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ABSTRACT

The continuously expanding sample of gravitational-wave observations is revealing the formation and

evolutionary mechanism of merging compact binaries. Two primary channels, namely, isolated field

binary evolution and dynamical capture, are widely accepted as potential producers of merging binary

black holes (BBHs), which are distinguishable with the spin-orientation distributions of the BBHs.

We investigate the two formation channels in GWTC-3, with a dedicated semi-parametric population

model, i.e., a mixture of two sub-populations with different spin-orientation distributions (one is nearly-

aligned and the other is nearly-isotropic). It turns out that the two sub-populations have different mass

and mass-ratio distributions. The nearly-aligned sub-population, which is consistent with the isolated

field formation channels, has a less preference for symmetric systems, and likely dominate the 10-

solar-mass peak in the primary-mass function. While the isotropic sub-population shows a stronger

preference for symmetric systems, and mainly contribute to the 35-solar-mass peak in the primary-

mass function, consistent with the dynamical channels. Moreover, our results show that the purely

isotropic-spin and the single well-aligned (i.e., the width of cos θ distribution σt < 0.5) scenario are

ruled out (by a Bayes factor of lnB = 5.2 and lnB = 9.8).

Keywords: black holes, gravitational waves, stellar evolution, X-ray binariy

1. INTRODUCTION

Gravitational waves (GW) can bring us information about the coalescing compact binaries (Abbott et al. 2016),

including, e.g., component masses, spin magnitudes, spin orientations, and luminosity distances of the sources, with

which we can infer the formation/evolution of the coalescing compact binaries. Various formation channels have been

proposed (e.g. Livio & Soker 1988; Marchant et al. 2016; Mandel & de Mink 2016; Fragione & Kocsis 2018; Yang et al.

2019). Generally, formation channels fall into two categories: the isolated field binary evolutions and the dynamical

formations (see Mapelli 2018; Mandel & Farmer 2022, and their refs.). With the rapidly increasing GW detections of

compact binary coalescences (CBCs) (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration et al. 2021a,b),

including binary neutron stars (BNSs) (Abbott et al. 2017, 2020a), binary black holes (BBHs) (Abbott et al. 2016),

and neutron star-black holes (NSBHs) (Abbott et al. 2021b), one can reveal the formation/evolution channels of

the CBCs in some statistical ways (e.g. Fishbach et al. 2020; Fishbach & Holz 2020; Wang et al. 2021; Tang et al.

2021; Li et al. 2021a; Abbott et al. 2023), because the different formation scenarios will produce CBCs with different

distributions of some physical parameters, such as mass, mass ratio, spin magnitude, and spin orientation. For instance,

hierarchical mergers via dynamical formation channels are distinguishable (Gerosa & Fishbach 2021), and recently we
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have identified the merger-origin BHs in the GWTC-3 (Li et al. 2023), because they have typical spin magnitudes

(∼ 0.7) (Fishbach et al. 2017; Gerosa & Berti 2017) and unusually high masses (lying in the pair-instability mass-gap

(Woosley 2017; Woosley & Heger 2021)).

For the stellar-formed (or first-generation) BBHs, the spin-orientation distribution is one of the most significant

features to tell their origins, whether the dynamical formation channels or the isolated field evolution channels. The

BBHs from isolated field evolution will have spins nearly aligned with the orbital angular momentum (Rodriguez et al.

2016b; Gerosa et al. 2018); while the dynamically formed BBHs in the star clusters are expected to have isotropic spins

(Stevenson et al. 2017; Farr et al. 2018). Though dynamical formation channel in the disks of active galactic nuclei

may also produce BBHs with nearly aligned spins (Yang et al. 2019; Tagawa et al. 2021), this kind of mergers only

take a negligible fraction in the stellar-formed BBHs (Li et al. 2023). Abbott et al. (2023) have investigated the spin-

orientation (cos θ1,2, i.e., cosine of the tilt angle between component spin and a binary’s orbital angular momentum)

distribution of the BBHs using a parametric model π(cos θ1,2|σt, ζ) = ζG(cos θ1,2|1, σt,−1, 1)+(1−ζ)U(cos θ1,2|−1, 1),

so called Default spin model. U(cos θ1,2| − 1, 1) is a Uniform distribution in (-1,1) and G(cos θ1,2|1, σt,−1, 1) is a

truncated Gaussian distribution in (-1,1), peaking at cos θ1,2 = 1 (perfect alignment) with width of σt. They find that

either perfectly aligned spins (ζ = 1 & σt ∼ 0) or fully isotropic spins (ζ = 0 || σt ≫ 1) is disfavored. However, in their

analysis, the cos θ1,2 distribution is independent from the mass function of the BBHs, which makes it hard to identify

the nearly-aligned and isotropic-spin sub-populations. Therefore, in this work, we construct a population model

aiming to identify sub-populations with different spin-orientation distributions, determining the mass and mass-ratio

distributions of the sub-populations.

Comparing the BHs in different types of sources, may provides us with the information of formation / evolution

processes about compact binaries. Fishbach & Kalogera (2022) compared the BHs in X-Ray binaries (XRBs) and GW

sources, they found that the mass distributions of BHs in high-mass X-ray binaries (HMXB) and BBHs are consistent,

when accounting for the GW observational selection effects; additionally, the BHs in low-mass X-ray binaries (LMXB)

also have similar masses to BBHs with low-mass secondaries (i.e., m2 < 8M⊙). However, they found that the BHs

in XRBs spin significantly faster than BBHs, so they suggested the BHs in the BBHs and XRBs are ‘Apple and

Orange’. On the contrary, Belczynski et al. (2021) shows that the BHs in XRBs and BBHs may not form two distinct

populations, so called ‘All Apples’. They suggest the real difference in mass between the two samples arises naturally

from different formation environments, since metallicity regulates BH mass (Belczynski et al. 2010). Anyway, BBHs

in the GWTC-3 (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration et al. 2021a,b) may be mixed of

dynamically formed binaries and isolated field binaries (Livio & Soker 1988; Marchant et al. 2016; Mandel & de Mink

2016; Fragione & Kocsis 2018; Yang et al. 2019; Li et al. 2022; Wang et al. 2022), and the dynamically formed binaries

must have gone through different evolution processes from those of the XRBs. Therefore, it would be more effective

to compare the BHs in XRBs with the BBHs from an individual channel, if the two types of formation channels are

identified.

On the other hand, comparing the BHs mass functions of dynamically formed binaries and the mass function

of underlying initial BHs (or the filed binary mass function), may also provide information about the formation

environments of the dynamically formed binaries. For instance, O’Leary et al. (2016) found that dynamical interactions

can enhance the merger rate of BBHs with total mass Mtot roughly as ∝ MβM

tot with βM ≳ 4, when including a

background potential that mimics the underlying stellar cluster, however βM ≫ 4 when this potential was absent.

Additionally, dynamical formation is expected to produce more symmetrical BBHs than traditional field BBHs (i.e.,

common envelope channel) (see, e.g., Rodriguez et al. 2016a; Banerjee 2017; Antonini et al. 2019; Zevin et al. 2021,

and their references), which makes these two kinds of systems easier to classify.

In this work, we perform hierarchical Bayesian inference to explore the sub-populations of field-evolution and

dynamical-capture binary black holes in GWTC-3. The work is organized as follows: In Section 2, we introduce

the inference framework, data, and population models; in Section 3, we present the results; and in Section 4, we

perform model comparisons and mock data studies to check the validation of the results. We make our conclusion and

discussion in Section 5.

2. METHODS

2.1. Framework and data

In this work, we perform hierarchical Bayesian inferences to infer the population properties of merging compact

binaries from GW observations by LIGO/Virgo/KAGRA (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration
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et al. 2021a,b). We assume the distribution of merging compact binaries can be expressed by the population model

π(θi|Λ), where θi are the parameters of the individual source including cosmological red-shift z, component masses

m1,2, spin magnitudes a1,2, and cosine tilt angles that describe the spin orientations of two components cos θ1,2; Λ

are the hyperparameter, which describe the distribution of merging compact binaries. Following Abbott et al. (2021c)

and Abbott et al. (2023), the likelihood of Λ, given data {d} from Ndet GW events, is expressed as

L({d}, Ndet|Λ, ) ∝ NNdete−Nξ(Λ)
Ndet∏
i=1

∫
L(di|θi)π(θi|Λ)dθi, (1)

where N is the number of mergers in the Universe over the observation period, which is related to the merger rate.

L(di|θi) is the single-event likelihood that can be estimated using the posterior samples (see Abbott et al. (2021c)

for detail); ξ(Λ) means the detection fraction, and it can be estimated using a Monte Carlo integral over detected

injections as introduced in the Appendix of Abbott et al. (2021c). Since the Monte Carlo summations over samples to

approximate the integrals will bring statistical error in the likelihood estimations Farr (2019); Talbot & Thrane (2020);

Essick & Farr (2022); Golomb & Talbot (2022a,b); Talbot & Golomb (2023), we constrain the prior of hyperparameter

to ensure Neff,i > 101, and Neff,sel > 4Ndet, where Neff,i and Neff,sel are the effective numbers of samples for i-th event

and detected injections, respectively, as defined by Abbott et al. (2023); Farr (2019). In our analysis, we do not account

for the spin-induced selection bias when calculating the observable fraction ξ(Λ), this is because the injection samples

are not enough for our model to estimate an accurate ξ(Λ) 2. We find the conclusions in this work are not sensitive

to the selection effects, because we have also performed an inference without selection effects, and the identification of

the two sub-populations is unchanged.

As for the GW data, we use the ‘C01:Mixed’ posterior samples of BBHs in GWTC-3 (Abbott et al. 2019, 2021a; The

LIGO Scientific Collaboration et al. 2021a,b), adopted from the Gravitational Wave Open Science Center3. We use a

size of 5000 for per-event samples instead of the minimum sample size across all events (i.e., 1993 of GW200129 065458),

so that some narrow distributions may also pass the threshold of Neff,i > 10. Note that three events have sample

sizes smaller than 5000 (i.e., GW150914 095045, GW200112 155838, and GW200129 065458 have sample sizes of 3337,

4323, and 1993, respectively), for these events, the posterior points are reused by random choice. This manipulation

will not increase the effective numbers for these events, but will increase the effective numbers for the events which

initially have more than 5000 samples given hyper-parameters Λ Following Abbott et al. (2023), we choose a false-

alarm rate (FAR) of 1yr−1 as the threshold to select the events, and exclude GW190814 from our main analysis, since

it is a significant outlier (Abbott et al. 2023; Essick et al. 2022) in the BBH populations. Consequently, 69 events are

selected for our analysis. For all the hierarchical inferences, we use the Pymultinest (Buchner 2016) sampler, to obtain

the posterior distribution of the hyperparameter.

2.2. BBH population models

Previously, we found two subpopulations of coalescing BHs: one have a significantly larger spin-magnitude distribu-

tion (peaks at ∼ 0.7), consistent with the higher-generation BHs in hierarchical mergers (Li et al. 2023); the other have

a smaller spin-magnitude distribution and have an upper-mass cutoff (at ∼ 45M⊙) as expected by the pair-instability

supernova (Woosley 2017; Woosley & Heger 2021)), which are consistent with the first-generation (or stellar-formed)

BHs. In this work, we aim to find out the sub-populations of field-evolution and dynamical-capture binary black holes

in the first-generation BBHs.

As was frequently studied, the dynamical formation channels predict an isotropic distribution for the spin orientations

of the BHs (Mandel & Farmer 2022), equivalently, cos θ1,2 ∼ U(−1, 1); On contrary, the isolated field binary BHs

are likely to have spin orientations nearly aligned with the orbital angular momentum of the systems (Mandel &

Farmer 2022), where the distribution of cos θ1,2 can be approximated as G(1, σct,−1, 1). Therefore, we take the cos θ1,2
distributions as the key to distinguish the field and the dynamical formation channels for the first-generation BBHs. As

for the component-mass functions of the first-generation BBHs for two formation channels, we apply the PowerLaw

Spline model as first introduced by Edelman et al. (2022). It is a semi-parametric mass function relying on fewer

1 Essick & Farr (2022); Callister et al. (2022) suggest that Neff,i > 10 is sufficiently high to ensure accurate marginalization over each event,
though Abbott et al. (2023) adopts a stricter constraint, i.e., Neff,i > Ndet

2 When accounting for the spin-induced selection effects, the variance of ξ(Λ) is too large to obtain a reliable inference, and the Neff,sel trend
to 4Ndet which means the injections samples in not enough for an accurate analysis (Farr 2019). The inferred spin-magnitude distribution
strongly peaks at 0.21, a similar circumference is also reported in Golomb & Talbot (2023).

3 https://www.gw-openscience.org/eventapi/html/GWTC/

https://www.gw-openscience.org/eventapi/html/GWTC/
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assumptions, which makes it appropriate to find out the underlying mass distributions of BBHs from the two formation

channels.

The mass and spin distributions of the field subpopulation can be expressed as

πA(θ) = Pm(m1,m2|ΛA)× G(cos θ1, cos θ2|1, σt,−1, 1)× G(a1, a2|µa,1, σa,1, 0, 1), (2)

with
Pm(m1,m2|Λ) = A(Λ)PS(m1|α, δ,mmin,mmax; f(m|{xi}, {fi}))

× PS(m2|α, δ,mmin,mmax; f(m|{xi}, {fi})) (m2/m1)
β Θ(m1 −m2).

(3)

where A(Λ) is the normalization factor, Θ(m1 −m2) denotes the Heaviside step function ensuring m1 > m2, and PS
is the PowerLaw Spline model (Edelman et al. 2022). We use 10 knots {(xi, fi)}10i=1 to interpolate the perturbation

function f(m) of the mass distribution for first-generation BHs, and fix the locations of knots {xi}10i=1 to be linear in

the log space of (6, 60) M⊙
In the absence of hierarchical mergers, we can similarly model the mass and spin distributions of the dynamical

subpopulation as

πI(θ) = Pm(m1,m2|ΛI)× U(cos θ1, cos θ2| − 1, 1)× G(a1, a2|µa,1, σa,1, 0, 1), (4)

and then the mass and spin distribution of the first-generation BBHs can be expressed as

π(θ|Λ) = [Pm(m1,m2|ΛA)×G(cos θ1, cos θ2|1, σt,−1, 1)× (1− rI)

+Pm(m1,m2|ΛI)×U(cos θ1, cos θ2| − 1, 1)× rI]× G(a1, a2|µa,1, σa,1, 0, 1),
(5)

here ‘A’ and ‘I’ denote the aligned and the isotropic subpopulations. This model can be considered as the ex-

tend/modified version of the Default spin model in Abbott et al. (2023) (firstly introduced by Talbot & Thrane

2017), for we allow the aligned and the isotropic subpopulations to have respective mass functions. Here after in this

work, Eq. 5 is named Extend Default.

However, in the presence of hierarchical mergers, when modeling the distribution of dynamical subpopulation, we

should simultaneously consider the higher-generation BHs, which has significantly different spin-magnitude distribution

(∼ 0.7) (Wang et al. 2022) and mass range (∼ 20M⊙ − 80M⊙)(Li et al. 2023). We assume the higher-generation BHs

take a fraction of r2G in the dynamical subpopulation. Since the hierarchical mergers also have a fraction of nearly-

aligned assembly (Li et al. 2023), as expected to be formed in gas-rich environments like AGN disks (Gerosa et al. 2015;

Yang et al. 2019), we use GU(cos θ|σt,AGN, ζAGN,2) = (1− ζAGN,2)×U(cos θ| − 1, 1)+ ζAGN,2 ×G(cos θ|1, σt,AGN,−1, 1)

to model the spin-orientation distribution of the higher-generation BHs, where ζAGN is the fraction of the AGN-disk-

originated BHs (in the higher-generation subpopulation), and σt,AGN is the width of cos θ distribution of BHs in AGN

disks. Meanwhile, we use GU(cos θ|σt,AGN, ζAGN,1) to model the spin-orientation distribution of the first-generation

dynamical BHs. Yang et al. (2019) find the proportion between the first-generation BHs and higher-generation BHs in

AGN disks is k ∼ 3 4, then there is a relation k r2G ζAGN,2 = (1− r2G) ζAGN,1, i.e., ζAGN,1 = k r2GζAGN,2/(1− r2G).

We constain ζAGN,1 < 1. Then the distribution of dynamically-formed BHs is expressed as

πDyn,BH(m, a, cos θ|ΛDyn,BH) = PS(m|αD,1, δD,1,mmin,D,1,mmax,D,1; fD,1(m|{xi}, {f i
D,1}))

×G(a|µa,1, σa,1, 0, 1)× GU(cos θ|σt,AGN, ζAGN,1)× (1− r2G)]

+[PS2G(m|α2, δ2,mmin,D,2,mmax,D,2; fD,2(m|{xi}, {f i
D,2}))

×G(a|µa,2, σa,2, 0, 1)× GU(cos θ|σt,AGN, ζAGN,2)× r2G.

(6)

Here we use another PowerLawSpline to model the mass function of higher-generation BHs, and for simplicity, we

use 7 knots {(xi, fi,2G)}7i=1 to interpolate the perturbation function f2(m), and fix the locations of knots {xi}7i=1 to

be linear in the log space of (20, 80) M⊙, as indicated by Li et al. (2023).

Then the mass and spin distribution of dynamical subpopulation can be expressed as

πDyn(m1,m2, a1, a2, cos θ1, cos θ2|ΛDyn) =

B(ΛDyn)×πDyn,BH(m1, a1, cos θ1|ΛDyn,BH)× πDyn,BH(m2, a2, cos θ2|ΛDyn,BH)× (m2/m1)
βDyn Θ(m1 −m2).

(7)

4 Yang et al. (2019) find the hierarchical mergers take a fraction of 50%, and most higher-generation BHs are paired to the first-generation
BHs. Therefore, for all the mergers in the AGN disks, the proportion between the first-generation BHs and higher-generation BHs is ∼ 3.
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where B(ΛDyn) is the normalization factor. Therefore, in the presence of the hierarchical mergers, the total population

is

π(θ|Λ) = πField(θ|ΛField)× (1− rD) + πDyn(θ|ΛDyn)× rD, (8)

where πField(θ|ΛField) is the distribution of the field BBHs as expressed as Eq. 2. Hereafter, the Eq. 8 is named Main

Model in our work. We assume that the merger rate density increases with redshift, i.e., R(z) ∝ (1 + z)γ , and for

simplicity, in all the models we fix γ = 2.7 as reported in Abbott et al. (2023).

Table 1. hyperparameter and Priors for the analysis with full BBH catalog

descriptions parameters
priors

Field Dynamical

1G 2G

power-law slope of the primary mass distributions αF/αD,1/αD,2 U(-8,8) U(-8,8) U(-8,8)

smooth scale of the lower-mass edge δF/δD,1/δD,2[M⊙] U(0,10) U(0,10) 0

minimum mass cut off mmin,F/mmin,D,1/mmin,D,2[M⊙] U(2,10) U(2,10) U(20,50)

maximum mass cut off mmax,F/mmax,D,1/mmax,D,2[M⊙] U(20,100) U(20,100) U(60,100)

y-value of the spline interpolant knots {f j
F}

9
j=2/{f j

D,1}
9
j=2/{f j

D,2}
7
j=2 N (0, 1) N (0, 1) N (0, 1)

power-law slope of the mass ratio distribution βF/βD U(-8,8) U(-8,8)

width of the cos θ1,2 distribution σt,F/σt,AGN U(0.1, 4) U(0.1,1)

fraction of the dynamical sub-population (DynSubpop.) rD - U(0,1)

fraction of the 2G BHs in DynSubpop. r2G - U(0,1)

fraction of the AGN-disk-originated BHs in 2G BHs ζAGN,2 - U(0,1)

ratio between 1G and 2G AGN-disk-originated BHs k - 3

constraint ζAGN,1 ≡ k r2GζAGN,2/(1− r2G) < 1

central value of spin-magnitude distribution µa,1/µa,2 U(0,1) U(0,1)

width of spin-magnitude distribution σa,1/σa,2 U(0.05, 0.5) U(0.05, 0.5)

local merger rate density log10R0[Gpc−3yr−1] U(0,3)

power-law slope of the merger-rate evolution γ 2.7

Note. Here, ‘U’ means the uniform distribution and ‘N (0, 1)’ means the normal distribution.

3. RESULTS

With our Main Model, we again identify the higher-generation BHs with distinctive spin-magnitude distribution,

which was first reported in our previous work (Li et al. 2023). See Appendix A, for the distribution of the first-generation

and higher-generation BHs in the dynamical sub-population. Following, we mainly focus on the two sub-populations

of field and dynamical formation channels for the first-generation BBHs.

3.1. Distributions of the field and the dynamical sub-populations

As shown in Figure 1, the Main Model finds out two sub-populations in the first-generation BBHs, which have

significantly different mass and mass-ratio distributions. The ∼ 10M⊙-peak and the ∼ 35M⊙-peak in the primary-mass

distribution, which are previously found by various approaches (Abbott et al. 2021c; Tiwari & Fairhurst 2021; Li et al.

2021b; Edelman et al. 2022), may be dominated by the field and the dynamical channels, respectively. Interestingly,

the mass distribution of the isotropic-spin sub-population in our results is nicely consistent with the mass distribution

of BBHs in globular clusters by simulation (Antonini et al. 2023). Figure 4 displays the posterior distribution of

the main parameters describing the two sub-populations; hereafter, all the values are for 90% credible level. The

nearly-aligned sub-population takes a fraction of 12%+10%
−6% of the mergers, and the width of the cos θ1,2 distribution

is σt = 0.74+0.58
−0.32, which is smaller/tighter than the result inferred by the Default model(Abbott et al. 2021c,

2023). The upper-mass cutoff of the field (the dynamical first-generation) sub-population is mmax,F = 48.67+42.45
−22.68M⊙

(mmax,D,1 = 38.38+12.60
−3.35 M⊙), which are consistent with the expectation of the (pulsational) pair-instability supernova

((P)PISN) explosions (Woosley 2017; Woosley & Heger 2021). Though the mmax,F is only loosely constrained (which is
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Figure 1. Reconstructed primary-mass, spin-magnitude, and cosine-tilt-angle distributions of the first-generation BBHs for
each sub-population inferred with Main Model; the upper panel shows the differential local-universe merger rate as a function
of primary mass. The solid curves are the mean values and the colored bands are the 90% credible intervals; the insets are for
the mass-ratio distributions of the two sub-populations.

caused by the steep power-law slope of the mass function), the mass of the 99th percentile for the field sub-population

is constrained to be m99% = 28.59+14.40
−6.79 M⊙ (see Figure 5). The spin-magnitude distribution peaks at µa = 0.11+0.06

−0.09

with standard deviation of σa = 0.12+0.07
−0.05, which is consistent with the first-generation BHs inferred by the previous

work (Li et al. 2023).

In particular, we infer αD,1 < αF at 98.5% credible level, as shown in Figure 2 (left), which indicates that the

dynamical channels have a stronger preference to produce high-mass BBH mergers than the field channels, assuming

the initial BH mass functions of two channels are similar. This may be because the BBHs formed by dynamical

interactions in globular clusters, particularly three-body binary formation, will be enhanced by the total masses (Mtot)

of the binaries as ∝ MβM

tot with βM ≳ 4 (O’Leary et al. 2016). In the presence of hierarchical mergers, we do not find

strong evidence for βD > βF, this may be because that the dynamical subpopulation contain ‘2G+1G’ systems (i.e.,

the hierarchical mergers with only one higher-generation BH) (Li et al. 2023). However when we inferring using the

Extend Default model without hierarchical mergers, we find βI > βA at 95.4% credible level, as shown in Figure 2

(the orange curves in the right panel). Such a result is consistent with the previous investigation of the mass-ratio

distribution by an independent analysis (Li et al. 2022), i.e., there is divergence in mass-ratio distributions between

low-mass and high-mass BBHs. Additionally, our results are also consistent with the prediction of the simulation

studies (Rodriguez et al. 2016a; Banerjee 2017).

4. MODEL COMPARISON AND RESULTS CHECK
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Figure 2. Posterior distributions of the power-law slopes of mass functions (left) and mass-ratio distribution (right) of the
two sub-populations; the dashed and solid contours mark the central 50% and 90% posterior credible regions, respectively. The
black curves are for the inference using the Main Model with hierarchical mergers; while the orange curves are for the inference
using the Extend Default model without hierarchical mergers.

In this section, we firstly compare our model to some other alternative models with some specific assumptions; and

then perform mock injection studies to check the validation of the results in section 3.

In our previous work (Li et al. 2023), other (single-population) models, such as the popular Default spin model

(accompanied with the ‘PP’ or ‘PS’ mass model) (Abbott et al. 2023), are disfavored compared to the multi-population

models that accounts for correlation between mass and spin-magnitude distributions of BHs (Li et al. 2023). In this

work, we have found two different formation/evolution channels (i.e., field binary evolution and dynamical formation),

which are expected to be distinguishable by the spin-orientation distributions of BBHs (Rodriguez et al. 2016b; Gerosa

et al. 2018; Stevenson et al. 2017; Farr et al. 2018). Since most of other models do not include the main correlation

between mass and spin-magnitude distributions (Li et al. 2023), it is appropriate to leave out the hierarchical mergers

from our analysis when performing model comparison. This is because in the presence of higher-generation BHs

(i.e. the high-spin BHs), the other models (e.g., the popular Default spin model) are disfavored compared to our

main model, mostly due to their failure to fit the spin-magnitude distribution of higher-generation BHs found by

our previous work (Li et al. 2023). This leave-out analysis may change the inferred mass functions of the two first-

generation subpopualtions (i.e., the field and the dynamical), but will not affect the classification of them, i.e., the

distribution tendency are not changed as shown in Figure 6.

In practice, GW170729 185629, GW190517 055101, GW190519 153544, GW190521 030229, GW190602 175927,

GW190620 030421, GW190701 203306, GW190706 222641, GW190929 012149, GW190805 211137,
GW191109 010717, and GW191230 180458 are leaved out, for they all have probabilities of > 0.55 to be hierar-

chical mergers, according to Li et al. (2023). As is introduced in subsection 2.2, the Extend Default (i.e., Eq. 5)

can model the field and the dynamical first-generation population, in the absence of hierarchical mergers. Therefore in

this section, we adopt the Extend Default for model comparison and mock data studies. As shown in Figure 7 the

inferred results of the leave-out analysis are similar to that inferred from the full catalog with Main Model (Eq. 8).

4.1. Model comparison

For Bayesian model comparison, lnB > 2.3 (lnB > 3.5) is interpreted as a strong (very strong) preference for one

model over another, and lnB > 4.6 as decisive evidence (Jeffreys 1961). We have also inferred using a model that only

accounts for the single nearly-aligned or isotropic-spin population (See Appendix B.4 for details of the model). As

shown in Table 2, the population of only isotropic-spin BBHs is disfavored, which means that merging BBHs are not

solely dynamically formed in clusters. Though the single nearly-aligned model can not be easily ruled out, we infer the

5 This is a manual selection, which is not suitable for a quantitative analysis, like that carried out in Section 3. However, in this section, for
qualitative analysis, this manual selection unlikely affects the conclusions. Actually, we have also analyzed with a stricter selection (> 0.3) to
ensure a purer first-generation BBH samples, i.e. leaving out more events: GW190413 134308, GW191127 050227, and GW200216 220804,
the conclusions in this work are unchanged.
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Table 2. Model comparison

Models lnB
Extend Default 0

Default -1.8

Single nearly-aligned -1.2

Single isotropic-spin -5.2

With two independent spin-magnitude distributions -1.8

Extend Default (σt < 0.5) 1.5

Default (σt < 0.5) -2.3

Single nearly-aligned (σt < 0.5) -9.8

Note: these log Bayes factors are relative to the Extend Default model in our work.

width of cos θ distribution σt > 0.7 at 97% (σt > 0.6 at 99.9%) credible level, which is inconsistent with the isolated

evolution of field binaries (Rodriguez et al. 2016b).

Since a large σt for the truncated Gaussian distribution allows a significant fraction of highly misaligned or anti-

aligned BBHs, which is unlikely produced by the isolated field channels (Rodriguez et al. 2016b), we have also inferred

with a restriction of σt < 0.5 in our models, see Appendix B.2 for more details. As shown in Table 2, with the

restriction of σt < 0.5, our Extend Default is even more favored, however the other models are less favored.

One may also ask is it still possible that the nearly-aligned and isotropic-spin population follows the same mass

function? i.e., the Default Spin model with a PowerLawSpline mass model. We find this model is slightly less

favored than our Extend Default by a Bayes factor of lnB = −1.8. However this model is strongly disfavored by a

Bayes factor of lnB = −3.8 comparing to the Extend Default, if we restrict σt < 0.5.

Additionally, we have also inferred using a model assuming that the spin magnitudes of the BBHs in two sub-

populations follow two independent distributions (see Appendix B.6 for details), and found the spin-magnitude dis-

tributions of the two sub-populations are nearly identical as shown in Figure 13; what’s more, this model is slightly

disfavored compared to our Extend Default. Therefore, with current GW data, there is no evidence that the spin

magnitudes of first-generation merging BBHs are different between the field (nearly-aligned) and dynamical (isotropic-

spin) sub-populations.

In the parameter estimation of individual GW events, the cos θ1 is likely to be better measured than the cos θ2
in the parameter (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration et al. 2021a,b). Therefore, we also

perform an inference in absence of the cos θ2, but our conclusion is unchanged, see Appendix B.5 for the results of the

inference. Interestingly, the width of cos θ1 distribution becomes smaller as σt = 0.43+0.53
−0.26, such a result is expected

by the binaries from the field evolution (Rodriguez et al. 2016b).

4.2. mock data studies

To test the validation of our results, we perform the injections, recovery, and hierarchical inferences of mock pop-

ulations of BBH events. We respectively generate two kinds of mock populations: one (here after ‘Two pop’) has

population properties the same as those we have inferred from the real data, and the other (here after ‘One pop’) does

not have the feature of the spin-orientation distributions found in this work, see Appendix D for the details.

Then we use the Extend Default model to infer the underlying mock populations, respectively. We find similar

features as we have found in the real data from the ‘Two pop’ mock population, i.e., there are two subpopulations

with different mass, spin-orientation, and mass-ration distributions, as shown in Figure 14. We obtain the width of

the cos θ distribution of the aligned subpopulation as σt = 0.6+0.23
−0.20, this value is similar to the results inferred from

the real data, but larger than our injection of σt = 0.3. This indicates that the real cos θ distribution for the aligned

subpopulation of BBHs may be narrower than we inferred, and would be more consistent with the expectation about

the isolated field binaries (Rodriguez et al. 2016b). For the ‘One pop’ mock population, we do not find two significant

subpopulations with different mass distributions, as shown in Figure 15, because the spin-orientation distributions

are all the same in all the mass range. These mock population studies support that the inferred features of BBH

population from the real data are reliable, though we can not rule out that our analysis could be affected by other

systematic biases, e.g., the biases in the waveform models used for parameter estimation.
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5. CONCLUSION AND DISCUSSION

With the rapidly growing catalog of GW events, the formation and evolution histories of the coalescing compact

binaries are being revealed by population analysis. Using the data of GWTC-3 (Abbott et al. 2019, 2021a; The LIGO

Scientific Collaboration et al. 2021a,b), we explore the BBHs from two types of channels, i.e., field binary evolution and

dynamical capture. Beside the population of hierarchical mergers identified by our previous work (Li et al. 2023), the

first-generation BBHs can also be categorized into two sub-populations based on the spin-orientation, mass, and mass-

ratio distributions. One sub-population with isotropic spins (i.e., consistent with the dynamical formation channels)

have a stronger preference for symmetrical systems, and they may contribute to the ∼ 35M⊙-peak in the primary-

mass function found in previous literatures (Abbott et al. 2021c). The other sub-population with nearly-aligned spins

(i.e., expected by the isolated field evolution channels) contain more asymmetrical systems, which likely dominate the

∼ 10M⊙-peak in the primary mass distribution (Tiwari & Fairhurst 2021; Li et al. 2021b; Edelman et al. 2022). The

mass distribution of the isotropic-spin sub-population is flatter than that of the nearly-aligned-spin sub-population,

which is consistent with the fact that dynamical formation channels will enhance the merger rate of heavier black hole

binaries (O’Leary et al. 2016; Antonini et al. 2023).

Assuming the nearly-aligned and isotropic-spin sub-populations are exactly the field and dynamical BBHs, we

compare the two sub-populations to the HMXB BHs, see Appendix E. The primary-mass distribution of the field

BBHs may be lower than the mass distribution of BHs observed in HMXBs, while the mass distribution of the HMXB

BHs may be consistent with the inferred initial mass function of the BHs in the environment for dynamical channels,

which is the modified mass function of dynamical BBHs with α = αI + 2 as indicated by O’Leary et al. (2016).

In this work, there is a key point for identifying the two sub-populations of field and dynamical channels: when

identifying the field and dynamical BBHs based on their spin-orientation distributions, one should firstly model (or

exclude) the hierarchical mergers, which contain BHs with significantly larger spin magnitudes (∼ 0.7) (Fishbach

et al. 2017; Gerosa & Berti 2017; Gerosa & Fishbach 2021). Some parametric models (Kimball et al. 2021; Wang

et al. 2022) have found the evidence for hierarchical mergers; what’s more, with a semi-parametric model, we have

previously identified a sub-population of higher-generation BHs (Li et al. 2023), which is again found in this work

(see Figure 3). If one (mis-) model all the BBHs with single spin-magnitude distribution, then the measurement of

the spin-tilt distribution will be influenced (Miller et al. 2024). Additionally, a large per-event sample size (like 5000

posterior points per event as adopted in this work) is recommended for analysis. Because the potential sub-populations

may have narrower spin-magnitude and the spin-orientation distributions than those of the total population, if the

per-event samples are not sufficient, then the narrow distributions will be mistakenly ruled out (Talbot & Golomb

2023).

Vitale et al. (2022) has analyzed the spin-tilt distribution of the BBHs with GWTC-3, and found no evidence for

the cos θ distribution peaking at +1. They modified the Default spin model with a variable µt to fit the cos θ

distribution, and found µt = 0.48+0.46
−0.94 (the prior distribution is [-1,1]). We also perform inference with a variable

µt for the Extend model in this work, and find µt = 0.74+0.23
−0.38 as show in Figure 10. The mass and spin-magnitude

distributions of the two subpopulations are unchanged, and the cos θ distribution of the aligned subpopulation is only

slightly shifted, as shown in Figure 9. Abbott et al. (2023) also find a flatter cos θ distribution in GWTC-3 than in

GWTC-2, while we find a narrower cos θ distribution for the nearly aligned subpopulation, which may be partially

attributed to the different modeling of spin-magnitude versus mass distribution. In this work, σt only describes the

wide of cos θ-distribution for the first generation BBHs, not influenced by the higher-generation BHs. Additionally,

the sizes of per-event samples may also cause the different cos θ distributions between our result and that of Abbott

et al. (2023) (see supplemental materials of Li et al. (2023) for more details), since a small sample size only allow

flatter distributions given a threshold of Neff,i.

Baibhav et al. (2023) has also analyzed the populations of BBHs with isotropic and aligned-spin orientations with

GWTC-3, and found no evidence that the BHs from the isotropic-spin population possess different distributions of mass

ratios, spin magnitudes, or redshifts from the preferentially aligned-spin population. Though they do not investigate

the component-mass distribution depending on the spin alignment as we do, they do find that the dynamical and

field channels cannot both have mass-ratio distributions that strongly favor equal masses. Indeed, in the results of

Baibhav et al. (2023), the isotropic-spin population is more likely to favor equal-mass systems (see their Figure.1),

which is consistent with our results. Callister et al. (2021) firstly found that the unequal-mass BBHs have larger

effective spins with GWTC-2 (Abbott et al. 2019, 2021a), which was further confirmed by Abbott et al. (2023) using

GWTC-3 (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration et al. 2021a,b). Our previous work (Li et al.



10 Li et al.

2023) indicates the hierarchical mergers may contribute to the anti-correlation between q-χeff of BBHs. In this work,

the field BBHs are also potentially contribute to the anti-correlation between q-χeff , because they have less preference

for equal-mass system and have more preference for aligned spins.

With an astrophysical-motivated parameterization, Wang et al. (2022) show that the ∼ 10M⊙-peak and ∼ 35M⊙-

peak in the primary-mass distribution are consistent with the field and dynamical BBHs. With a non-parametric

population model Godfrey et al. (2023) has also found that the ∼ 10M⊙-peak in the primary-mass distribution is

associated with isolated binary formation. However, contrary to our results, Godfrey et al. (2023) suggests the events

at ∼ 35M⊙-peak have spins consistent with the ∼ 10M⊙ events. The difference (between our results and those of

Godfrey et al. (2023)) may be caused by the fact that, the models in Godfrey et al. (2023) have only two subpopulations

when fitting the data with hierarchical mergers. Thus the identification of the two subpopulations is dominated by

the spin-magnitude distributions, since the hierarchical mergers contain BHs with spin magnitudes ∼ 0.7 (Gerosa &

Fishbach 2021). The ∼ 35M⊙-peak BHs have low spin magnitudes different from the higher-generation BHs (Li et al.

2023), so Godfrey et al. (2023) find it consistent with the ∼ 10M⊙-peak BHs. We note in the results of Godfrey

et al. (2023), the SpinPopA of the Isolated Peak Model indeed have a preference for aligned spins. However, the

SpinPopA of the Peak+Continuum Model show less preference for alignment, caused by the contribution from

∼ 35M⊙-peak BHs (see Figure. 4 of Godfrey et al. (2023). This indicated the ∼ 35M⊙-peak BHs may be associated

with the dynamical channels. Very recently, Ray et al. (2024) search for binary black hole sub-populations using binned

Gaussian processes. The authors also find that the sub-population showing a feature at ∼ 30 − 40M⊙ is associated

with dynamical formation in globular clusters, which is consistent with our results.

The dynamical evolution is expected to produce more mergers with equal mass components (Rodriguez et al. 2016a;

Banerjee 2017; Antonini et al. 2019; Zevin et al. 2021), because the comparable mass binaries have a higher binding

energy to form tighter systems and merge within shorter durations. However, isolated field binaries via common

envelopes may sometimes produce BBH mergers with unequal component masses, especially at lower metallicities

(Spera et al. 2019; Mandel & Farmer 2022). These predictions are clearly supported by our result, that the mass-ratio

distribution of the dynamical-capture sub-population is steeper than that of the field-evolution sub-population at 99%

credible level. Note that some scenarios of field evolution can produce more symmetric BBHs (Mandel & Farmer 2022),

like homogeneous chemical evolution (de Mink & Mandel 2016; Marchant et al. 2016), and some dynamical channels

may mildly prefer unequal mass components (Michaely & Perets 2019), these channels, if exist, should not dominate

the total population.

Spin-orientation distribution of the field BBHs may also be mass-dependent, because lighter BBHs are easier mis-

aligned due to natal kicks (Rodriguez et al. 2016b), we are exploring such tendency in the future with more GW data

(Abbott et al. 2018). The fourth observing run (O4) of the LIGO, Virgo, and KAGRA GW detectors have been going

on, and the event samples are unprecedentedly rapidly increasing (see https://gracedb.ligo.org/latest/). More than

twice as many events in O3 will be observed in O4 (Mandel & Farmer 2022), and we will have ≳ 200 BBHs events in

total, within one year; additionally, many other types of events may also be observed (Abbott et al. 2022; The LIGO

Scientific Collaboration et al. 2022). In future work, we will optimize our method to incorporate more kinds of BHs

and BBH formation channels (Cai et al. 2018; Franciolini et al. 2022; Cheng et al. 2023; Mandel & Farmer 2022), which

should provide more insights and stronger constraints on sub-population properties, with the increased GW samples.
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Figure 3. Reconstructed component-mass distributions of first-generation and higher-generation BHs in the dynamical sub-
population. The solid curves are the mean values and the colored bands are the 90% credible intervals; the insets are for the
spin-magnitude distributions.

Software: Bilby (Ashton et al. 2019, version 1.1.4, ascl:1901.011, https://git.ligo.org/lscsoft/bilby/), PyMultiNest

(Buchner 2016, version 2.11, ascl:1606.005, https://github.com/JohannesBuchner/PyMultiNest) Nessai (Williams et al.

2021, 2023; Williams 2021, https://nessai.readthedocs.io/en/latest/)

APPENDIX

A. THE HIGHER-GENERATION BHS

It has been widely discussed that the hierarchical mergers contain BHs with significantly spin-magnitude and compo-

nent mass distributions (Fishbach et al. 2017; Gerosa & Berti 2017; Gerosa & Fishbach 2021). Evidence for hierarchical

mergers was also found with some parametric methods (Kimball et al. 2021; Wang et al. 2022). Previously, we have

identified the higher-generation BHs with a semi-parametric population model (Li et al. 2023). In this work, we aim to

identify the field and dynamical formation channels for the first-generation BBHs based on the spin-tilt distributions.
It is critical to properly model the mass and spin distributions of the higher-generation BHs, otherwise they will

affect modeling of the spin distribution of first-generation BHs (Miller et al. 2024). With our Main Model, we again

identify the higher-generation BHs in the dynamical subpopulation, which have significantly different spin-magnitude

and mass distributions from the first-generation BHs, as shown in Figure 3. The higher-generation BHs take a fraction

of 18+12
−9 % in the dynamical channels, as shown in Figure 4.

B. RESULTS OF OTHER MODELS

B.1. Extend Default model

The priors for the Extend Default model are summarized in Table 3. Figure 6 shows the primary-mass, spin-

magnitude, and cosine-tilt-angle distributions of the aligned-spin and isotropic-spin sub-populations of the first gen-

eration BBHs, inferred with the Extend Default model. And Figure 7 shows the posterior distributions of all the

hyperparameters describing the two sub-populations.

B.2. Inference with σt < 0.5

With a restriction of σt < 0.5, the primary-mass function of the nearly-aligned sub-population is only slightly

changed, as shown in Figure 8. However, the primary-mass function of the isotropic-spin sub-population is significantly

https://git.ligo.org/lscsoft/bilby/
https://github.com/JohannesBuchner/PyMultiNest
https://nessai.readthedocs.io/en/latest/
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Figure 4. Posterior distribution of main parameters describing the full BBH population, inferred with the Main Model; the
dashed lines in the marginal distribution represent the 90% credible intervals.

changed in the low-mass range, and the fraction of the isotropic-spin sub-population turns to 0.57+0.22
−0.23. What’s more,

the nearly-aligned sub-population has a flatter mass-ratio distribution, and the pairing function is (m2/m1)
βA with

βA = −1.59+3.39
−3.62. The merger rate density of the isotropic-spin sub-population is raised in the low-mass range, but

it is still possible contributed by the field channel, because the lighter binaries are more likely to change their spin

orientations in supernovea explosions by natal kicks than the heavier binaries (Rodriguez et al. 2016b). Note that there

is a sub-mode in the posterior distribution inferred without the restriction, as shown in Figure 7, which is consistent

with the results inferred with σt < 0.5.



Field and Dynamical 13

m99%[M ] = 28.59+14.40
6.79

30 60

m99%[M ]

40

80

m
m

ax
,1

[M
]

40 80

mmax, 1[M ]

mmax, 1[M ] = 48.67+42.45
22.68

Figure 5. The mass of 99th percentile and the maximum mass of the field BBHs, inferred with the Main Model.

Table 3. hyperparameter and Priors for the Extend Default

descriptions parameters
priors

nearly-aligned assembly isotropic-spin assembly

power-law slope of the primary mass distributions αA/αI U(-4,12) U(-4,4)

smooth scale of the lower-mass edge δA/δI[M⊙] U(1,10) U(1,10)

minimum mass cut off mmin,A/mmin,I[M⊙] U(2,10) U(2,10)

maximum mass cut off mmax,A/mmax,I[M⊙] U(20,60) U(20,60)

power-law slope of the mass ratio distribution βA/βI U(-4,8) U(-4,8)

y-value of the spline interpolate knots {f j
A}

9
j=2/{f j

I }
9
j=2 N (0, 1) N (0, 1)

Width of the cos θ1,2 distribution σt U(0.1, 4) -

mixing fraction of the isotropic-spin assembly rI - U(0,1)

Central value of spin-magnitude distribution µa U(0,1)

Variance of spin-magnitude distribution σa U(0.02, 0.5)

local merger rate density log10R0[Gpc−3yr−1] U(0,3)

power-law slope of the merger-rate evolution γ 2.7

Note. Here, ‘U’ means the uniform distribution and ‘N (0, 1)’ means the normal distribution.

B.3. Inference with a variable µt

Vitale et al. (2022) found no evidence for the cos θ distribution peaking at +1. However, in Li et al. (2023), we found

cos θ distribution has strong preference for peaking at +1. Here, we have inferred with a variable µt in the Extend

Default. As show in Figure 10, the µt peaks at > 0.5, and µt < 0 is strongly ruled out. Additionally, the mass

and spin-magnitude distributions are unchanged, and the cos θ distribution still has a preference for peaking at +1, as

shown in Figure 9.

B.4. Is single nearly-aligned or isotropic-spin population also consistent with data?

Galaudage et al. (2021) found that the inferred spin distribution is nearly aligned, which is consistent with the

hypothesis that all merging binaries form via the field formation scenario. To check out whether the a single nearly-

aligned or a single isotropic-spin population is still satisfied by the current GW data, we infer with the single nearly-
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Figure 6. Reconstructed primary-mass, spin-magnitude, and cosine-tilt-angle distributions of BBHs for each population,
inferred with the Extend Default model. The upper panel shows the differential local-universe merger rate as a function of
primary mass. The solid curves are the mean values and the colored bands are the 90% credible intervals; the insets are for the
mass-ratio distributions of the two sub-populations.

aligned model MA and the single isotropic-spin model MI, which is expressed as

πA(θ|Λ) =PS(m1,m2|α, β, δ,mmin,mmax; f(m1|{xi}, {fi}))
× G(cos θ1, cos θ2|1, σt,−1, 1)× G(a1, a2|µa, σa, 0, 1)× p(z|γ = 2.7),

(B1)

and
πI(θ|Λ) =PS(m1,m2|α, β, δ,mmin,mmax; f(m1|{xi}, {fi}))

× U(cosθ1, cos θ2| − 1, 1)× G(a1, a2|µa, σa, 0, 1)× p(z|γ = 2.7).
(B2)

As shown in Table 2, the MI is ruled out by a Bayes factor of lnB = −5.5, and the MA is also slightly less favored

compared to the Extend Default. However, if we restrict σt to be < 0.5 as expected by the isolated field evolution

(Rodriguez et al. 2016b), MA was also rule out.

B.5. Inference with only cos θ1

We also inferred with only cos θ1 distribution, since cos θ1 is usually constrained better than cos θ2 in the parameter

estimation for an individual event (Abbott et al. 2019, 2021a; The LIGO Scientific Collaboration et al. 2021a,b). As

displayed in Figure 12, the results are nearly similar to that inferred in the main text. Figure 11 shows the posterior

distribution of the main hyperparameter, we find σt = 0.43+0.53
−0.26 is smaller than that inferred in the presence of cos θ2,

while other parameters are similar to those inferred with cos θ2.
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Figure 7. Posterior distributions of all the hyperparameters describing the two sub-populations, inferred with the Extend
Default model; the dashed lines in the marginal distribution represent the 90% credible intervals.

B.6. Is the spin-magnitude distributions of two sub-population identical?

To check out whether the spin-magnitudes of two sub-populations have the same distribution or significantly different

distributions, we have also inferred with the model with two independent truncated Gaussian distributions to describe

the spin-magnitude distributions of the two sub-populations, respectively.

π(θ|Λ) = [PS(m1,m2|αA, βA, δA,mmin,A,mmax,A; fA(m1|{xi}, {fi,A}))
×G(cos θ1, cos θ2|1, σt,−1, 1)× G(a1, a2|µa,A, σa,A, 0, 1)× (1− rI)

+PS(m1,m2|αI, βI, δI,mmin,I,mmax,I; fI(m1|{xi}, {fi,I}))
×U(cos θ1, cos θ2| − 1, 1)× G(a1, a2|µa,I, σa,I, 0, 1)× rI]

×p(z|γ = 2.7).

(B3)
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Figure 8. The same as Figure 6 but for the restriction of σt < 0.5.

As is shown in Figure 13, the spin magnitudes from the two sub-populations are nearly identical, and the Bayes factors

(see Table 2) also show that the spin-magnitude distributions of the two sub-populations are not necessary to be

different with current observation data.

C. CLASSIFICATION

Table 4 provides the probabilities of each first-generation event belonging to the field and dynamical channels. We

find that the first detected BBH GW150914 (Abbott et al. 2016) originates from dynamical formation at 97.2% credible

level; while the popular asymmetric system GW190412 (Abbott et al. 2020b) is more likely to originate from field

binary evolution, which was examined to be promised by Olejak et al. (2020). Additionally, the precession events

GW190413 134308, GW200129 065458, and GW190521 074359 (Islam et al. 2023) are more likely originates from

dynamical channel.

Table 4. Probabilities of the first-generation BBHs belonging to the
field and dynamical sub-populations, inferred with the Extend De-
fault model.

Events Aligned Isotropic

GW150914 095045 0.028 0.972

Table 4 (Continued on next page)
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Figure 9. The same as Figure 6, but for the case with variable µt.
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Figure 10. Posterior distributions of the µt and σt describing the cos θ1,2 distribution of the nearly-aligned subpopulation; the
dashed lines in the marginal distribution represent the 90% credible intervals.

Table 4 (Continued on next page)
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Figure 11. Posterior distribution of the main hyperparameter describing the two sub-populations, inferred without cos θ2
information.

Table 4 (Continued)

Events Aligned Isotropic

Table 4 (Continued)

Events Aligned Isotropic

GW151012 095443 0.502 0.498

GW151226 033853 0.983 0.017

GW170104 101158 0.185 0.815

GW170608 020116 0.942 0.058

GW170809 082821 0.091 0.909

GW170814 103043 0.124 0.876

GW170818 022509 0.041 0.959

GW170823 131358 0.041 0.959

Table 4 (Continued on next page)
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Figure 12. The same as Figure 6, but for the inference with only cos θ1 distribution.
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Figure 13. Spin-magnitude distributions of BBHs in the nearly-aligned and isotropic-spin sub-population. The solid curves
are the medians and the colored bands are the 90% credible intervals.
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Table 4 (Continued)

Events Aligned Isotropic

Table 4 (Continued)

Events Aligned Isotropic

GW190408 181802 0.264 0.736

GW190412 053044 0.976 0.024

GW190413 134308 0.033 0.967

GW190421 213856 0.029 0.971

GW190503 185404 0.031 0.969

GW190512 180714 0.673 0.327

GW190513 205428 0.203 0.797

GW190521 074359 0.043 0.957

GW190527 092055 0.174 0.826

GW190630 185205 0.088 0.912

GW190707 093326 0.93 0.07

GW190708 232457 0.802 0.198

GW190720 000836 0.983 0.017

GW190727 060333 0.041 0.959

GW190728 064510 0.981 0.019

GW190803 022701 0.045 0.955

GW190828 063405 0.113 0.887

GW190828 065509 0.888 0.112

GW190910 112807 0.036 0.964

GW190915 235702 0.086 0.914

GW190924 021846 0.808 0.192

GW190925 232845 0.256 0.744

GW190930 133541 0.973 0.027

GW190413 052954 0.08 0.92

GW190719 215514 0.225 0.775

GW190725 174728 0.905 0.095

GW190731 140936 0.052 0.948

GW191105 143521 0.914 0.086

GW191127 050227 0.087 0.913

GW191129 134029 0.914 0.086

GW191204 171526 0.984 0.016

GW191215 223052 0.265 0.735

GW191216 213338 0.979 0.021

GW191222 033537 0.035 0.965

GW200112 155838 0.041 0.959

GW200128 022011 0.043 0.957

GW200129 065458 0.05 0.95

GW200202 154313 0.917 0.083

GW200208 130117 0.035 0.965

GW200209 085452 0.06 0.94

GW200219 094415 0.039 0.961

GW200224 222234 0.039 0.961

GW200225 060421 0.185 0.815

Table 4 (Continued on next page)
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Table 4 (Continued)

Events Aligned Isotropic

GW200302 015811 0.135 0.865

GW200311 115853 0.036 0.964

GW200316 215756 0.975 0.025

GW191103 012549 0.982 0.018

GW200216 220804 0.041 0.959

D. SIMULATION OF MOCK DATA

For the mock population with features found in this work, we assume the mass, spin, redshift distributions following

Eq. D4 with αA = 3.5, βA = 1, αI = 0.5, βI = 3, δlowA = δlowI = 5M⊙, mmin,A = mmin,I = 5M⊙, mmin,A = mmin,I =

45M⊙, δ
high
A = δhighI = 10M⊙, σt = 0.3, µa = 0.15, σa = 0.1, rI = 0.14.

π(θ|Λ) = [πA(θd|ΛA)× (1− rI) + πI(θd|ΛI)× rI]× πAI(θs|ΛAI)

= [PL(m1,m2|αA, βA, δA,mmin,A,mmax,A, δ
high
A )×G(cos θ1, cos θ2|1, σt,−1, 1)× (1− rI)

+PL(m1,m2|αI, βI, δI,mmin,I,mmax,I, δ
high
I )×U(cos θ1, cos θ2| − 1, 1)× rI]

×G(a1, a2|µa, σa, 0, 1)× p(z|γ = 2.7)

(D4)

the mass function of each subpopulation is

PL(m1,m2|Λm) = C(Λm)m
α
1 S(m1|δlow,mmin,mmax, δ

high) mα
2 S(m2|δlow,mmin,mmax, δ

high) (m2/m1)
β Θ(m1−m2).

(D5)

with

S(m|δlow,mmin,mmax, δ
high) = SL(m|mmin, δ

low)SH(m|mmax, δ
high) (D6)

where C(Λm) is the normalization factor, Θ(m1 − m2) denotes the Heaviside step function ensuring m1 >

m2, SL(m|mmin, δ
low) is the smooth function on the lower edge as introduced in Abbott et al. (2023), and

SH(m|mmax, δ
high) is the smooth function on the upper edge which reads

0 (m > mmax),

[f(mmax −m, δhigh) + 1]−1 (mmax − δhigh < m < mmax),

1 (m < mmax − δhigh)

(D7)

with

f(x, δhigh) = exp(δhigh/x+ δhigh/(x− δhigh)) (D8)

For the mock population without features found in this work, we just assume the cos θ of the two subpopulation

following the same distribution as GU(cos θ1, cos θ2|σt, ζ) = G(cos θ1, cos θ2|1, σt,−1, 1)× ζ + U(cos θ1, cos θ2| − 1, 1)×
(1− ζ), (i.e., the Default spin-orientation model in Abbott et al. (2023),) with σt = 0.3 and ζ = 0.5. Therefore the

mass, spin, redshift distributions read

π(θ|Λ) = [PL(m1,m2|αA, βA, δA,mmin,A,mmax,A, δ
high
A )× (1− rI)

+PL(m1,m2|αI, βI, δI,mmin,I,mmax,I, δ
high
I )× rI]

×GU(cos θ1, cos θ2|σt, ζ)× G(a1, a2|µa, σa, 0, 1)× p(z|γ = 2.7)

(D9)

The mass and spin-orientation distributions are the same as those of the mock population with features, i.e.,

αA, βA, δA,mmin,A,mmax,A, δ
high
A , αI, βI, δI,mmin,I,mmax,I, δ

high
I , µa, σa are set the same as those in Eq. D4.

To generate the detected events of the mock population we randomly choose events from the injection campaign

for O3 Search Sensitivity Estimates with the inverse False Alarm Rate > 1yr, each event is assigned a draw weight

proportional to p(θ|Λ)/pdraw(θ), where p(θ|Λ) is the probability distribution of mock population, and pdraw(θ) is

https://zenodo.org/records/7890437
https://zenodo.org/records/7890437
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Figure 14. The same as Fig. 6, but for the analysis with mock data where the injections having features found in this work.

the probability distribution from which the injection campaigns are drawn. For each mock population, we adopt 57

detections, similar to the size of the first-generation BBHs in the real data of GWTC-3. With each mock detection, we

then use IMRPhenomXPHM waveform (Pratten et al. 2021) to generate GW signal and inject it to the noise generated

by the “O3 actual”noise power spectral densities. We perform parameter estimation on each event using BILBY

(Ashton et al. 2019) with the NESSAI (Williams et al. 2021) nested sampler.

Then we use the model (Eq. 5) introduced in the main text, to respectively infer the underlying distribution of the

two mock populations. Figure 15 / Figure 14 shows the recovered distributions of the mock population with / without

the features of spin-orientation distributions found in this work.

E. COMPARISON WITH BHS IN HMXBS

Fishbach & Kalogera (2022) firstly compared the BHs in XRBs with those in GW sources, and concluded that the two

types of BHs are ‘Apple and Orange’, for the significant disagreement in their spin-magnitude distributions, though

the mass distributions are still consistent. Anyway, the GW sources may originate from several channels, and the

higher-generation BHs in hierarchical mergers are unlikely to be the same as the BHs in XRBs (Fishbach et al. 2017;

Li et al. 2023). Therefore, it would be more appropriate to compare the BHs from ‘Apple to Apple’, i.e., comparing

the BHs from one individual formation channel we inferred with the BHs in XRBs. Here, we focus on comparing GW

sources with BHs in HMXBs. This is because HMXBs are more likely to be the progenitors of merging BBHs due

to the presence of massive mass donor. Figure 16 (left) compares the primary-mass distribution of the field BBHs to

the mass distribution of HMXB BHs 6. The green dashed region is the inferred primary-mass cumulative distribution

function (CDF) of the field-evolution BBHs, while the blue dashed region is the predicted CDF of 3 random draws

from the field-evolution BBH primary mass distribution. We find that the HMXB BHs are slightly heavier than the

6 The HMXBs adopted in this work are the same as those of Fishbach & Kalogera (2022), including M33 X-7, Cygnus X-1, and LMC X-1,
with BH masses of 15.65+1.45

−1.45M⊙, 21.20+2.20
−2.20M⊙, and 10.90+1.40

−1.40M⊙, respectively.

https://dcc.ligo.org/LIGO-T2000012/public
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Figure 15. The same as Fig. 14, but for injections do not have features found in this work.

BHs in the Field BBHs, though the mass distribution of the HMXB BHs and the 3 predicted BBHs are still consistent

within the Poisson uncertainty.

The spin-magnitude distribution of the BBHs inferred with our model (µa = 0.11+0.06
−0.09, σa = 0.12+0.07

−0.05) is significantly

in disagreement with the spin magnitudes of the HMXB BHs (Reynolds 2021), such a result was also found in the

comparison between the full BBH catalog and the HMXB BHs by Fishbach & Kalogera (2022). Considering the

differences in the mass functions and spin-magnitude distributions between the field-evolution BBHs and the HMXB

BHs, it is possible that the HMXB BHs may have accreted significant mass, e.g., the BH mass can increase by a factor

of 1.3 (Gallegos-Garcia et al. 2022; Shao & Li 2022); simultaneously, BHs are spun up by super-Eddington accretion

under the assumption of conservative mass transfer (MT) (Qin et al. 2022; Shao & Li 2022). Conservative MT widens

the orbits of the HMXBs and hence prevents them from merger within a Hubble time (Bavera et al. 2021; Zevin &

Bavera 2022), which lead to wide BBHs or wide neutron star-BHs (Gallegos-Garcia et al. 2022). This scenario is

also consistent with the fact that HMXBs have been observed yet are not expected to merge within the Hubble time

(Belczynski et al. 2011, 2012; Neijssel et al. 2021; Gallegos-Garcia et al. 2022).

We also compared the mass function of the BHs in dynamical channels to the HMXB BHs, as shown in Figure 16

(right). The masses of the HMXB BHs are smaller than BHs in the dynamical channel (pale-green regions). However,

when we modified the dynamical-channel mass function with α = αI + 2 to mimic the initial mass function of BHs in

the environments of dynamical channels (O’Leary et al. 2016), the initial mass function (sandy-brown regions) seems

consistent with the HMXB BHs.
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Pratten, G., Garćıa-Quirós, C., Colleoni, M., et al. 2021,

PhRvD, 103, 104056, doi: 10.1103/PhysRevD.103.104056

Qin, Y., Shu, X., Yi, S., & Wang, Y.-Z. 2022, Research in

Astronomy and Astrophysics, 22, 035023,

doi: 10.1088/1674-4527/ac4ca4

Ray, A., Magaña Hernandez, I., Breivik, K., & Creighton,

J. 2024, arXiv e-prints, arXiv:2404.03166,

doi: 10.48550/arXiv.2404.03166

Reynolds, C. S. 2021, ARA&A, 59, 117,

doi: 10.1146/annurev-astro-112420-035022

Rodriguez, C. L., Chatterjee, S., & Rasio, F. A. 2016a,

PhRvD, 93, 084029, doi: 10.1103/PhysRevD.93.084029

Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V., &

Rasio, F. A. 2016b, ApJL, 832, L2,

doi: 10.3847/2041-8205/832/1/L2

Shao, Y., & Li, X.-D. 2022, ApJ, 930, 26,

doi: 10.3847/1538-4357/ac61da

Spera, M., Mapelli, M., Giacobbo, N., et al. 2019, MNRAS,

485, 889, doi: 10.1093/mnras/stz359

Stevenson, S., Berry, C. P. L., & Mandel, I. 2017, MNRAS,

471, 2801, doi: 10.1093/mnras/stx1764

Tagawa, H., Haiman, Z., Bartos, I., Kocsis, B., & Omukai,

K. 2021, MNRAS, 507, 3362,

doi: 10.1093/mnras/stab2315

Talbot, C., & Golomb, J. 2023, MNRAS, 526, 3495,

doi: 10.1093/mnras/stad2968

Talbot, C., & Thrane, E. 2017, PhRvD, 96, 023012,

doi: 10.1103/PhysRevD.96.023012

http://doi.org/10.3847/2041-8213/aba7b6
http://doi.org/10.3847/2041-8213/ab7247
http://doi.org/10.3847/2041-8213/aa7045
http://doi.org/10.3847/2041-8213/ac64a5
http://doi.org/10.1103/PhysRevLett.121.161103
http://doi.org/10.1103/PhysRevD.105.083526
http://doi.org/10.3847/2041-8213/ac2f3c
http://doi.org/10.3847/2041-8213/ac96ef
http://doi.org/10.1103/PhysRevD.95.124046
http://doi.org/10.1103/PhysRevD.98.084036
http://doi.org/10.1038/s41550-021-01398-w
http://doi.org/10.1103/PhysRevLett.115.141102
http://doi.org/10.48550/arXiv.2304.01288
http://doi.org/10.48550/arXiv.2210.12287
http://doi.org/10.3847/1538-4357/ac43bc
http://doi.org/10.1103/PhysRevD.108.103009
http://doi.org/10.48550/arXiv.2309.14473
http://doi.org/10.3847/2041-8213/ac0aef
http://doi.org/10.3847/1538-4357/ac34f0
http://doi.org/10.3847/1538-4357/ac0971
http://doi.org/10.48550/arXiv.2303.02973
http://doi.org/10.3847/2041-8213/ac78dd
http://doi.org/10.1086/166419
http://doi.org/10.1093/mnras/stw379
http://doi.org/10.1016/j.physrep.2022.01.003
http://doi.org/10.48550/arXiv.1809.09130
http://doi.org/10.1051/0004-6361/201628133
http://doi.org/10.3847/2041-8213/ab5b9b
http://doi.org/10.48550/arXiv.2401.05613
http://doi.org/10.3847/1538-4357/abde4a
http://doi.org/10.3847/2041-8205/824/1/L12
http://doi.org/10.3847/2041-8213/abb5b5
http://doi.org/10.1103/PhysRevD.103.104056
http://doi.org/10.1088/1674-4527/ac4ca4
http://doi.org/10.48550/arXiv.2404.03166
http://doi.org/10.1146/annurev-astro-112420-035022
http://doi.org/10.1103/PhysRevD.93.084029
http://doi.org/10.3847/2041-8205/832/1/L2
http://doi.org/10.3847/1538-4357/ac61da
http://doi.org/10.1093/mnras/stz359
http://doi.org/10.1093/mnras/stx1764
http://doi.org/10.1093/mnras/stab2315
http://doi.org/10.1093/mnras/stad2968
http://doi.org/10.1103/PhysRevD.96.023012


26 Li et al.

—. 2020, arXiv e-prints, arXiv:2012.01317,

doi: 10.48550/arXiv.2012.01317

Tang, S.-P., Li, Y.-J., Wang, Y.-Z., Fan, Y.-Z., & Wei,

D.-M. 2021, ApJ, 922, 3, doi: 10.3847/1538-4357/ac22aa

The LIGO Scientific Collaboration, the Virgo

Collaboration, Abbott, R., et al. 2021a, arXiv e-prints,

arXiv:2108.01045, doi: 10.48550/arXiv.2108.01045

The LIGO Scientific Collaboration, the Virgo

Collaboration, the KAGRA Collaboration, et al. 2021b,

arXiv e-prints, arXiv:2111.03606,

doi: 10.48550/arXiv.2111.03606

—. 2021c, arXiv e-prints, arXiv:2111.03634,

doi: 10.48550/arXiv.2111.03634

—. 2022, arXiv e-prints, arXiv:2212.01477,

doi: 10.48550/arXiv.2212.01477

Tiwari, V., & Fairhurst, S. 2021, ApJL, 913, L19,

doi: 10.3847/2041-8213/abfbe7

Vitale, S., Biscoveanu, S., & Talbot, C. 2022, A&A, 668,

L2, doi: 10.1051/0004-6361/202245084

Wang, Y.-Z., Li, Y.-J., Vink, J. S., et al. 2022, ApJL, 941,

L39, doi: 10.3847/2041-8213/aca89f

Wang, Y.-Z., Tang, S.-P., Liang, Y.-F., et al. 2021, ApJ,

913, 42, doi: 10.3847/1538-4357/abf5df

Williams, M. J. 2021, nessai: Nested Sampling with

Artificial Intelligence, latest, Zenodo,

doi: 10.5281/zenodo.4550693

Williams, M. J., Veitch, J., & Messenger, C. 2021, Phys.

Rev. D, 103, 103006, doi: 10.1103/PhysRevD.103.103006

Williams, M. J., Veitch, J., & Messenger, C. 2021, PhRvD,

103, 103006, doi: 10.1103/PhysRevD.103.103006

Williams, M. J., Veitch, J., & Messenger, C. 2023.

https://arxiv.org/abs/2302.08526

Woosley, S. E. 2017, ApJ, 836, 244,

doi: 10.3847/1538-4357/836/2/244

Woosley, S. E., & Heger, A. 2021, ApJL, 912, L31,

doi: 10.3847/2041-8213/abf2c4

Yang, Y., Bartos, I., Gayathri, V., et al. 2019, PhRvL, 123,

181101, doi: 10.1103/PhysRevLett.123.181101

Zevin, M., & Bavera, S. S. 2022, ApJ, 933, 86,

doi: 10.3847/1538-4357/ac6f5d

Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ,

910, 152, doi: 10.3847/1538-4357/abe40e

http://doi.org/10.48550/arXiv.2012.01317
http://doi.org/10.3847/1538-4357/ac22aa
http://doi.org/10.48550/arXiv.2108.01045
http://doi.org/10.48550/arXiv.2111.03606
http://doi.org/10.48550/arXiv.2111.03634
http://doi.org/10.48550/arXiv.2212.01477
http://doi.org/10.3847/2041-8213/abfbe7
http://doi.org/10.1051/0004-6361/202245084
http://doi.org/10.3847/2041-8213/aca89f
http://doi.org/10.3847/1538-4357/abf5df
http://doi.org/10.5281/zenodo.4550693
http://doi.org/10.1103/PhysRevD.103.103006
http://doi.org/10.1103/PhysRevD.103.103006
https://arxiv.org/abs/2302.08526
http://doi.org/10.3847/1538-4357/836/2/244
http://doi.org/10.3847/2041-8213/abf2c4
http://doi.org/10.1103/PhysRevLett.123.181101
http://doi.org/10.3847/1538-4357/ac6f5d
http://doi.org/10.3847/1538-4357/abe40e

	Introduction
	Methods
	Framework and data
	BBH population models

	Results
	Distributions of the field and the dynamical sub-populations

	model comparison and results check
	Model comparison
	mock data studies

	conclusion and discussion
	The higher-generation BHs
	Results of other models
	Extend Default model
	Inference with t<0.5
	Inference with a variable t
	Is single nearly-aligned or isotropic-spin population also consistent with data?
	Inference with only 1
	Is the spin-magnitude distributions of two sub-population identical?

	Classification
	Simulation of mock data
	Comparison with BHs in HMXBs

