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Abstract

This document is an introduction to two related formalisms to define Boolean functions:
binary decision diagrams, and Boolean circuits. It presents these formalisms and several of their
variants studied in the setting of knowledge compilation. Last, it explains how these formalisms
can be connected to the notions of automata over words and trees.
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1 Introduction

This document is about Boolean functions and formalisms to represent them. Given their natu-
ralness, many communities in theoretical and applied computer science use Boolean functions and
study their representations. The circuit complexity community [Vollmer, 1999], for instance, studies
classes of Boolean circuits defined by conditions such as the depth, the size, and the kinds of gates
that are allowed. Other communities study Boolean functions [Wegener, 1987], or ways to repre-
sent them concisely, in particular as decision diagrams [Wegener, 2004]. Meanwhile, the knowledge
compilation community, motivated by the practical use case of SAT solvers, investigates formalisms
to represent Boolean functions as binary decision diagrams, or Boolean circuits, while ensuring the
tractability of certain tasks. A central work in this area, but dating back to 2002, is the knowledge
compilation map [Darwiche and Marquis, 2002]; the area also uses tools from neighboring fields
such as communication complexity [Kushilevitz, 1997]. Last, the database theory community has
also investigated Boolean functions, in particular in the setting of provenance [Green et al., 2007],
including representations such as provenance circuits [Deutch et al., 2014]: in this area, restricted
Boolean circuit classes were in particular studied for query evaluation on probabilistic databases [Jha
and Suciu, 2013]. All told, this illustrates that the notions of decision diagrams (e.g., OBDDs) and
restricted circuit classes (e.g., d-DNNFs) are studied to a large extent by separate communities.

The goal of this document is twofold. First, we propose a unified introduction to binary decision
diagrams and Boolean circuits, using consistent terminology across the two paradigms. We hope
that this can serve as an introduction to researchers familiar with one of the two formalisms,
as a way to understand the connections with the other formalism. Second, we present a lesser-
known correspondence that relates automata on words and trees to these binary decision diagrams
and Boolean circuit classes, specifically, to the setting of ordered binary decision diagrams and
structured Boolean circuit classes. The connection goes through the notion of provenance circuits,
which relates automata to a Boolean function informally describing their behavior on words of a
specific length: intuitively, provenance circuits are obtained by unraveling the automaton up to that
length. The point of this correspondence is that well-known conditions on finite automata (e.g.,
determinism, unambiguity) relate to conditions on the resulting ordered binary decision diagrams
(for word automata) or structured Boolean circuits (for tree automata).

Thus, our hope is that this document can serve as a “Rosetta stone” to highlight connections be-
tween binary decision diagrams, Boolean circuits, and automata, and encourage further interaction
between the communities studying these formalisms.

Document structure. The document is structured in the following way. First, in Section 2,
we give some common preliminaries. We then define the two main formalisms we use to represent
Boolean functions: we define binary decision diagrams in Section 3, and then define Boolean circuits
in Section 4. We then explain in Section 5 in which sense binary decision diagrams can be seen as a
special case of Boolean circuits. Then, we introduce in Section 6 the notions of automata on words
and on trees, and we explain how we can define provenance circuits for automata: this allows us
to draw a correspondence between conditions on automata and conditions on provenance circuits.

Acknowledgements. This work was initiated while the authors were visiting the Simons Insti-
tute for the Theory of Computing, and was done in part during the corresponding program at the
institute.
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2 Preliminaries

We write sets of variables with uppercase boldface letters, such as X,Y ,Z, and single variables
with uppercase non-bold letters, such as X PX, Y P Y , etc.

Assignments and Boolean functions. Let X be a finite set of variables. An assignment of X
is a function a : X Ñ t0, 1u. We denote by AssignpXq the set of all assignments of X. A Boolean
function over X is a function f : AssignpXq Ñ t0, 1u. An assignment a of X is satisfying if fpaq “ 1
(also denoted a |ù f). We denote by Modelspfq Ď AssignpXq the set of all satisfying assignments
of f , and #Modelspfq the size of this set.

CNFs and DNFs. Let X a set of variables. A literal is an expression of the form X or  X for
X PX. A clause is a disjunction of literals, for instance X1_X2_ X3. A formula in conjunctive
normal form, or CNF for short, is a formula that is a conjunction of clauses, i.e., an expression of
the form

Źn
i“1

Ci where each Ci is a clause. We call a conjunction of literals a term. A formula in
disjunctive normal form, or DNF, is a disjunction of terms i.e., an expression of the form

Žn
i“1

ti
where each ti is a term.

Directed graphs, DAGs, labeled DAGs. A directed graph is a tuple G “ pN,Eq where N is
the set of nodes and E Ď N ˆ N is the set of edges. We say that G is acyclic if it contains no
cycles, and call it a directed acyclic graph or DAG.

For a finite set Σ of labels, a Σ-node-labeled directed graph, or just node-labeled directed graph, is
a tuple G “ pN,E, λq where pN,Eq is a directed graph and λ : N Ñ Σ is the node labeling function.
A Σ-labeled directed graph, or just labeled directed graph, is a node-labeled directed graph whose
edges additionally carry labels. Formally, a Σ-labeled directed graph is a tuple G “ pN,E, λq such
that E Ď N ˆ Σ ˆ N and pN, tpx, yq | Dℓ : px, ℓ, yq P Eu, λq is a Σ-node-labeled directed graph. A
node u of G is called a source if it does not have any incoming edges, a sink if it does not have
any outgoing edges, and an internal node if it has some outgoing edges. If a labeled directed graph
is acyclic, we call G a labeled DAG. Notice that the previous definition allows a labeled directed
graph G to have multiple edges between the same pair of nodes, but each one with a different label.
We define the size of G, written |G|, to be |N | ` |E| ` |Σ|.

3 Binary Decision Diagrams

We start by giving formal definitions of (nondeterministic) binary decision diagrams and their
semantics, and present two conditions on diagrams: variable structuredness (corresponding to free
or ordered binary decision diagrams), and ambiguity levels. We then comment on an alternative
way to express nondeterminism. After that, we present the case of binary decision diagrams without
sharing (aka decision trees), and discuss the notion of completeness for binary decision diagrams,
along with an alternative semantics called the zero-suppressed semantics.

3.1 Basic classes

A nondeterministic binary decision diagram (nBDD [Bollig and Wegener, 1997, Amarilli et al.,
2020]) over a set of variables X is a labeled DAG D such that: (i) each edge is labeled with either
the symbol 0 (a 0-edge) or the symbol 1 (a 1-edge); (ii) each sink is labeled with t (for true) or
f (for false); and (iii) each internal node is labeled with a variable X P X and has at least one
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u0 : X

u2 : Z

0

u3 : W

0

u4 : Z

0, 1

u5 : Y

00, 1
0

u6 : t

1

10

u7 : f

0

1

u1 : Y

1
0

(a) A graphical representation of an nBDD in-
cluding node identifiers and their labels.
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Z

0, 1

Y

00, 1
0

t

1

10

f

0

1

Y

0
1

(b) The usual graphical representation of an
nBDD, where node identifiers are not included.

Figure 1: An nBDD over the set of variables X “ tX,Y,Z,W u.

outgoing 0-edge and at least one outgoing 1-edge. Given an assignment a P AssignpXq, a run π

of D following a is a sequence u1, u2, . . . , uk of nodes of D such that u1 is a source of D, uk is a
sink of D, and for each i P t1, . . . , k ´ 1u, letting Xi be the variable that labels ui, there is an edge
in D from ui to ui`1 with label apXiq. Note that there is always at least one run following a, which
we can obtain by starting at an arbitrary source and following edges until we reach a sink: indeed,
condition (iii) ensures that every node has an outgoing edge with the correct label. If π follows a,
we also say that a is consistent with π: note that π can be consistent with different assignments
if some variables do not occur as the label of any node of π. The run π is accepting if the label of
the sink at the end of π is t. An assignment a is accepted by D, denoted by Dpaq “ 1 or a ( D, if
there exists an accepting run of D following a; otherwise a is rejected by D, denoted by Dpaq “ 0
or a * D. In this paper, we sometimes refer to a run without explicitly mentioning an assignment
that it follows. Finally, observe that D represents a Boolean function over the set of variables X,
and we will often identify D with the Boolean function that it represents.

Example 3.1. An nBDD D over the set of variables X “ tX,Y,Z,W u is shown in Figure 1a.
For each node we include its identifier and label; for instance, u0 : X indicates that node u0 has
label X. Moreover, we depict edges with their labels; for instance, pu0, 0, u2q is the only edge from
u0 to u2, while pu0, 0, u4q, pu0, 1, u4q are the two edges from u0 to u4 (the symbol 0, 1 next to the
edge from u0 to u4 is used to denote two edges, one with label 0 and the other one with label 1).
The two sources of D are u0 and u1, while the two sinks of D are u6 and u7.

Consider the assignment a1 P AssignpXq such that a1pXq “ a1pY q “ a1pZq “ a1pW q “ 0.
Then we have that a1 is consistent with the run π1 “ u0, u2, u6. Notice that an assignment can
be consistent with many different runs of an nBDD; for instance, a1 is consistent with π1 as well
as with the run π2 “ u1, u3, u5, u7. An assignment is accepted by an nBDD if there exists at least
one accepting run of the nBDD that is consistent with it; for instance Dpa1q “ 1 since a1 is
consistent with the accepting run π1 pDpa1q “ 1 despite the fact that a1 is consistent with the run
π2 “ u1, u3, u5, u7 and the label of sink u7 is fq.

We depict in Figure 1b the same nBDD as in Figure 1a, but without including node identifiers.
The usual graphical representation of an nBDD is the one given in Figure 1b.
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Table 1: Classification of nondeterministic binary decision diagrams based on ambiguity level (non-
deterministic, unambiguous, or deterministic) and variable structuredness (unrestricted, free, or
ordered).

Unrestricted Free Ordered

Nondeterministic nBDD nFBDD nOBDD

Unambiguous uBDD uFBDD uOBDD

Deterministic BDD FBDD OBDD

Nondeterministic binary decision diagrams are classified according to two dimensions.

• Variable structuredness (free, ordered). Let D be an nBDD over a set of variables X.
Then D is free (nFBDD) if, for every run π of D, no two distinct nodes in π have the same
label. In addition, D is ordered (nOBDD) if there exists a linear order ă on the set X such
that, if a node u1 appears before a node u2 in some run of D, then, letting X1 P X be the
label of u1 and X2 P X the label of u2, we have X1 ă X2. Notice that an nOBDD is in
particular an nFBDD.

The notions of nFBDD and nOBDD are defined in terms of the runs of an nBDD. Thanks to
condition (iii) of the definition of an nBDD, such notions can be equivalently defined in terms
of the paths of an nBDD. In particular, it would be equivalent to say that an nBDD D is
free if for every (directed) path π in D, no two distinct nodes in π have the same label, and
likewise for the condition that the nBDD is ordered.

• Ambiguity level. Let D be an nBDD over a set of variables X. Then D is unambiguous
(uBDD) if, for every assignment a P AssignpXq, there exists at most one accepting run of D
that is consistent with a. Moreover, D is deterministic, which is referred to as BDD [Lee,
1959, Wegener, 2004]), if, for every assignment a P AssignpXq, there exists exactly one run
of D that is consistent with a.

As mentioned before, thanks to condition (iii) of the definition of an nBDD, for every nBDD D

over a set of variables X and every a P AssignpXq, there exists at least one run of D that
is consistent with a. In the case where D is deterministic, such a run must be unique. This
leads to the following equivalent definition of a BDD, which is the most commonly used in the
literature: D is a BDD if and only if D has a single source, which is called the root of D, and
every internal node of D has exactly one outgoing 0-edge and exactly one outgoing 1-edge.

The combination of the previous two dimensions gives rises to 9 different classes of nondetermin-
istic binary decision diagrams, which are shown in Table 1. The most widely used models among
these classes are the deterministic variants, i.e., binary decision diagrams (BDD) [Lee, 1959], free
binary decision diagrams (FBDD) [Fortune et al., 1978, Blum et al., 1980], and ordered binary
decision diagrams (OBDD) [Bryant, 1986]. An FBDD is also referred to as a read-once branching
program in the literature, where the term nondeterministic read-once branching program [Razgon,
2014] is used to denote1 nFBDDs.

1Note that [Razgon, 2014] also defines a notion of nFBDD, or normalized FBDD, which is different from the
nFBDDs that we consider.
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(a) A free binary decision diagram.
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(b) An ordered binary decision diagram.

Figure 2: Two deterministic binary decision diagrams over the set of variables X “ tX,Y,Z,W u.

Example 3.2. The nBDD in Figure 1 is not free: indeed, for the run u1, u3, u5, u7, the nodes u1 and
u5 have the same label Y . On the other hand, the nBDD shown in Figure 2a is free and deterministic,
so it is an FBDD. Moreover, the nBDD shown in Figure 2b is ordered and deterministic, because
every run in it follows the linear order X ă Y ă Z ăW , so it is an OBDD. The nBDD of Figure 2a,
on the other hand, is not ordered.

3.2 Binary decision diagrams with or-nodes

Nondeterministic binary decision diagrams have also been defined by extending binary decision
diagrams with or-nodes [Amarilli et al., 2020, Bollig et al., 2010] (they are also called guessing
nodes [Razborov, 1991]). An or-node u in a BDD is an internal node such that u is labeled with the
disjunction symbol _ instead of a variable, and the outgoing edges of u are not labeled. Acceptance
of a BDD with or-nodes is defined as for the case of BDDs; in particular, if a run goes through an
or-node, then it chooses an outgoing edge of this or-node, which does not impose any restriction
on the values assigned to variables. In this sense, or-nodes can be used to encode nondeterministic
choices as shown in the following example:

X

W

1

Y

0

Z

0, 1

X

_

0

_

1

Y WZ

Part of an nBDD is shown in the left-hand side of this figure, while its representation as a BDD

with or-nodes is shown in the right-hand side. In particular, if the variable X is assigned value 0 in
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the nBDD, then a run can move either to the node with label Y or to the node with label Z. Such
a choice is represented in the BDD by connecting the outgoing 0-edge of variable X to an or-node,
which in turn is connected (by means of edges without labels) to the nodes with labels Y and Z;
in this way, we indicate that if X is assigned value 0 in a run of the BDD, then this run must move
to an or-node, from which it must choose whether to move either to variable Y or to variable Z. It
is straightforward to see that this idea can be used to translate in polynomial time an nBDD into
an equivalent BDD with or-nodes.

In the other direction, a BDD with or-nodes can be translated in polynomial time into an
equivalent nBDD by applying the transformation shown in Figure 3, which we explain next. Part
of a BDD with or-nodes is shown in the left-hand side of this figure, while its representation as an
nBDD is shown in the right-hand side. More precisely, for a pair of nodes u, v that are labeled by
variables in a BDD with or-nodes D, an or-path from u to v is a path π from u to v in D such that
every node in π except for u and v is an or-node. For example, the following are or-paths from the
node X to the node Z in Figure 3:

X

_

0

Z

X

_

1

Z

Notice that the first edge in an or-path must be labeled 0 or 1; in the first case, the or-path is said
to be a 0-or-path, while in the second is said to be a 1-or-path. Moreover, given a node u that is
labeled by a variable, the or-closure of u is defined as the set of nodes v such that v is labeled
by a variable and there exists an or-path from u to v. In the BDD with or-nodes in Figure 3, the
or-closure of X consists of the nodes with labels Y , Z, W and V . Then in the translation of a BDD

with or-nodes into an nBDD, for every node v in the or-closure of a node u, a 0-edge from u to v is
included in the nBDD if there exists a 0-or-path from u to v, and a 1-edge from u to v is included in
the nBDD if there exists a 1-or-path from u to v. An example of such a transformation is shown in
Figure 3. It is straightforward to see that this idea can be used to translate in polynomial time any
BDD with or-nodes D into an equivalent nBDD D1.2 Observe that the complexity of that operation
is essentially that of computing the transitive closure of the binary decision diagram, which can
be done in polynomial time. Furthermore, there is no need to compute this transitive closure if
no or-node is connected to another or-node: if we impose this condition on the input, then the
translation becomes linear-time.

The different conditions on variable structuredness and ambiguity level for nBDDs can be di-
rectly extended to BDDs with or-nodes. Thus, for example, we can talk about FBDDs with or-nodes
and OBDDs with or nodes. The procedures to transform nBDDs into BDDs with or-nodes and vice-
versa preserve all such conditions. In this sense, up to the translation that we presented, the models
of nBDDs and BDDs with or-nodes are completely interchangeable: we use nBDDs in the sequel. We
last note that some restricted cases of BDDs with or-nodes have been considered in the literature,
e.g., PBDDs, which are (nondeterministic) disjunctions of OBDDs with different orders [Bollig and
Wegener, 1997]. Again, these models can be represented within the framework based on nBDDs

that is used in this paper.

2Note that, if the root of D is an or-node, then D
1 will have multiple sources.
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X

_

0

_

1

ZY _

VW

X

Z

0, 1

Y

0

W

0, 1

V

1

Figure 3: Transformation of a BDD with or-nodes into an nBDD.

3.3 Completion and zero-suppressed semantics

We present in this section the completion transformation on BDDs, and the alternative semantics
of BDDs called the zero-suppressed semantics.

Completion. The notion of complete nBDDs has been studied, e.g., in [Bollig, 2016]. An nBDD

is complete if all variables are tested on all runs. More precisely, for each run π “ u1, u2, . . . uk,
the set of variables that occur as labels of tu1, u2, . . . , uku is equal to the set X of all variables. In
particular, if the binary decision diagram is free, then every such path must consist of exactly |X|
internal nodes followed by a sink. Further, if the binary decision diagram is ordered, the sequence
of variables tested by every run is exactly the linear order on the variables that the binary decision
diagram follows.

Completeness can be useful for certain tasks. Consider for instance the counting problem for
FBDDs: the input is a FBDD D over a set of variables X, and the output is #ModelspDq, i.e., the
number of assignments of AssignpXq that satisfy D. If D is complete, then the following linear-time
bottom-up algorithm is correct. Annotate all t-sinks with 1 and all 0-sinks with 0. Then for an
internal node n, annotate it by the sum of the annotations of the nodes that can be reached from n

by following only one edge, then output the sum of the annotations of all source nodes. If D was
not complete, this would not return the correct result, as this might have missed some satisfying
assignments.

We can always complete an nBDD in polynomial time by adding extra internal nodes before
sinks. More precisely, assuming X “ tX1, . . . ,Xku, we replace each sink u by a sequence of nodes
u1, . . . , uk, uk`1 where the label of ui is Xi for every i P r1, ks, the label of uk`1 is the same as the
label of u, and there is a 0-edge and a 1-edge from ui to ui`1 for every i P r1, ks. Notice that this
translation does not affect unambiguity or determinism; however, the resulting nBDD is in general
not free or ordered. The complexity of the procedure is Op|D| ¨ |X|q, where |D| is the size of the
input nBDD D and X is the set of variables.

More interestingly, we can always complete an nFBDD in polynomial time while ensuring that
the result is still an nFBDD, as shown in [Wegener, 2000] (see also [Amarilli et al., 2020]). To
do this, we rewrite the nFBDD from the sources to the sinks in polynomial time while ensuring
that, for every node u, all paths from a source to u test the same set Su of variables, and every
variable in Su is tested exactly once in each such path. The base case is that of a source u labeled
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with variable X which tests the set Su “ tXu. Inductively, considering an internal node u labeled
with X with incoming edges from nodes u1, . . . , uℓ testing sets Su1

, . . . , Suℓ
, and letting S “

Ť

i Sui
,

we replace each edge from ui to u by a sequence of nodes like in the previous paragraph which test
the variables of the (possibly empty) set S r Si. By inductive assumption, all paths reaching the
end of such a sequence are testing precisely S. As the binary decision diagram is an nFBDD, we
know that the label X of node u does not belong to Si for every i P r1, ℓs. Hence, x R S and all
paths reaching node u after the rewriting are indeed testing all variables of Su “ SYtXu precisely
once. Last, for sinks, we proceed as in the previous paragraph to make sure that any remaining
variables are tested. Note that this translation again does not affect unambiguity or determinism,
and the result is complete and is still free, and again the complexity is Op|D| ¨ |X|q for D the input
nFBDD and X its set of variables.

We last observe that this process on nFBDDs, when applied to nOBDDs, can be performed in a
way that gives an nOBDD as a result, if the sequences of variables that we insert always follow the
order ă of the nOBDD. For this we can observe that the sets Sn of the previous proofs are always
a prefix of the order ă. Again the transformation does not affect unambiguity or determinism, and
the complexity is the same. In this specific case, a simpler description of this algorithm is then the
following. Assume that the nOBDD conforms to the linear order X1 ă X2 ă . . . ă Xk. In order to

complete it, we can replace each edge Xi
a
ÝÑ Xj by the sequence of edges Xi

a
ÝÑ Xi`1

0,1
ÝÝÑ Xi`2

0,1
ÝÝÑ

¨ ¨ ¨
0,1
ÝÝÑ Xj, where the intermediate steps represent fresh nodes that test the indicated variables.

Zero-suppressed semantics. An alternative way to define the semantics of an nBDD is via the
so-called zero-suppressed semantics, see [Wegener, 2000, Section 8.1] or [Minato, 1993]. Intuitively,
in a zero-suppressed nBDD, it is assumed that every variable not mentioned along a run takes
the value 0, unlike the standard semantics presented so far where the value of such variables is
unconstrained. More formally, given a set of variables X, a zero-suppressed nBDD D over X

is defined like an nBDD, but with the following modification in the definition of the acceptance
condition for D. Let a P AssignpXq and π “ u1, u2, . . . uk be a path from a source to a sink of D,
and let Xi be the label of ui for each i P r1, k ´ 1s. Then π is said to be a run consistent with a if
there exists an edge from ui to ui`1 with label apXiq for each i P r1, k ´ 1s, and apXq “ 0 for each
variable X PX r tX1, . . . ,Xk´1u.

The purpose of zero-suppressed semantics is that, in practice, it can yield smaller binary decision
diagrams. For example, a Boolean function over a set of variables X with the only satisfying
assignment being the one that assigns 0 to all variables can be represented in the zero-suppressed
semantics simply as a single source node that is also a t-sink. In contrast, using the usual semantics
requires |X| nodes. However, as we explain next, there are simple polynomial-time conversions
between the two semantics.

For an nBDD that is complete, given that all runs must test every variable, there is no difference
between the standard semantics and the zero-suppressed semantics. For this reason, every nBDD

can be converted in polynomial time to an equivalent zero-suppressed nBDD, which preserves the
variable structuredness and ambiguity level of the nBDD being translated. Conversely, given a
zero-suppressed nBDD D, it can be transformed into an equivalent nBDD by considering a variant
of the completion procedure presented before: in that procedure, we only add nodes that check that
the missing variables are mapped to 0. This procedure makes D complete without changing the
function that it represents in the zero-suppressed semantics. In addition, it preserves the variable
structuredness and ambiguity level of the zero-suppressed nBDD being translated.
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3.4 Decision trees

If we disallow sharing (i.e., we disallow internal nodes having multiple incoming edges), we get
decision trees. More precisely, an nBDD D is a nondeterministic decision forest (nDF) if, ignoring
the sinks, the underlying graph of D is a tree. If, in addition, it has only one source node, then it is
a nondeterministic decision tree (nDT). This notion of nondeterministic decision trees has already
been studied, e.g., in [Wegener, 2000, Theorem 10.1.4]. For example, the nBDD in Figure 2a is
an nDT, which is usually depicted in the following way, implicitly indicating that leaves are not
considered in the underlying structure that defines an nDT:

X

Y

0

Z

1

Z

0

Y

1

t

0

f

1

f

1

t

1

t

0

f

0

On the other hand, the nBDD in Figure 2b is not an nDT.
As a special case of nBDDs, nDFs and nDTs inherit property definitions such as variable struc-

turedness and ambiguity levels. As with binary decision diagrams, the most widely used subclass
are the nDTs that are deterministic, which are usually referred to simply as decision trees (DT)
[Safavian and Landgrebe, 1991, Wu et al., 2008]. For example, the nBDD in Figure 2a is a DT,
which can be easily verified considering the previous figure.

It is important to mention that nDFs and DTs are usually assumed to be free because, unlike
general binary decision diagrams, an nDF can always be transformed in polynomial time into an
equivalent free nDF (and likewise for DTs). More precisely, for every node u of an nDF D, there
exists a unique path from the corresponding source of D to u. The labels of the vertices and edges
traversed on this path specify a partial assignment for a set of variables. If the node u tests a
variable X that was already tested on this path, then the value a of X is already specified in the
partial assignment. Thus, we can remove u, re-connect the outgoing edges from u labeled by a to
the predecessor of u in the path, and remove the other outgoing edges from u (which are labeled
1 ´ a). Repeating this process in a traversal of D makes this nDF free. Observe that this process
does not work with general binary decision diagrams as there may be different paths reaching a
node u with conflicting values for the variable tested by u.

4 Boolean Circuits

We now move from binary decision diagrams to the more general formalism of Boolean circuits. The
section is structured similarly to the previous section: we give the basic definitions of a Boolean
circuit and its semantics, and define notions of structuredness and ambiguity levels. We then
mention the definition of Sentential Decision Diagrams (SDDs) as a special case of Boolean circuits.
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We then mention the case of Boolean circuits without sharing (aka formulas), and the notion of
smoothness for Boolean circuits (corresponding to completeness for binary decision diagrams).

4.1 Definitions

A circuit C over variables X is a rooted t^,_, , t, fu Y X-node labeled DAG C “ pN,W,λq
together with a designated sink g0 P N called the output gate of C. The vertices N are called gates,
the edges W are called wires. We often abuse notation and write g P C to mean g P N . An input
of a gate g P C is a gate g1 P C that has a wire to g, i.e., we have pg1, gq P W . The gates of C can
be of several kinds:

• If λpgq “ t, then g is a constant true-gate (also sometimes called constant 1-gate), and it must
then have no input;

• If λpgq “ f, then g is a constant false-gate (also sometimes called constant 0-gate), and it
must then have no input;

• If λpgq PX, then g is a variable gate, and it must then have no input;

• If λpgq “  , then g is a negation gate, and it must then have exactly one input;

• If λpgq “ _ (resp, λpgq “ ^), then g is a ^-gate (resp., _-gate), and it must then have at
least one input.

The Boolean circuit C represents a Boolean function over X in the following way. Given an
assignment a : X Ñ t0, 1u, we extend it to give a Boolean value to all gates of the Boolean circuit
by bottom-up induction:

• The value of a constant true-gate g is apgq “ 1;

• The value of a constant false-gate g is apgq “ 0;

• The value of a variable gate g annotated with variable X is apgq :“ apXq;

• The value of a negation gate g is apgq :“ 1´ apg1q, where g1 is the input of g;

• The value of an ^-gate g (resp., _-gate g) with input gates g1, . . . , gn is apgq :“
Ź

i apgiq
(resp., apgq :“

Ž

i apgiq).

The Boolean function defined by C is then the one that maps assignments a to the value apg0q
of the output gate of the Boolean circuit. We sometimes abuse terminology and call the variable
gates the inputs of the Boolean circuit.

The size |C| of a Boolean circuit is its number of wires. For a gate g of C, we denote by Varspgq
the set of variables that have a directed path to g in C, and we denote by Cg the Boolean circuit
over X whose output gate is g.

In the rest of this document, we will always consider Boolean circuits in negation normal form
(NNF), where negation gates are always applied to variables; formally, for any negation gate g, then
its one input must be a variable gate. We can equivalently see NNF Boolean circuits as positive
Boolean circuits (circuits without negation) defined directly on the literals (i.e., the variables and
their negations).

Just like binary decision diagrams, we classify Boolean circuits according to two dimensions.
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Table 2: Classification of NNF Boolean circuits based on ambiguity level (nondeterministic, unam-
biguous, or deterministic) and variable structuredness (unrestricted, free, or ordered).

Unrestricted Decomposable Structured

Arbitrary NNF DNNF SDNNF
Deterministic (i.e., unambiguous) d-NNF d-DNNF d-SDNNF
Decision dec-NNF dec-DNNF dec-SDNNF

• Variable structuredness. A Boolean circuit is called decomposable if, intuitively, ^-gates
partition the variables into disjoint sets. Formally, an ^-gate g of C is decomposable if it
has exactly two input gates g1 ‰ g2 such that we have Varspg1q X Varspg2q “ H. A Boolean
circuit C is decomposable if every ^-gate of C is. Note that this is a syntactic condition
that can easily be checked in time Op|C| ¨ |X|q. A decomposable NNF Boolean circuit is
called a DNNF. We point out that DNNFs are sometimes defined without the restriction that
^-nodes always have two inputs; we impose this for convenience, and this is without much
loss of generality as this can be enforced in linear time (using constant gates).

Further, a DNNF is structured if the partitions that are defined by the ^-gates are compatible,
in the following sense. A v-tree over the set of variables X is a rooted full binary tree T whose
leaves are in bijection with X. We always identify each leaf with the associated element of X.
For a node n P T , we abuse notation and denote by Varspnq the set of variables in the subtree
rooted at n. A DNNF D is structured by the v-tree T if there exists a mapping ρ labeling each
^-gate of g with a node of T that satisfies the following: for every ^-gate g of D with two
inputs g1, g2, the node ρpgq structures g, i.e., ρpgq is not a leaf and, letting n1 and n2 be its
two children in some order, we have Varspgiq Ď VarspTni

q for i “ 1, 2. A DNNF is structured,
written SDNNF, if there exists a v-tree that structures it.

• Ambiguity level. A Boolean circuit is unambiguous, which is (unfortunately) called for
historical reasons deterministic, if, intuitively, the inputs to _-gates are mutually exclusive.
Formally, an _-gate g of C is deterministic if for every pair g1 ‰ g2 of input gates of g, the
Boolean functions over X captured by Cg1 and Cg2 are disjoint; that is, we have ModelspCg1qX
ModelspCg2q “ H. We call C deterministic if each _-gate is. Note that being deterministic
is a semantic condition, not a syntactic one.

A stronger notion of determinism is that of determinism in the sense of BDDs, which we
call decision to distinguish it from determinism. An _-gate is decision if it has exactly two
inputs g0 and g1 and there is a variable X such that g1 is an ^-gate with X as input, and g0
is an ^-gate with a negation gate of X as input. The Boolean circuit C is decision if all
_-gates are decision. Note that being decision is a syntactic condition that can be checked
in linear time, and a decision circuit is always deterministic.

The combination of the previous two dimensions again gives rise to 9 different classes of Boolean
circuits, which are shown in Table 2. A Boolean circuit which is both decomposable and determin-
istic is called a d-DNNF, and if it is in addition structured then we have a d-SDNNF. A Boolean
circuit which is both decomposable and decision is called a dec-DNNF, and dec-SDNNF if it is
structured. Note that dec-DNNFs are also called decision-DNNFs [Lagniez and Marquis, 2017];
they can also be seen as AND-FBDDs with decomposable ANDs [Beame et al., 2013].
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Figure 4: A deterministic and decomposable Boolean circuit as a classifier and its vtree.

Last, we point out that ambiguity levels are typically only considered in combination with
decomposability, i.e., there is no standard notation for a deterministic NNF such as d-NNF (or
dec-NNF ). This is because, to the best of our knowledge, there is no interesting task that can be
tractably solved specifically on such Boolean circuits.

Example 4.1. The following example is taken from [Arenas et al., 2023]. We want to classify
papers submitted to a conference as rejected (Boolean value 0) or accepted (Boolean value 1). Papers
are described by Boolean variables fg, dtr, nf and na, which stand for “follows guidelines”, “deep
theoretical result”, “new framework” and “nice applications”, respectively. The Boolean classifier
for the papers is given by the Boolean circuit in Figure 4. The input of this Boolean circuit are
the variables fg, dtr, nf and na, each of which can take value either 0 or 1, depending on whether
the variable is present (1) or absent (0). The nodes with labels  , _ or ^ are logic gates, and the
associated Boolean value of each one of them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value of the Boolean circuit is given by the
top node in the figure.

The Boolean circuit in Figure 4 is decomposable, because each ^-gate has two inputs, and the
sets of variables of its inputs are pairwise disjoint. For instance, in the case of the top node in
Figure 4, the left-hand side input has tfgu as its set of variables, while its right-hand side input has
tdtr, nf, nau as its set of variables, which are disjoint. Also, this Boolean circuit is deterministic
as for every _-gate two of its inputs cannot be given value 1 by the same Boolean assignment for
the variables. For instance, in the case of the only _-gate in Figure 4, if a Boolean assignment for
the variables gives value 1 to its left-hand side input, then variable dtr has to be given value 1 and,
thus, such an assignment gives value 0 to the right-hand side input of the _-gate. In the same way,
it can be seen that if a Boolean assignment for the variables gives value 1 to the right-hand side
input of this _-gate, then it gives value 0 to its left-hand side input.

Last note that the Boolean circuit is structured by the vtree shown at the left. Further, the circuit
is not decision; however, it could be made decision by adding a ^-gate having as inputs the variable
gate dtr and a constant 1-gate, and making that gate an input to the _-gate instead of dtr.

4.2 Sentential decision diagrams

Sentential decision diagrams (SDDs) are a restricted class of structured Boolean circuits, satisfying
a new ambiguity level called strong determinism. An _-gate g is said to be strongly deterministic
if it satisfies the following criteria. Firstly, the inputs of g are all ^-gates, written g1, ..., gm, and
they are all structured by some v-tree node n, i.e., we have ρpgiq “ n for all 1 ď i ď m. Further,
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Figure 5: An example of a sentential decision diagram (SDD) and its vtree.

each gi for 1 ď i ď m has precisely two inputs pi and si, and, letting n1, n2 be the children of n
in the order given by the v-tree, we have Varsppiq Ď Varspn1q and Varspsiq Ď Varspn2q. Then we
call p1, ..., pm the primes and s1, ..., sm the subs of g, and we require that the primes pi, ..., pm are
mutually exclusive, namely, we require that pi ^ pj is unsatisfiable for any i ‰ j.

A Boolean circuit C is then strongly deterministic if every _-gate of C is. This gives rise
to the class of strongly deterministic SDNNF [Pipatsrisawat and Darwiche, 2010], which, as the
name suggests, satisfies a stronger notion of determinism than a d-SDNNF while being more general
than dec-SDNNF. A sentential decision diagram (SDD) [Darwiche, 2011] is a strongly deterministic
DNNF which further ensures that, for every _-gate g, letting p1, . . . , pm be its primes, then they
are exhaustive, formally,

Ž

i pi “ J.

Example 4.2. In Figure 5b, we show an example of a sentential decision diagram from [Darwiche,
2011], in circuit notation. The inputs of this Boolean circuit are the variables A,B,C,D. It can be
seen that structuredness holds with respect to the shown vtree; for example, the ^-node immediately
below the root _-node has one child with variables tB,Au Ď tB,Au and one child with variables
tCu Ď tD,Cu. Strong determinism also holds; for example, for the root _-node, its children are all
^-nodes structured by the root vtree node, and the primes correspond to the logical formulae B^A,
B ^ A and  B, which are clearly mutually exclusive (and also exhaustive).

4.3 Formulas

As for binary decision diagrams and their restriction to decision trees, one can also be interested
in circuit classes in which we disallow sharing.

When the underlying graph of a Boolean circuit is a tree (noting that we may have multiple
variable gates labeled by the same variable), then we call the result a Boolean formula (not to be
confused with a Boolean function). If the Boolean circuit is in NNF, then the Boolean formula is
in NNF. Examples of Boolean formulas in NNF include Boolean formulas in conjunctive normal
form (CNF), and Boolean formulas in disjunctive normal form (DNF). Note that Boolean formulas
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may still contain several occurrences of the same variable or literal; when we further impose that
the Boolean circuit has a tree structure and that there is only one gate for each variable, we obtain
what is called a read-once formula [Angluin et al., 1993].

4.4 Smoothness

Recall that, for binary decision diagrams, we introduced a notion of completeness which intuitively
requires binary decision diagrams to test all variables. We now present the analogous requirement
on circuits, which is called smoothness.

The notion of smooth Boolean circuits has been introduced in [Darwiche, 2001]; see also [Shih
et al., 2019]. An _-gate g of a Boolean circuit C is smooth if for every input g1 of g we have
Varspgq “ Varspg1q, and C is called smooth if all its _-gates are smooth. Smoothness is the Boolean
circuit analogue of completeness for binary decision diagrams. Smoothing is the process of taking
a Boolean circuit C as input, and constructing a Boolean circuit C 1 that is equivalent to C and
that is smooth. This can be done näıvely in quadratic time as follows. Letting X be the variables,
compute in time Op|C| ¨ |X|q the set Varspgq for every g P X. Then, for every _-gate g and input
gate g1 such that Varspg1q Ĺ Varspgq, replace g1 by an ^-gate of g1 and of

Ź

XPVarspgqzVarspg1qpX_ Xq.
It is clear that the resulting Boolean circuit is equivalent and smooth, and that this can be done in
Op|C| ¨ |X|q. Furthermore, if C is in NNF, then so is C 1, and if C is decomposable, then C 1 also is.
We note that smoothing can be done more efficiently for structured Boolean circuit classes [Shih
et al., 2019].

5 From Binary Decision Diagrams to Boolean Circuits

In this section, we connect the notions of binary decision diagrams (Section 3) and Boolean circuits
(Section 4). We do so by explaining why binary decision diagrams are in fact specific classes
of Boolean circuits, with a direct translation from binary decision diagrams to Boolean circuits.
Furthermore, we show how the conditions that we have defined on diagrams can be preserved by
this transformation.

Linear v-trees. The translation from binary decision diagrams to Boolean circuits that we will
present, when applied to ordered binary decision diagrams (nOBDDs), will produce structured
Boolean circuits whose v-trees have a specific shape. We define these v-trees, called right-linear
v-trees, and explain how to obtain them from the order respected by the nOBDD.

Formally, given an order ă on variables X, we define the right-linear vtree Tă obtained from ă
in the following way:

• if X consists of a single variable x then Tă is the singleton tree whose root is a leaf node
labeled by x;

• otherwise, letting x be the smallest element of X according to ă, we let Tă be the tree whose
root is an internal node having x has left child and having as right child the root of the tree
Tă1 obtained from the order ă1 which is the restriction of ă to Xztxu.

Note that the choice of right-linear v-trees is arbitrary; similar constructions could be made
with a left-linear v-tree.
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Converting binary decision diagrams to Boolean circuits. We are now ready to state
the immediate translation from binary decision diagrams to Boolean circuits, and to explain how
conditions on the Boolean circuit can be rephrased to conditions on the binary decision diagram.
This is a folklore observation which has previously appeared, e.g., as Proposition 3.4 of [Amarilli
et al., 2020]:

Proposition 5.1. Given a nBDD D, we can convert it in linear time to a Boolean circuit C that
describes the same Boolean function. The translation preserves the following:

• Variable structuredness:

– If the input nBDD is free, then the resulting Boolean circuit is decomposable (DNNF).

– If the input nBDD is ordered with an order ă, then the resulting Boolean circuit is
structured with the right-linear vtree Tă.

• Ambiguity level:

– If the input nBDD is unambiguous then the resulting Boolean circuit is deterministic.

– If the input nBDD is deterministic then the resulting Boolean circuit is decision.

• Other conditions:

– If the input is a decision tree, then the output is a Boolean formula.

– If the input is complete, then the result is smooth.

Proof. We use the following general linear-time translation from binary decision diagrams to Boolean
circuits, building a Boolean circuit C from the input binary decision diagram D:

• We replace true sinks and false sinks respectively by constant true and false gates.

• We replace internal nodes n on a variable X with a gate defined like in the definition of
decision gates above; formally, let g1

0
, . . . , gk0

0
(resp., g1

1
, . . . , gk1

1
) be the translations of the

nodes to which n had edges labeled with 0 (resp., with 1). Construct a gate g0 (resp., g1) to
be an _-gate of the gates g1

0
, . . . , gk0

0
(resp., of g1

1
, . . . , gk1

1
). We then translate n to a _-gate

whose inputs are an ^-gate conjoining g1 and X, and an ^-gate conjoining g0 and  X. (If
g0 has only one input gate, then we replace it by that input, and likewise for g1.)

• Last, the output (root) gate of the Boolean circuit is an _-gate taking the disjunction of the
translations of all the sources of the nBDD; or, if the nBDD has only one source, then it is
the gate that translates this source.

The translation process is illustrated in Figure 6. One can check that the translation runs in
linear time and produces a Boolean circuit C with the same semantics as the nBDD D, i.e., C that
represents the same Boolean function as D. Further, we can check that C has the stated properties:

• If the input nBDD D is free, for every ^-gate g in C created when translating a node n of
the nBDD, then g will conjoins a literal for the variable x tested by n with a gate g1, and the
gates g2 having a directed path to g1 are gates g2 that are translations of nodes n1 of D to
which n has a path (along with intermediary gates introduced in the translation), so these
gates g2 cannot test x because D is free. Hence, g is decomposable.
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Figure 6: Left: OBDD for the Boolean function  x^ y. Right: equivalent dec-SDNNF.

• If the input nBDDD is ordered by an order ă, then any ^-gate g in C created when translating
a node n of D will conjoin a literal for the variable x tested by n with a gate that depends
on variables tested by nodes to which n has a directed path, therefore, C is structured by the
right-linear v-tree Tă.

• If the input nBDD D is unambiguous, then, for every node n of D, for every assignment a

of the variables there is at most one accepting run which is compatible with a and that
goes through n. This ensures that, considering the _-gates g0 and g1 created in C when
translating n, there cannot be two inputs of such a gate that are made true by a. Further,
for every assignment, we know that at most one source of D is the beginning of a successful
run, so the _-gate which is the output gate of C also does not have two mutually satisfiable
inputs. (Note that the _-gates created as the translation of n above are decision gates, so
they are always deterministic.)

• If the input nBDD D is deterministic, then the gates of the form g0 and g1 in the translation
had only one input, so they were merged with that input; and likewise D has only one source
so we did not create an _-gate as the output gate of C. Hence, in this case, all _-gates in C

are those that translate a node of D, and they are decision gates.

• If the input D is a decision tree, then there is no sharing in the process described above
(creating different copies of variable gates labeled by the same variable), so it creates a
Boolean formula.

• If the input D is complete, then an easy induction shows that the set of variables having a
directed path to a gate g of the Boolean circuit created to translate a node n of D is precisely
the set of variables tested by the nodes n1 of D to which n have a directed path, so as D is
complete we conclude that C is smooth.

6 Automata

This section presents the notions of word automata and tree automata. It then explains how to
relate these notions to binary decision diagrams and Boolean circuits, respectively, via the notion
of provenance circuits for automata. The use of Boolean circuits for provenance representations
is originally from [Deutch et al., 2014], and its use for automata is in [Amarilli et al., 2015];
but the relation between word automata and binary decision diagrams has been studied in other
contexts, e.g., [Bollig, 2016].
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The section first defines word automata, then tree automata, and then explains how to compute
provenance circuits for these automata.

6.1 Automata on words

We define standard notions from formal language theory, before defining word automata.

Alphabets, words, languages. An alphabet is a finite set Σ of letters. A word on Σ is a finite
(possibly empty) sequence w “ w1, . . . , wn of letters from Σ; its length |w| is n. The set of all
words over Σ is denoted by Σ˚. A language over Σ is a subset of Σ˚.

Word automata. A non-deterministic finite automaton (NFA) A “ pQ, I, F, δq over Σ consists
of a finite set Q of states, a set I Ď Q of initial states, a set F Ď Q of final states, and a transition
relation δ Ď Q ˆ Σ ˆ Q. We define |A|, the size of A, to be |A| :“ |Σ| ` |Q| ` |δ|. A partial run
of A on a word w P Σ˚ is a sequence of states ρ “ q0, q1, ¨ ¨ ¨ , q|w| such that pqi, wi`1, qi`1q P δ for
every i P t0, . . . , |w| ´ 1u. We say that ρ starts at q0 and ends at q|w|. A run of A on w is a partial
run of A on w which starts at an initial state. An accepting run of A on w is a run of A on w
which ends in a final state. For a word w, we say that w is accepted by A if there is an accepting
run of A on w. The language accepted by A, denoted LpAq, is the set of words over Σ that are
accepted by A.

The automaton A is called unambiguous (UFA) if for every word w P Σ˚ there exists at most
one accepting run of A on w. Note that this is a semantic condition, which is not straightforward to
verify syntactically. By contrast, we say that the automaton A is deterministic (DFA) if it satisfies
the following syntactic condition: there is precisely one initial state in I, and, for every state q P Q
and letter a P Σ, there is at most one state q1 P Q such that the transition pq, a, q1q is in δ. In
this case, we can equivalently see δ as a partial function from Q ˆ Σ to Q. Note that, for any
deterministic automaton A and word w, then there is at most one run of A on w (accepting or
not). Hence, a deterministic automaton is necessarily unambiguous, but the converse is not true:
there are some unambiguous automata that are not deterministic.

We say that a word automaton A is trimmed if, for every state q P Q, there is a word w in the
language of A such that q occurs in an accepting run ρ of A on w. Notice that this is equivalent
to saying that, for every state q P Q, there exists a path in the underlying directed graph of the
automaton from some initial state to q (we say that q is accessible), and a path from q to some
final state (we say that q is co-accessible). Given a word automaton A, we can easily convert it in
linear time to a trimmed automaton which is equivalent (i.e., that recognizes the same language),
and this conversion preserves unambiguity and determinism.

Note that an unambiguous word automaton A which is trimmed satisfies in particular a stronger
requirement (*): for any word w, there cannot be two different runs of A on w that lead to the
same state q. Indeed, if this were to happen, then as q is co-accessible we could complete w to a
word on which A has two accepting runs, contradicting unambiguity. This property (*) is generally
not satisfied if the automaton A is not trimmed.

6.2 Automata on trees

We now define the notions of tree languages and automata over trees.

Trees. Let Σ be an alphabet. A Σ-tree pT, λq is a finite, rooted, ordered binary tree T (all internal
nodes have exactly two children, and these are ordered) such that every node n of T is labeled by a
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letter λpnq P Σ. We say that T is the skeleton of pT, λq. We denote by T pΣq the set of all Σ-trees. A
tree language over Σ is a (potentially infinite) set of Σ-trees. The complement of a tree language L

is the set of Σ-trees that are not in L.

Tree automata. We only consider bottom-up finite tree automata in this document. A non-
deterministic (bottom-up) finite tree automaton (NFTA) A “ pQ,F,∆, ιq over Σ consists of a finite
set of states Q, a set F Ď Q of final states, an initialization relation ι Ď Σ ˆ Q, and a transition
relation ∆ Ď Q ˆ Q ˆ Σ ˆ Q. We define |A|, the size of A, to be |A| :“ |Σ| ` |Q| ` |∆| ` |ι|.
Let pT, λq be a Σ-tree. A run of A on pT, λq is a Q-tree pT, λ1q having the same skeleton T and
satisfying the following conditions:

• every leaf is labeled by a state given by applying the initialization relation to the label of that
leaf: formally, for every leaf n of T we have that pλpnq, λ1pnqq P ι;

• every internal node is labeled by a state given by applying the transition relation to the two
states labeling the two children: formally, for every internal node n of T , letting n1, n2 be the
(ordered) children of n, we have that pλ1pn1q, λ

1pn2q, λpnq, λ
1pnqq P ∆.

We say that run pT, λ1q ends at state q when q “ λ1prq for r the root of T . The run pT, λ1q is
accepting if, letting n be the root of T , we have λ1pnq P F . If there exists an accepting run of A
on pT, λq then we say that pT, λq is accepted by A. The language LpAq of A is the set of Σ-trees
accepted by A.

The automaton A is called unambiguous (UFTA) if for any Σ-tree pT, λq, there exists at most one
accepting run of A on pT, λq: again, this is a semantic criterion. We say that A is a deterministic
bottom-up finite tree automaton (DFTA) if it satisfies the following syntactic criterion: (1) for
every letter a P Σ, there is at most one state q such that pa, qq P ι; and (2) for each pair of
states pq1, q2q P Q and letter a P Σ, there is at most one state q such that pq1, q2, a, qq P δ. For a
deterministic automaton, we can equivalently see ι as a partial function from Σ to Q, and see δ as a
partial function from QˆQˆΣ to Q. Again, if A is deterministic, then for any Σ-tree pT, λq there
is at most one run of A on pT, λq (accepting or not). Hence, again, a deterministic tree automaton
is necessarily unambiguous, but the converse does not necessarily hold.

We say that A is trimmed if, for every state q P Q, there is a Σ-tree pT, λq in the language
accepted by A and a run ρ of A on pT, λq in which q appears. Given a tree automaton, we can
convert it in linear time to an automaton which is equivalent (recognizes the same language) and
is trimmed, and this conversion preserves unambiguity and determinism.

Note that a UFTA A which is trimmed satisfies again a stronger requirement (*): for every
Σ-tree pT, λq and state q P Q there is at most one run of A on pT, λq that ends at q.

6.3 Computing Boolean circuits and binary decision diagrams from automata

We now explain how to compute Boolean circuits and binary decision diagrams from automata.
We first give the construction for the most general formalisms possible (NFAs and NFTA), giving
nOBDD and structured DNNF circuits respectively. Then, we observe how these constructions can
apply to restricted automata (unambiguous and deterministic), and which conditions these ensure
on the resulting binary decision diagrams and Boolean circuits.

We assume for now that the alphabet used by automata is Σ “ t0, 1u; we will later explain why
other alphabets can also be handled.

Definition 6.1. Let A be an NFA over alphabet Σ “ t0, 1u, and let n P N. The provenance of A
on n is a Boolean function φA,n over variables X “ tX1, . . . ,Xnu defined in the following way:
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for any assignment a of X, letting wa “ apX1q . . .apXnq be the corresponding word of length n

over Σ, we have that a satisfies φA,n iff A accepts wa. A provenance circuit (resp, provenance
decision diagram) of A on n is then a Boolean circuit (resp, binary decision diagram) representing
φA,n.

Likewise, if A is a NFTA over alphabet Σ “ t0, 1u and T is an unlabeled full binary tree, the
provenance of A on T is a Boolean function φA,T whose variables X are the nodes of T and which
is defined in the following way: for any assignment a of X, letting Ta be the Σ-tree obtained from T

by labeling the nodes according to a, we have that a satisfies φA,T iff A accepts Ta. A provenance
circuit (resp., provenance decision diagram) of A on T is a Boolean circuit (resp., binary decision
diagram) representing φA,T .

We show in this section the following two results on word automata and tree automata:

Proposition 6.2. Let A be an NFA over alphabet Σ “ t0, 1u and let n P N. We can build in time
Op|A| ˆ nq a provenance diagram C of A on n which is a complete nOBDD with variable order
X1, . . . ,Xn. Further, if A is unambiguous then C is an uOBDD, and if A is deterministic then C

is an OBDD.

Proposition 6.3. Let A be a NFTA over alphabet Σ “ t0, 1u and let T be an unlabeled full binary
tree. We can build in time Op|A| ˆ |T |q a provenance circuit C of A on T which is a smooth
structured DNNF (smooth SDNNF), together with its vtree. Further, if A is unambiguous then C

is a d-SDNNF.

Note that, in Proposition 6.3, there is no discussion of the case where the input tree automaton is
deterministic. We are not aware of a standard Boolean circuit class corresponding to deterministic
automata, though a notion of upwards-deterministic Boolean circuits is introduced for that purpose
in [Amarilli et al., 2017].

We briefly comment on the relationship of these results to [Amarilli et al., 2015]. In the latter
work, the provenance for automata is defined on an alphabet consisting of a fixed part together
with a Boolean annotation. For instance, for word automata, the alphabet is Σ ˆ t0, 1u, and the
provenance is defined on an input word of Σ˚, to describe which of the Boolean annotations of
the word are accepted. The results above, with alphabet t0, 1u, allow us to recapture this setting.
Indeed, we can modify automata working on a larger alphabet to first read a binary representation
of the letter in Σ followed by the Boolean annotation. Applying the results above, and fixing the
inputs corresponding to letters to the intended values, gives us the provenance circuit in the sense
of [Amarilli et al., 2015]. This uses the fact that the Boolean circuit and binary decision diagram
classes that we consider are closed under the conditioning operation where we force a variable to
be equal to a specific value.

We first prove Proposition 6.2 as a warm-up:

Proof of Proposition 6.2. We assume that the input automaton A is complete in the sense that, for
every state q and every letter b P Σ, there is at least one transition for letter b on state q. We can
clearly make A complete in linear time up to adding a sink state.

We build a binary decision diagram with decision nodes gi,q for each 1 ď i ď n and for each
state q: the node gi,q is labeled with the variable Xi. The initial nodes are g1,q0 for each initial
state q0 P I. We also have sinks gn`1,q for each state q: the sink gn`1,q is a 0-sink if q R F , and it
is a 1-sink if q P F .

Now, for every 1 ď i ď n, we add the following edges: for each transition from a state q to state
q1 when reading symbol b P Σ, we add an edge to gi,q labeled b to gi`1,q1 .
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The construction satisfies the time bound. We modify the result in linear time to trim it,
removing all nodes that do not have a path from a starting node. The result is an nOBDD, because
each decision node has at least one outgoing 0-edge and 1-edge, and the variables are ordered in
the right way. Note that it is also complete in the sense that every run tests all variables.

We show correctness by finite induction: for every 0 ď i ď n, given a word w of length i, the
reachable nodes gi`1,q by the partial valuation corresponding to w are those for the states q that
we can reach when reading w. The base case is immediate: when reading the empty word, we can
get precisely to the initial state. Now, for the induction step, if the states that we can reach when
reading a word of length i are correct, then when reading an extra letter b P Σ we can go precisely
to the states having a transition labeled b from the previously reachable states, so the result is
correct. The finite induction applied to i “ n confirms that we can reach a final state (i.e., the
word is accepted) iff we can reach a 1-sink.

Now, observe that if the automaton is unambiguous, then for any valuation there is at most
one way to reach the 1-sink, because there is at most one accepting run of the automaton on the
corresponding word. Further, if the automaton is deterministic, then for any valuation there is
at most one consistent path, because each decision node has at most one outgoing 0-edge and
1-edge.

We next prove Proposition 6.3. To do this, we first need to do a small adjustment: v-trees are
defined in Section 4 so that the variables are at the leaves, but tree automata read labels on all
tree nodes, including internal nodes.

Definition 6.4. Let T be a finite rooted ordered binary tree with nodes N . Its leaf-push is the
finite rooted ordered binary tree T 1 obtained by applying bottom-up the following transformation:
the transformation of a leaf node is this leaf node, and we replace each internal node n with children
n1 and n2 by an internal node n1 having as children one leaf n and an internal node n2 having as
children the transformations of n1 and n2.

Note that the leaves of T 1 are precisely in bijection with the nodes of T .

Proof of Proposition 6.3. We do not assume this time that the input tree automaton A is complete,
but must instead assume that it is trimmed, so as to satisfy property (*) above.

We build a Boolean circuit bottom-up, with _-gates gn,q for each tree node n of the input
tree T . The output gate will be an _-gate g doing the disjunction of all the gr,q for q final and for
r the root of T .

Now, for every leaf n of the input tree T , we add a variable gate for n as an input of the gate
gn,q for each q P ιp1q, and we add a gate for the negation of n as an input of the gate gn,q for each
q P ιp0q.

For every internal node n of the input tree T with children n1 and n2, for every pair of states
q1 and q2, for every b P t0, 1u, for every state q having a transition from q1, q2, b, we add as input
to gn,q a ^-gate having as first input either n or  n depending on whether b “ 1 or b “ 0, and as
second input a ^-gate having as first input gn1,q1 and as second input gn2,q2 .

We them remove from the obtained Boolean circuit all gates that have no directed path to the
output gate.

The construction satisfies the time bound. Note that the circuit is clearly in NNF. We claim
that it is decomposable, and that it is structured by a v-tree which is the leaf-push of the tree T .
Indeed, we can easily show by bottom-up induction that the domain of each gate gn,q is a subset of
the nodes of the subtree of T rooted at n (including n), so that the ^-gates are indeed structured
according to the leaf-push. We additionally point out that the circuit is smooth: this relies on the
fact that we removed gates having no directed path to the output gate.
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We show correctness again by finite induction: for every tree node n of T , given a labeling of
the subtree Tn of T rooted at n, the gates gn,q satisfied by the corresponding partial assignment are
precisely those for the states q that we can reach when reading the labeling of Tn in A. The base
case corresponds to leaves, where indeed the gates gn,q that are satisfied follow the initial function
ι by construction.

Now, for the induction step, let us consider an internal node n of T with children n1 and n2.
By induction hypothesis, we assume that the states that we can reach when reading a labeling λ1

of the tree Tn1
and when reading a labeling λ2 of the tree Tn2

are the ones given by the invariant.
Let us show that the invariant is satisfied when reading a labeling λ of Tn. Note that λ is defined
by a labeling λ1 on Tn1

, a labeling λ2 on Tn2
, and a label b P Σ on n. The gates gn,q that are

satisfied are precisely those for which there is a transition from q1 and q2 and b to q and for which
gn1,q1 and gn2,q2 are satisfied: this allows us to conclude from the induction hypothesis. Hence,
using the induction result on the root r of T (where Tr “ T ), we conclude that the output gate of
the Boolean circuit is true on an assignment a iff there is a final state of A that we can reach on
the labeling of T according to a.

Now, observe that if the automaton is unambiguous, then each _-gate is deterministic. Indeed,
if the output gate had two inputs that are mutually satisfiable, then it witnesses the existence of a
labeling of the tree T on which A reaches two different final states, contradicting the unambiguity
of A. Likewise, if a gate gn,q has two inputs that are mutually satisfiable, as they are satisfied by the
same valuation the literal on n must be the same so it must be the case that we can simultaneously
satisfy gn1,q1 and gn2,q2, and gn1,q

1

1
and gn2,q

1

2
, for two 2-tuples pq1, q2q ‰ pq

1
1
, q1

2
q. This witnesses

that, on this labeling of Tn, the automaton has two distinct runs leading to state q at the root.
This is a contradiction of property (*).

7 Conclusion and Extensions

We have introduced in this document the notions of binary decision diagrams, Boolean circuits,
and automata. We have explained in which sense binary decision diagrams can be seen as a special
case of Boolean circuits. We have also explained how automata can be translated to structured
Boolean circuits (for tree automata) or ordered binary decision diagrams (for word automata).

We close the document by reviewing topics which are not presently covered by the document,
but could be covered in further versions of the document or by follow-up works:

• The connections between SDDs and automata, between strongly deterministic Boolean circuits
and automata, or the question of which Boolean circuits can be associated to deterministic
automata (a related notion is upwards-determinism in [Amarilli et al., 2017]).

• The notion of k-unambiguity for automata (i.e., having at most k accepting runs), and the
classes of Boolean circuits and binary decision diagrams to which this corresponds.

• The notion of width for structured Boolean circuits [Capelli and Mengel, 2019] and for binary
decision diagrams, and its connection to the number of states of automata.

• The class of circuits having a compatible order [Amarilli et al., 2017], which is intermediate
between stucturedness and decomposability (i.e., it restricts the possible conjunctions but in
a weaker way than requiring a fixed v-tree).

• The question of the complexity of various problems on the various classes of Boolean circuits
and binary decision diagrams, in the spirit of the knowledge compilation map [Darwiche and
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Marquis, 2002]; or their closure under operations (e.g., given two Boolean circuits in some
formalism, can we tractably compute their disjunction, their conjunction, etc., in the same
formalism?); or the complexity of translating from one formalism to another (some results of
this kind are surveyed in [Amarilli et al., 2020])

• The complexity, given an input Boolean circuit or binary decision diagram, of testing which
conditions it satisfies: this is generally tractable for syntactic criteria (e.g., decomposability,
decision), but can be intractable for semantic criteria (e.g., determinism).

• The extension from Boolean circuits to different circuit types. These include in particular
multivalued circuits, which are defined over larger sets than the Boolean values; such cir-
cuits can be useful in a database context because they relate to the notion of factorized
databases [Olteanu and Závodnỳ, 2015]. We can also interpret circuits more generally over
semirings (of which the Boolean semiring is a special case), which has been used in the setting
of provenance circuits for semiring provenance [Deutch et al., 2014], and which has been ex-
ploited for tractable model counting [Kimmig et al., 2017]. Last, we can consider arithmetic
circuits [Shpilka and Yehudayoff, 2010], which are circuits computing a polynomial over a
given field F, with internal nodes corresponding to multiplication or addition. The analogue
of decomposability is then to require that the polynomial computed is syntactically multi-
linear, i.e., that in the expanded form of the polynomial, in every monomial, each variable
has exponent either zero or one. Further, the analogue of determinism is then that every
monomial in the expanded form of the polynomial has coefficient either zero or one.

• The connections to probabilistic circuits [Choi et al., 2020], which are circuit classes that define
probability distributions rather than Boolean functions. The field of probabilistic circuits
also defines circuit properties analogous to those discussed in this document, and studies
the complexity of various probabilistic queries on different classes of probabilistic circuits.
We could also study the connections to various tractable probabilistic models such as sum-
product networks [Poon and Domingos, 2011], arithmetic circuits [Darwiche, 2003], cutset
network [Rahman et al., 2014], and-or graphs [Dechter and Mateescu, 2007], probabilistic
sentential decision diagrams [Kisa et al., 2014], and more, which can be understood via
translations to various classes of probabilistic circuits.

• The connections to other formalisms to represent languages over words, e.g., context-free
grammars, for which Boolean circuit representations are implicit in [Amarilli et al., 2022],
and which have recently been related to factorized databases in [Kimelfeld et al., 2023].

• The use of depth reduction techniques, to rewrite circuits and binary decision diagrams to
circuits of lower depth [Valiant et al., 1983]

• As a converse to provenance circuits, the conversion of circuits into automata, although this
is not obvious to define because, unlike automata, circuits generally do not have a “uniform”
behavior.
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