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Abstract

The 1/2− resonant states in 13C are investigated to search for the Hoyle-analog state. In order

to treat the resonance states located around the 3α+n threshold, the analytic continuation in the

coupling constant (ACCC) has been combined with the real-time evolution method (REM). The

properties of the 1/2− resonance states such as the radii and monopole transition probabilities are

calculated. We show the 1/2−3 and 1/2−4 states are well-developed α cluster states, and the 1/2−4

state is a candidate of the Hoyle-analog state.
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I. INTRODUCTION

The Hoyle state, the second 0+ state of 12C, is located just above the 3α breakup thresh-

old, and it is one of the most well-known and important α cluster states. It is considered

to have a 3α gas-like structure, i.e., the Bose-Einstein condensate (BEC), in which the α

particles mostly condensate in the 0S orbit [1]. The study of the Hoyle state has provided

new insights into the dynamics of α clusters [2–13]. In recent years, the concept of the

α-particle condensate has been extended to the 4α [14–19], 5α [20, 21] and many α [22–25]

cluster systems. The Hoyle-analogue states in non-Nα nuclei are also quite important issues

to understand the dynamics of α-particle BEC [26–28].

The 13C nucleus is an interesting research target because it potentially has the cluster

structure composed of 3α clusters plus one neutron [29–34]. The Hoyle-analog state in 13C

is expected to have the valence neutron in the lowest s or p orbit coupled to the Hoyle state,

which forms Jπ = 1/2± or 3/2− states. Recently, Kawabata et al. [29] observed the strong

isoscalar monopole transitions from the ground state to the excited 1/2− state around Ex

= 12.5 MeV. The same state was also reported by Inaba et al. [33]. Because this state is

a mirror state of 13N at 13.5 MeV that dominantly decays to the Hoyle state [35], it is a

strong candidate of the Hoyle-analog state. In addition, Inaba et al. [33] measured strong

isoscalar dipole transitions and suggested the 16.1 MeV state with Jπ = 1/2+ or 3/2+ as

another candidate for the α condensed state.

On the other hand, theoretical studies have been made by Chiba et al. [32] using the

antisymmetrized molecular dynamics (AMD) and by Funaki et al. [31] using the orthogo-

nality condition model (OCM). They argued that the Hoyle analog state exists as the 1/2+

states approximately at 15.4 and 14.9 MeV, respectively. As for the Jπ = 1/2− state, Chiba

et al. [32] reported that some of the excited states showed the 3α + n configuration, but

their spectroscopic factors for the Hoyle state channel were too small to be regarded as the

Hoyle analog state, and Funaki et al. [31] concluded that there is no 1/2− state which can

be regarded as a Hoyle-analog state. Thus, theoretical studies of the Hoyle-analog state are

still controversial, and further investigation is required.

In the previous work [34], we have investigated the candidates of the Hoyle-analog state

with Jπ = 1/2− by using the real-time evolution method (REM) [36]. REM has successfully

described the various cluster states in several light nuclei [37–40]. However, due to the
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contamination of the continuum, we could not identify resonances at high excitation energies.

Since the Hoyle-analog state is expected to be embedded in the 3α+n continuum, accurate

treatment of the resonances is essential.

In this study, to identify the resonant states, we combine the analytic continuation in the

coupling constant (ACCC) [41, 42] with REM. The aim of this work is two-fold. The first

is the benchmark of combining ACCC with REM. The second is the investigation of the

1/2− resonant states of 13C for which the experimental and theoretical arguments are not

consistent.

We organize this paper as follows. In the next section, the frameworks of REM and

ACCC are outlined. In Sec. III, we first discuss the benchmark calculations of 8Be and 5He

to test the combination of the ACCC and REM. Based on this, the 1/2− resonant states

of 13C are investigated. The calculated radii and monopole strengths within ACCC provide

structural information of the 1/2− resonances. We propose that the 1/2−3 and 1/2−4 states

are well-developed α cluster states, and especially, the 1/2−4 state is worth investigating as

a candidate of the Hoyle-analog state in 13C. In the last section, this work is summarized.

II. THEORETICAL FRAMEWORK

A. Real-time evolution method

We here outline the Hamiltonian and the framework of REM for α clusters plus a valence

neutron system. The Hamiltonian for the Nα + n nuclear system is given as,

H =
4N+1
∑

i=1

ti − tcm +
4N+1
∑

i<j

vN(rij) +
4N+1
∑

i<j

vC(rij), (1)

where ti and tcm denote the kinetic energies of the ith nucleon and the center-of-mass,

respectively. The vN and vC are the effective nucleon-nucleon interaction and Coulomb

interaction. The nucleon-nucleon interaction vN includes the central force and the spin-orbit

interaction. In this study, we use the Minnesota force [43] and Reichstein and Tang spin-

orbit interaction [44] for 8Be and 5He, and the Volkov No.2 [45] and G3RS [46] interactions

for 13C. Especially, as for 13C, we have uncertainty in the Hamiltonian because we cannot

fix the strength of the G3RS interaction as it gives two possible choices, Vls = 800 and 2000

MeV. All the parameters will be explained in the next section. It is noted here that the
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Reichstein and Tang spin-orbit interaction has the form of,

Vij = −Vγe−γr2
ij (ri − rj)× (pi − pj) · (σi + σj)

1

2~
. (2)

We will take the zero-range limit and introduce an alternative strength parameter Jls =

Vγγ
−5/2 for 5He as in Ref. [43].

The Brink-Bloch wave function [47] is employed as the intrinsic wave function. The wave

function for the Nα + n system can be written as,

Φ(Z1, ...,ZN+1) = A{ Φα(Z1) · · ·Φα(ZN)φn(ZN+1) } , (3)

Φα(Z) = A{ φ(r1,Z)χp↑ · · ·φ(r4,Z)χn↓ } , (4)

Φn(Z) = φ(r,Z)χn↑, (5)

φ(r,Z) =

(

2ν

π

)3/4

exp {−ν (r −Z)2 } , (6)

where Φα(Z) and Φn(Z) are the wave functions of an α particle and a neutron located at Z,

respectively. The vectors Z1, ...,ZN+1 represent the coordinates and momenta of nucleons.

We fix the neutron spin of the intrinsic wave function to up, which does not affect the

generality. The different Gaussian width parameter ν are used for 8Be, 5He and 13C, which

will be explained in the next section.

In the REM framework, the basis wave functions are generated from the equation-of-

motion (EOS), which describes various configurations of clusters. The EOS is derived from

the time-dependent variational principle,

δ

∫

dt
〈Φ(Z1, ...,ZN+1)|i~ d/dt−H|Φ(Z1, ...,ZN+1)〉

〈Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)〉
= 0. (7)

The EOM for the Gaussian centroids Z1, ...,ZN+1 is obtained as,

i~
N+1
∑

j=1

∑

σ=x,y,z

Ciρjσ
dZjσ

dt
=
∂Hint

∂Z∗
iρ

, (8)

Hint ≡
〈Φ(Z1, ...,ZN+1)|H|Φ(Z1, ...,ZN+1)〉
〈Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)〉

, (9)

Ciρjσ ≡ ∂2ln〈Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)〉
∂Z∗

iρ∂Zjσ

. (10)

It generates a set of the vectors {Z1(t), ...,ZN+1(t)} as a function of real-time t. We note

that the EOM (Eq. (8)) keeps the intrinsic energy Hint, which is the energy calculated with
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the intrinsic wave functions (Eq. (3)), constant during the time evolution. In the practical

calculation, we introduce an external trap field so that the constituent particles move in

a finite size space [38]. This external field changes the momentum of a particle at a large

distance which we call the rebound radius. It is set to 20 fm for 8Be and 5He, and 10 fm for

13C.

A set of the basis wave functions generated by EOM are projected to the eigenstates

of parity and angular momentum, and superposed. In other words, this is a generator

coordinate method that employs the real-time t as a generator coordinate.

ΨJπ
M =

∫ Tmax

0

dt

J
∑

K=−J

P̂ Jπ
MKfK(t)Φ(Z1(t), ...,ZN+1(t)). (11)

Here, the parity and the angular momentum projection operator is given as

P̂ Jπ
MK =

2J + 1

8π2

∫

dΩDJ∗
MK(Ω)R̂(Ω)

1 + πP̂x

2
, π = ±, (12)

where DJ
MK , R(Ω), and Px denote Wigner D-matrix, rotation and parity operators, respec-

tively. In the practical calculation, the integral in Eq. (11) is discretized as,

ΨJπ
M =

∑

iK

P̂ Jπ
MKfiKΦ(Z1(ti), ...,ZN+1(ti)). (13)

By solving the Hill-Wheeler equation [48, 49], the amplitude fiK and eigenenergy are deter-

mined.

B. Analytic continuation in the coupling constant

Here, we explain the ACCC [41, 42]. The ACCC Hamiltonian H ′ is comprised as,

H ′(λ) = H + λHa, (14)

where H is the original Hamiltonian of the physical system and Ha is an auxiliary potential

multiplied by the coupling constant λ. The Hamiltonian H ′ is identical to the physical

Hamiltonian H at λ = 0, which we call the physical point. As λ increases, H ′ earns

additional attractive potential. At a certain value of λ, which we denote λ0, a resonance

becomes a bound state. The trajectory of the eigen-energy as a function of λ in the bound

state region with λ > λ0 is analytically continuated to the unbound region with λ < λ0 to
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evaluate the resonance energy and width at the physical point. In the practical calculation,

following the procedure made in Ref. [41], we fit the trajectory by a fractional function as,

~
2

2m
k2(x) =E(x), (15)

k(x) := i
p0 + p1x+ p2x

2 + · · ·+ pNx
N

1 + q1x+ q2x2 + · · ·+ qMxM
, with x :=

√

λ− λ0, (16)

where m is the reduced mass, and N +M +1 coefficients p1, ..., pN , q1, ..., qM are determined

by the fitting. In the present calculations, N and M are chosen as N = M = 4 for 8Be,

13 for 5He, and 6 for 13C. Once we fit the analytic function k(x), we continuate it to the

physical point. At the physical point x = i
√
λ0, the wave number,

k(i
√

λ0) = kr − iki, kr, ki > 0, (17)

which gives the energy and width of a resonance,

E =
~
2k2

2m
:= ER − iΓ/2, ER =

~
2

2m
(k2r − k2i ), Γ =

2~2

m
krki. (18)

For the case of the s-wave state, we need a special treatment as discussed in Ref. [41].

III. RESULTS AND DISCUSSION

A. Benchmark calculations of ACCC with REM

We first confirm the validity of combining the REM framework with ACCC. Two-body

cluster systems, 8Be(α+α) and 5He(α+n), are compared with the preceding ACCC results

by Tanaka et al. [42]. For this purpose, we employ the same Hamiltonian used in Ref. [42].

The parameter of the Minnesota potential is chosen as u = 0.94 for 8Be and u = 0.98 for 5He.

The zero-range limit for the spin-orbit interaction is adopted, and its strength parameter

Jls = 50 MeV·fm2 was applied. The size parameter of the Gaussian wave packet ν = 0.26

fm−2 is used. To solve EOM, we choose the intrinsic energies Hint = 13.8 and 18 MeV for

8Be and 5He, respectively, so that the wave functions can cover large model space which

is essential for the convergence of the GCM calculations. The numbers of the basis wave

functions are 75 and 90 for the 8Be and 5He, respectively.

We first show the numerical results obtained by using the Minnesota parameter u as the

coupling constant λ, which is the same procedure employed by Tanaka et al. [42]. It is
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noted that increasing u does not affect the energy of the α particle. The results are listed

in Table. I. The results for the 0+ and 2+ states of 8Be are consistent with those reported

by Tanaka et al. [42]. We additionally tested the 4+ state and found that the result is

comparable to the experimental value in both the energy and width. As for the 5He case,

the spin-orbit interaction yields 3/2− and 1/2− resonances which are also well reproduced

in our framework. The s-wave state of 5He, which has a very large width, is also properly

described and consistent with the result obtained by Tanaka et al. [42] although the Padé

approximation of the s-wave state is unstable.

TABLE I: The resonance energy ER and the decay width Γ of 8Be and 5He in the unit of

MeV obtained by the ACCC + REM compared with the previous study [42]. Numbers in

the parenthesis are the result obtained by using the spin-orbit interaction as an auxiliary

potential instead of the central interaction. Experimental data are taken from Ref. [50, 51]

for 8Be and 5He, respectively.

REM Tanaka et al. [42] EXP

Jπ ER Γ ER Γ ER Γ

8Be 0+ 0.224 0.001 0.208 0.003 0.09184 5.57 ± 0.25 eV

2+ 2.87 1.42 2.85 1.44 3.1218 1.513 ± 0.015

4+ 11.77 4.82 11.44 ≈ 3.5

5He 3/2− 0.78(0.73) 0.66(0.64) 0.77 0.64 0.735 0.648

1/2− 1.98(1.93) 5.62(5.46) 1.98 5.4 2.005 5.57

1/2+ 12.7 163 12 180

Since the choice of the auxiliary potential Ha is arbitrary, we have also tested the spin-

orbit interaction asHa, and used its strength Jls as the coupling constant λ. It was applied to

the 1/2− and 3/2− resonances of 5He, and the numerical results are listed in the parenthesis

of Tab. I. The graphical comparison of the eigenvalue trajectories between the central and

spin-orbit interactions as Ha is shown in Fig. 1 and Fig. 2. Despite the different choices of

the auxiliary potential, we could obtain reasonable results in both cases. We note that this

may be the first example that uses the spin-orbit interaction as Ha, and we expect that this

choice of the auxiliary potential will make it easy to investigate the Nα + xn systems.
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FIG. 1: The 3/2− state of 5He obtained by (a) the central force (Minnesota parameter u as

coupling constant) and (b) the spin-orbit interaction (spin-orbit parameter Jls as coupling

constant) as Ha, respectively.
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FIG. 2: Same as Fig. 1, but for the 1/2− state.

B. 1/2− resonances of 13C

In this study, we focus on the 1/2− states of 13C since the structures of the excited 1/2−

states still have no consensus in both theoretical and experimental aspects. 13C is described

as the 4-body system of 3α+ n in the REM framework. The resonance energy is calculated

with respect to the ground state of 12C as k =
√

E(13C)−E(12Cg.s.). When we choose the
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central force as Ha, we need to use a large value of λ to make the resonance states of 13C

bound, which makes it difficult to extrapolate to λ = 0 by the Padé series. Therefore, as

we proposed and demonstrated above, we use the spin-orbit interaction as Ha. In this case,

the energy of 12C is independent of λ, which stabilizes the ACCC calculations.

The Volkov No.2 [45] and G3RS [46] interactions are used for 13C as in our previous study

[38]. The Majorana parameter M is set to 0.592, which gives reasonable excitation energy

of the Hoyle state as 7.68 MeV (experimentally 7.65 MeV). The α width parameter is fixed

to ν = 0.23 fm−2, which reproduces the observed α particle’s size. As for the real-time

evolution calculations, two intrinsic energies are used, Hint = 30 and 40 MeV, to cover the

various configurations of the α particles and a neutron. We prepared 300 wave functions of

each intrinsic energy, and 600 bases in total are superposed.

Fig. 3 shows the energies of the 1/2− states obtained by GCM and ACCC. Here, we have

2 choices of the physical point of the spin-orbit strength, Vls = 800 and 2000 MeV. The

former value is the original strength of the G3RS interaction [52] and the latter is chosen to

reproduce the phase shift of the α + n system [53]. The numerical results are summarized

in Table II with the resonance energy E and width Γ. In addition to the energy and width

we also calculate the matrix elements of isoscalar M(IS0) and electric M(E0) monopole

transition strength that can be obtained within the ACCC [41],

(Φ|Ô|ψ〉 = Cont
λ→0

∫ ∞

0

Φ∗(k(λ), r)Oψ(r)dr, (19)

where the round bra with Φ denotes the resonance state and the angled ket with ψ denotes

the ground state. The sign ‘Cont’ means the continuation of the coupling constant λ to the

physical point. The matter Rm and proton Rp radius of a resonance state can be calculated

by the general form of Eq. (19),

(Φi|Ô|Φi) = Cont
λ→0

∫ ∞

0

Φ∗
i (ki(λ), r)OΦi(ki(λ), r)dr, (20)

The normalization of resonance states can be obtained by Zel’dovich regularization [41].

The spin-orbit strength Vls = 800 MeV reasonably reproduces the ground state. Although

the 1/2−2 state is not described with Vls = 800 MeV, the 1/2−3 and 1/2−4 resonance energies

are obtained in good agreement with the experiment. As for the 1/2−5 state, its energy is

too high in this case, so we do not discuss it in detail here.

The isoscalar monopole transitions from the ground state to the excited 1/2−3 and 1/2−4

states are strong in accordance with the experiments. At the same time, the electric
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monopole transitions also show large values, and especially the 1/2−4 state has about half of

each IS0 strength, which shows the spatial excitation of protons is almost the same as that

of neutrons that means having clear alpha cluster structure. It is also seen that the proton

radius is comparable with the matter radius.

The other choice Vls = 2000 MeV can reproduce the experimental energies of all the 1/2−

states. The IS0 and E0 transitions again show large values where the 1/2−2 and 1/2−4 states

show about the half values of E0 strengths of IS0 transitions implying the large proton

distribution comparable to the neutrons. However, the proton radius is almost the same

as the matter radius in the 1/2−4 state while the proton radius is much smaller in the 1/2−2

state. An interesting point is that the matter and proton radii of the 1/2−4 state are almost

independent of the choice of Vls.

Between these two possible choices of Vls, we consider that Vls = 800 MeV gives a more

natural description for 13C including the ground state and the other states although the

1/2−2 excited state is missing. It is also noted that a similar spin-orbit strength, Vls = 1000

MeV, gave a reasonable description of the low-lying band structure in our previous work

[38]. The stronger strength, Vls = 2000 MeV, made each state reveal its dynamics of spatial
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FIG. 3: The 1/2− resonance states obtained by the Padé approximation.

10



TABLE II: Numerical results of the 1/2− states are listed. Energies E from the threshold,

widths Γ of resonance states, electric (E0) and isoscalar (IS0) monopole transition

densities, and matter Rm and proton Rp radii with the choice of Vls = 800 and 2000 MeV.

Energy and width are in MeV, monopole transitions are in (e)fm2, and radii are in fm2.

Experimental data are taken from Ref. [54]

ACCC EXP

Jπ Vls E Γ M(IS0) M(E0) Rm Rp E Γ M(IS0)

1/2−1

800 -6.64 - - - 2.43 2.37
-4.95 - -

2000 -8.41 - - - 2.40 2.36

1/2−2

800 - - - - - -
3.91 0.15 6.1

2000 5.11 0.24 7.11 3.55 2.80 2.73

1/2−3

800 5.94 1.38 15.41 5.04 3.02 2.90
6.13 <0.004 4.2

2000 5.88 0.65 13.52 3.83 2.93 2.65

1/2−4

800 7.55 0.65 7.55 3.55 2.88 2.78
7.55 - 4.9

2000 9.74 4.80 6.46 2.85 2.88 2.88

1/2−5

800 12.69 7.65 5.30 2.43 3.00 2.90
- - -

2000 - - - - - -

structure. In the 1/2−3 and 1/2−4 states, the role of the valence neutron seems different, where

the spin-orbit interaction is significant among the clusters in the 1/2−3 state, which shrinks

the proton radius from 2.90 fm to 2.65 fm, while it almost does not affect the proton radius in

the 1/2−4 state. The physical properties of the 1/2−4 state such as monopole transitions and

radii are not dependent on the spin-orbit strength that implies the 1/2−4 state is a different

type from the usual cluster states. We speculate that this 1/2−4 state, located above the

3α + n threshold, could be a candidate for the Hoyle-analog state.

The recent experimental study by Inaba et al. [33] found that there is a bump structure,

which is composed of several states located close to each other, around 12.5 MeV from the

ground state (the 1/2−4 exp. state), and this bump structure, especially its IS0 transitions,

was not described by the shell model calculation. Furthermore, this state is regarded as a

mirror state of the bump structure at 13.5 MeV of 13N whose decay to the Hoyle state was
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observed [35]. We regard that our 1/2−4 state corresponds to this experimental finding and

thus, it needs to have further discussions to examine if the 1/2−4 state can be the Hoyle-analog

state.

IV. SUMMARY

In summary, the resonance states of the 1/2− states in 13C have been investigated. As

a benchmark calculation to demonstrate the combination of ACCC and REM with the

employed interactions, 8Be and 5He resonance states were well reproduced compared to

the preceding ACCC study. In addition, a tactical treatment of ACCC was introduced, in

which the spin-orbit interaction was exploited as an auxiliary potential in the ACCC and it

properly reproduced the 5He resonance states.

Based on this new treatment, the resonance states of 13C were clearly figured out from

the continuum. The matrix elements of radius and monopole transitions were also calcu-

lated within the ACCC, which provides cluster characteristics of each resonance state. The

physical interaction was chosen with the spin-orbit strength Vls = 800. The 1/2−2 state was

not obtained in this study implying that this state is probably not an α cluster state. The

1/2−3 and 1/2−4 states were found to be the well-developed α cluster states, and especially the

1/2−4 state was independent of the choices of Vls = 800 and 2000 MeV, which exhibits the

characteristic of the condensate state, so further investigation on the 1/2−4 state is required

as the future work.
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[1] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Physical Review Letters 87, 192501 (2001).

[2] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Physical Review C 67, 051306
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