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The standard barometric equation predicts the molecular concentration n(z) = n0 exp(−z/L)
where L = kBT/mg. Because the mean free path l = 1/nσ increases exponentially, we show that at
high altitudes z, the equation is no longer within the domain of applicability of the standard kinetic
theory l ≪ L. Here, we predict the dependence n(z) ∝ z−2 for the case l ≫ L in uniform gravity.
It corresponds to a non-stationary planetary atmosphere with hydrogen accretion. The predicted
accretion is accompanied by a release of gravitational potential energy that leads to heating of
the atmosphere. In that context, we suggest gravitational energy could be the elusive source that
drives the formation of stellar coronas. Other consequences of accretion are: slowly decaying tails
of planetary atmospheres, the existence of gas giants, and periodical hydrogen explosions of white
dwarfs.

I. BAROMETRIC EQUATION

The barometric equation,

n(z) = n0 exp
(
− z

L

)
with L =

kBT

mg
(1)

follows from the Boltzmann-Gibbs distribution n =
n0 exp[−U(z)/kBT ] with the potential energy U = mgz
and can be expressed in terms of pressure P = nkBT .
While this approach does not invoke the mean free path
l or other kinetic concepts, it is limited to the condition
of gas theory, l ≪ L.

The latter limitation becomes more explicit when we
present a derivation based on the kinetic concepts based
on the stationary continuity equation,

−D
dn

dz
+ vn = 0. (2)

For the diffusion coefficient, we use the standard approx-
imation,

D = vT l = vT /(nσ) with vT =
√
kBT/m, (3)

where vT is the thermal velocity and σ is the cross section
of molecular interactions. The drift velocity v = µF with
µ being the mobility and F = −mg force according to
the Einstein relation, µ = D/kBT . Eq. (2) reduces then
to the differential equation Ddn/dz + (D/kbT )mgn = 0
yielding the barometric formula.

We now express the criterion l ≪ L through gas pa-
rameters: [1]

kBT

mgl
≫ 1. (4)

Another form of the same is expressed through the tem-
perature limitation, [1]

T > Tg ≡ mgl

kB
. (5)

∗ mgrimsditch@me.com
† victor.karpov@utoledo.edu

Whichever of the two is used, that criterion can be
interpreted as a limitation on gas concentration n that
must be high enough for the barometric equation to ap-
ply. Introducing zero altitude mean free path l0 = 1/n0σ,
an approximate formula for the upper bound domain for,
barometric formula region is given by,

z = zc ≈ L ln

(
L

l0

)
. (6)

Its corresponding concentration is roughly estimated as,

nc = n0 exp(−zc/L) ≈ n0(l0/L). (7)

To keep links with a specific Earth parameters, we refer
to the hydrogen, noting n0 ∼ 1014 cm−3, σ ∼ 10−16 cm2,
g = 103 cm/s2, m ≈ 3× 10−24 g, thus, Table I.

TABLE I. Some parameters of the Earth hydrogen atmo-
sphere .

parameter l0 L zc n0 nc

estimate 1 m 120 km 1500 km 1014 cm−3 107 cm−3

The domain of lower concentrations at z > zc belongs
in the rarified systems. In Sec. III below, we modify our
derivation for the case of rarified gases at z > zc where
the criteria in Eqs. (4), (5) fail. That alternative domain
description should match that of the standard barometric
equation when z = zc.

II. INSTABILITY IN BAROMETRIC
DISTRIBUTION

Here, we present an evidence of an instability in the
Barometric equation. We proceed from the kinetic Boltz-
mann equation for a one-component gas singlet distribu-

tion function f
(1)
j (r,vj , t), omitting index j and assuming

the hydrogen gas as the lightest,

∂f (1)

∂t
+ v

∂f (1)

∂z
− g

∂f (1)

∂v
= I, (8)
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2∫
dzdvf (1) gives the total number of particles. In the

relaxation time approximation, the collision integral I is
represented as

I = −δf

τ
, with δf = f (1) − f

(1)
0 (9)

where

f
(1)
0 = const× exp

(
− mv2

2kBT
− mgz

kBT

)
(10)

is the equilibrium distribution function satisfying Eq. (8)
with ∂f/∂t = 0, T = const and I = 0. [3–5]
We seek instabilities of the distribution function, in the

form,

δf = f̃(t, z) exp(−mv2/2kBT ), (11)

which reduces Eq. (8) to the following.

∂f̃

∂t
+ v

∂f̃

∂z
− g

mv

T
f̃ = − f̃

τ
(12)

Following the standard stability analysis we look for
its solution as a Fourier expansion,

f̃ =
∑
ω,q

a(0)ω,q exp(−iωt− iqz) (13)

where ω and q are the frequency and wave number of

a partial wave with the initial (t = 0) amplitude a
(0)
ω,q.

Substituting Eq. (13) into Eq. (12) can result in some
partial waves having the positive real parts of iω, i. e.
ℜ(−iω) ≡ λ > 0; such a wave is indicative of temporal
instability of such waves.

Substituting the ansatz of Eq. (11) into Eq. (12) yields
the dispersion law,

−iω =
mgv

kBT
− 1

τ
+ ivk i.e. λ =

mgv

kBT
− 1

τ
. (14)

The instability criterion λ > 0 takes the form

mgl

kBT
> 1 (15)

where l = vτ is the mean-free-path. It coincides with
our former result in Eq. (4). The complementary part
of spectrum with λ < 0 represents decaying fluctuations
of no interest here. Note that the above instability is
related to the term ∂f (1)/∂v describing the evolution of
velocity distribution (across the atmosphere) accounted
for by the Boltzmann equation (12).

One additional observation is that the system remains
stable for low altitudes (l small enough to keep λ < 0),
however it becomes progressively unstable with z ≫ zc.
This corresponds to the downward stream of molecules
towards the edge of stability zc, the conclusion is of im-
portance for applications addressed in Sec. V.

III. MODIFICATION FOR RARIFIED GASES

In a dilute gas most of the molecules are not interact-
ing with any other molecule and are just travelling along
between collisions. Because of this, the macroscopic be-
havior of a gas depends only upon a singlet distribution

function f
(1)
j (r,vj , t) where the subscript j denotes the

singlet distribution function of species j. One could, if
helpful, treat a gas as pure H2. At about z ≈ 100 km
the numerical density of H2 is approximately equal to the
density of N2. At z ≈ 200 km the H2 density is already
105 higher than that of N2.
Following [2] (p. 406) we introduce the mass average

(stream) velocity,

v0(r, t) =

∑
j mjnjvj∑
j mjnj

(16)

The momentum density of the gas is the same as if all
the molecules were moving with velocity v0.
We define the velocity Vj of a molecule relative to the

stream velocity,

Vj = vj − v0. (17)

The average of this peculiar velocity is the diffusion ve-
locity,

Vj =
1

ni

∫
(vj − v0)f

(1)
j (r,pj , t)dvj . (18)

Its average over all species is zero,
∑

j mjnjVj = 0.
Due to its stochasticity, the characteristic rms value of

Vj can be identified as the thermal velocity,√
⟨(Vj)2⟩ = vT =

√
kBT/m (19)

where T is treated as the empirical parameter. There-
fore, for the diffusion coefficient, we use the standard
approximation,

D = vT /(nσ) ≡ vT l. (20)

On the other hand, the stream velocity v is dominated
by the gravity and its average value, specifying the gen-
eral concept of v0, is given by

v0 = vg =
√
gl/2. (21)

The concept of mobility and its corresponding Einstein
relation become irrelevant here. (This is not to say that
the velocities of individual molecules in the stream direc-
tion are all the same.)
Note that Eq. (21) tacitly assumes zero constant ve-

locity v0 in the general expression for accelerated motion,
v = v0 +

√
gl/2, hence, acceleration starting on average

with zero initial velocity after each collision. According
to our classification, the random collision-related contri-
butions must be assigned to peculiar velocities; hence,
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v0 ≡ ⟨v0⟩ = 0. The latter appears intuitively obvious
because the average momentum change is zero in every
pair collision.

Noting that pg = mvg is the stream component of the
momentum of one molecule, it is straightforward to see
that its related momentum flux

P = (nvg)p = mnv2g (22)

remains constant as a function of coordinate because
vg ∝ 1/

√
n.

It may be important to estimate the corresponding en-
ergy flux Φ = (nvg)(mv2g/2) = (mg/4σ)

√
g/2nσ. Sub-

stituting here n = nc from Eq. (7) yields an estimate
for the total power per area brought to the gas by the
hydrogen accreation,

w =
mg

4σ

√
gL

2
. (23)

Substituting here the above mentioned Earth parame-
ters, yields a numerical estimate, w ∼ 0.1 µW/cm2 .
With Eqs. (20) and (21) in mind, the continuity equa-

tion takes the form,

vT
nσ

dn

dz
+

√
g

nσ
n = 0. (24)

Integrating the latter yields

n =
[
n−1/2
c + (

√
gσ/2

√
2vT )(z − zc)

]−2

. (25)

We observe that the characteristic exponential depen-
dence of the standard barometric equation does not exist
for dilute gases. In the deep rarified region of z ≫ zc,
the dependence in Eq. (25) reduces to the form,

n =
8kBT

mgσ

1

z2
. (26)

Note that Eq. (26) predicts indeed n ∼ nc as should
be expected from the adopted algorithm of matching the
solutions in the barometric equation and the rarified gas
regions.

A semiquantitative formula interpolating between the
limits of z ≪ zc and z ≫ zc regions can be obtained by
using a convenient approximation for v

v = vT vg(vT + vg)
−1 (27)

instead of Eq. (21) in the continuity equation. Integrat-
ing the latter yields,

ln

(
n

n0

)
− 2

√
mg

kBTσ

(
1√
n
− 1

√
n0

)
= −zmg

kBT
. (28)

Its predicted dependence is illustrated in Fig. 1. We
observe the extended atmosphere tail in the rarified gas
domain extending far beyond the barometric formula pre-
dictions.

FIG. 1. Predicted distributions of the atmosphere density
according to arguments of this section. The solid curve
presents Eq. (28) with the following numerical parameters:

kBT/mg = 120 km,
√

mg/kBTσn0 = 0.003. The dashed line
represents the barometric formula approximation.

IV. LONG RANGE BEHAVIOR

We now consider some predictions related to the grav-
ity being a function of coordinates for the case of a spher-
ically symmetric celestial body of radius R. Taking into
account the gravity universal law, the above equations
remain applicable with the renormalization

g → g

(
R0

R

)2

(29)

where R0 is the planet radius, and R = R0 + z is the
distance to its center. With the renormalization of Eq.
(29) we obtain from Eq.(24),√

v2T
σg

dn

n3/2
= −R0dR

R
when R ≫ R0 (30)

where g is the standard acceleration due to gravity at the
celestial body surface. Eq. (30) is readily integrated to
yield

n = n0 [1 + Λ ln(R/R0)]
−2

when R ≫ R0. (31)

Here we have introduced,

Λ =

√
n0σmgR2

0

kBT
∼ 104 − 105. (32)

Again, g remains the acceleration due to gravity at the
planet surface, and we assumed the following Earth re-
lated numerical values: n0 ∼ 1014 1/cm3, T ∼ 300−3000
K,[6] σ ∼ 10−16cm2,[7] R0 = 6000 km, m = 3× 10−24 g.
In Fig. 2 we have plotted atmospheric density vs R/R0

where the full line is the barometric equation, the dashed
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line is Eq. (31) with Λ = 105, and the symbols are values
extracted from the published data [6, 8–10]. The most
notable feature in In Fig. 2 is that the dramatic change in
slope in the density profile is consistent with experimen-
tal data. The latter reflects a qualitatively new situation
that emerges when R0 ≫ L: the characteristic value of n
for R ≫ R0 is much lower than nc. We note the dramatic
change in slope of the hydrogen density profile in Sun’s
corona heuristically proposed in Ref. [11].

FIG. 2. The hydrogen density vs. R/R0 from the barometric
equation, Eq. (31), and data from [6, 8–10].

The observed behavior of Terrestrial Exospheric pro-
files at several Earth radii (RE) from the Earth center
[6, 8–10] can be compared with the predictions of Eq.
(31). The existing geocoronal data derive the hydrogen
concentration n, [6, 8–10] from optical measurements of
the Lyman hydrogen emission assuming that the under-
lying Lyman excitations are due to Sun light.

Incorporating the renormalization of Eq. (29) does
not change the equations (21) and (22), so the momen-
tum flux P = mnv2g remains coordinate independent.
However, Eq. (23) acquires a renormalizing factor R0/R
originating from the additional multiplier of vg. For ex-
ample, the energy flux into the Sun’s atmosphere carried
by the accreting hydrogen can be estimated as

w =
mgS
4σ

√
gSLS

2

R0

R
. (33)

Here, any quantity with a subindex S indicates a parame-
ter of the Sun. Using the gravity law, it is straightforward
to see that gS ≈ 30× g and LS ∼ L. Therefore the Sun
related energy flux is about 100 times higher than that
of Earth, wSun ∼ 10 µW at its surface.

Our interpretation here relates the geocorona radiation
to the gravitational energy of the falling hydrogen trans-
ferred to the atmosphere in the range of heights around
zc (see Table I) where interatomic collisions dominate.
As estimated in Eq. (23), the power so released, w ∼ 0.1

µW/cm2 turns out to be two-tree orders of magnitude
higher than the measured. [8, 12] That discrepancy can
be attributed to the average kinetic energy of a falling
hydrogen atom (estimated as ⟨mv2g⟩ ∼ P/nc ∼ 0.1 eV)
being insufficient to excite the Lyman series, so only rare
atoms with energies much higher than the average can
contribute to the geocorona glow. The same energy ar-
gument can possibly explain how the distribution of light
emitting hydrogen in Fig. 2) can have a somewhat dif-
ferent coordinate dependence compared to the total hy-
drogen concentration.

Extending the above theory to the case of Sun’s corona,
results in the prediction w ∼ 1 − 10 µWcm−2, in fair
agreement with the data. [13–15] We attribute this bet-
ter agreement to the fact that the solar acceleration due
to gravity is about 30 times greater than that of Earth.
Therefore the characteristic energy of a fallen hydrogen
atom may be sufficient to excite the Lyman series for the
case of Sun.

V. CAVEATS AND OTHER POSSIBLE
APPLICATIONS

An implicit simplification in our treatment is that the
temperature is determined externally. This assumption
ignores the heat produced by the release of gravitational
potential energy of a falling gas even though its related
energy flux was estimated in the above as w ∼ 0.1 µW
for Earth and w ∼ 10 µW for Sun. Conceptually one
could include the effects of this heating by noting that in
a steady state solution the heat gain due to a condens-
ing gas must be equal to the heat loss from the gas due
to thermal conductivity and radiation. That formidable
problem remains to be addressed.

Some insight can be obtained by noting that the in-
crease in temperature caused by the accreting H2 will
be small close to the surface (z ≪ zc) because the in-
coming energy must be distributed to all the particles in
the dense region. Also the heat flux at large distances
(z ≫ zc) where g → 0 will also lead to negligible heating.
The conclusion is that there will be a region of max tem-
perature at some altitude z ∼ zc. Although very quali-
tative, one can wonder if this hot zone might explain the
existence of celestial coronas.

Another consequence of the instability we have found
is that all celestial bodies are in a state of accreting hy-
drogen. This provides an explanation why the gas giants
have grown to their present size and will continue to grow
until they reach a critical mass needed for nuclear igni-
tion. This conclusion contradicts the usual belief that
celestial bodies are all in the process of loosing their hy-
drogen atmospheres.

The concept of hydrogen accretion is also consistent
with the repetitive NOVA explosions, such as a NOVA T
Coronae Borealis to explode once in about 80 years.[16,
17]
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VI. CONCLUSIONS

In summary, we have demonstrated the following:
1. The famous barometric equation has a finite range of
applicability limited to the altitudes where the mean free
path of molecules l becomes comparable to the character-
istic dimension L determining the barometric predicted
atmosphere decay.
2. In the complementary region, the atmosphere distri-
bution is better described by the dilute gas laws, and its
density exhibits power decay or even logarithmic decay
vs. distance.
3. The atmosphere distribution exhibits an instability
corresponding to H2 accretion where it flows from far
away to all stellar objects.
4. The accretion corresponds to a certain momentum

flux and energy flux (w ∼ 0.1 µW for Earth and w ∼ 10
µW for Sun) that may contribute to celestial coronas.
5. Other possible correlations include the observed long
tails in the Earth atmosphere, the existence of gas gi-
ants that have grown to their present size, and repetitive
NOVA explosions.
To avoid any misunderstanding, the process of hy-

drogen accretion by celestial bodies predicted here does
not rule out the known competing processes of hydrogen
evaporation. The two trends must be carefully compared
for each set of parameters and correlated with observa-
tions.
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