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Periodically-driven systems engender a rich competition between the time scales of the drives
and those of the system, leading to a limited ability to describe the system in full. We present
a framework for the description of interacting bosonic driven systems via a Floquet expansion
on top of a quantization that “counts” the drive photons, and provide compelling arguments for
the superior performance of our method relative to standard Floquet approaches. Crucially, our
approach extends beyond the rotating wave approximation and addresses the long-standing issue of
mismatch between the quantum Floquet formalism and its classical counterpart. We, furthermore,
pinpoint key corrections to the positions of multiphoton resonances, which are commonly used in
the calibration and operation of qubit architectures.

INTRODUCTION

Floquet engineering stands at the forefront of contem-
porary research both in experiment and theory. It has the
goal of generating, characterizing and controlling quan-
tum states of matter in few- and many-body systems [1–
8]. It relies on using time-periodic external fields, and
has seen a wide array of applications; including the gen-
eration, manipulation and control of quantum states [9–
16], the engineering of tailored material properties [2, 17–
19], enhancing quantum sensing and metrology [20–22],
the creation and characterization of topological states
of matter [23–26], and the creation of synthetic gauge
fields [17, 27]. Floquet engineering similarly stands at the
heart of cat qubit architectures [28] and coherent control
of ultrafast dynamics [29, 30].

Analyzing periodically-driven quantum systems is
technically challenging because the time-dependence
breaks energy conservation, leads to out-of-equilibrium
conditions, and renormalizes the system’s parameters
(AC-Stark shifts) [31]. To address this, Floquet’s the-
orem is commonly used, where fast oscillations are aver-
aged out and the system is effectively described by a time-
independent model with slow variables. High-frequency
perturbative techniques such as van Vleck [32], Floquet-
Magnus [33, 34], or Brillouin-Wigner [35] expansions
are then employed to approximate the resulting time-
independent effective model. At first order, these expan-
sions boil down to the widely-employed rotating wave
approximation (RWA) [1, 32, 36, 37], which provides
a good approximate description when the driving field
is weak and closely resonant with the system’s energy
scales [38]. In the classical realm, a similar method called
the Krylov–Bogolyubov (KB) or averaging method [39–
46] is often used to deal with time-dependent differential
equations.

The compatibility between quantum and classical lim-
its, as ℏ → 0, is crucial for an unified theory spanning
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macroscopic and microscopic scales. However, quan-
tum Floquet-based methods exhibit discrepancies with
the Ehrenfest’s theorem [47], and the RWA often fails
in strongly-driven or strongly-detuned systems [38, 48,
49]. While numerous works tackled the breakdown of
the RWA in spin systems [50–52], or spins coupled to
harmonic oscillators [53–58], recent focus extends to
bosonic systems with applications in quantum informa-
tion processing [59, 60], quantum sensing [61] and sim-
ulation [62, 63], optomechanical cooling [64, 65], fre-
quency combs [66–70], and realization of single-photon
sources [71–73]. At the center of this broad range
of activities is the driven anharmonic oscillator, a.k.a.
the Duffing (Kerr) oscillator or single-site driven Bose-
Hubbard model, where RWA fails to accurately capture
key effects, such as multi-photon resonances (MPRs) and
phase transitions in the system [74–76].

In this work, we present a formalism for high-frequency
expansions in bosonic systems that resolves the long-
standing challenge of reconciling quantum and classical
formalisms. We leverage a recently proposed concept em-
phasizing the role of the operator basis in bosonic mode
quantization [77]. Thus, we redefine the quantum oper-
ators within a basis tailored to anticipate the system’s
response at the driving frequency. Crucially, our system-
atic expansion reconciles order-by-order the quantum-
to-classical treatments, and quickly converges towards
the exact stationary response. Furthermore, our method
outperforms existing approaches in describing resonant
quantum effects. We provide experimental protocols for
validating our findings. Our general formalism can lead
to a precise depiction of a plethora of driven open quan-
tum many-body systems.

We develop a framework in both the classical and
quantum formalisms [see Fig. 1] for the analysis of pe-
riodic time-dependent Hamiltonians H(x, t), where x :=
(x, p) are phase space coordinates. As an example, we
consider a single driven Duffing oscillator [78]

H(x, t) =
p2

2m
+

mω2
0

2
x2 +

α

4
x4 − F cos (ωt)x , (1)
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where m is the mass of the oscillator mode, ω0 its nat-
ural/bare frequency, α the Duffing nonlinearity, and F
and ω are the strength and frequency of the external
drive, respectively. Without loss of generality, we take
α > 0 [39].
The classical formalism.—To treat driven nonlinear

classical systems, we employ the KB averaging method,
cf. left branch of Fig. 1. Starting from Hamilton’s equa-
tions of motion (EOMs) dx

dt = ẋ = F(x, t), we first move
to a frame rotating at the frequency of the drive ω by as-
suming x = U(t) cos(ωt)+V (t) sin(ωt) with slowly time-
evolving U(t) and V (t). This rotating ansatz is catered
towards treating nearly-resonant driving of the system,
and encapsulates the lore that driven linear systems tend
to respond at the drive frequency. In this rotating frame,
the equations become ḋ = Fd(d, t) for the coordinates
d(t) := (U(t), V (t)). These EOMs remain explicitly
time-dependent with a period T := π

ω , but can be approx-
imated by time-independent EOMs via a perturbative ex-
pansion d(t) =

∑
i=0 ϵ

idi(t) with ϵ ≪ 1 and by solving
for the (stroboscopic) slow-flow quadratures d0 := (u, v).
The latter contains the remaining time-dependence on
timescales much longer than T . To lowest order in the
expansion, we have d0 := [Fd ]av, where the brackets

represent time averaging [ · ]av ≡ 1
T

∫ T

0
· dt. Higher-order

corrections can be systematically generated [39, 41, 79].
Thus, the lowest-order KB description of Eq. (1) reads

ḋ0 =


u̇

v̇


 =




ω2−ω2
0

2ω v − 3αX2

8ω v

−ω2−ω2
0

2ω u+ 3αX2

8ω u+ F
2ω


, (2)

where X2 := u2+v2 is the amplitude of the stroboscopic
motion [79]. For the expansion to be valid, the terms
αX2/

(
mω2

)
,

∣∣(ω2 − ω2
0)
∣∣/ω2,

√
(αF 2) / (m3ω6) ∼ ϵ

must be small [79].
The quantum formalism.—The classical time-

dependent Hamiltonian H(x, t) can be second-quantized
using bosonic ladder operators, ĉ, that describe the
annihilation (lowering) of a bosonic particle (photon
number) with frequency ωc

x̂ =

√
ℏ

2mωc
(ĉ† + ĉ) and p̂ = i

√
mℏωc

2
(ĉ†− ĉ) . (3)

Thus, we obtain a quantum Hamiltonian Ĥ(ĉ, t), cf. right
branch of Fig. 1. Commonly, we use (canonical) ladder
operators ĉ ≡ â, where â is the lowering operator relative
to the bare frequency ωc ≡ ω0. The nondriven harmonic
oscillator is diagonal in this operator basis with energies
that depend on the photon number ℏω0â

†â. In other
words, by counting the system’s photons, we diagonalize
the nondriven harmonic part of the system. The stan-
dard procedure to treat time-periodic quantum systems
is analoguous to the classical one [right branch of Fig. 1].
Micromotion is separated from the stroboscopic time evo-
lution by moving to a rotating frame using the unitary

O(ϵ)

O(ϵk)

...

H(x, t)ẋ(t) = F(x, t)

ḋ(t) = Fd(d, t)

ḋ(1)

EOMs

rotate

KB 1st order

Ĥ(ĉ, t)

H̃(ĉ, t)

Ĥ(1)(ĉ)
d⟨ĉ⟩
dt

rotate

vV 1st order

quantize

0← h̄ EOMs

ḋ(k) d⟨ĉ⟩
dt

k∑

j=1

Ĥ(j)(ĉ)

KB k-th order vV k-th order

EOMs0← h̄

Figure 1. Flowchart on how to analyze time-dependent Hamil-
tonians H(x, t) [cf. example in Eq. (1)]. In the classical
limit (left side), one derives Hamilton’s equations of motion
(EOMs, left black arrow) and employs the Krylov-Bogoliubov
averaging method [cf. Eqs. (2)], which engenders a system-
atic perturbation theory with increasing orders (down red ar-
rows). In the quantum limit (right side), the coordinates are
quantized [cf. Eq. (3), right violet arrow], and e.g., a quan-
tum van Vleck perturbation expansion is employed [cf. Eqs.
(4)-(5), down red arrows]. Both treatments rely on a rota-
tion relative to the drive frequency. Using second-quantized
operators that count the photons of the drive, our methods
obtains a matching quantum-to-classical limit, when employ-
ing mean-field Heisenberg’s equation of motion and taking the
semiclassical limit (ℏ → 0, left violet arrow).

operator Uc(t) = exp
(
−iωtĉ†ĉ

)
and obtain the rotating

frame Hamiltonian: H̃(ĉ, t) := U†
c Ĥ(t)Uc − iℏU†

c ∂t Uc.
In this frame, the time-dependent (counter-rotating)
terms in H̃(ĉ, t) exhibit rapid oscillations with frequen-
cies higher than the driving frequency ω.

To obtain an effective time-independent description,
we employ a Floquet expansion in orders of the fast
counter-rotating frequency 1/2ω. Specifically, we use
van Vleck (vV) degenerate perturbation theory, yielding
an effective Hamiltonian Ĥeff [80]. The rotated Hamil-
tonian H̃(ĉ, t) is decomposed into Fourier components

H̃l =
[
H̃ exp(−ilωt)

]
av

such that the effective Hamilto-

nian can be written as [32]

H̃eff =
∑

ν=1

H̃(ν). (4)

The first-order term, H̃(1) = H̃0, is also known as the
RWA, whereas the next term is computed by H̃(2) =∑

l ̸=0 H̃lH̃−l/(lℏω). Applying this procedure to our ex-
ample (1), we find the RWA effective Hamiltonian

H̃eff,c = ℏ(−∆c +Uc) ĉ
†ĉ+

ℏUc

2
ĉ†ĉ†ĉĉ−ℏFc (ĉ+ĉ†) , (5)
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with detuning ∆c, nonlinearity Uc, and pump strength
Fc, which are assumed to be small compared with
ℏω; these are the same validity conditions as in the
KB method [79]. Using the canonical â-operators, we
have ∆a = ω − ω0, Ua = (3αℏ)/(8m2ω2

0), and Fa =
F/(2

√
2mω0ℏ).

The quantum-to-classical limit.—Both the quantum
and classical approaches outlined above provide an ef-
fective stroboscopic description of the system. In both
methods, we rotate the system at the driving frequency ω
and average-out the fast dynamics in a perturbative man-
ner. Therefore, we expect that both yield the same result
when taking the quantum-to-classical limit. This limit is
obtained analytically by (i) deriving the averaged Heisen-
berg equations of motion d

dt ⟨ĉ⟩ = 1
iℏ ⟨[ĉ, Ĥ]⟩+⟨∂ĉ∂t ⟩, for the

observable ĉ, (ii) applying a mean-field approximation
such that ĉ→ ⟨ĉ⟩, and (iii) taking the limit ℏ→ 0. Car-
rying out this procedure to the example (5), quantized
using the standard ladder operator â, we do not retrieve
the same equations as the classical slow-flow EOMs (2).
This discrepancy manifests at any order, which is the
first result of this work [79].

To find out which of the EOMs perform better in the
classical limit, we compare them to a numerical “exper-
iment”, see Figs. 2(a) and (b). We time-evolve the clas-
sical time-dependent Hamilton’s EOMs, obtained from
Eq. (1), until a stationary oscillation is reached, and plot
the amplitude |X| of the stationary oscillation harmonic
at ω. As a function of detuning, the system exhibits two
possible stationary phases (low- and high-amplitude re-
sponse) that have a coexistence region. We focus here on
the high-amplitude branch. Whereas already to lowest-
order the stationary solution (u̇ = v̇ = 0) of the classical
KB equations (2) coincide with the numerical result, we
observe that the stationary (d⟨ĉ⟩/dt = 0) vV method
fails to converge up to third order [cf. red and orange
lines Fig. 2(a-b)], despite the fact that we are within the
validity bounds of the perturbative approximation. Fur-
thermore, the vV second order correction breaks down,
such that, at large detuning, we even obtain an spuri-
ous instability of the solution. Higher-order corrections
reconcile the instability, but the stationary amplitude
deviates significantly from the exact numerical solution.
Note that this discrepancy is related to the fact that the
standard RWA relative to Ua(t) breaks Ehrenfest’s theo-
rem [47, 77]. The KB method, instead, shows consistent
convergence towards the numerical exact solution [see in-
set].

Counting the photons of the drive.—To resolve this
longstanding problem in the quantum Floquet expan-
sion, we are inspired by the classical KB approach, and
postulate that the system responds mostly at the driv-
ing frequency [77]. To this end, we write the quantum

Hamiltonian using the ladder operators ĉ ≡ b̂, where we
“count” the photons of the drive, i.e., ωc = ω. Fur-
thermore, we move to a rotating frame described with

Ω/𝜔0

1.0 1.2 1.4

P
S
D

10−1

100

101

102

103

Δa/Ua

0 1 2

X

0.0

0.5

1.0

1.5

2.0

Δa/Ua

0 1 2

0 1 2

𝛿e

−2

0

2

(a)

× 10 − 2

(b)

(c)

Figure 2. Comparison between the expansion methods relative
to the classical numerical solution. (a) and (b) Classical sta-
tionary amplitude, X =

√
u2 + v2, of the driven Duffing (1)

at the drive frequency ω as a function of detuning ∆a/Ua,
with m = ω0 = 1 and Fa/Ua = 10−2. We compare the exact
numerical solution (dashed, black line) with (a) the first-order

van Vleck expansion [cf. Eq. (5)] in the â- (solid red) and b̂-
(blue solid) operator basis [cf. Eq. (3)]; the latter is equiva-
lent to the KB result (2). (b) Comparison with higher-order
corrections [cf. Eq. (4)]: second and third order in â-basis

(red solid) and second order in b̂-basis (orange solid). Inset:
Absolute error δe compared to the exact of the first, second
and third order (progressively lighter blue) in the b̂-basis. A
small dissipation term γẋ is added to enforce numerical con-
vergence with γ/ω0 = 2.5 × 10−3. (c) Power Spectral Den-
sity (PSD) versus response frequency Ω of the driven har-
monic oscillator, cf. Eq. (1) with m = ω0 = 1, ∆a/ω0 = 0.4,
α = 0, and Fa/ω0 = 3.5×10−3. The exact analytical solution
(with marginally-broadened Dirac deltas) [79] (dashed black)
is compared with the first-order van Vleck in the â (solid blue)

and b̂ (solid blue) basis.

Ub(t), and perform the vV expansion in this frame. In
our case study (1)-(5), this change of basis manifests in
the effective Hamiltonian (5) as a rescaling of the coeffi-
cients, namely, we have ∆b = (ω2 −ω2

0)/(2ω), nonlinear-
ity Ub = Ua(ω0/ω)

2, and pump strength Fb = Fa

√
ω0/ω.

Note that these operators act on a different Fock basis
than the â-operators and a Bogoliubov transformation
is required when moving between counting of the sys-
tem to counting of the drive photons [79, 81]. Crucially,
performing the expansion within the rotating frame de-
termined with the b̂-operator restores the quantum-to-
classical limit [79]. In other words, we obtain exactly the
same EOMs by taking the semiclassical limit of vV ex-
pansion, as those obtained by the classical KB approach.
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Moreover, the correspondence is maintained up to the
third order, with higher orders pending further investi-
gation. This is the main result of this work.

Closed system considerations.—We showed that the
stationary response of the system is better described
based on counting the pump photons. To this end, we
assumed the existence of a time-independent solution in
the appropriately chosen rotating frame, aided by the in-
clusion of a minuscule damping term γẋ with γ ≪ ω0 in
our numerical simulations to facilitate convergence, i.e.,
we ensure “causality”. Convergence to a stationary so-
lution occurs over a relatively extended period t ≫ 1/γ,
during which initial boundary conditions become negli-
gible. The main response is at the drive frequency ω.

In a fully closed system (γ ≡ 0), however, even the
response of the driven harmonic oscillator (α = 0) ex-
hibits two distinct peaks: one at the bare frequency ω0

and the other at the driving frequency ω, see Fig. 2(c).
The former relies on initial conditions, and the latter
characterizes the response to the drive [39, 79]. Com-
paring this case to the standard RWA in the â-operators
basis yields approximate descriptions of both peaks in
terms of frequency, yet their amplitudes are inaccurate.
In contrast, using the b̂-basis provides a precise ampli-
tude description at ω already at first order, albeit with
inaccuracies in both frequency and amplitude regarding
the peak at ω0. The latter approximation is corrected
via higher-order squeezing terms in the expansion [79].

Consequently, the effectiveness of our b̂-basis approach
varies with system details and initial conditions at short
times, but we anticipate improved performance over long
(stationary) periods, assuming causality.

Quantum observables.—Moving beyond the semiclas-
sical limit, we turn to explore the performance of our
theory in the quantum realm. A notable quantum ef-
fect manifesting in our example (5) are multiphoton res-
onances (MPRs) [82, 83]. This feature is characterized by
a resonant increase in the photon number inside the cav-
ity, and has no classical counterpart. It holds utmost im-
portance since the spacing (in detuning) between neigh-
boring MPRs is used in the calibration of the photon-
photon interaction strength in superconducting qubit ex-
periments [84]. Based on the RWA model in the â-basis,
the MPRs can be solved analytically [85–87]. Here, we
generalize this expression to any arbitrary choice of the
operator basis using Eq. (5). For example the position of
where the MPRs arises is given by

∆c/Uc = (n− 1)/2 , n = 1, 2, . . . . (6)

Crucially, whereas in the standard â-basis, equidistant
peaks are observed in ∆a, we predict that in the b̂-basis,
the peaks become denser with increasing detuning.

MPR prediction vs. Lindblad exact time evolution.—
To test which approach fares better in the quantum
realm, we perform a numerical experiment akin to the

0 1 2 3 4 5
0

1

2

0

2

4

2 2.5 3 3.5 4 4.5
0

1

2

3

(a)

(b)

(c)

Figure 3. Comparison in the quantum realm. (a) Sketch of
the system [cf. Eqs. (1)] driven by photons of frequency ω,
and emitting photons at ω0, ω, and wave-mixed harmonics,
e.g., at 3ω. A heterodyne detector (lock-in) filters out only
photons at ω. (b) The numerically calculated [cf. Eq. (7)]
stationary photon number nb as a function of detuning ∆a

and pump power Fa for H̃eff,b. The numerical evolution is
performed in properly truncated Hilbert space, ensuring con-
vergence by varying the cutoff. Vertical dashed line marks
Ua/ω0 = 10−2 and Fa/Ua = 0.8, corresponding to (c). (c)
Comparison between the numerical exact solution (green line)
and the predictions from Eq. (6) in â (red, dashed lines) and

b̂ basis (blue, dot-dashed lines).

classical case in Fig. 2. We evolve the system’s den-
sity matrix, ρ̂, using the time-dependent exact Hamil-
tonian (1). Motivated by heterodyne (Lock-in) measure-
ments [88], where the system is driven with photons at
frequency ω, and the lock-in detects the response with
emitted photons at ω [Fig. 3(a)], we (i) work in the b̂ basis
representation, and (ii) evolve using the rotated Hamilto-

nian H̃(b̂, t). Furthermore, we are interested in the MPRs
in the long-time limit. To reach a stationary state, we
add a small dissipation term in the form of a photon-loss
Lindblad superoperator D

[
b̂
]
ρ̂ = b̂ρ̂b̂†− 1/2(b̂†b̂ρ̂+ ρ̂b̂†b̂),

and evolve the system using the Lindblad quantum mas-
ter equation [89, 90]:

dρ̂

dt
= − i

ℏ
[H̃, ρ̂] + κD

[
b̂
]
ρ̂ , (7)

where κ is the dissipation rate. In the long time limit,
the system evolves towards a nonequilibrium stationary
state, where we calculate the average photon number

from the density matrix
[
Tr

{
ρ̂(tlong)b̂

†b̂
}]

av
; and present

its time-average over several periods. Performing this for
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H̃eff,b as a function of detuning ∆a and pump power Fa

clearly show the MPRs, see Fig. 3(b). Taking a line cut,
we can quantitatively compare which expansion, in which
operator basis, approximates the exact solution better,
see Fig. 3(c). Crucially, the MPRs obtained from the ex-
act time evolution in the rotating frame do not appear
with a constant detuning spacing, and better coincide
with the b̂ and not the â basis.

We introduced a tailored operator basis designed
for analyzing periodically-driven systems, offering an
enhanced starting point for perturbative approaches.
Our alternative second-quantization of the Hamiltonian
anticipates the system’s response at the driving fre-
quency, significantly enhancing the predictive accuracy
of stationary-state outcomes derived from high-frequency
expansions, while maintaining simplicity. Moving beyond
previous results, we establish an order-by-order reconcil-
iation between the quantum and classical limits of the
perturbation theory, along with refined and unified va-
lidity bounds for perturbations in both regimes. We fur-
thermore demonstrate that by counting drive photons,
improved agreement with exact models is obtained. In
the quantum realm, we predict discrepancies with exist-
ing models, which are readily observable in circuit QED
experiments. Given the prevalence of periodically driven
nonlinear systems across various physics disciplines and
the broad applicability of our analysis, we anticipate our
findings to impact diverse areas of research. Further-
more, the extension of this formalism to other frame-
works such as mean field Gross–Pitaevskii equations,
quantum cumulant expansion, or phase space methods
will be the topic of future investigations.
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Swiss National Science Foundation (SNSF) through the
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