
MAM-STM: A software for autonomous
control of single moieties towards

specific surface positions
Bernhard Ramsauer1, Johannes J. Cartus1, Oliver T. Hofmann1*

1 Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Graz, 8010, Austria

Corresponding author:
o.hofmann@tugraz.at

ABSTRACT

In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary

moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling

microscope (STM). Finding the optimal manipulation parameters for a specific moiety is

challenging and time consuming, even for human experts. MAM-STM combines autonomous

data acquisition with a sophisticated Q-learning implementation to determine the optimal

bias voltage, the z-approach distance, and the tip position relative to the moiety. This then

allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based

on a simulated response to offer a comprehensive explanation on how to use and customize

MAM-STM. Additionally, we assess the performance of the machine learning algorithm by

benchmarking it within a simulated stochastic environment.

PROGRAM SUMMARY

Program title: MAM-STM

CPC Library link to program files: (to be added by Technical Editor)

Developer's repository link: https://gitlab.tugraz.at/software_public/mam_stm.git

Code Ocean capsule: (to be added by Technical Editor)

1

Licensing provisions: GNU General Public License 3 (GPL)

Programming language: Python 3

Nature of problem: Achieving precise control over the arrangement of individual molecules

on surfaces is essential for advancing nanofabrication and understanding molecular

interaction processes. While self-assembly offers a method for forming nanostructures,

achieving arbitrary arrangements of moieties remains difficult. Current approaches, such as

scanning probe microscopy (SPM), require extensive manual intervention and precise control

is difficult to achieve consistently due to the stochastic nature of quantum mechanical systems

at the nanoscale. Thus, learning to manipulate several moieties in order to build even

relatively small structures is challenging and time-consuming and the automation through

conventional expert systems is hindered by the lack of prior knowledge about the surface-

moiety interaction processes.

Solution method: This scenario is ideal for machine learning algorithms, like reinforcement

learning (RL), which do not require an underlying model but are able to autonomously learn

the optimal manipulation parameters by performing manipulations directly at the machine.

Introducing MAM-STM, which stands for Molecular and Atomic Manipulation via Scanning

Tunneling Microscopy. MAM-STM allows to control molecules and atoms by learning the

manipulation parameters for either vertical or lateral manipulations. However, the vast

number of manipulation parameter combinations and the inefficient learning procedure of RL

agents exhibit several challenges. MAM-STM overcomes these challenges with an

autonomous masking routine that eliminates manipulation parameters that induce structural

changes to the moiety or lift it off the surface. Additionally, a sophisticated Q-learning

approach is developed that speeds up the learning procedure, enabling molecular

manipulations within one day of training.

INTRODUCTION

Achieving atomically precise control over the position and orientation of individual molecules

is key for advancing the understanding of crystal growth, assembly processes, and the

operation of molecular machines.1 Such control unleashes the potential for nanofabrication

of innovative materials with properties that would be inaccessible through conventional

2

fabrication techniques.2–6 Self-assembly, driven by lateral intermolecular interactions,

represents an established method for forming nanostructures on surfaces.7,8 Although these

structures can be tailored within certain limits through careful selection of functional groups,

achieving arbitrary arrangements remains a formidable challenge.9,10 An alternative, more

versatile approach is to form structures building-block by building-block through atomically

precise manipulations.11–13 Currently, this is best achieved using scanning probe microscopy

(SPM).

Using this method, it is possible to build artificial structures,8,14–18 such as quantum corrals,19–

21 or 2D materials.22,23 Even nano-electronic computational devices, like logic gates,24–26 can

be constructed. However, assembling even moderately sized nanostructures requires

hundreds or thousands of manipulation steps with different manipulation parameters for

every new type of building block. An additional complication arises from the fact that the

interaction processes at the nanoscale are stochastic, i.e. the same manipulation attempt may

not always yield the same outcome. This makes finding optimal manipulation parameters

repetitive, time consuming, and unintuitive even for experts in the field. Thus, ideally, the

process of manipulating surface moieties should be fully automated.

However, conventional expert systems, i.e. algorithms relying on fixed decision processes,

require prior knowledge about outcomes — an information which is not available when

dealing with moieties on surfaces that are investigated for the first time. Conversely, this is an

ideal application for machine-learning algorithms. Beyond mastering highly complex

computer games with super-human performance,27–31 even in the absence of a priori

knowledge of game rules, machine learning has found relevance in scientific endeavors.

Notably, it has been instrumental in simulating diverse physics experiments,32–35 enabling

autonomous data acquisition in scanning probe microscopy (SPM) experiments,36,37 and

facilitating the detection and movement of nanowires using atomic force microscopy.38 The

ability of scanning tunneling microscopes (STMs) in assembling atoms into atomically perfect

nanostructures has been previously demonstrated by using a path planning algorithm and pre-

defined manipulation parameters.14 Furthermore, reinforcement learning (RL) approaches in

scanning tunneling microscopy have been employed to remove individual molecules from

closed molecular layers,39 and precisely manipulate single silver atoms to predefined positions

on a Ag(111) surface.40 These advancements collectively underscore the potential of machine

3

learning in enhancing precision and autonomy in the manipulation of atomic and molecular

structures. However, a method that learns the manipulation parameters of both atoms as well

as molecules in an autonomous fashion does not exist.

In this publication we introduce MAM-STM, a software to control both atoms and molecules

towards specific positions on a metal surface by finding the optimal manipulation parameters

in an autonomous fashion. MAM-STM stands for Molecular and Atomic Manipulation via

Scanning Tunneling Microscopy. Fig. 1 exemplifies a typical situation where building blocks on

the surface should be arranged into a desired structure, here in the form of an infinity symbol.

Fig 1a shows silver adatoms (circled in green) and organic molecules (here: phtalocyanine,

H2Pc., circled in red) adsorbed and initially randomly distributed on a silver (111) surface.

Furthermore, the blue crosses indicate the planned final location. To apply our method, the

first step then is to select a building block and its target location. MAM-STM then

automatically moves the moiety to this location by imaging the region around the moiety,

applying a vertical or lateral manipulation (see below), and re-imaging a region around the

moiety again to evaluate the results. The procedure is repeated until the building block

reaches its target location within a pre-defined threshold distance. Figure 1b then shows the

state of the surface after manipulating the building blocks using MAM-STM. Our approach

requires no prior knowledge of the interaction processes at play i.e., the behavior of the

moiety with the tip or the surface, nor the atomistic structure.

Fig 1a) STM image (U = 0.250 V, I = 100 pA) of the initial state of the surface, containing adatoms (circled in green) and
molecules (circled in red). The target position for a functional structure is indicated as blue crosses. b) STM image of the

4

surface (U = 0.250 V, I = 100 pA) where the adsorbates are assembled in the desired structure. The reference atom is indicated
by the white arrow.

To obtain the ideal manipulation parameters, the MAM-STM software employs a

reinforcement learning approach that adeptly maneuvers individual molecules towards

specific positions on a surface using a tip-induced electric field of a scanning tunneling

microscope. However, in order to build artificial nanostructure building-block by building-

block several challenges have to be addressed. The main challenge is the a priori infinite

number of possible manipulations parameter combinations (i.e., the applied bias voltage v,

the approach distance z, and the tip position in x and y relative to the moiety), which, in

reinforcement learning, is commonly referred to as action space explosion.41 To overcome this

action space explosion, MAM-STM employs an autonomous masking routine that sweeps

through the bias voltage and z approach distance to determine an Action Space Mask (ASM)

which limits the manipulation parameters to those that are able to induce movements but do

not induce any structural changes to the moieties or lift it off the surface. Another challenge

is that training conventional reinforcement learning agents is not particularly data efficient.

Thus, numerous manipulations have to be carried out necessitating in a substantial amount of

measurement time, which is usually limited. MAM-STM employs a distinctive Q-learning

approach to enhance the data efficiency of the training process. In this approach, MAM-STM

learns from the impact of a single manipulation on all potential surface positions the moiety

could attain. This accelerates the learning progress, enabling the precise positioning of

moieties after learning a few thousand manipulation parameters.

Following about half a day of training, the algorithm efficiently manipulates initially unknown

moieties towards specific positions on the surface. The code of MAM-STM is freely available

and can be downloaded from our GitLab repository:

https://gitlab.tugraz.at/software_public/mam_stm.git

This paper is organized as follows: Firstly, we discuss the general working principle of

reinforcement learning and the particular Q-Learning implementation used in MAM-STM.

Secondly, we describe how the action space explosion is limited by measuring an Action Space

Mask (ASM) to ensure parameters that interrupt the autonomous learning procedure are

eliminated. Thirdly, the three key ingredients of reinforcement learning are explained utilizing

an artificial molecule as an example. This will give a procedure to follow when setting up MAM-

5

STM for another moiety. Finally, the setup of our reinforcement learning agent is

benchmarked by letting the agent learn in a simulated stochastic environment.

Methods

The software is written in Python3 and the interface to the STM is currently only available for

the TMS320C6657 DSP (Digital Signal Processor) from Texas Instruments in order to remote-

control the STM. The software was tested on a low-temperature STM (CreaTec) operated at

5 K. However, the code which handles the remote-control commands can be easily adapted

to the electronics for other manufactures, like Nanonis.

Graphical User Interfaces (GUI) for the MAM-STM setup process

When the software is started, a graphical user interface (GUI), shown in Fig 2, appears which

allows to connect the measurements (performed with the commercial CreaTec STM/AFM

software) to MAM-STM. The first step is to select a building block (i.e., a starting position) and

the position to which it should be moved. To do so, the first step is to obtain an overview

image of the surface within the STM/AFM software (using manually chosen and optimized

imaging conditions). Then, a build block is selected in the STM/AFM software and read into

MAM-STM by clicking the “Read Position” button. The next step is to select the target position

in a similar way. If desired, multiple target positions, termed “goal” hereafter, can be selected.

This then effectively constitutes the trajectory along which the moiety is manipulated. An

example is given in Fig 3, where we selected a molecule as start position and 4 subsequently

goals, where the last goal coincides with the starting position leading to a closed trajectory.

The last position of the trajectory can be deleted via pressing the “Delete Position” button. A

detailed description of the GUI functionality is given in the supporting information.

6

Fig 2 GUI to initialize the environment positions

Fig 3 The training trajectory of our RL agent is given by a square of side length 10 nm. The orange circles determined the
goal region with a radius of 0.3 nm. The STM-image (1 V, 10 pA) shows the training trajectory of our previous work, 42 where
a dipolar molecule is moved across a Ag(111).

7

The general working principle of reinforcement learning

Recent advancements have highlighted the efficacy of reinforcement learning techniques in

tackling complex and dynamic tasks. In response to these challenges, we have devised a

reinforcement learning algorithm tailored to autonomously acquire optimal manipulation

parameters. This algorithm controls the STM-tip to directly influence the positioning of

moieties on the surface, learning from the outcomes of each manipulation.

1. The machine learning framework

To understand the impact of the various possible settings in this software, it is useful to briefly

revisit the foundations of reinforcement learning. Here, we begin by elucidating the general

concept of reinforcement learning and then focus on understanding the Bellman equation as

it is the central equation (i.e., the Q-learning algorithm) of the learning procedure.43 This

equation is pivotal in determining optimal manipulation parameters for precise control over

arbitrary moieties. Additionally, we introduce a strategic approach involving so-called “virtual

goals”, an innovative trick implemented in MAM-STM to enable parallel learning across all

states, thereby enhancing the efficiency of the learning process tremendously. Finally, the

specific structure of this reinforcement learning framework is explained, enabling its seamless

adaptation to alternative moieties.

1.1. Reinforcement Learning

Reinforcement learning (RL) is centered on the concept of learning by applying actions and

judging the outcome based on a reward signal, as illustrated in Fig 4.44 To apply reinforcement

learning to precisely position moieties on metal surfaces three key elements must be defined.

These are the set of states that represent the goal position relative to the molecule to the

agent (shown in Fig 5a), the set of possible actions that the agent can perform (shown in Fig

5b), and the reward function (explained and discussed in Section 1.1.3). At its core, RL

addresses the problem of sequential decision-making in dynamic environment, where at each

step t an agent interacts with an environment, selects actions, and receives feedback in the

form of rewards or penalties.45 The formal representation is provided through a finite Markov

decision process, defined as a 4-tuple (𝑆, 𝐴, 𝑃𝑎 , 𝑅𝑎).46 Here, 𝑆 denotes the set of states 𝑠𝑡

referred to as the state space, 𝐴 represents the set of possible actions 𝑎𝑡 collectively denoted

8

as the action space, 𝑃𝑎(𝑠𝑡, 𝑠𝑡+1) denotes the state transition probability that when applying

action 𝑎𝑡 in state 𝑠𝑡 the next state 𝑠𝑡+1 will follow, and 𝑅𝑎 signifies the immediate reward 𝑟𝑡

received after the state transition. Note that lower-case variables describe a single value of

the respective space and upper-case values the complete space.

Fig 4 The basic principle of reinforcement learning describes an agent receiving the state 𝑠𝑡 from the environment, and it
performs an action 𝑎𝑡 based on this state. This leads to a transition from state 𝑠𝑡 to 𝑠𝑡+1 and an agent receives the state 𝑠𝑡+1
and the reward signal 𝑟𝑡+1.

The primary objective in reinforcement learning is to discover a policy, i.e., a mapping from

states to actions, that maximizes the cumulative reward. This policy learning process is guided

by the agent's exploration of the environment and its ability to adapt based on the received

reward. The iterative nature of RL, involving the agent repeatedly observing, acting, and

learning from its experiences, allows it to develop increasingly refined policy 𝜋(𝑎|𝑠). This

policy is determined by a learning algorithm, known as Q-learning (see section 1.2), which

maps the action to a particular state via the so-called Q-value 𝑄(𝑠, 𝑎). 43

9

Fig 5 The visual representation of the State-Action Space. a) Each state is given by the angle 𝜑 and distance 𝑑 between the
goal and the moiety to be moved. The state space encompasses all possible distances and angles b) The action space is defined
as the possible parameter combinations given by the bias voltages 𝑉, approach distance of the tip 𝑍, and the relative position
of the STM-tip 𝑋, 𝑌 from the molecules position.

1.1.1. State Space

Each individual state is defined as a 2-tuple (d, 𝜑), containing the relative angle φ between the

moiety’s orientation and the vector from the moiety position to the goal position, and the

distance d the moiety is away from the goal position.

In MAM-STM, the state space 𝑆 discretized in increments of ∆𝑠𝜑 for the angle, and ∆𝑠𝑑 for the

distance:

𝑆 = {(𝑠𝑑, 𝑠𝜑)|sd ∈ 𝑆𝑑, 𝑠𝜑 ∈ 𝑆𝜑 }

with

𝑆𝑑 = {𝑠𝑑 |𝑠𝑑 = 𝑘 ⋅ Δ𝑠𝑑, 𝑘 ∈ ℕ0, 0 ≤ 𝑠𝑑 ≤ 𝑠𝑑𝑚𝑎𝑥
}

𝑆𝜑 = {𝑠𝜑 |𝑠𝜑 = 𝑘 ⋅ Δ𝑠𝜑, 𝑘 ∈ ℕ0, 𝑠𝜑𝑚𝑖𝑛
≤ 𝑠𝜑 < 𝑠𝜑𝑚𝑎𝑥

}

1.1.2. Action Space

10

An action is a combination of manipulation parameters characterized as a 4-tuple (𝑣, 𝑧, 𝑦, 𝑥),

where v represents the bias voltage, z denotes the z-approach distance from the STM imaging

conditions, and y and x specify the lateral tip position. The action space is also discretized in

increments of ∆𝑎𝑣 for the applied bias voltage, ∆𝑎𝑧 for the z-approach, ∆𝑎𝑦 and ∆𝑎𝑥 for the

tip:

𝐴𝑣 = {𝑎𝑣𝑚𝑖𝑛
, 𝑎𝑣𝑚𝑖𝑛

+ Δ𝑎𝑣, 𝑎𝑣𝑚𝑖𝑛
+ 2Δ𝑎𝑣, … , 𝑎𝑣𝑚𝑎𝑥

}

𝐴𝑧 = {𝑎𝑧𝑚𝑖𝑛
, 𝑎𝑧𝑚𝑖𝑛

+ Δ𝑎𝑧, 𝑎𝑧𝑚𝑖𝑛
+ 2Δ𝑎𝑧 , … , 𝑎𝑧𝑚𝑎𝑥

}

𝐴𝑦 = {𝑎𝑦𝑚𝑖𝑛
, 𝑎𝑦𝑚𝑖𝑛

+ Δ𝑎𝑦, 𝑎𝑦𝑚𝑖𝑛
+ 2Δ𝑎𝑦, … , 𝑎𝑦𝑚𝑎𝑥

}

𝐴𝑥 = {𝑎𝑥𝑚𝑖𝑛
, 𝑎𝑥𝑚𝑖𝑛

+ Δ𝑎𝑥, 𝑎𝑥𝑚𝑖𝑛
+ 2Δ𝑎𝑥, … , 𝑎𝑥𝑚𝑎𝑥

}

𝐴 = {(𝑎𝑣, 𝑎𝑧 , 𝑎𝑦, 𝑎𝑥)|𝑎𝑣 ∈ 𝐴𝑣 , 𝑎𝑧 ∈ 𝐴𝑧 , 𝑎𝑦 ∈ 𝐴𝑦, 𝑎𝑥 ∈ 𝐴𝑥}

This establishes the set of manipulation parameters available for MAM-STM to utilize in

learning the control of individual moieties. Furthermore, MAM-STM can employ both

manipulation modes: Vertical and lateral manipulation. Which type of manipulation is

executed is selected when calling the program (see Supporting Information for details). As

described below, the definition of the lateral tip positions depends on the manipulation mode.

Pulsing vertical manipulation

The advantage of the pulsing vertical manipulation mode is that it allows to induce small, but

very precise movements. 11,12,42 In the pulsing vertical manipulation mode, the STM is set to

the imaging parameters and the tip moves to the agent’s selected action (𝑎𝑥, 𝑎𝑦), shown in

red in Figure 5). The center of the action space is defined by the center of the moiety. The size

of the action space can be set by a minimum and maximum value in both directions (𝑎𝑥𝑚𝑖𝑛
,

𝑎𝑥𝑚𝑎𝑥
, 𝑎𝑦𝑚𝑖𝑛

, 𝑎𝑦𝑚𝑎𝑥
). In practice, it has proven useful to select an action space that is slightly

larger than the size of the molecule (see also benchmark below).

𝐴𝑥 and 𝐴𝑦 is larger (two times Δ𝑙 or Δ𝑤) than the moiety size (see Fig 6). When the position

is reached, the z approach distance is set and the bias voltage is applied for a maximum

duration 𝑡𝑚𝑎𝑥 or until the current threshold 𝐼𝑚𝑎𝑥 (both can be set in the file input.json) is

reached.

11

Fig 6 Action space explained based on an exemplary molecule. The center of the action space equals the center of the moiety
The action space size 𝐴𝑥 and 𝐴𝑦 is defined as the minimum and maximum action space distance 𝑎𝑥𝑚𝑖𝑛

 and 𝑎𝑥𝑚𝑎𝑥
 or 𝑎𝑦𝑚𝑖𝑛

and 𝑎𝑦𝑚𝑎𝑥
 (i.e., the distance relative to center of the moiety) based on the size of the moiety. These two parameters are

useful if the molecule to manipulate is asymmetric. The additional size of the action space 𝛥𝑙 or Δ𝑤 depends on the type of
moiety. In the case of a dipolar molecules is it advisable to use larger values of Δ𝑙 and Δw compared to non-polar molecules.

Lateral manipulation

Performing a lateral motion of the tip parallel to the surface allows for the moiety to be moved

over greater distances compared to the pulsing vertical manipulations. Depending on the

manipulation parameters, lateral manipulation leads either to pulling, pushing, or sliding

motions of the moiety.15 The lateral manipulation routine of MAM-STM is depicted in Fig 7.

Here, the STM tip moves to the start position of the lateral manipulation (in constant current

mode) using the same conditions that are used for imaging. When the start position is

reached, the current feedback is turned off and the agent’s selected manipulation parameters

are used for the manipulation. Thus, the STM tip approaches the surface in z-direction from

the imaging condition and applies the bias voltage v.

12

Then the STM-tip then moves along the lateral manipulation vector towards the end position

which is determined by the agent’s selected action (𝑎𝑥 , 𝑎𝑦), which can be anywhere within the

action space (black square). Contrary to vertical manipulation, in lateral manipulation mode

the action space is centered at the goal position. The speed of the lateral manipulation is set,

by default, to 2 nm/s and can be adjusted in the input.json file. Note that the lateral

manipulation vector starts at an offset 𝑙𝑎𝑡𝑜𝑓𝑓𝑠𝑒𝑡 = max(𝑙𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒, 𝑤𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) ∗ 1.25

measured from the moiety center and always goes through the center of the moiety. Thus,

the direction of manipulation is given by the end position (i.e., the agent’s selected action

(𝑎𝑥, 𝑎𝑦) relative to the goal position).

Fig 7 The lateral manipulation across the surface is given by the lateral manipulation vector. The vector starts at a specific
distance 𝑙𝑎𝑡𝑜𝑓𝑓𝑠𝑒𝑡 = max(𝑙𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 , 𝑤𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) ∗ 1.25 away from the center of the moiety and is displaced along the

manipulation vector but in opposite direction of the goal. The end position of the lateral manipulation is determined by the
agent’s selected action (𝑎𝑥 , 𝑎𝑦) given by the action space (black square) with the action space being centered at the goal

position. Note: The shown molecule is only an exemplary molecule used for visualization.

1.1.3. Reward functions

In order for the agent to know which action to pick in a given state, it needs to know the quality

of an action. This quality is determined via the designed reward function(s) that encodes the

overall objective the agent should accomplish. It should be emphasized that this is the only

13

handle we have to influence the agent’s behavior. Thus, designing an appropriate reward

function is crucial in accomplishing the objective we desire.

In MAM-STM, the agent should achieve two objectives: the first is to manipulate the moiety

as fast as possible towards the goal (i.e., in as few steps as possible), and the second objective

is to position the moiety precisely at the goal position.

In the following section the reward functions for the two manipulation modes are discussed

to understand how we encourage our reinforcement learning agent to manipulate moieties

fast and precisely towards specific positions on a metal surface.

Reward function: vertical manipulation

In the vertical manipulation the STM-tip is placed based on the selected action (𝑎𝑥, 𝑎𝑦). The

movement caused by this action is converted into a reward signal for the agent. The moiety is

controlled towards the individual (sub-)goal positions by applying consecutive voltage pulses

until the final goal is reached.

To ensure the agent learns to move the moiety over large distances when being further away

from the goal position but precisely when being close to the goal position, two reward

functions are designed and then added together. The first dominates when the moiety is far

away from the goal position. It is a sigmoid (see Fig 8a) that gives positive reward 𝑟𝑡+1 when

moving towards the goal (Δ𝑑𝑔𝑜𝑎𝑙 > 0) and negative reward when the moiety moves away

from the goal position. This incentivizes the agent to move the moiety a large distance Δ𝑑𝑔𝑜𝑎𝑙

towards the goal. The second reward function (Fig 8b) dominates when the moiety is close to

the goal and encourages the agent to move the moiety precisely at the goal position. The y-

axis is normalized by 𝑎𝑚𝑎𝑥 = max (𝑎𝑥𝑚𝑖𝑛
, 𝑎𝑥𝑚𝑎𝑥

, 𝑎𝑦𝑚𝑖𝑛
, 𝑎𝑦𝑚𝑎𝑥

), the maximum displacement

of the STM-tip in x or y relative to the moiety center.

14

Fig 8 The designed reward functions for the vertical manipulation. a) The reward signal R of the sigmoid function encourages
the agent to move the moieties over large distances Δd when the moiety is further away from the goal. The x-axis is
normalized by 𝑎𝑚𝑎𝑥 = max (𝑎𝑥𝑚𝑖𝑛

, 𝑎𝑥𝑚𝑎𝑥
, 𝑎𝑦𝑚𝑖𝑛

, 𝑎𝑦𝑚𝑎𝑥
) the maximum displacement of the STM-tip in x or y relative to the

moiety center. b) This reward function enables additional reward when the moiety is positioned precisely at the goal position
and only gives a positive contribution when the moiety is in close proximity to the goal. The x-axis is determined by the
distance the moiety is away from the goal 𝑑𝑔𝑜𝑎𝑙 normalized by the maximum size of the action space in x and y.

Reward function: lateral manipulation

The designed reward function for lateral manipulation (shown Fig 9) closely mirrors the

reward function employed for vertical manipulation (refer to Fig 8b), with the inclusion of an

additional penalty term, as given in the Supporting Information. This supplementary term is

incorporated to penalize instances where the moiety is not precisely situated at the goal

position. This is required to penalize situation where the moiety becomes “dropped” during

the manipulation, e.g. because of sub-optimal manipulation parameters. The penalty is

structured as a linear function, with the slope configured in a manner that imposes a penalty

of -0.25 when the distance of the moiety to the goal is 𝑎𝑚𝑎𝑥 = max (𝑎𝑥𝑚𝑖𝑛
, 𝑎𝑥𝑚𝑎𝑥

, 𝑎𝑦𝑚𝑖𝑛
,

𝑎𝑦𝑚𝑎𝑥
). This reward 𝑟𝑡+1 encourages the agent to seek manipulation parameters that

accurately position the moiety at the specified goal, discouraging parameters that result in

imprecise positioning or potential loss of the moiety throughout the manipulation trajectory.

15

Fig 9 The designed reward function for the lateral manipulation. The reward function encourages the agent to move the
moiety exactly to the goal position. The linear penalty function (of slope -0.25 and offset 0) adds a higher penalty the further
the moiety is away from the goal position. The penalty term is defined such that a penalty of -0.25 is given if the moiety is
positioned at 𝑎𝑚𝑎𝑥 = max (𝑎𝑥𝑚𝑖𝑛

, 𝑎𝑥𝑚𝑎𝑥
, 𝑎𝑦𝑚𝑖𝑛

, 𝑎𝑦𝑚𝑎𝑥
).

In summary, we defined three key elements: the states perceivable by the agent, the array of

actions it can choose to manipulate the moiety, and the reward function(s) that judge the

quality of an action. These components collectively lay the foundation for configuring a

reinforcement learning agent capable of directing moieties to predetermined positions on a

surface. However, the expansive nature of the state-action space poses several challenges

which on the one hand necessitates in eliminating the state dependence in the learning

procedure and on the other hand strategically truncate of the action space by determining an

autonomous action space mask that ensures only sensible set of parameters are used during

training consequently enhancing the efficiency of the learning procedure.

1.2. Q-learning algorithm

At the heart of the Q-Learning algorithm is the Q-table, which is a data structure used to store

and update the estimated Q-values for the expected cumulative rewards of state-action pairs.

The Q-table is initialized with zeros, and Q-Learning iteratively refines these values by applying

the Bellman equation.

16

Bellman Equation

The Bellman equation expresses the relationship between the Q-value in the current state and

the Q-values of the next state. It enables Q-Learning to update the Q-values through the

following formula:

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1)

Here, 𝑄(𝑠𝑡, 𝑎𝑡) is the Q-value for state 𝑠𝑡 and action 𝑎𝑡, 𝑅𝑡+1 is the immediate reward

(explained in the previous section 1.1.3), 𝛼 is the learning rate, 𝛾 is the discount factor.

The learning rate 𝛼 controls the step size in updating the Q-values. It determines how much

the algorithm trusts newly acquired information. A high learning rate may lead to faster

convergence but risks overshooting optimal values, while a low learning rate ensures stability

but slower learning. Finding an appropriate learning rate is often an empirical challenge in Q-

Learning.

The discount factor 𝛾 allows the RL agent to balance the trade-off between immediate and

future rewards. It influences the agent's decision-making process by affecting its preference

for short-term gains versus long-term objectives.

During the learning process, the agent balances exploration (trying hitherto unvisited actions)

and exploitation (apply the currently action estimated to yield the best result and confirming

the efficiency).

In Q-Learning agent’s employ an epsilon-greedy strategy given by:

 𝜋(𝑎|𝑠) = {

1 − 𝜖 +
𝜖

|𝐴(𝜖)|
 if 𝑎 = argmax(𝑄(𝑠, 𝑎)),

𝜖

|𝐴(𝜖)|
 otherwise

 (2)

where, with probability 𝜖 ∈ (0,1], the agent explores by selecting a random action, and with

probability 1 − 𝜖, it exploits by choosing the action with the highest Q-value. The choice of 𝜖

is a critical hyperparameter influencing the algorithm's performance and can be set in the

input.json file.

Nevertheless, employing the Bellman equation in this manner only updates a single Q-value

corresponding to the action taken in a specific state. This means the agent to manipulate

17

several million parameters to explore each action across all states at least once. This makes

the identification of meaningful actions (i.e., manipulation parameters) impractical,

prompting us to devise a solution to overcome this challenge.

1.3. Parallel Learning

Consequently, our modification to the conventional Q-learning algorithm introduces a

distinctive approach, where Q-values for every state are learned simultaneously, removing

the necessity to explore actions for every state separately.

This method incorporates virtual goals to update the Q-value for a specific action in every

state at the same time. The real state defines the actual goal position relative to the present

position of the moiety. The chosen action of the agent during the learning phase are

determined based on the real state. However, once an action is performed, its outcome can

also be evaluated assuming the goal would have been somewhere else. (In that case, the

action was probably sub-optimal).

Consequently, rather than updating the Q-value only for the real state, we can simultaneously

update the Q-value of all states. This ensures that all states receive updates at every step,

establishing a learning progress that quickly converges independently of the number of states.

1.4. Action Space Masking: Truncating the Manipulation Parameter Space

The challenge of the large number of possible manipulation parameters is often referred to as

the action space explosion in reinforcement learning. MAM-STM addresses this challenge with

a crucial software component called Action Space Masking (ASM). This routine plays a pivotal

role in limiting the manipulation parameters, effectively serving as a filter for optimal actions.

The importance of the ASM lies in its ability to sweep through the bias voltages and z-approach

distances, determining a restricted set of manipulation parameters. By doing so, the ASM

ensures that only those parameters capable of inducing movements without causing

structural changes are retained. This strategic limitation is essential for preventing the

inadvertent imposition of strong manipulation parameters that could lead to undesirable

outcomes, such as lifting the moiety off the surface. In essence, the ASM is a key mechanism

18

for refining and streamlining the learning process, enhancing both the precision and safety of

the autonomous molecular manipulation conducted by MAM-STM.

The ASM is measured by repeatedly performing lateral manipulations over a specific distance

(default: 5 nm), maneuvering the moiety between two fixed points which are determined at

the start of the routine. The start fixed point 𝑣⃑𝑓𝑖𝑥_𝑠𝑡𝑎𝑟𝑡 is determined by the position of the

moiety and the end fixed point is given by a fixed lateral manipulation distance 𝑑𝑙𝑎𝑡 (depends

on the moiety size) along the moiety orientation 𝜑𝑚𝑜𝑖𝑒𝑡𝑦.

 𝑣⃑𝑓𝑖𝑥_𝑠𝑡𝑎𝑟𝑡 = 𝑣⃑𝑚𝑜𝑖𝑒𝑡𝑦 (3)

 𝑣⃑𝑓𝑖𝑥_𝑒𝑛𝑑 = 𝑣⃑𝑚𝑜𝑖𝑒𝑡𝑦 + 𝑑𝑙𝑎𝑡 ∗ 𝑅̂(𝜑𝑚𝑜𝑖𝑒𝑡𝑦) (4)

with 𝑅̂ being a rotation matrix.

In general, the manipulation is always along equivalent directions of the moiety, which means

every lateral manipulation is either performed in the direction of the moiety or in its reverse

direction. To determine which direction of manipulation is performed, the moiety distance

towards the two fixed points is determined. The fixed point (𝑣⃑𝑓𝑖𝑥_𝑠𝑡𝑎𝑟𝑡 or 𝑣⃑𝑓𝑖𝑥_𝑒𝑛𝑑) that is

positioned further away from the moiety is the current reference point 𝑣⃑𝑟𝑒𝑓 and the

corresponding end position of the lateral manipulation 𝑣⃑𝑙𝑎𝑡_𝑒𝑛𝑑 is determined as follows:

 𝑣⃑𝑙𝑎𝑡_𝑒𝑛𝑑 = 𝑣⃑𝑚𝑜𝑖𝑒𝑡𝑦 + 𝑑𝑙𝑎𝑡 ∗ 𝑅̂(𝜑𝑙𝑎𝑡 + 𝜃) (5)

where 𝜃 is either set to be 0 ° or 180 ° depending on which angle minimizes the distance 𝛥𝑑

between 𝑣⃑𝑙𝑎𝑡_𝑒𝑛𝑑 and 𝑣⃑𝑟𝑒𝑓:

 𝛥𝑑 = ‖𝑣⃑𝑙𝑎𝑡_𝑒𝑛𝑑 − 𝑣⃑𝑟𝑒𝑓‖ (6)

This lateral manipulation routine maneuvers the moiety for a fixed distance 𝑑𝑙𝑎𝑡 back and

forth along the moiety’s orientation direction 𝑅̂(𝜑𝑚𝑜𝑖𝑒𝑡𝑦) while also staying as close to the

two fixed points as possible.

This preselection routine narrows down bias voltages and approach distances to avoid

ineffective or disruptive manipulation, establishing an Action Space Mask to retain suitable

parameters during manipulations. An experimentally measured ASM of phthalocyanine on

Ag(111) is shown in Fig 10. The colored dots indicate whether the molecule got picked up

(grey), moved (pink), or stayed the same (teal) for the given bias voltage v and approach

19

distance z. The ASM shows that as the approach distance increases the necessary bias voltage

decreases in order to induce motion. At 0.4 nm approach distance, every bias voltage is able

to induce motion, indicating the STM tip being in contact with the molecule. However,

increasing the approach distance further causes the molecule to be picked up.

Fig 10 The Action Space Mask of phthalocyanine on Ag(111). The dots represent a single lateral manipulation performed with
a specific bias voltage and approach distance. The color indicates whether the molecule stays at the same position, moves,
or gets picked up due to the lateral manipulation.

1.5. Brief description of the code

The flowchart visualized in Fig 11 gives an overview of the code structure. At the start the

individual moieties and their sub- and final goal positions are setup using the Createc

STM/AFM software in conjunction with the GUI (see Methods). The initialization of the

reinforcement learning parameters are loaded from the input.json file. In a real experiment

the Action Space Mask (ASM) is measured before the agent is trained on a specific moiety.

Once the ASM is measured the RL agent is trained with the truncated action space by

sequentially maneuvering every initialized moiety through its defined (sub)goal positions. In

order to learn in a continuous fashion a closed trajectory is preferred, thus, the start and final

goal position are set to be equivalent.

20

Fig 11 Flow diagram of the MAM-STM software

21

1.6. The input.json file

The complete setup can be configured in the input.json file located in the MAM-STM’s root

directory. The functionality of each parameter is meticulously described in the file itself.

Benchmarking the performance of the agent

2.1. Simulated responses

Since measurement time at STMs is not always readily available and the optimization of the

learning procedure can be tedious, we implemented a simulation in MAM-STM which allows

to consider a hypothetical moiety with pre-defined, realistic and stochastic responses to

actions. Within this simulation, one can create an artificial environment, where each

manipulation parameter influences the motion of the moiety based on a pre-determined

function. For the sake of this benchmark, we choose an environment which mimics the

complexity of molecular motion on surfaces. For each manipulation parameter of an action

the molecular translation and rotation is affected in a different manner. First the translation

and then the rotation is described.

Translation: The bias voltage enables the agent to either pull or push the moiety when the

bias voltage v is positive or negative, respectively. Furthermore, the absolute value of the bias

voltage also allows to increase or decrease the translation distance. The approach distance z

can further increase the translation distance by an additional factor.

The distance in x and y the tip is placed relative to the center of the moiety exhibits one point

in each quadrant 𝑥𝑓𝑖𝑥 and 𝑦𝑓𝑖𝑥 and which has a fixed translation probability of 100 %. The

translation probability decreases according to a Gaussian distribution. Thus, only points in the

vicinity of these 4 points are able to induce motion. In addition, to account for the stochastic

nature of molecules on surfaces, a Gaussian noise term 𝐺𝑛𝑜𝑖𝑠𝑒(𝑧) is added to the motion of

the moiety. However, this term only comes into play if the manipulation parameters chosen

by the agent are able to induce movement at all. The movement from the old position 𝑥𝑡 and

𝑦𝑡 to the new position 𝑥𝑡+1 and 𝑦𝑡+1 is described by the following equations:

𝑥𝑡+1 = 𝑥𝑡 + 𝐺𝑎𝑥
(𝑎𝑥) + 𝑎𝑥 ∗ 𝑎𝑣 + 𝑠𝑖𝑔𝑛(𝑎𝑣) ∗ 𝑎ℎ + 𝐺𝑛𝑜𝑖𝑠𝑒(𝑣),

𝑦𝑡+1 = 𝑦𝑡 + 𝐺𝑎𝑦
(𝑎𝑦) + 𝑎𝑦 ∗ 𝑎𝑣 + 𝑠𝑖𝑔𝑛(𝑎𝑣) ∗ 𝑎ℎ + 𝐺𝑛𝑜𝑖𝑠𝑒(𝑣),

22

where 𝐺𝑎𝑥
(𝑎𝑥) and 𝐺𝑎𝑦

(𝑎𝑦) being defined via four Gaussian distributions given by:

𝐺𝑎𝑥
(𝑎𝑥) =

1

𝜎√2𝜋
(∑ 𝑒

−
(𝑎𝑥−𝑥𝑓𝑖𝑥,𝑖)

2

2𝜎𝑓𝑖𝑥
2

4

𝑖=1

),

𝐺𝑎𝑦
(𝑎𝑦) =

1

𝜎√2𝜋
(∑ 𝑒

−
(𝑎𝑦−𝑦𝑓𝑖𝑥,𝑖)

2

2𝜎𝑓𝑖𝑥
2

4

𝑖=1

)

where the parametrized Gaussian is defined by 𝜎𝑓𝑖𝑥 = 0.50 𝑛𝑚 and the fixed points in each

quadrant:

𝑥⃑𝑓𝑖𝑥 = (0.50, −0.40, 0.50, −0.50)𝑇

𝑦⃑𝑓𝑖𝑥 = (0.50, −0.75, −0.75, 0.50)𝑇

and the Gaussian noise being:

𝐺𝑛𝑜𝑖𝑠𝑒(𝑣) =
1

𝜎√2𝜋
𝑒

−
(𝑣−𝜇)2

2𝜎2 ,

where the parametrized Gaussian is defined by 𝜇 = 0 and 𝜎 = 0.17 𝑛𝑚.

Rotation: The molecular rotation only depends on the lateral position in y relative to the

molecule orientation 𝜑𝑡. The molecule possesses a distinct internal orientation, subject to

alteration when the tip is positioned to the right or left, causing the molecule to rotate either

clockwise or counterclockwise by a discrete angle of 60 °. The rotation of the moiety is defined

as follows:

𝜑𝑡+1 = 𝜑𝑡 + sign(𝑎𝑦) ∗
𝜋

3
∗ 𝐺𝑟𝑜𝑡(𝑣),

 and follows a Gaussian distribution:

𝐺𝑟𝑜𝑡(𝑣) =
1

𝜎√2𝜋
𝑒

−
(𝑧−𝜇)2

2𝜎2

with the gaussian being parametrized by 𝜇 = 0 and 𝜎 = 1.

23

2.2. Vertical manipulation benchmarks

The performed benchmark utilizes vertical manipulations for rigorous testing, as it provides a

more challenging scenario than the lateral manipulation. Thus, yield to deeper insights into

the learning performance of the agent.

The benchmark is performed using MAM-STM’s built-in simulation, which allows us to test the

reinforcement learning setup and evaluate the performance of an agent in a self-designed

artificial environment. In this environment, each manipulation parameter influences the

motion of the moiety based on a pre-determined function. However, to account for the

stochastic nature of real experiments we added statistical fluctuations in output quantities

(i.e., the movement and rotation of the moiety). Thus, we have full control over the effect of

the individual manipulation parameters at work, which allows us to benchmark the behavior

of the reinforcement learning agent.

Given that time is not crucial and simulating an ASM routine does not provide any benefit, the

Action Space Mask (explained in section 1.4) is not measured and we assume valid bias

voltages v and approach distances z are already determined. The state and action space used

in this benchmark are given in Table 1 and Table 2, respectively, and its values can be adjusted

in the input.json file.

Table 1: The state space values for benchmarking

Environment

State Space

Relative distance to goal 𝑑

𝑆𝑑𝑚𝑖𝑛
= 0 𝑛𝑚

𝑆𝑣𝑚𝑎𝑥
= 5.00 𝑛𝑚

∆𝑆𝑑 = 0.20 𝑛𝑚

Relative angle to goal 𝜑

𝑆𝜑𝑚𝑖𝑛
= −180 °

𝑆𝜑𝑚𝑎𝑥
= 180 °

∆𝑆𝜑 = 1 °

Table 2: The action space values for benchmarking

Action Space

Bias Voltage 𝑉

𝐴𝑣𝑚𝑖𝑛
= −800 𝑚𝑉

𝐴𝑣𝑚𝑎𝑥
= 800 𝑚𝑉

∆𝐴𝑣 = 100 𝑚𝑉

Approach distance 𝑍

𝐴𝑧𝑚𝑖𝑛
= 0 𝑛𝑚

𝐴𝑧𝑚𝑎𝑥
= 0.50 𝑛𝑚

∆𝐴𝑧 = 0.05 𝑛𝑚

Relative tip position 𝑋, 𝑌 𝐴𝑥𝑚𝑖𝑛
= 𝐴𝑦𝑚𝑖𝑛

= −1.25 𝑛𝑚

24

𝐴𝑥𝑚𝑎𝑥
= 𝐴𝑦𝑚𝑎𝑥

= 1.25 𝑛𝑚

∆𝐴𝑦 = 0.25 𝑛𝑚

2.3. Training process

The agent is trained by maneuvering the moiety along a pre-defined trajectory. In the example

benchmark we aim for a 10 nm by 10 nm square trajectory, see Fig 3. In the training process,

the moiety should consecutively reach the four individual (sub)goal positions of the squared

training trajectory. A goal is reached if the moiety is within the threshold distance (orange

circle). Note, the goal region (i.e., a threshold distances) can be set in the input.json file.

The agent performs vertical manipulations to maneuver the moiety along the square

trajectory and learns the optimal manipulation parameters by maximizing the expected future

reward. The reward the agent receives per timestep is given by reward functions elaborated

in section 1.1.3. This training trajectory allows the agent to learn continuously and without

being interrupted. The agent’s hyperparameters during the training procedure are given in

Table 3.

Table 3: The Q-learning hyperparameters.

Q-learning

Hyperparameters

Exploration rate 𝜖

 0.30

Learning rate 𝛼

 0.001

Discount factor 𝛾

 0.50

The discount factor 𝛾 was chosen rather small (typically around 0.95) so that the agent values

the current reward more than the future reward given by the maximum Q-value of the next

state. In practice, the shape of the STM tip can change, leading to a different behavior. Thus,

with a lower discount factor the agent focuses more on the present than on past experiences.

3. Results

The agent is benchmarked by performing validation runs to determine a learning curve. This

learning curve is given by the number of manipulations the agent requires to move the

25

molecule along the training trajectory (square), recorded at various stages of training. During

the validation runs the agent’s knowledge is “frozen” (i.e., the agent is not learning) while

moving the moiety along the trajectory.

3.1. Learning curve

The learning curve (see Fig 12), shows the agent’s performance by traversing the moiety

through the four goal positions that form the square trajectory. A single point in the learning

curve is determined by performing 10 validation runs at a after a given number of steps for

the learning process and determining the mean number of manipulations required to

complete the square trajectory. The learning progression is defined as the number of new

manipulation parameter combinations the agent has explored. The validation runs are

performed after every 100 learned steps. In this benchmarking example, the total number of

manipulation parameter combinations is 4235 due to the size of the action space.

In the initial training phase, i.e., from 0 to 400 manipulations (i.e., about 10 % of the total

action space), the relative performance of the agent increases by 59 % as the agent captures

the coarse dynamics of the environment. In the fine-tuning phase, i.e., from 400 to 4000, the

agent’s relative performance increases by another 38 %. This increase comes from the agent

learning to position the moiety precisely at the goal position, whereas in the beginning it

learned to generally move the moiety.

The learning curve decays exponentially, and the agent required only 400 learning steps to

find a solid repertoire of manipulation parameters to maneuver an initially unknown moiety

towards the individual (sub)goal positions.

26

Fig 12 Learning curve of the agent shows the average number of manipulations it requires to move the moiety along the
squared training trajectory for a given learning progression. The learning progression is the amount of unique new
manipulation parameters the agent has learned. Within the first 400 manipulations, the agent’s relative performance
increased by 59 % and the remaining learning increases the relative performance by another 38 %.

While the demonstration of MAM-STM here relies on a simulation, we emphasize that it can

be readily applied to real experiments. In a previous work, we showed how MAM-STM learns

the optimal manipulation parameters for a dipolar molecule on a Ag(111) surface.42 The RL

agent trained for 2250 manipulations to learn where the STM tip has to be placed in order to

move the molecule with as few manipulations as possible towards the individual goal

positions. Our agent was able to move the molecule with a probability of 82 % towards the

individual goal position.

Conclusion

In this publication we present MAM-STM, a comprehensive tool for learning the manipulation

parameters of arbitrary moieties on a metal surface using the tip of a scanning tunneling

microscope. MAM-STM is able to learn the manipulation parameters by applying

reinforcement learning based on a unique Q-learning approach that eliminates the number of

states that have to be learned by the introduction of virtual goals (i.e., all possible goal

positions a moiety can end up on the surface). The action space explosion (i.e., the millions of

possible manipulation parameter combinations) can be eliminated by measuring an Action

Space Mask (ASM) in an automated fashion. In a real experiment, this allows us to eliminate

harsh parameters that would hinder learning by inducing structural changes to the moiety or

lifting it off the surface, consequently altering the STM-tip. In order to ensure the

reinforcement learning framework is set up correctly, MAM-STM’s built-in simulator can be

used to train an agent in a self-designed artificial environment, allowing to identify problems

in advance.

Using MAM-STM’s built-in simulation suite, we demonstrated that the agent learned to

control an artificial moiety in a self-designed complex environment and its performance was

evaluated for about 4000 newly learned manipulations by measuring the learning curve. The

learning curve showed that in the first 10% of the newly learned manipulations, the agent’s

performance increased by 59% and the remaining newly learned manipulations its

27

performance increased by another 38%. This shows that the reward functions as well as the

designed state-action space are suitable for solving stochastic environments, like it is the case

for real experiments where arbitrary moieties are positioned precisely on a metal surface.

Supporting information

Getting started, Step-by-Step walkthrough of the setup procedure and how to run MAM-STM,

Formal description of the reward functions

Acknowledgement

We thank Gerhard Meyer (CreaTec) for valuable help with the measurement software of the

low temperature STM. We thank Christophe Nacci for careful preparation of the samples as

well as Grant J. Simpson and Leonhard Grill (all from University of Graz) for experimental

support during the manipulation experiments. We also want to thank, Simon Hollweger,

Richard Berger, Lukas Hörmann, and Christoph Wachter for their valuable contributions. B.R.,

J.J.C., and O.T.H. gratefully acknowledge the funding through the Austrian Science Fund (FWF)

(project MAP-DESIGN No.: Y1157-N36).

REFERENCES

(1) Simpson, G. J.; Persson, M.; Grill, L. Adsorbate Motors for Unidirectional Translation

and Transport. Nature 2023 621:7977 2023, 621 (7977), 82–86.

https://doi.org/10.1038/s41586-023-06384-y.

(2) Civita, D.; Kolmer, M.; Simpson, G. J.; Li, A. P.; Hecht, S.; Grill, L. Control of Long-Distance

Motion of Single Molecules on a Surface. Science (1979) 2020, 370 (6519), 957–960.

https://doi.org/10.1126/science.abd0696.

(3) Lastapis, M.; Martin, M.; Riedel, D.; Hellner, L.; Comtet, G.; Dujardin, G. Picometer-Scale

Electronic Control of Molecular Dynamics inside a Single Molecule. Science (1979) 2005,

308 (5724), 1000–1003. https://doi.org/10.1126/science.1108048.

28

(4) Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Conductance of a Single

Conjugated Polymer as a Continuous Function of Its Length. Science (1979) 2009, 323

(5918), 1193–1197. https://doi.org/10.1126/science.1168255.

(5) Bartels, L.; Meyer, G.; Rieder, K. H. Controlled Vertical Manipulation of Single CO

Molecules with the Scanning Tunneling Microscope: A Route to Chemical Contrast. Appl

Phys Lett 1998, 71 (2), 213. https://doi.org/10.1063/1.119503.

(6) Meyer, G.; Zöphel, S.; Rieder, K. H. Controlled Manipulation of Ethen Molecules and

Lead Atoms on Cu(211) with a Low Temperature Scanning Tunneling Microscope. Appl

Phys Lett 1998, 69 (21), 3185. https://doi.org/10.1063/1.117955.

(7) Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; Feyter, S. De; Tait, S. L.; Wang,

C.; Beton, P. H.; Wee, A. T. S.; Weiss, P. S.; Perepichka, D. F. Supramolecular Assemblies

on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–

7481. https://doi.org/10.1021/acsnano.8b03513.

(8) Barth, J. V; Costantini, G.; Kern, K. Engineering Atomic and Molecular Nanostructures at

Surfaces. Nature 2005 437:7059 2005, 437 (7059), 671–679.

https://doi.org/10.1038/nature04166.

(9) Bartels, L. Tailoring Molecular Layers at Metal Surfaces. Nature Chemistry 2010 2:2

2010, 2 (2), 87–95. https://doi.org/10.1038/nchem.517.

(10) Barth, J. V. Molecular Architectonic on Metal Surfaces. Annu Rev Phys Chem 2007, 58,

375–407. https://doi.org/10.1146/annurev.physchem.56.092503.141259.

(11) Simpson, G. J.; García-López, V.; Petermeier, P.; Grill, L.; Tour, J. M. How to Build and

Race a Fast Nanocar. Nature Nanotechnology 2017 12:7 2017, 12 (7), 604–606.

https://doi.org/10.1038/nnano.2017.137.

(12) Simpson, G. J.; García-López, V.; Boese, A. D.; Tour, J. M.; Grill, L. How to Control Single-

Molecule Rotation. Nature Communications 2019 10:1 2019, 10 (1), 1–6.

https://doi.org/10.1038/s41467-019-12605-8.

(13) Simpson, G. J.; García-López, V.; Boese, A. D.; Tour, J. M.; Grill, L. Directing and

Understanding the Translation of a Single Molecule Dipole. Journal of Physical

Chemistry Letters 2023, 14 (10), 2487–2492.

29

https://doi.org/10.1021/ACS.JPCLETT.2C03472/ASSET/IMAGES/LARGE/JZ2C03472_00

04.JPEG.

(14) Celotta, R. J.; Balakirsky, S. B.; Fein, A. P.; Hess, F. M.; Rutter, G. M.; Stroscio, J. A.

Autonomous Assembly of Atomically Perfect Nanostructures Using a Scanning

Tunneling Microscope. Review of Scientific Instruments 2014, 85 (12), 121301.

https://doi.org/10.1063/1.4902536.

(15) Meyer, G.; Moresco, F.; Hla, S. W.; Repp, J.; Braun, K. F.; Fölsch, S.; Rieder, K. H.

Manipulation of Atoms and Molecules with the Low-Temperature Scanning Tunneling

Microscope. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short

Notes and Review Papers 2001, 40 (6 B), 4409–4413.

https://doi.org/10.1143/JJAP.40.4409/XML.

(16) Eigler, D. M.; Schweizer, E. K. Positioning Single Atoms with a Scanning Tunnelling

Microscope. Nature 1990 344:6266 1990, 344 (6266), 524–526.

https://doi.org/10.1038/344524a0.

(17) Nilius, N.; Wallis, T. M.; Ho, W. Tailoring Electronic Properties of Atomic Chains

Assembled by STM. Appl Phys A Mater Sci Process 2005, 80 (5), 951–956.

https://doi.org/10.1007/S00339-004-3121-0/METRICS.

(18) Mokaberi, B.; Yun, J.; Wang, M.; Requicha, A. A. G. Automated Nanomanipulation with

Atomic Force Microscopes. Proc IEEE Int Conf Robot Autom 2007, 1406–1412.

https://doi.org/10.1109/ROBOT.2007.363181.

(19) Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of Electrons to Quantum Corrals

on a Metal Surface. Science (1979) 1993, 262 (5131), 218–220.

https://doi.org/10.1126/SCIENCE.262.5131.218.

(20) Khajetoorians, A. A.; Wegner, D.; Otte, A. F.; Swart, I. Creating Designer Quantum States

of Matter Atom-by-Atom. Nature Reviews Physics 2019 1:12 2019, 1 (12), 703–715.

https://doi.org/10.1038/s42254-019-0108-5.

(21) Gomes, K. K.; Mar, W.; Ko, W.; Guinea, F.; Manoharan, H. C. Designer Dirac Fermions

and Topological Phases in Molecular Graphene. Nature 2012 483:7389 2012, 483

(7389), 306–310. https://doi.org/10.1038/nature10941.

30

(22) Río, E. C.; Mallet, P.; González-Herrero, H.; Lado, J. L.; Fernández-Rossier, J.; Gómez-

Rodríguez, J. M.; Veuillen, J. Y.; Brihuega, I. Quantum Confinement of Dirac

Quasiparticles in Graphene Patterned with Sub-Nanometer Precision. Advanced

Materials 2020, 32 (30), 2001119. https://doi.org/10.1002/ADMA.202001119.

(23) Gutiérrez, C.; Walkup, D.; Ghahari, F.; Lewandowski, C.; Rodriguez-Nieva, J. F.;

Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Zhitenev, N. B.; Stroscio, J. A. Interaction-

Driven Quantum Hall Wedding Cake–like Structures in Graphene Quantum Dots.

Science (1979) 2018, 361 (6404), 789–794. https://doi.org/10.1126/science.aar2014.

(24) Khajetoorians, A. A.; Wiebe, J.; Chilian, B.; Wiesendanger, R. Realizing All-Spin-Based

Logic Operations Atom by Atom. Science (1979) 2011, 332 (6033), 1062–1064.

https://doi.org/10.1126/science.12017.

(25) Huff, T.; Labidi, H.; Rashidi, M.; Livadaru, L.; Dienel, T.; Achal, R.; Vine, W.; Pitters, J.;

Wolkow, R. A. Binary Atomic Silicon Logic. Nature Electronics 2018 1:12 2018, 1 (12),

636–643. https://doi.org/10.1038/s41928-018-0180-3.

(26) Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An Atomic Switch Realized with the Scanning

Tunnelling Microscope. Nature 1991 352:6336 1991, 352 (6336), 600–603.

https://doi.org/10.1038/352600a0.

(27) Wurman, P. R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.; Subramanian, K.; Walsh, T. J.;

Capobianco, R.; Devlic, A.; Eckert, F.; Fuchs, F.; Gilpin, L.; Khandelwal, P.; Kompella, V.;

Lin, H.; MacAlpine, P.; Oller, D.; Seno, T.; Sherstan, C.; Thomure, M. D.; Aghabozorgi, H.;

Barrett, L.; Douglas, R.; Whitehead, D.; Dürr, P.; Stone, P.; Spranger, M.; Kitano, H.

Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning. Nature

2022, 602. https://doi.org/10.1038/s41586-021-04357-7.

(28) Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.; Koltun, V.; Scaramuzza, D.

Champion-Level Drone Racing Using Deep Reinforcement Learning. | Nature | 2023,

620. https://doi.org/10.1038/s41586-023-06419-4.

(29) Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.;

Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,

D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.;

Graepel, T.; Hassabis, D. Mastering the Game of Go with Deep Neural Networks and

31

Tree Search. Nature 2016 529:7587 2016, 529 (7587), 484–489.

https://doi.org/10.1038/nature16961.

(30) Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi,

D. H.; Powell, R.; Ewalds, T.; Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;

Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.; Vezhnevets, A. S.; Leblond, R.;

Pohlen, T.; Dalibard, V.; Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre, C.;

Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.; Wünsch, D.; McKinney, K.; Smith, O.;

Schaul, T.; Lillicrap, T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; Silver, D. Grandmaster

Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature 2019, 575.

https://doi.org/10.1038/s41586-019-1724-z.

(31) Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dennison, C.; Farhi, D.; Fischer, Q.;

Hashme, S.; Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.; Petrov, M.; de

Oliveira Pinto, H. P.; Raiman, J.; Salimans, T.; Schlatter, J.; Schneider, J.; Sidor, S.;

Sutskever, I.; Tang, J.; Wolski, F.; Zhang, S. Dota 2 with Large Scale Deep Reinforcement

Learning. 2021. https://doi.org/10.48550/arXiv.1912.06680.

(32) Novati, G.; de Laroussilhe, H. L.; Koumoutsakos, P. Automating Turbulence Modelling

by Multi-Agent Reinforcement Learning. Nature Machine Intelligence 2021 3:1 2021, 3

(1), 87–96. https://doi.org/10.1038/s42256-020-00272-0.

(33) Jesse, S.; Hudak, B. M.; Zarkadoula, E.; al -; Balke, N.; Morozovska, A.; Kalnaus, S.; Guo,

S.; Bei, H. Exploring Electron Beam Induced Atomic Assembly via Reinforcement

Learning in a Molecular Dynamics Environment. Nanotechnology 2022, 33, 115301.

https://doi.org/10.1088/1361-6528/ac394a.

(34) Scheidt, J.; Diener, A.; Maiworm, M.; Müller, K. R.; Findeisen, R.; Driessens, K.; Tautz, F.

S.; Wagner, C. Concept for the Real-Time Monitoring of Molecular Configurations

during Manipulation with a Scanning Probe Microscope. Journal of Physical Chemistry

C 2023, 127–13817. https://doi.org/10.1021/acs.jpcc.3c02072.

(35) Shin, D.; Kim, Y.; Oh, C.; An, H.; Park, J.; Kim, J.; Lee, J. Deep Reinforcement Learning-

Designed Radiofrequency Waveform in MRI. Nat Mach Intell 2021, 3, 985–994.

https://doi.org/10.1038/s42256-021-00411-1.

32

(36) Krull, A.; Hirsch, P.; Rother, C.; Schiffrin, A.; Krull, C. Artificial-Intelligence-Driven

Scanning Probe Microscopy. Commun Phys 2020, 3 (1).

https://doi.org/10.1038/S42005-020-0317-3.

(37) Kalinin, S. V; Ziatdinov, M.; Hinkle, J.; Jesse, S.; Ghosh, A.; Kelley, K. P.; Lupini, A. R.;

Sumpter, B. G.; Vasudevan, R. K. Automated and Autonomous Experiments in Electron

and Scanning Probe Microscopy. ACS Nano 2021, 15 (8), 12604–12627.

https://doi.org/10.1021/acsnano.1c02104.

(38) Wu, S.; Bai, H.; Jin, F. Automated Manipulation of Flexible Nanowires with an Atomic

Force Microscope. Conference Program Digest - 7th International Conference on

Manipulation, Manufacturing and Measurement on the Nanoscale, IEEE 3M-NANO

2017 2018, 2018-January, 229–235. https://doi.org/10.1109/3M-

NANO.2017.8286320.

(39) Leinen, P.; Esders, M.; Schütt, K. T.; Wagner, C.; Müller, K. R.; Tautz, F. S. Autonomous

Robotic Nanofabrication with Reinforcement Learning. Sci Adv 2020, 6 (36).

https://doi.org/10.1126/sciadv.abb6987.

(40) Chen, I.-J.; Aapro, M.; Kipnis, A.; Ilin, A.; Liljeroth, P.; Foster, A. S. Precise Atom

Manipulation through Deep Reinforcement Learning. Nature Communications 2022

13:1 2022, 13 (1), 1–8. https://doi.org/10.1038/s41467-022-35149-w.

(41) Powell, W. B.; George, A.; Bouzaiene-Ayari, B.; Simao, H. P. Approximate Dynamic

Programming for High Dimensional Resource Allocation Problems. Proceedings of the

International Joint Conference on Neural Networks 2005, 5, 2989–2994.

https://doi.org/10.1109/IJCNN.2005.1556401.

(42) Ramsauer, B.; Simpson, G. J.; Cartus, J. J.; Jeindl, A.; García-López, V.; Tour, J. M.; Grill,

L.; Hofmann, O. T. Autonomous Single-Molecule Manipulation Based on Reinforcement

Learning. Journal of Physical Chemistry A 2023, 127 (8), 2041–2050.

https://doi.org/10.1021/acs.jpca.2c08696.

(43) Watkins, C. J. C. H.; Dayan, P. Q-Learning. 1992, pp 279–292.

(44) Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction, Second Edition. The

MIT Press 2018, 1–3.

33

(45) Russell, S. J.; Norvig, P. Artificial Intelligence: A Modern Approach Third Edition.

(46) Howard, R. A. Dynamic Programming and Markov Processes; The MIT Press and John

Wiley & Sons, 1960.

34

TOC Graphic

