
there is an additional term arose. If we ignore the additional terms, equations (3.2) and (3.3) look
like partial derivatives of VaRα(x) and ESα(x), respectively, for the partial derivatives of ESα(x), see
below. Applying the idea in proof of Proposition 2, one can develop formulas of the first order partial
derivatives of any risk measure for a nonlinear portfolio loss random variable. It is worth mentioning
that equations (3.2) and (3.3) are new formulas for the calculation of the first order derivatives of any
risk measures.

Now we consider a case, where the risk measure ̺(x) is a positive homogeneous function. If we
multiply equation (3.2) by xi and then sum it for all i = 1, . . . , d, then we find that

̺(x) =
d

∑

i=1

∂̺(x)

∂xi
xi = E

[

L(x)
∣

∣H(x) = t
]

−
1

fH(x)(t)

d
∑

i=1

∂F̄H(x)(t)

∂xi
xi

= ̺(x) + t−
1

fH(x)(t)

d
∑

i=1

∂F̄H(x)(t)

∂xi
xi. (3.6)

As a result, we obtain that
d

∑

i=1

∂F̄H(x)(t)

∂xi
xi = tfH(x)(t). (3.7)

In special case, corresponding to t = 0 for the above equation, FH(x)(0) becomes a homogeneous
function with degrees of zero. Using the idea in proof of Proposition 2, for a Borel function h : R → R,
which has derivative and the positive homogeneous risk measure ̺(x), it can be shown that h(̺(x))
has the following representation

h(̺(x)) = h′(̺(x))̺(x) +
1

fL(x)(h(̺(x)))

d
∑

i=1

∂F̄L(x)(h(̺(x)))

∂xi
xi. (3.8)

If we choose the function h(t) by the logarithm and exponential functions, which are strictly monotone
functions, i.e., h(t) = ln(t) and h(t) = exp(t), then we have that

ln(̺(x)) = 1 +
1

fL(x)(ln(̺(x)))

d
∑

i=1

∂F̄L(x)(ln(̺(x)))

∂xi
xi (3.9)

and

̺(x) = 1−
1

exp(̺(x))fL(x)(exp(̺(x)))

d
∑

i=1

∂F̄L(x)(exp(̺(x)))

∂xi
xi. (3.10)

In the following Proposition, we consider results, which depend on the second order moments of
the loss random vector (L1, . . . , Ld)

′.

Proposition 3. Let (L1, . . . , Ld)
′ be an square integrable continuous random vector and for i, j =

1, . . . , d, ∂
∂xi

E
[

Lj1{H(x)≥t}

]

be integrable functions with respect to the argument t. Then, for t ∈ R

and i, j = 1, . . . , d, it holds

∂̺(x)

∂xi
=

1

E
[

Lj1{H(x)≥t(x)}

]

(

E
[

LiLj1{H(x)≥t(x)}

]

−

∫ ∞

t(x)

∂

∂xi
E
[

Lj1{H(x)≥z}

]

dz

)

, (3.11)

∂

∂xi
E
[

Lj1{H(x)≥t}

]

= fH(x)(t)Cov
[

Li, Lj

∣

∣H(x) = t
]

+ E
[

Lj

∣

∣H(x) = t
]∂F̄H(x)(t)

∂xi
, (3.12)
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∂

∂xi
E
[

L(x)1{H(x)≥t}

]

= E
[

Li1{H(x)≥t}

]

+
(

̺(x) + t
)∂F̄H(x)(t)

∂xi
, (3.13)

and

∂̺(x)

∂xi∂xj
=

1

F̄H(x)(t)

[

fH(x)(t)Cov
[

Li, Lj

∣

∣H(x) = t
]

+
1

fH(x)(t)

∂F̄H(x)(t)

∂xi

∂F̄H(x)(t)

∂xj
−

∫ ∞

t

∂2F̄H(x)(z)

∂xi∂xj
dz

]

. (3.14)

Proof. Without loss of generality, we suppose xk > 0. According to the iterated expectation formula
and Lemma 2, for k 6= i, j, the partial derivative ∂

∂xi
E
[

Lj1{H(x)≥t}

]

is obtained by

∂

∂xi
E
[

Lj1{H(x)≥t}

]

= −
∂

∂xi
E

[

LjP

(

Lk ≤
̺(x) + t− L̃k(x)

xk

∣

∣

∣

∣

L̃k

)]

= fH(x)(t)E
[

LiLj

∣

∣H(x) = t
]

−
∂̺(x)

∂xi
fH(x)(t)E

[

Lj

∣

∣H(x) = t
]

. (3.15)

Integrating equation (3.15) from t(x) to positive infinity, we get equation (3.11). Taking into account
equation (3.2), we obtain equation (3.12). Consequently, it follows from equation (3.12) that the sum
in equation (2.12), which is adjusted by the argument t is given by

d
∑

j=1

∂

∂xi
E
[

Lj1{H(x)≥t}

]

xj = fH(x)(t)Cov
[

Li, L(x)
∣

∣H(x) = t
]

+ E
[

L(x)
∣

∣H(x) = t
]∂F̄H(x)(t)

∂xi

=
(

̺(x) + t
)∂F̄H(x)(t)

∂xi
. (3.16)

As a result, due to equation (2.12), which is adjusted by the argument t, one obtains equation (3.13).
By equations (3.2), (3.3), and (3.12), we find that

∂

∂xi
E
[

Lj

∣

∣H(x) ≥ t
]

=
∂

∂xi

{

1

F̄H(x)(t)
E
[

Lj1{H(x)≥t}

]

}

=
1

F̄H(x)(t)

[

fH(x)(t)Cov
[

Li, Lj

∣

∣H(x) = t
]

(3.17)

+

(

1

fH(x)(t)

∂F̄H(x)(t)

∂xj
−

1

F̄H(x)(t)

∫ ∞

t

∂F̄H(x)(z)

∂xj
dz

)

∂F̄H(x)(t)

∂xi

]

.

Thus, from equations (3.3) and (3.17) and a fact that

∂

∂xi

{

1

F̄H(x)(t)

∫ ∞

t

∂F̄H(x)(z)

∂xj
dz

}

=
1

F̄H(x)(t)

∫ ∞

t

∂2F̄H(x)(z)

∂xi∂xj
dz (3.18)

−
1

F̄ 2
H(x)

(t)

∫ ∞

t

∂F̄H(x)(z)

∂xj
dz

∂F̄H(x)(t)

∂xi

we obtain equation (3.14).

It should be noted that for elliptically distributed loss random vector (L1, . . . , Ld)
′, the first and

second order derivatives of any risk measure can be easily calculated from the representation of the
risk measure, see McNeil et al. (2015).
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Let us consider the following mean–risk measure portfolio choice problem
{

̺(x) −→ min

s.t. x′µ = rp and x′e = 1,
(3.19)

where µ = (E[L1], . . . ,E[Ld])
′ is an expectation vector of the loss random vector, e = (1, . . . , 1)′ ∈ R

d

is a vector, consisting of 1, and rp is a portfolio return, which is defined by investors. Note that if
we replace the objective function ̺(x) with x′Σx, then we obtain Markowitz’s (1952) mean–variance
portfolio choice problem, where Σ is a covariance matrix of the loss random vector. For the mean–
risk measure portfolio choice problem, the convexity of the risk measure (objective function) ̺(x) is
a crucial topic. Since the constraint set is a convex set, if the risk measure is a convex function,
then the problem becomes a convex optimization problem. Convex optimization problems have nice
properties. Thus, one should check that the risk measure is a convex function. One method to check
the convexity of the risk measure is that the Hessian matrix of the risk measure is positive semi–
definite. For this reason, let us denote the Hessian matrix of the risk measure ̺(x) by R(x), that is,

R(x) :=
(

∂2

∂xi∂xj
̺(x)

)d

i,j=1
. Then, the following Corollary holds, which checks the convexity of the risk

measure:

Corollary 2. Let (L1, . . . , Ld)
′ be a square integrable continuous random vector. If at least one of

the following conditions hold, then the Hessian R(x) of a risk measure ̺(x) is positive semi–definite:

(i) for all t ∈ R, the Hessian of the tail probability F̄H(x)(t),
(

∂2

∂xi∂xj
F̄H(x)(t)

)d

i,j=1
is negative semi–

definite,

(ii) there is a t ∈ R such that a matrix
(

1

F̄H(x)(t)

[

fH(x)(t)Cov
[

Li, Lj

∣

∣H(x) = t
]

+
1

fH(x)(t)

∂F̄H(x)(t)

∂xi

∂F̄H(x)(t)

∂xj
−

∂2

∂xi∂xj
E
[

(H(x) − t)+
]

])d

i,j=1

(3.20)

is positive semi–definite, where for a real number x ∈ R, x+ := max(x, 0) is a maximum of x
and 0.

Proof. (i) follows from equation (3.4). For (ii), since L(x) is an integrable continuous random variable,
by the integration by parts, we have that

∫ ∞

t

F̄H(x)(z)dz = E
[

(H(x)− t)+
]

. (3.21)

Consequently, equation (3.14) implies equation (3.20).

Note that
(

Cov
[

Li, Lj

∣

∣H(x) = t
])d

i,j=1
is a positive semi–definite matrix. Therefore, to check the

Hessian R(x) is positive semi–definite, one may check the second line matrices of equation (3.20) is
positive semi–definite for some t ∈ R.

Finally, in the following Corollary, which is a direct consequence of Proposition 3, we give results
that deal with partial derivatives of the expected shortfall ESα(x).

Corollary 3. Let (L1, . . . , Ld)
′ be a square integrable continuous random vector. Then, for i, j =

1, . . . , d, it holds

∂

∂xi
ESα(x) =

1

1− α
E
[

Li1{L(x)≥qα(x)}

]

= E
[

Li

∣

∣L(x) ≥ qα(x)
]

(3.22)

and
∂2

∂xi∂xj
ESα(x) =

1

1− α
fH(x)(0)Cov

[

Li, Lj

∣

∣L(x) = qα(x)
]

. (3.23)

9



Proof. According to equations (2.23) and (3.13) and the fact that ∂
∂xi

F̄H(x)(0) =
∂
∂xi

F̄L(x)(qα(x)) = 0,
we get equation (3.22). It follows from equations (3.12) and (3.22) that equation (3.23) holds.

It should be emphasized that since
(

Cov
[

Li, Lj

∣

∣L(x) = qα(x)
])d

i,j=1
is a positive semi–definite

matrix, the risk measure ESα(x) is a convex function with respect to the argument x. If we take
t(x) = qα(x)− ̺(x) in equation (3.3), then equation (3.22) implies that

∂̺(x)

∂xi
=

∂

∂xi
ESα(x)−

1

1− α

∫ ∞

qα(x)−̺(x)

∂F̄L(x)(̺(x) + z)

∂xi
dz. (3.24)

In particular, if ̺(x) = ESα(x), then we have that

∫ ∞

qα(x)−ESα(x)

∂F̄L(x)(ESα(x) + z)

∂xi
dz = 0. (3.25)

4 Heavy Tailed Distributions

Extreme value theory studies the stochastic behavior of the extreme values in a process. In the
univariate case, the stochastic behavior of the maxima of independent identically distributed (i.i.d.)
random variables can be described by the three extreme value distributions, namely, Fréchet, Weibull,
and Gumbel. There are two main methods that model the extreme values. The first method relies on
block maxima of the i.i.d. random variables, while the second method relies on peak values above a
certain threshold. Because the second method applies more data on extreme outcomes than the first
method, the second method is considered most useful in practice.

Let L1, L2, . . . be an i.i.d. sequence of the loss random variables. Then, the block maxima of the
sequence is defined by

Mn := max(L1, . . . , Ln). (4.1)

Because a distribution function of the block maxima converges to a degenerate distribution, we need
to seek normalizing constants cn > 0 and dn ∈ R such that a limiting distribution of the block maxima
is non–degenerate H(t), i.e.,

lim
n→∞

P
[

c−1
n (Mn − dn) ≤ t

]

= H(t). (4.2)

According the Fisher–Tippett theorem (see Embrechts, Klüppelberg, and Mikosch (1997) and McNeil
et al. (2015)), if there exist normalizing constants cn > 0 and dn ∈ R, and non–degenerate distribution
function H(t), then H(t) must be type of one of the following distributions:

Fréchet: Φκ(t) =

{

0, t ≤ 0

exp{−t−κ}, t > 0
κ > 0.

Weibull: Ψκ(t) =

{

exp{−(−t)κ}, t ≤ 0

1, t > 0
κ > 0.

Gumbel: Λ(t) = exp{− exp{−t}}, t ∈ R.

(4.3)

The rest of the paper, we consider the Fréchet case, which is commonly used to model tails of financial
loss random variables.

4.1 t Does not Depend on x

In this Subsection, we assume that t does not depend on the variable x. Due to the extreme value
theory, it is the well–known fact that for a heavy–tailed (Fréchet case) random variable L(x), its tail
probability F̄L(x)(t) is represented by

F̄L(x)(t) = t−κℓL(x)(t) for κ > 0, (4.4)
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where ℓL(x)(t) is a slowly varying function at ∞, that is, it satisfy the following condition

lim
t→∞

ℓL(x)(λt)

ℓL(x)(t)
= 1 for all λ > 0, (4.5)

see Embrechts et al. (1997) and McNeil et al. (2015). The parameter κ is often referred to as the
tail index of the distribution function FL(x)(t). From representation (4.4) of the tail probability, one
may deduce that the tail probability decays like a power function. In this paper, we assume that the
density function fL(x)(t) is an ultimately monotone function, that is, there is an interval (a,∞) for
some a > 0 such that fL(x)(t) is monotone. Under the assumption, by monotone density theorem, the
density function fL(x)(t) is represented by

fL(x)(t) = κt−k−1ℓL(x)(t), (4.6)

see Bingham, Goldie, and Teugels (1989) and Embrechts et al. (1997). In the following lemma, we
show that the conditional expectation E

[

Li

∣

∣L(x) = t
]

is a regular varying function at ∞ with index
1.

Proposition 4. Let tail probability of a random variable L(x) is represented by F̄L(x)(t) = t−κℓL(x)(t)
for κ > 1, where ℓL(x)(t) is slowly varying function at ∞. Then, E

[

Li

∣

∣L(x) = t
]

is a regular varying
function at ∞ with index 1

Proof. From the representation F̄L(x)(t) = t−κℓL(x)(t) for κ > 0, we have

F̄L(x)(λt)

F̄L(x)(t)
= λ−κ, as t → ∞ (4.7)

Since the limit λ−κ does not depend on x, we get that for i = 1, . . . , d,

∂

∂xi

{

tF̄L(x)(λt)

F̄L(x)(t)

}

= 0, as t → ∞. (4.8)

On the other hand, according to equation (3.5) with ̺(x) = 0, the derivative is expressed by the
following equation

∂

∂xi

{

tF̄L(x)(λt)

F̄L(x)(t)

}

=
t ∂
∂xi

F̄L(x)(λt)

F̄L(x)(t)
−

tF̄L(x)(λt)

F̄L(x)(t)

∂
∂xi

F̄L(x)(t)

F̄L(x)(t)

=
tfL(x)(λt)E

[

Li

∣

∣L(x) = λt
]

F̄L(x)(t)
− λ−κ

tfL(x)(t)E
[

Li

∣

∣L(x) = t
]

F̄L(x)(t)

=
(λt)fL(x)(λt)

F̄L(x)(λt)

F̄L(x)(λt)

F̄L(x)(t)

1

λ
E
[

Li

∣

∣L(x) = λt
]

− λ−κ
tfL(x)(t)

F̄L(x)(t)
E
[

Li

∣

∣L(x) = t
]

= κλ−κ

(

1

λ
E
[

Li

∣

∣L(x) = λt
]

− E
[

Li

∣

∣L(x) = t
]

)

. (4.9)

Therefore, due to equation (4.8), we find that

lim
t→∞

E
[

Li

∣

∣L(x) = λt
]

E
[

Li

∣

∣L(x) = t
] = λ. (4.10)

Thus, the conditional expectation E
[

Li

∣

∣L(x) = t
]

is a regularly varying function at ∞ with index 1.
That completes the proof.

11



According to Proposition 4, the conditional expectation E
[

Li

∣

∣L(x) = t
]

is represented by

E
[

Li

∣

∣L(x) = t
]

= tℓiL(x)(t), for i = 1, . . . , d, (4.11)

where ℓi
L(x)(t) is a slowly varying function at ∞.

Proposition 5. Let tail probability of a random variable L(x) is represented by F̄L(x)(t) = t−κℓL(x)(t)
for κ > 1, for i = 1, . . . , d, conditional expectations E

[

Li

∣

∣L(x) = t
]

are represented by E
[

Li

∣

∣L(x) =
t
]

= tℓi
L(x)(t), and density fL(x)(t) be an ultimately monotone function, where ℓL(x)(t) and ℓi

L(x)(t) for
i = 1, . . . , d are slowly varying function at ∞. Then, for the slowly varying functions, the following
results hold

ℓiL(x)(t) =
1

x1 + · · ·+ xd
, t → ∞ (4.12)

for i = 1, . . . , d and
ℓL(x)(t) = (x1 + · · ·+ xd)

κ, t → ∞. (4.13)

Consequently, we have that
F̄L(x)(t) = t−κ(x1 + · · ·+ xd)

κ (4.14)

and
fL(x)(t) = κt−κ−1(x1 + · · · + xd)

κ. (4.15)

Proof. Since F̄L(x)(t) = t−κℓL(x)(t) for κ > 1 and the density fL(x)(t) is the ultimate monotone

function, by monotone density theorem, the density has representation fL(x)(t) = κt−(κ+1)ℓL(x)(t). If
we multiply equation E

[

Li

∣

∣L(x) = t
]

= tℓi
L(x)(t) by xi, sum it for i = 1, . . . , d, and use a fact that

E
[

L(x)
∣

∣L(x) = t
]

= t, then one obtains that

d
∑

i=1

ℓiL(x)(t)xi = 1. (4.16)

According to equation (3.2), we have

∂F̄L(x)(t)

∂xi
= E

[

Li

∣

∣L(x) = t
]

fL(x)(t) (4.17)

for i = 1, . . . , d. Therefore, it follows from representations of the tail probability, density function,
and conditional expectation of the portfolio loss random variable L(x) that

t−κ
∂ℓL(x)(t)

∂xi
=

(

tℓiL(x)(t)
)

×
(

κt−(κ+1)ℓL(x)(t)
)

(4.18)

for i = 1, . . . , d. As a result, we find that

∂ℓL(x)(t)

∂xi
= κℓiL(x)(t)ℓL(x)(t) (4.19)

for i = 1, . . . , d. Consequently, due to equation (4.16), we reach the following problem for ℓL(x)(t) and

ℓ1
L(x)(t), . . . , ℓ

d
L(x)(t):











∂ ln
(

ℓL(x)(t)
)

∂xi
= κℓi

L(x)(t) for i = 1, . . . , d,

ℓ1
L(x)(t)x1 + · · · + ℓd

L(x)(t)xd = 1.
(4.20)

One can easily check that a solution to the problem is given by the following equations

ℓiL(x)(t) =
1

x1 + · · · + xd
(4.21)
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for i = 1, . . . , d and
ℓL(x)(t) = (x1 + · · · + xd)

κ. (4.22)

Equations (4.14) and (4.15) follows from representations of the tail probability F̄L(x)(t) and the density
function fL(x)(t) and equation (4.13).

Corollary 4. Let conditions of Proposition 5 hold. Then, the following results hold

E
[

Li

∣

∣L(x) = t
]

=
t

x1 + · · · + xd
, t → ∞ (4.23)

and

E
[

Li

∣

∣L(x) ≥ t
]

=
κ

κ− 1

t

x1 + · · ·+ xd
, t → ∞ (4.24)

for i = 1, . . . , d.

Proof. Equations (4.11) and (4.13) imply equation (4.23). It follows from equation (4.14) that the
partial derivative of the tail probability with respect to the argument xi is given by

∂F̄L(x)(t)

∂xi
= t−κκ(x1 + · · ·+ xd)

κ−1. (4.25)

Thus, one obtains that for κ > 1,

∫ ∞

t(x)

∂F̄L(x)(z)

∂xi
dz = t(x)−(κ−1) κ

κ− 1
(x1 + · · ·+ xd)

κ−1, t → ∞. (4.26)

Consequently, if take ̺(x) = 0 in equation (4.3), then by equations (4.14)/(4.44) (with ̺(x) = t(x),
see below) and (4.26), we find that

E
[

Li

∣

∣L(x) ≥ t(x)
]

=
1

F̄L(x)(t(x))

∫ ∞

t(x)

∂F̄L(x)(z)

∂xi
dz =

κ

κ− 1

t(x)

x1 + · · ·+ xd
, t → ∞ (4.27)

for i = 1, . . . , d. Thus, by taking t(x) = t in the above equation, one obtains equation (4.24).

Now we give some asymptotic results, which are related to the second order conditional moments
of components of the jointly continuous random vector (L1, . . . , Ld)

′.

Corollary 5. Let κ > 2 and conditions of Proposition 5 hold. Then, the following results hold

E
[

LiLj

∣

∣L(x) = t
]

=
t2

(x1 + · · ·+ xd)2
, t → ∞ (4.28)

and

E
[

LiLj

∣

∣L(x) ≥ t
]

=
κ

κ− 2

t2

(x1 + · · · + xd)2
, t → ∞ (4.29)

for i, j = 1, . . . , d.

Proof. Observe that

∂

∂xi
E
[

Lj1{L(x)≥t}

]

=
∂F̄L(x)(t)

∂xi
E
[

Lj

∣

∣L(x) ≥ t
]

+ F̄L(x)(t)
∂

∂xi
E
[

Lj

∣

∣L(x) ≥ t
]

(4.30)

If we substitute equations (4.14), (4.24), and (4.25) into the above equation, we get that

∂

∂xi
E
[

Lj1{L(x)≥t}

]

= t−k+1κ(x1 + · · ·+ xd)
k−2, t → ∞. (4.31)
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By equations (4.23) and (4.25), one finds that

∂F̄L(x)(t)

∂xi
E
[

Lj

∣

∣L(x) = t
]

= t−k+1κ(x1 + · · · + xd)
k−2, t → ∞. (4.32)

Therefore, it follows from equations (3.12), (4.15), (4.31), and (4.32) that

1

t2
Cov

[

Li, Lj

∣

∣L(x) = t
]

= 0, t → ∞. (4.33)

As a result, from equations (4.23) and (4.33), one obtains equation (4.28). If we take ̺(x) = 0 in
equation (3.15), integrate it from t(x) to ∞, and divide F̄L(x)(t(x)), then we have

E
[

LiLj

∣

∣L(x) ≥ t(x)
]

=
1

F̄L(x)(t(x))

∫ ∞

t(x)

∂

∂xi
E
[

Lj1{L(x)≥z}

]

dz. (4.34)

By substituting equation (4.24) into the integral in the above equation, one gets that
∫ ∞

t(x)

∂

∂xi
E
[

Lj1{L(x)≥z}

]

dz = t(x)−k+2 κ

κ− 2
(x1 + · · ·+ xd)

−κ+2, t → ∞. (4.35)

Consequently, if substitute equations (4.14) and (4.35) into equation (4.34), then we obtain equation
(4.29), where we take t(x) = t. That completes the proof.

4.2 t Depends on x

Now we suppose that the variable t in previous Subsection 4.1 equals some risk measure ̺(x), which
depends on the variable x and converges to ∞. Simple examples of the risk measures, which satisfy
the condition ̺(x) → ∞ are VaRα(x) and ESα(x), as α → 1. Under the assumption, equation (4.4)
becomes

F̄L(x)(̺(x)) = ̺(x)−κℓL(x)(̺(x)), ̺(x) → ∞ (4.36)

for κ > 0, where ℓL(x)(t) is slowly varying function at ∞. Since the density function fL(x)(t) is the
ultimately monotone function, by the monotone density theorem, the density function fL(x)(̺(x)) is
written by

fL(x)(̺(x)) = κ̺(x)−k−1ℓL(x)(̺(x)), ̺(x) → ∞. (4.37)

Assumption 4. We assume that for i = 1, . . . , d and λ > 0,

lim
̺(x)→∞

[

̺(x)
∂

∂xi

{

F̄L(x)(λ̺(x))

F̄L(x)(̺(x))

}]

= 0. (4.38)

For the rest of the paper, we assume that Assumption 4 holds. Using the ideas in proof of
Proposition 4, we prove the following Proposition, which is an analog of Proposition 4.

Proposition 6. Let tail probability of a random variable L(x) is represented by F̄L(x)(̺(x)) =
̺(x)−κℓL(x)(̺(x)) for κ > 1, where ℓL(x)(̺(x)) is slowly varying function at ∞. Then, we have
that

lim
̺(x)→∞

E
[

Li

∣

∣L(x) = λ̺(x)
]

E
[

Li

∣

∣L(x) = ̺(x)
] = λ. (4.39)

Proof. For fixed λ > 0 and i = 1, . . . , d, let us introduce notations: H(x) = L(x) − ̺(x), Hi(x) =
Li −

∂
∂xi

̺(x), Ĥ(x) = L(x) − λ̺(x), and Ĥi(x) = Li − λ ∂
∂xi

̺(x). Then, similarly to the proof of
Proposition 4, we get that

̺(x)
∂

∂xi

{

F̄L(x)(λ̺(x))

F̄L(x)(̺(x))

}

= κλ−κ

(

1

λ
E
[

Ĥi

∣

∣Ĥ(x) = 0
]

− E
[

Hi

∣

∣H(x) = 0
]

)

. (4.40)

Consequently, according to Assumption 4, one obtains equation (4.39).
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Proposition 7. As ̺(x) → ∞, let tail probability of the portfolio random variable L(x) is represented
by F̄L(x)(̺(x)) = ̺(x)−κℓL(x)(̺(x)) for κ > 1, for i = 1, . . . , d, conditional expectations E

[

Li

∣

∣L(x) =
̺(x)

]

are represented by

E
[

Li

∣

∣L(x) = ̺(x)
]

= ̺(x)ℓiL(x)(̺(x)), (4.41)

and density fL(x)(t) be an ultimately monotone function, where ℓL(x)(t) and ℓi
L(x)(t) for i = 1, . . . , d

are slowly varying function at ∞. Then, for the slowly varying functions, the following results hold

ℓiL(x)(̺(x)) =
1

x1 + · · ·+ xd
, ̺(x) → ∞ (4.42)

for i = 1, . . . , d and
ℓL(x)(̺(x)) = (x1 + · · ·+ xd)

κ, ̺(x) → ∞. (4.43)

Consequently, we have that

F̄L(x)(̺(x)) = ̺(x)−κ(x1 + · · · + xd)
κ, ̺(x) → ∞ (4.44)

and
fL(x)(̺(x)) = ̺(x)−κ−1κ(x1 + · · ·+ xd)

κ, ̺(x) → ∞. (4.45)

Proof. By multiplying equation conditional expectation (4.41) by xi, summing it for i = 1, . . . , d, and
using the fact that E

[

L(x)
∣

∣L(x) = ̺(x)
]

= ̺(x), we find that

d
∑

i=1

ℓiH(x)(̺(x))xi = 1. (4.46)

By equation (2.2) for t = 0, we get that

∂F̄L(x)(̺(x))

∂xi
=

(

E
[

Li

∣

∣L(x) = ̺(x)
]

−
∂̺(x)

∂xi

)

fL(x)(̺(x)) (4.47)

for i = 1, . . . , d. If we substitute the tail probability (4.36), conditional expectation (4.41), and density
(4.37) into equation (4.47), then we obtain the same equation as equation (4.19), namely,

∂ℓH(x)(̺(x))

∂xi
= κℓiH(x)(̺(x))ℓH(x)(̺(x)) (4.48)

for i = 1, . . . , d. By taking into account the constraint equation (4.46), one gets a system of equations
as equation (4.20). As a result, we obtain equations (4.42) and (4.43). From the representations
(4.36) and (4.37) and equation (4.43), one gets equations (4.44) and (4.45).

The following Corollary is a direct consequence of Proposition 7.

Corollary 6. Let conditions of Proposition 7 hold. Then, the following results hold

E
[

Li

∣

∣L(x) = ̺(x)
]

=
̺(x)

x1 + · · · + xd
, ̺(x) → ∞ (4.49)

and

E
[

Li

∣

∣L(x) ≥ ̺(x)
]

=
κ

κ− 1

̺(x)

x1 + · · ·+ xd
, ̺(x) → ∞ (4.50)

for i = 1, . . . , d.

Proof. Equation (4.49) follows from equations (4.41) and (4.42). If we take t(x) = ̺(x) in equation
(4.27), then we get equation (4.50).
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It will be interesting to consider ratios between the risk measures ESα(x) and VaRα(x) and their
partial derivatives as quantile probability α converges to 1. By taking ̺(x) = qα(x) in Corollary 6,
we get that

E
[

Li

∣

∣L(x) = qα(x)
]

=
qα(x)

x1 + · · ·+ xd
, α → 1 (4.51)

and

E
[

Li

∣

∣L(x) ≥ qα(x)
]

=
κ

κ− 1

qα(x)

x1 + · · ·+ xd
, α → 1 (4.52)

for i = 1, . . . , d. Since ∂
∂xi

VaRα(x) =
∂
∂xi

qα(x) = E
[

Li

∣

∣L(x) = qα(x)
]

and ∂
∂xi

ESα(x) = E
[

Li

∣

∣L(x) ≥

qα(x)
]

, we have that

lim
α→1

∂
∂xi

ESα(x)
∂
∂xi

VaRα(x)
=

κ

κ− 1
, i = 1, . . . , d. (4.53)

It also follows from Corollary 6 that

∂

∂xi
ESα(x) =

κ

κ− 1

∂

∂xi
VaRα(x), α → 1. (4.54)

If we multiply it xi and sum it for i = 1, . . . , d, we obtain that

lim
α→1

ESα(x)

VaRα(x)
=

κ

κ− 1
(4.55)

for κ > 1. Note that McNeil et al. (2015) show that the last equation holds for generalized Pareto
distribution. Also, one can show that the formula holds for the student t distribution. It is worth
mentioning that for any risk measure ̺(x), which satisfies the condition ̺(x) → ∞, an exactly as
same results as equation (4.53) and (4.55) hold, i.e., for κ > 1,

lim
̺(x)→∞

E
[

Li

∣

∣L(x) ≥ ̺(x)
]

E
[

Li

∣

∣L(x) = ̺(x)
] =

κ

κ− 1
(4.56)

and

lim
̺(x)→∞

E
[

L(x)
∣

∣L(x) ≥ ̺(x)
]

E
[

L(x)
∣

∣L(x) = ̺(x)
] =

κ

κ− 1
. (4.57)

Now we give some results, which are related to asymptotic conditional covariances between com-
ponents of the jointly continuous random vector (L1, . . . , Ld)

′.

Corollary 7. Let κ > 2 and conditions of Proposition 7 hold. Then, the following results hold

E
[

LiLj

∣

∣L(x) = qα(x)
]

=
q2α(x)

(x1 + · · ·+ xd)2
, α → 1 (4.58)

and

E
[

LiLj

∣

∣L(x) ≥ qα(x)
]

=
κ

κ− 2

q2α(x)

(x1 + · · ·+ xd)2
, α → 1 (4.59)

for i, j = 1, . . . , d.

Proof. If we take ̺(x) = qα(x) in equation (3.12), then since ∂
∂xi

F̄L(x)(qα(x)) = 0, we have that

Cov
[

Li, Lj

∣

∣L(x) = qα(x)
]

=
1

fL(x)(qα(x))

∂

∂xi
E
[

Lj1{L(x)≥qα(x)}

]

. (4.60)
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Due to equations (4.30) (whose t is replaced ̺(x)), (4.44), and (4.50), the partial derivative in the
above equation is represented by

∂

∂xi
E
[

Lj1{L(x)≥qα(x)}

]

= −q−κ
α

∂qα(x)

∂xi
κ(x1 + · · ·+ xd)

κ−1 + q−κ+1
α κ(x1 + · · ·+ xd)

κ−2. (4.61)

Therefore, by equations (4.37), (4.51), (4.59), and (4.61), 1
q2α(x)

Cov
[

Li, Lj

∣

∣L(x) = qα(x)
]

= 0, as

α → 1. Consequently, equation (4.51) implies equation (4.58). On the other hand, by taking t = qα(x)
in equation (4.34) and taking account equations (4.35) and (4.36), we obtain equation (4.59).

From the above Corollary, one can easily conclude that for κ > 2 and i, j = 1, . . . , d,

lim
α→1

E
[

LiLj

∣

∣L(x) ≥ qα(x)
]

E
[

LiLj

∣

∣L(x) = qα(x)
] =

κ

κ− 2
. (4.62)

If we multiply equations (4.58) and (4.59) by xi and xj and sum it for all i, j = 1, . . . , d, then for the
second order conditional moments of the portfolio loss random variable, we obtain that

lim
α→1

E
[

L2(x)
∣

∣L(x) ≥ qα(x)
]

E
[

L2(x)
∣

∣L(x) = qα(x)
] =

κ

κ− 2
, κ > 2. (4.63)

Following the ideas in the paper, for higher order conditional moments of the portfolio loss random
variable, one may obtain similar formulas as equations (4.57) and (4.63). Also, it follows from Corol-
lary 7 and equation (4.50) that for κ > 2 and i, j = 1, . . . , d, asymptotic conditional covariances of
the loss random variables are given by

Cov
[

Li, Lj

∣

∣L(x) ≥ qα(x)
]

=
κ

(κ− 2)(κ − 1)2
q2α(x)

(x1 + · · ·+ xd)2
, α → 1. (4.64)

As a result, for κ > 2 and i, j = 1, . . . , d, limits of conditional correlations of the loss random variables
are given by

lim
α→1

Corr
[

Li, Lj

∣

∣L(x) ≥ qα(x)
]

= 1. (4.65)

5 Conclusion

Here, we summarize the main findings of the paper:

(i) For discrete portfolio loss random variable, we obtain that

– the first order derivatives of any risk measure equal conditional expectations for given
equality conditions, see equation (2.15)

– and higher order derivatives of the risk measure are equal to zero, see equation (2.16).

(ii) For absolute continuous portfolio loss random variable, we introduce that

– three representation of the first order derivatives of any risk measure, see equations (3.2),
(3.3), and (3.11),

– a representation of positive homogeneous risk measure, see equation (3.8),

– and the second order derivatives of any risk measure, see equation (3.14).

(iii) For heavy–tailed portfolio loss random variable, we obtain that

– representations of tail probability and density function of the portfolio loss random variable,
see equations (4.14), (4.15), (4.44), and (4.45),
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– the first order moments for given equality and inequality condition, see equations (4.23),
(4.24), (4.49), and (4.50),

– the asymptotic ratio of ES to VaR also holds for any risk measure, which satisfies ̺(x) → ∞,
see equation (4.57),

– the second order moments for given equality and inequality condition, see equations (4.28),
(4.29), (4.58), and (4.59),

– asymptotic ratio of the second order conditional moments of the portfolio loss random
variable, see equation (4.63),

– and limits of conditional correlations of loss random variables equal to 1, see equation
(4.65).

It is worth mentioning that the formulas in the papers are very simple and to the best of our knowledge,
the formulas have not been explored before.
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