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CONVERGENCE ANALYSIS OF PROBABILITY FLOW ODE FOR
SCORE-BASED GENERATIVE MODELS

DANIEL ZHENGYU HUANG!, JIAOYANG HUANG?, AND ZHENGJIANG LIN?

ABSTRACT. Score-based generative models have emerged as a powerful approach for sampling high-
dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings
remain relatively underdeveloped. In this work, we study the convergence properties of determin-
istic samplers based on probability flow ODEs from both theoretical and numerical perspectives.
Assuming access to L?-accurate estimates of the score function, we prove the total variation between
the target and the generated data distributions can be bounded above by O(d+/d) in the continuous
time level, where d denotes the data dimension and § represents the L2-score matching error. For
practical implementations using a p-th order Runge-Kutta integrator with step size h, we establish
error bounds of O(d(vV/d + (dh)P)) at the discrete level. Finally, we present numerical studies on
problems up to 128 dimensions to verify our theory, which indicate a better score matching error
and dimension dependence.

1. INTRODUCTION

In recent years, score-based generative models [13, 18,35, 37, 38] have emerged as a powerful
paradigm for sampling high-dimensional probability distributions. Unlike traditional generative
models that directly parameterize the mapping from random noise to target distribution sam-
ples [17,20,30,33], score-based generative models consist of two stochastic processes—the forward
and reverse processes. The forward process transforms samples from the target data distribution g,
with density gg into pure noise, a step commonly referred to as the diffusion process. The gradient
of the log-density function, also known as the score function, is learned from these trajectories
using score matching techniques [19,37,38,42]. The reverse process, guided by the score function,
transforms random noise back into samples from gg. This methodology has been proven effective
in synthesizing high-fidelity audio and image data [12—14,31,32].

The reverse process is commonly implemented either as stochastic dynamics or deterministic
dynamics, the latter often formulated as probability flow ordinary differential equation (ODE).
These probability flow ODEs can typically be discretized using numerical methods such as forward
Euler, exponential integrator, Heun, and high-order Runge-Kutta methods. Recent advancements
in methods like those proposed in [28,29,36,38,44,15] have enabled denoising steps to be completed
in just a few iterations (e.g., 50 steps), compared to the Euler-Maruyama scheme typically employed
for stochastic dynamics, which often requires a significantly larger number of steps (e.g., 1000 steps).
Consequently, these deterministic methods achieve better efficiency in generating samples with only
moderate quality degradation. The deterministic dynamics depends on the score function, which
is typically learned by a neural network through the score matching process involving non-convex
optimization. Consequently, the score estimation is inherently imperfect. This imprecision, coupled
with discretization error, poses a critical question: How does the interplay between score matching
error and discretization error influence the convergence of the deterministic dynamics towards the

true data distribution? Our work seeks to address this question by delving into the convergence

analysis of probability flow ODEs within the context of score-based generative models.

For the stochastic dynamics, convergence analyses have been explored in various works such
as [5,7,9,11,21-23,39,40,43], with notable contributions from [7,9, 23, 10], offering convergence
guarantees with polynomial complexity, without relying on any structural assumptions on the data
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distribution like log-concavity. The stochastic nature of these dynamics plays a crucial role in mit-
igating error accumulation. However, the deterministic counterpart warrants further exploration.
Related works include [10], which assumes no score matching error and provides a discretization
analysis for the probability flow ODE in KL divergence. However, their bounds exhibit a large
dependence on dimensionality and are exponential in the Lipschitz constant of the score integrated
over time. In contrast, [3] assumes L? bounds on the score estimation offers polynomial-time con-
vergence guarantees for the probability low ODE combined with a stochastic Langevin corrector,
without relying on any structural assumptions on the data distribution. Similarly, [24,25] provide
polynomial-time convergence guarantees for the probability flow ODE by requiring control of the
difference between the derivatives of the true and approximate scores. Additionally, [2,4] analyze
the convergence of the deterministic dynamics at continuous time level, exhibiting exponential de-
pendence on the Lipschitz constant, stemming from a more general stochastic interpolant or flow
matching setup [1,6,20,27]. Finally, [16] offers convergence analysis for the general probability flow
ODEs with log-concavity data assumption, where the error bounds grow exponentially with time
T in the presence of the score matching error.

1.1. Our Contributions. We analyze the convergence of the probability flow ODE from both
theoretical and numerical perspectives. Our detailed contributions are as follows:

e We provide convergence guarantees of the probability flow ODE at the continuous time
level under three mild assumptions. These assumptions are as follows: Assumption 3.1
asserts that the target density has a compact support, Assumption 3.2 asserts the L? score
matching error over time is bounded by §, and Assumption 3.3 asserts the first and second
derivatives of the estimated score are bounded. Under these assumptions, we prove in
Theorem 3.4 that the total variation distance between the target and the generated data
distributions can be bounded above by O(dv/§), where d is the data dimension.

e We provide convergence guarantees of the probability flow ODE at the disretized level.
To accommodate a p-th order time integrator, we further require Assumption 3.7, that
the estimated score function’s first (p 4+ 1)-th derivatives are bounded. We establish in
Theorem 3.9 that the total variation distance between the target and the generated data
distributions can be bounded above by O(d(v/§ + (dh)P)) .

e We verify our theoretical discoveries through numerical studies on problems with Gauss-
ian mixture target densities up to 128 dimensions. By intentionally introducing artificial
score matching errors and employing the widely used second-order Heun’s time integrator,
our numerical results demonstrate a total variation error of O(5 + h?) (for the marginal
distributions), with improved dependencies on dimension and score matching error.

In our theoretical proof at the continuous time level, we combine the method of characteristic
lines and calculus of variations to estimate the total variation between the generated data distri-
bution ¢; and the target distribution ¢ along the diffusion process. Compared to using Gronwall’s
inequality directly, our error estimate in Theorem A.l does not include an exponential term in
time. We provide two mathematically rigorous yet simple proofs of Theorem A.1, and also illus-
trate our intuition in Section A. Furthermore, our methods imply a more general Theorem A.3 for
the L'-norms of solutions of general transport equations. In Remark 3.10 and Remark A.4, we
highlight that our methods can also estimate the L'(R%)-norms of derivatives of g; — ¢;. Conse-
quently, we can conclude that the L™ (Rd)-norm of gy — ¢ is also small when r > 1. See Remark 3.10
and Remark A.4 for further details. Additionally, our method extends to estimating the point-
wise difference between @ and ¢, although we defer this investigation to future work to maintain
the manuscript’s conciseness. In our proof of Theorem 3.4, we leverage the Gagliardo-Nirenberg
interpolation inequality with a universal constant, meaning the constant is independent of the di-
mension. To provide a comprehensive literature review, we include the proof of this dimension-free
interpolation inequality as Lemma C.1.
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For our convergence analysis of the probability ODE flow at the discretized level, a first step is to
reformulate the discrete solution obtained by the p-th order Runge-Kutta method as a continuous-
time ODE flow using interpolation. We derive an interpolation in Proposition D.1, and crucially,
the score function associated with the interpolated ODE flow and the original approximated score
function (and their derivatives) are close up to a p-th order error, i.e., O(h?). Employing the
characteristic method described in Appendix A again, the error at the discrete level decomposes
into two parts: the score matching error between the generated data distribution ¢; and the target
distribution ¢; along the diffusion process, and the discretization error between the interpolated
ODE flow solution and the generated data distribution ¢;. Consequently, the score matching error
and time discretization error do not interact to magnify, thus preserving the time discretization
error at the p-th order.

Our assumptions on the true data distribution p, are quite general. In Assumption 3.1, we
assume that p, has a compact support. In Appendix B, we extend our main result to the case
where p, is a Gaussian mixture. We emphasize that under Assumption 3.1, u, may not have a
density, and the compact support K, of u, can be a submanifold of a much lower dimension in
R?, particularly point masses. Refer to our Example B.1 and Example B.2, where we observe
that assuming Vlogq; is uniformly Lipschitz with a constant independent of t is unreasonable,
as it actually tends to oo as t — 07. In Lemma B.3 and Lemma B.5, we compute and estimate
the high-order derivatives of ¢; (and log¢;), when u, has a compact support and when p, is a
Gaussian mixture. For Gaussian mixtures, the error estimates are better than the case when K, is
a submanifold of a much lower dimension. We also mention in Remark C.4 that our methods also
apply to other reasonable assumptions on u, once some simple estimates are satisfied.

1.2. Natations.

e Diacritics: [ denotes quantities involve score error, O denotes quantities involve time dis-
cretization error.

e Time steps: 0 =ty <ty <--- <ty =T — 7, where 7 > 0 is a small parameter.

e Distributions on R%: ¢, g;, §; denote forward process, oy = qr_t, 0t = Gr—t, 0t = Tt TEVerse
process. We also define &;(x) = qt(x) — ¢t(x),&r(x) == @ (z) — ¢(x).

e Vector fields from R? to R%: Forward process: Uy(z) := z + Vlog ¢;(z), Uy == x + sp_4(2),
Up = a+574(2), 6(2) = U — Uy = sp—4(x) — Vlog (), 0¢(x) = Up(x) — Ur(x); Reversal
process: Vi = Up_y, Vi := Up_4, Vi := Up_y4; Other vector fields: Z;(x).

e a=(a1,qs,...,qq) is a multi-index with nonnegative integers «;’s, |a| = a1 +as+. ..+ ay,
and we define 0y = 071072 - -- O3¢. We also use 0; := 0, for simplicity.

e Constants: We use C, to denote universal constants like 10, 50, 100, 200, i.e., C,, is inde-
pendent of the dimension d and other parameters in this paper. Also, C, may vary by

lines.
1
e Norms: For a vector x = (21, 22,...,24) € R, we use ||z| = |||z = (2} + 23 +... + 22)2,
1
oo = supy<ie il ol = 2] + o] + ... + feal, Nl = (217 + 22l + ...+ [za]?)5.
We similarly define || - ||2, || - [loo, || - [[1, || - |p, for matrices or even more general tensors,
because we can view them as vectors and forget their tensor structures. For a vector-valued
function F(z) = (fi(z), f2(2),..., fm(z)) : R? s R™ where m is a positive integer, we
usually regard F(z) as a vector in R™ and similarly use the notations ||F'(z)|, ||F(z)|1,
()| oo-
e Function class: We say a vector-valued function F'(z) = (fi(x), fo(2),..., fm(z)) : RY = R™

as being in C”, if each of its components f;(x) has continuous first r-th derivatives. We say
F(z) is in the L3-space L*(R?) if for each of its components f;(z), its L*(R?%)-norm defined

as || fill s(ray = (Jpa |f1(x)\5dx)% is finite. We say F(z) is in the Sobolev space W™*(RY)
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if for each of its components f;(x), 0%f; € L*(R%) for each a with |a| < r. We define the

1

Wt (RY)-norm of f; as | fillwns ety = (o 100 Fil50 )

2. PRELIMINARIES

2.1. Score-based Generative Model. Score-based generative models begin with d dimensional
true data samples { X} following an unknown target distribution p, with density go. The objective
is to sample new data from the target distribution. Typically, the score-based generative models
usually involve two processes—the forward and reverse processes.

In the forward process, we start with data samples from qg, and progressively transform the data
into noise. This process is often based on the canonical Ornstein-Uhlenbeck (OU) process given by

(1) dX; = —X;dt + V2dB,, Xo ~ qo, 0<t<T,

where (Bt)e[o,] is a standard Brownian motion in RY. The OU process has an analytical solution
(2) X L NXo+ oW, W~ N(0,1),

with Ay = e and 0y = V1 —e=2. The OU process exponentially converges to its stationary
distribution, the standard Gaussian distribution N(0,1;). Let ¢; denote the density of X;, which
evolves according to the following Fokker—Planck equation:

g =V - ((x+ Viogq(x))q) = V - (Urq), 0<t<T,

with Us(x) ==z + Vlog ¢:(x).
By denoting ¢; = q7—¢, the time reversal process from time 7" to 0, satisfies the following partial
differential equation (PDE):

(3) oot =—V - ((x+ Viogar—)o) = =V - (Viar), 0<t<T,

with Vi(x) == x 4+ Vloggr_i(x). The score function V logqr_¢(z) is typically learned by a neural
network trained using score matching techniques with progressively corrupted trajectories {X;}
from (1). Subsequently, the reverse PDE can be solved from gy = ¢r to sample new data from gp.

The reverse PDE (3) is often reformulated into a mean field equation for sampling instead of
being directly solved. This mean field equation can manifest as stochastic dynamics

4) dYy = (Y +2Vloggr—(Yy)) dt + V2dBj,  Yo~qr, 0<t<T,

where (Bj})o<¢<7 is a Brownian motion in R?. This formulation is commonly referred to as the
denoising diffusion probabilistic model (DDPM). Alternatively, the mean-field equation can adopt
a deterministic dynamics framework in terms of an ordinary differential equation with velocity field
Vy:

(5) WYy =Y +Viogqr(Yy) =Vi(Ys), Yo~gqr, 0<t<T,

known as the probability flow ODE. Additionally, when V log gr—¢(x), is represented by the learned
score function s;(z), the probability flow ODE (5) becomes

(6) 8Y, =Y, +s(V) =Vi(Y)), Yo~ 2o,

here the velocity field becomes ‘A/t(:):) =z + s¢(z). And Y is sampled from gy, since the density gr
is unknown. gy is commonly approximated by the standard Gaussian distribution A (0,1;), which
serves as a reliable approximation of g for sufficiently large T'. The associated density of lA/t is
denoted as g;, which differs from g; that describes the density of Y;, due to the score matching
error.
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2.2. Time Integrator. To numerically solve the probability flow ODE (6), a time integrator
is essential. Fix a small 7 > 0, we discretize the time interval [0, T' — 7] into N time steps
0=ty <ty <---<ty=T-—r, typically using a uniform step size h = (T'— 7)/N, Starting from
an initial condition }N/to sampled from g, the time integrator iteratively estimates }Zl at time t;.
One commonly used time integrator is the Runge-Kutta method, the family of explicit s-stage p-th
order Runge-Kutta methods updates {Y7,} as follows:

(7) i;ti+1 = 21 + hz bjk;,
j=1

kl - ‘Z¢+C1h(}/ti)7
k? - ‘/}ti-i-czh (i;tz + (a21kl)h)7
(8) k3 = Viiresh (Ya, + (agikr + azzko)h),

ks = ‘/}ti—i-csh(ﬁi + (asik1 + asoka + -+ - + as s—1ks—1)h).

The lower triangular matrix [a;i] is called the Runge-Kutta matrix, while the b; and ¢; are known
as the weights and the nodes. The stage number s and the parameters are chosen such that the
local truncation error of (7) is O(hP*1). In general, s > p and if p > 5, then s > p + 1.

For example, forward Euler scheme is the 1-stage first order Runge-Kutta method:

Vi = Vi, + hky k1 Z‘//\Zz(iz)

141

Heun’s method is the 2-stage second order Runge-Kutta method:
~ ~ h ~ o~ ~ ~
}/ti+1 = }/%1 + 5(]{:1 + kQ) kl = Wz (}/21) k2 = ‘/ti+1 (}/21 + hkl)

Remark 2.1. The time discretization error between Runge-Kutta solution fftz and the true solution
Y:, s typically analyzed through the concept of local truncation error, which is interpreted as follows.
Consider any time interval [t;,t;+1], solve (6) in the time interval with Yy, =Yy, analytically, gives

(9)

- -~ o~ R2dV,(Y) w APV, (Y;,) 1 tit1 aPV,(Y;)
Vi, =Y, +hV, (V) + ——tl o D il tigr — )P —=tqt,
g = Yo V(Y0 + 5o pl o dir1 (p+ 1)!/% T

Similarly for the s-stage p-th order Runge-Kutta methods (7), we can view XNGZ,H = ﬁr(fftz) as a
function of r € [0,h] (by replacing h to r in (7) amd (8)) and Yy,, and perform a Taylor expansion
around r =0

(10) Yio =Y, + h——— 4+ drp+1 dr.

A » @By, - (T,
dFp( tz) }Ld FO(Y;%) + 1 / (h—r)pd F(Kfz)
dr pl  drp (p+ D! Jo

The Runge-Kutta matriz (a;i], weights b; and nodes c; are carefully chosen such that the coefficients
in front of h,h? - WP (as a function of Yy,) in (9) and (10) cancel perfectly. Thus the Runge-
Kutta estimation Yy, satisfies

}N/;fi+1 - 1//\;2'-&-1 + Rp-i—l(‘?;&, f/i’ ti, h)v Rp-l—l(@a ﬁﬂti’ h) = O(hp+l)-
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3. MAIN RESULTS

The probability flow ODE (5) describes the evolution of Y;; while its counterpart with the

estimated score function (6) describes the evolution of 17} We denote the density of Y; and 172 as
o+ and g; respectively. Then they satisfy the following PDEs

a1) 0ot = =V - (Vior), Vi=x+ Vlogos,
0oy = =V - (‘Z@\t)y ‘/}t =z + s¢(x).

One major focus of our work is to understand propagation of the score matching error by analyzing
the difference between g; and g;.
We make the following assumption on the data distribution p.

Assumption 3.1. The data distribution ps is positive and compactly supported on a compact set
K., and we also define D =1 + max ek, ||Z|oo-

We assume that the errors incurred during score matching are bounded in an L2-sense.

Assumption 3.2. Fix small 7 > 0. There exists a small § > 0, such that the score matching error
1s bounded by § in the sense that

T—1
/ Eo, [|[V 1og 0(z) — s¢(2)|3] dt < 62
0
We assume that score estimates s;(x) are in C2, and the first two derivatives are bounded by L,
which may depend on time.

Assumption 3.3. Fir small 7 > 0. We assume that the score estimate si(x) are C? for any
0<t<T—r7, and there exists a function Ly > 0 in t, such that

max |s§j)(0)| <L; sup max max |8§‘s£j)(x)\ < L;.

1<5<d zeRd 1<|al<21<5<d
Here, we write s;(z) = (sgl)(x), s§2) (z),... ,sgd) (), and a = (a1, 2, ..., 0q) is a multi-index with
nonnegative integers ;’s, |a| == a1 + g + ... + a4, and we define 9y = 951052 - 9gd. We also

define that L = fOT_T L; dt.

Theorem 3.4. Adopt Assumption 3.1,Assumption 3.2 and Assumption 5.3, there is a universal
constant Cy, > 0, such that the total variational distance between op_, and op_r is small in the
sense that

1
(12) TV(QT—T7 /IQ\T—’T) < Cu -d- Ti : (ﬁ +T- 7—_2 ’ D3) 2 5% + TV(QO7 /Q\O)

If we take the initialization to be the standard normal distribution gy = N (0,1y), then TV (0o, 00) <
Cue~T\/dD, which is exponentially small in T.

Remark 3.5. We remark that the right hand side of (12) is only an upper bound. There are
several ways to modify it:

(1) The term 7= appears because when K, is a submanifold of a dimension much lower than
d, for example, several points, then Vlogor_, = J% ~ 1771 near K, and it becomes much

more singular as T — 07. See Example B.1 and Example B.2. One way to modify this
is to modify the Assumption 3.2 by a time-weighted score matching error, which will be
disscussed in Remark C.2; another way is to assume that our data distribution ps. has a
sufficiently reqular density, e.q. a Gaussian mizture, then there will be uniform upper bounds
(depending on parameters of . ) on V1og oy together with its higher order derivatives, which
are independent of the time t. So, one can let T — 07 and the term 71 will not appear
in the error estimate. Our proof of Theorem 3.4 works, essentially verbatim, after using
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those bounds for Vlog o, together with its higher order derivatives. See Lemma B.5 and
Remark C.J for more details if s does not have a compact support and is possibly a Gaussian
maxture.

(2) In our numerical simulation, the total variation distance is linear in & (See Section 4). In
Theorem A.1, the upper bound in (17) is of order 6'/% because we use (36) in Lemma C.1
to prove Theorem 3.J under the Assumption 3.5 first. If we can add Assumption 3.7, that
is, the score estimate sy(x) has higher derivatives and we can control them, then we can use
(37) in Lemma C.1 to replace the exponent % of § in (12) with 1 — % for k> 2, as discussed

1
in Remark (C.3). In this case, the (L + T -772- D3)2 on the right hand side of (12) will

1
then be replaced by Cyp(L + T - 7% - DF1)E for some positive constant Cy, depending on the
k.

Remark 3.6. Although in Theorem 3.4 we only estimate the error up to the time T — 7 instead of
the true data p. = qo, the Wasserstein 2-distance between qo = or and qr = or—+ s actually small
if T > 0 is small enough. This is because if we let v be the distribution of (Xo,X;) on R?? for X;
defined in (2), then

Walor, or—7)* <Ey||Xo — X |2 = E,||(1 — M) Xo — o W2 < 2(1 = A\-)°E,,. || Xol|? + 202,

where Ay = €7 and o, = /1 — X\2. We notice that 1—\; < 7, and by Assumption 5.1, E,, | Xo|* <
dD?, so

Wa(or, or—-)* < 272dD? + 47,
which goes to zero of order T as T — 0T,

Furthermore, to numerically solve the probability flow ODE (6), we discretize the time interval
[0, T — 7] into N time steps 0 =ty < t; < --- < ty = T — 7, and employ time integration until
ty = T — 7 to circumvent the potential singularity at 7. Let g;, denote the distribution of fftl
obtained by using the Runge-Kutta method described in Section 2.2. Another focus of our work
is to further understand the impact of the time discretization error by analyzing the difference
between g; and py.

To use the p-th order Runge-Kutta method, we assume that s;(x) is in CP*! in the following
assumption.

Assumption 3.7. Fizp > 1 and a small T > 0. Assume there exits a large number L = L(p,7) > 1

the following holds. The approzimate score function s;(x) satisfies ||si(x)||2 < L(Vd+ ||z|2) and is
CP*L. such that the following holds

su max max akaas(” z)|| < L.
1<k ol <p+1 1§j3d” POrse (@)l <

forany0 <t < T —.

Remark 3.8. In Assumption 3.7, besides the upper bounds of the derivatives of si(x), we also
assumed that ||s¢(x)||2 < L(Vd + ||z||2). This is an easy consequence, if s;(x) is L-Lipschitz.

Theorem 3.9. Adopt Assumption 3.1,Assumption 3.2, and Assumption 3.7, there is a universal
constant Cy, > 0 and constant C(p, s) > 0 (depending on the stage and the order of the Runge-Kutta
method), such that the total variation between or_, and or—_, is small in the sense that

1
TV(or—r,31—r) < Cu(dTH(L+ 72 D¥)25% + C(p, s)d(hd)’ (LD log(T)/7) )
score matching error discretization error

+ TV (00, 00)-
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If we take the initialization to be the standard normal distribution go = N (0,14), then TV (0o, 00) <
C'e=T\/dD for another positive universal constant C!.. So, TV(00, 00) is exponentially small in T.

u
Remark 3.10. Under the assumptions of Theorem 3.9, one can even estimate the L'-norms of
higher order derivatives of or_, — or—, by the Gagliardo-Nirenberg inequality in Lemma C.1, as
illustrated in Remark A.4. By the same arguments in Section D, we can also get error estimates for
the L'-norms of higher order derivatives of or—r —or—r. This means we can obtain the WP -norms
for or—r — or—r, where WP' means Sobolev spaces. By Sobolev inequalities, one can also obtain
the corresponding WP~1"-norms for r > 1, in particular, the L"-norm of or—r — 07— with r > 1.

3.1. Proof Outline. To prove Theorem 3.4, we first consider these two first-order PDEs describing
the forward processes

(13) Ot =V - (Urqy) and Oy =V - (Urgy).

Here ¢ = or—; and U, =z + s7—t(x), and the second equation describes the density evolution of
Yr_y ~ G denoted in (6). We denote &;(x) = Uy — Uy = sp_¢(x) — Vlog ¢;(z) as the score matching
error, and 5,5( ) = qi(z) — q:(z) as the error in generated data distribution. Our goal is to use
f Jpa @t(2)]|0¢(2)||* dadt to bound the L' error between g; and g at time 7, i.e., [pq [E:(z)| da for
t=r.

By employing the characteristic method for first-order PDEs (13), we can derive a bound for the
time derivative of the L' error as follows:

& el < [ @se

The proof can be found in Appendix A. Integrating from 7 > 0 to 7', the L' error is controlled by
the gradient of the score error:

/ 5 (o \dx</ / (@))() dm+/ Er(z)| da.
R4 R4 R4

Then we use Gagliardo-Nirenberg Lemma C.1 and estimations on derivatives of density ¢; as pre-
sented in Appendix B to control each component of the gradient V - (¢:0;) in the right-hand side
in terms of the L? score error, leading to

/ /Rd (qd))(z)| dedt < Cy-d-TT-(L+T- 72 D3)% (/TT /Rd e e dt)‘i

We observe a 1/2-th order dependence on the L? score error and linear dependence on the dimen-
sionality d. The presence of 772 is attributed to the possibility that true data lies on a submanifold
of lower dimensionality than d. For a detailed proof and improved bounds concerning the Gaussian
mixture true data distribution, please refer to Appendix C. N

To prove Theorem 3.9, we first interpolate the discrete solution {Kgi}fio obtained by the p-th
order Runge-Kutta method using interpolation. Then, we obtain a continuous time process on each
time interval [t;,¢;+1], which can then be treated as an ODE flow

aY: = Vi(Yy),
where 17,5 is continuous on the ¢-direction when t € [t;, ¢;4+1], but it may not be continuous crossing
each t;. The discrepancy between V; and V; is studied in Proposition D.1. Specifically, we analyze
(14) IVi(@) = V@)oo, IV (Vi(z) = Vi(@))lloo < C(p, 5) - L((Vd + [|z]|2)hv/dL)",

which essentially represents the Runge-Kutta local truncation error with detailed dimension and
Lipschitz constants. Let g; denote the density of Y7_;, which satisfies the forward process

&g = V - (Uydr),

dx.
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with Ut VT t We will quantify the total variation between ¢; and ¢, the density of Yp_;. We

define &;(z) == Uy(z) — Up(z), &(x) = Gi(x) — q;(x). By using the characteristic method described
in Appendix A again, the error at the discrete level boils down into the score matching error and
time discretization error:

/ Erle) da— [ (o)l da
T—t; T—t;
dxdt + / /
/T tit1 /Rd Z T—ti41 JRE

By using the fact that gt — 0 = Ut Ut VT t — VT +, the discretization error becomes

/ / i+1
dzdt = / /
—ti41 R4 Rd

Using the Runge-Kutta local truncation error estimations from (14), the discretization error can
be bounded as

[l

As a result, the score matching error and time discretization error do not interact to magnify,
thereby preserving the time discretization error at p-th order, albeit with significant dimensionality
dependence. The detailed proof is in Appendix D.

dxdt.

qtdt Qt 615 - 5t>))(x)

(a1( 5t 0¢)))(x (qr—+(Vy = Vi) ()| dadt.

(gr—t (Vi — Vi))()

tit1 1
dzdt < C(p,s)d - (dh)P(LD)P*? / —dt.
t;

4. NUMERICAL STUDY

In this section, we numerically analyze the convergence rate of the probability flow ODE, specif-
ically focusing on a K-mode Gaussian mixture target distribution

K
(15) go(z) = > weN (w5 my, Cy).

k=1
The forward process, as denoted in (2) with Ay = e™? and oy = V1 — e~ 2 yields

K

1 Hy - Atw”% 2 2
- . S LA e 1) dx = : +o71).
@) /IRd (\/27T0‘t)d exp( 20—t2 qo(z)dx 1;:1 wiN (y; Aemip, A; O + o 1)

The score function takes the following analytical format

i wiN (23 \emp, A2Cy + o21)

NCy + 02Dz — Memy).
] Qt(l‘) ( t t ) ( t )

(16) Ve log gi(x) = —

In general, the score function is represented by a neural network with inputs ¢ and z, trained
through score matching with sequentially corrupted training data [19,37,38,412]. However, in our
present work, we circumvent the score matching step. Instead we assume that we have access
to an imperfect score function characterized by the following three types of artificial score errors

d(t,x) = sp—(x) — Viog qi(x)

e constant error : §(t,x) = 5\1[;
e linear error: 0(t,x) = 59”\/:3”,

e sinusoidal error: §(¢,z) = 53111(3:)9”\75"‘.
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Here m is the mean of the target Gaussian mixture distribution. The sin function is used for point-
wise evaluation, and its product with the following term also represents pointwise multiplication.
In the subsequent numerical investigation, we evaluate the convergence rate of the probability flow
ODE for estimating g using an analytical score function (16) with various magnitudes of artificial
score errors parameterized by a scalar §. Specifically, we consider ¢ values of 0.005, 0.01, 0.02, 0.04,
0.08, and 0.16. For the probability flow ODE, we integrate the deterministic reverse process (6) us-
ing Heun’s second-order time integrator until 7' = 8. Because the Gaussian mixture target density
has no singularities, we integrate the reverse process until the final time 7" with 7 = 0. Based on
our theoretical analysis outlined in Theorem 3.9, to balance the score error and time discretization
error, we choose h? to be approximately equal to 6. Consequently, as we vary the magnitude of
the score error § from 0.005 to 0.16, we adjust the corresponding number of time steps as follows:
Ny = 96, 64, 48, 32, 24, and 16. It is worth noticing the step size must be within the stability regime
of the explicit time integrator. To initialize the ODE flow, we sample J = 4 x 10* particles from
the standard Gaussian distribution N (z;0,1;). All code used to produce the numerical results and
figures in this paper are available at https://github.com/Zhengyu-Huang/InverseProblems. j1/
tree/master/Diffusion/Gaussian-mixture-density.ipynb.

4.1. One Dimensional Test. We first consider a one dimensional 3-mode Gaussian mixture (15)
with
w =[0.1; 0.4; 0.5] m =[-6.0; 4.0; 6.0] and C = [0.25; 0.25; 0.25].

Initially, we explore the convergence behavior of the probability low ODE in the mean field limit
by numerically solving the Fokker-Planck PDE (11). We employ an initial distribution N (z;0,1)
and discretize the computational domain [—10, 10] into 1000 cells using a second-order finite volume
method [41]. Integration is performed with Heun’s second-order time integrator using a time step
of h = 1072 until T = 8. To ensure accurate understanding at the continuous level, we choose Az
and h to be sufficiently small, such that discretization errors are negligible compared to the score
error. The corresponding score function, reference density ¢;, and estimated density or_; under
various imperfect score estimations are illustrated in Fig. 1. While the solution error increases
with larger J, all modes are captured, including the left-side mode with relatively small density.
The convergence rate, assessed in terms of the total variation TV(qo, or), relative mean error, and
relative covariance error, is depicted in Fig. 2. The linear relationship between these errors and
is clearly demonstrated.

Then, we investigate the convergence of the probability ODE flow by integrating the determin-
istic reverse process (6). The corresponding score function, reference density ¢;, and estimated

density or_; with various imperfect score estimations are depicted in Fig. 3. Kernel density esti-
mates are computed with bandwidth determined by Silverman’s rule [34] (ﬁ 1/(dH)(l - 35)
(interpolating from 0.5 to 1). Notably, the estimated densities closely resemble the PDE solution
(See Fig. 1), highlighting the significant efficiency of the time integrator with such small numbers
of time steps. The convergence rate, evaluated in terms of the total variation TV(qg, or), relative
mean error, and relative covariance error, is depicted in Fig. 4. The linear relationship between

these errors and § (or h?) is clearly demonstrated.

4.2. High Dimensional Test. Finally, we consider d dimensional 5-mode Gaussian mixtures (15).
The weights are sampled uniformly wy ~ Uniform[0, 1] are then normalized to sum to 1. The means
are generated from a Gaussian distribution, my ~ N(0, 3%I;), and the covariance matrices Cj are
generated as Cf = %(Wng/d—i— I4) with (Wy)i; ~N(0,1) for i, j =1, ---, d.

We investigate the convergence of the ODE flow by integrating the deterministic reverse process
(6) with the same setup as before. For d = 128, we visualize the results in terms of the marginal
density for the first dimension, including its score, reference density ¢, and estimated density @}p_t
with various artificial score errors, as depicted in Fig. 5. We compute kernel density estimates


https://github.com/Zhengyu-Huang/InverseProblems.jl/tree/master/Diffusion/Gaussian-mixture-density.ipynb
https://github.com/Zhengyu-Huang/InverseProblems.jl/tree/master/Diffusion/Gaussian-mixture-density.ipynb
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FIGURE 1. One dimensional test: Density estimations obtained by solving the
Fokker-Planck PDE (11) numerically with various artificial score errors. From top
to bottom: score, estimated density with 6 = 0.005, 0.01, 0.02. From left to right
estimated ¢; at t =8, 4, 2, 1, 0.
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FIGURE 2. One dimensional test: convergence of the density estimations obtained
by solving the Fokker-Planck PDE (11) numerically with various artificial score
errors.

with the bandwidth determined by the same Silverman’s rule [31] as in Section 4.1. Surprisingly,
the estimated densities are as good as those of the one-dimensional test (See Fig. 3). We further
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FI1GURE 3. One dimensional test: density estimations obtained by solving the prob-
ability flow ODE with Heun’s method with various artificial score errors. From top
to bottom: score, estimated density with ¢ = 0.005, 0.01, 0.02. From left to right
estimated ¢; at t =8, 4, 2, 1, 0.
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FIGURE 4. One dimensional test: convergence of the density estimations obtained
by solving the probability flow ODE with Heun’s method, where h? &~ § with various
artificial score errors.

consider d = 8 and 32 by generating the target density gg through marginalizing the 128-dimensional
Gaussian mixture target density. The convergence rate, evaluated in terms of the total variation
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of the marginal density TV(q%, §1T), relative mean error, and relative covariance error, is depicted
in Fig. 6. The linear relationship between these errors and & (or h?) is clearly demonstrated.
Additionally, we also explore the scenario without score matching errors for comprehensive analysis.
The convergence rate, evaluated using the same error indicators, is presented in Fig. 7, showing
the quadratic relationship with 2. Notably, in this high dimensional test study, we do not observe
any dimension dependence.

—— reference —w~ constant error —e~ linear error —-#&~- sinusoidal error
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FIGURE 5. 128 dimensional test: marginal densities obtained by solving the prob-
ability low ODE with Heun’s method with various artificial score errors. From top
to bottom: score, estimated densities with § = 0.005, 0.01, 0.02. From left to right
estimated ¢; at t =8, 4, 2, 1, 0.
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Ficure 6. High dimensional test: convergence of the density estimations obtained
by solving the probability flow ODE with Heun’s method, where h? &~ § with various
artificial score errors. The dotted lines, dash dot lines and dashed lines indicate
d = 8,32 and, 128 dimension tests, respectively.
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Ficure 7. High dimensional test: convergence of the density estimations with no
score errors obtained by solving the probability flow ODE with Heun’s method,
across different time step sizes h. The dotted cross lines, dash dot circle lines and
dashed triangle lines indicate d = 8,32 and, 128 dimension tests, respectively.

5. CONCLUSION

In this study, we have investigated the convergence of score-based generative model based on
the probability flow ODE, both theoretically and numerically. Our analysis provided theoretical
convergence guarantees at both continuous and discrete levels. Additionally, our numerical studies,
conducted on problems up to 128 dimensions, provided empirical verification of our theoretical
findings. Omne notable observation is the superior error bound of O(d + hP), indicating potential
sharper estimations with improved dimension and score matching error dependence. Moreover,
conducting rigorous numerical-based analyses with neural network-based score estimation errors is
also a focus for future research.
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APPENDIX A. TOTAL VARIATION ESTIMATES ALONG PROBABILITY FLOW

In this section, we prove the following general theorem for continuity equations, which is inde-

pendent of the particular choice of Uy, Uy (equivalently, Vi_y, Vi_g) in (11).

Theorem A.1. Fiz any 0 < 7 < T. Let q(z), q:(x) € C*([r,T] x RY) N LY([7, T] x RY) solve the
following two continuity equations on R% respectively,

atQt =V (UtQt)7 atZ]\t =V (ﬁt@)

We also assume that for t € [, T), Uy, Uy are locally Lipschitz on R, Then, if we denote &(x) =
Ui(x) — Ui(z), &(x) = @i(z) — q:(), we have that,

(V- (qi0y)) ()| dz.

[ @l [ fer) as| <

/E : withE(t)::/Rd

First Proof. Fix this given 7 > 0. For ¢t > 0, we define the total variation between ¢ (z) and ¢ (x)

as

(17)

10 = [ Bsrta)] do.

We use z; := Ti(x) to denote the solution of the ODE (also called the characteristic line)

d

aTt( x) = ~Ur(Ty()),
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with the initial data zo = Tp(z) = . We notice that, by change of variables (we can do this because
Uy is locally Lipschitz on RY. So, T is a diffeomorphism of R%),

10 = [ [irlenl L) do.
R
where JTi(x) = |det(VT(x))|. A direct computation shows that

;tatw(%) = (V- (UrrBr)) (@) + (V- (@r20112)) ().
Hence,
Cerielw) = (V- Oisr)(w0) Busrl) + (V- (qesrbiss)(z0).

Jacobi’s formula gives that

-1
%det(VTt(a:)) = trace((iVde)) . (VTt(x)) ) -det(VTy(x)).
We also notice that
9T @) = VL) = ~V(Or @) = — (V1) (Tu(a)) - VT2,

Hence,

~

4 det(VTi(z)) = —trace((VﬁTH)(Tt(a:))) ~det(VTi(x)) = —(V - Urge) (Ti(x)) - det(VTi(z)).

dt
So,
d
o)< [
() (VT ) (T@)) - det(VT(2))| d
:/Rd
:/Rd

where the second last equality is by change of variables again. Hence, for any ¢’ > 0,

(V- Uir) (@) - Eoger (1) + (V + (qrrOt4er)) (1) - det(VTy(2))

(V (@t4r014)) (1) | - JTi(2) do

(V : <Qt+7'5t+7'))(x) dr = E(t + 7—)7

t/

(18) f0)< [ E(t+7)dt+ f(¢).

0
One can also use the characteristic line method starting from ¢ = T to t = 7, and then obtain an
inverse inequality. Hence, we finish the proof of the theorem. O

Remark A.2. Notice that in this first proof, we exchange the order of integrals and derivatives. We
can do this in our problem setting (11), because by Assumption 3.1, u. is compactly supported, so
qt(z) always has a exponential tail as ||z|| — +o00. Gi(x) also has such a property by our Lemma B.6.

Indeed, one can prove the following more general theorem with reasonable assumptions, essen-
tially verbatim, by the same method.

Theorem A.3. Fiz any0 < 7 < T. Let pi(x) € C([7, T] x RN L([1,T] x R?) solve the following
continuity equation on R% with hy(x) € L' ([r, T] x R%),

Fpi(x) = (V- (Zipe)) (@) + ().
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We also assume that for t € [1,T), Z; is locally Lipschitz on RY. Then, for almost all t € [7,T), we
have that,

< /R Ihe(2)] da

‘/Rd |Pr(93)’dx/Rd |pr(z)|dz| < /TT/Rd‘ht(x)‘ de.

Remark A.4. We will prove a Gagliardo-Nirenberg interpolation inequality with dimension free
constants in Lemma C.1. With this inequality, if one can know that [pq|0Zp;(x)|da is bounded
for some i € [1,d], then one can use Lemma C.1 to see that [pq|0ip-(x)|dx is also small if
Jga [pr(x)|dz is small. Similar arguments work for higher order derivatives of p-(x). Moreover, if
we can conclude that the W* Y (R?)-norms of p,(x) is small, where W1 means Sobolev spaces, we
can use Sobolev inequalities to conclude that the WF=17(R?)-norms of p,(x) for a corresponding
r > 1 is also mall. In particular, we can conclude that the L"(R%)-norm of p-(x) is small.

d
— d
3 [ )] o

Hence,

Before we give the second proof of Theorem A.1 and Theorem A.3, we need to explain our
intuition a little bit. With those notations in Theore A.3, we notice that for

o) = [ Inta)] do.

we have that

d i d = i z) do — g z) dx
90 = [ s g = | Gp - [ G

p
pe>0y dt pe<o} d

If the boundary d{p; > 0} consists of (d — 1)-dimensional piecewise smooth submanifolds (or at
least rectifiable sets), then by the divergence theorem, we know that

| @@= [ @) (Ze @) <o,
{p:>0} O{pt>0}

where n(z) is the unit outer normal vector and H?~1(-) is the (d — 1)-dimensional surface measure.
Similarly,

/ (V- (Zipt))(x) dx = 0.
{pt<0}

So,
90 = [ sien(o(@)hula) do. and ]ig@)] < [ (@) da.

However, in general, we cannot know whether the boundary set 9{p; > 0} is always of (d — 1)-
dimension. For an arbitrarily given smooth function, its zero level set can also be arbitrarily strange
and does not necessarily need to be of (d — 1)-dimension.

The following second proof of Theorem A.3 is inspired by [3] and the communication with
Professor Guido De Philippis. We also assume that (||Z;(z)]| - |p¢()|) € LY (R? x [, T)).

Second Proof. Let a > 0. We let 8,(s) = va? + s? be a function on R which approximates the
function |s| as @ — 07. Then, the function p,(7) = Ba(p:(7)) on RY solves the equation
Opat(x) = (V- Ze)(2))pe(2) Bo(pe(x)) + Ze(%) - Vpau(x) + he(@) By (pe(2))
=V (Zi(@)pas(@)) + (V- Z) (@) [pe(2) Bo(pe(2)) — pat(@)] + he(2) B (pe(2))-
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For any R > 0, consider the integral of the above equation on the ball Bg := Br(0) C R?, we have
that

g T )ar = x T — d=1 . T T ! xTr)) — T T
i [, puir= [ G @ [ (9 2@ @R @) ()] d

+ [ b)) d.
Bgr
and then for any ¢',t" € [, T],

/ pat”( )dl’—/ pat’ dl‘
Bgr Bgr

// (Zy(2)pas(z)) - ——dHI (z)dt
v JoBg &4l

v [ 2@ 00) )]
t"” JBR
+/ / ht )) daxdt|.
t"” JBR
Notice that |5, (s)| = \/alz‘g'? < 1, |pi(z) B (pe(z)) — par(z)] = #ﬁ(z)? < 1, and for any given
x € Bp, lim,_,o+ m = 0. By the dominated convergence theorem, we can let a — 0 on

both sides and obtain that

/ [pr()]dz — / (oo ()] da
Br

// (Ze@)lpu(@)) - o (@)
1" JOBg

+/t, (V- 2)(@) -0 dads

—|—/tt/ /BR hi(x) sign(pe(x)) dzdt
<[  NA@ - =

—I-// |hi(x)| dedt.
t” BR

Because we assumed that (|| Z(z)|| - [pi(x)]) € L*(R? x [,T]), we can choose a sequence {R;}
with R; — +o00, such that the first term on the right hand side goes to 0. So, by the monotone
convergence theorem, after passing R; — +00, we obtain that for any ¢',¢" € [r, T},

t/
‘/ ]ptu(x)]dx—/ ipy (2)]dz g/ / Ihe(2)] dadt.
Rd Rd " Rd

APPENDIX B. PRELIMINARY ESTIMATES ON FORWARD AND BACKWARD DENSITY

In this section, Ut,(/jt are defined as in (11). Under Assumption 3.1, we take \; = e~! and
oy =+/1— )2 (t > 0), and we also assume that

(19) (v) / B = = (5“) Ly
qely) = e 20¢ s | — | — dz,
' R4 (\/27mt)d At ) A?

which satisfies the first-order PDE: 0, = V - (Upqt) for Uy = x + Vlogqi(x). We remark that
although we use the notation (/%) /A¢ in the definition (19) of ¢;, because the data distribution
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s can be supported on a submanifold K,, or more general lower dimensional rectifiable sets,
the meaning of it is actually the push-forward measure defined by (A)x«(A) = pe(N\;'A) for
any measurable set A C R So, the rescaling factor )\f is actually A\F for & < d when K, is a
k—dimensional submanifold in R%. But this notation doesn’t affect our computations. As readers
will see, the only property we will use is that in the integrand of (19), x/A\; € K, and hence
[#]]oc < AcD

Example B.1. When p, is the delta mass at a point yo € R%, then for t > 0,

1 lly—yoll? Y — o 1
@)= ————7-¢ > . Valy) =-"—"al), Vgau@y)=-— lu
(V2moy) o o7

We notice that as t — 0T, the derivatives of log q:(y) blow up.

Example B.2. When p, is the unit 2-sphere S> C R? C R?, if we write y = (y,y") € R? x R?—3
and y' = (y1,v2,y3), a direct computation shows that

2 2 A / A /
o B Ayl eyl
Qt(y) = — - e ot . . e t — e t .

(\/271'0t)d A/

The derivatives of log q:(y) also blow up as t — 07 by a direct computation.

In general, we have the following estimates for space directions derivatives of ¢;(y) and log ¢;(y).
An interesting fact is that the upper bound in the statement of Lemma B.3 is uniform for y € R%.

Lemma B.3. For any p >3, any y € R? and any t > 0,

AP DP

(20) 97108 5(0) o < (4p1) 5

Also, for any i, 7,

|+ \eD 8ij )\2D2
|0y, log q1(y)| S‘y"%, and |0}, log qt(y)| < =5 +2
Oy ! t Ut

Proof. For simplicity, for a function f(z) defined on R%, we denote

(21) )= [ @) A = [ 1ta ( ) L

_ly=z|?
Hence, ¢;(y) = (—1— 20¢* ). For simplicity, we discuss the derivatives of the logarithm of
(V2moy)
the y-function h(y) == (e ally+e]* ), where a € R is a constant. We will choose a = —2— finally, and
the difference between |y — z||? and ||y + z|> = || — y — 2||* doesn’t influence the || - ||s-norms of

derivatives.
We first compute the first and second derivatives of log h(y). We notice that

(22) O:h(y) = 2a{(yi + ) W+e1%y = 2ay;h(y) + 2a(zetlvtel).
So,
(23)
8i2jh(y) = 2ad;;h(y) + 2ay;(2ay;h(y) + 2a<:(:iea”y+xH2>) + 4a2((xi + yz‘):l:je“||y+x||2>
(24) = 2a6;;h(y) + 4a’yiy;h(y) + 4a2y¢<($je“”y+$”2> + 4a®y, <$i6ally+2|\2> + 4a® (2, eallvtall® ).
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Hence,
0% h(y)h(y) — 0;h(y)0;h
o 1o (y) = 2O - SHIDG)
25
( ) 2 5 + 4 2 <x7’x]€a“y+x“2>h(y) o <xiea”y+xH2><xjea”y+x“2>
= 20045 a

h(y)?
Before we compute higher order derivatives of log h(y), we first illustrate how we obtain an upper
bound for 82-2]- log h(y). Notice that in the definition of (f(z)) in (21), because us has a compact
support K, the x in the integrand satisfies that * € M\K,.. Hence, in the integrand of (21),
|z]lo < AeD by Assumption 3.1. So, [{z;e?lv+I)| < \:Dh(y), |(ziz;elvteI’)| < X2D2h(y). So,
\6% log h(y)| < 2ad;j + 8a* ;D>

Then, we compute VPlog ¢:(y) for p > 3. We use induction to show that in the expression of
VP log h(y), there is no polynomial term of y like we have seen in (25). Assume that for an m € Z,
and for any multi-index a with |a| = m, the derivative Jj log h(y) has a form

Po(y)
h(y)™’

where P, (y) is the summation of at most 4(m — 1)! — 2 terms, where each term has a form

9, log h(y) = (2a)™

+(gPreallvel®y . (ghagallytel®y . (pBm callytall®y,

and each §; is a multi-index and |51] + [B2| + ... + |Bm]| = m. This assumption is satisfied when
m = 2, because the derivative of the term 2ad;; in (25) is zero so that we can omit this term. Then,

1 —mP, op)eelvtel?
(26) 9,09 log h(y) = (2a)™d,, ,iay()yn)l = (21 w0 TR h(];)r(ffl«yl o) )

We notice that

1
%8%((3551@“”3/””2 <3rﬁzeaHy+ﬂﬂll2 (xﬁnbea\\yﬂlﬁ))

)
|2 Py (gPm eallvtal®y
+ (zy2Prealvtal®y g Pecallytal®y )

+ <xﬁ1eally+x\\2> . <x1xﬁzea\\y+$ll2> .

) .
= myy (xPrellvtell™y . (g2 cally+el

e <xﬂm6ally+m\\2
. <x6m€a”y+$H2>
F o (@Preallvrall’y L pBrealytall®y g oBm allytel®y
Hence, 50, Po(y) is of the form my; Py(y) + Qua(y), where Q4 (y) is the summation of at most
2a "Y1
4(m — 1)! — 2 terms without y; showing in the polynomial terms. We notice that those y; terms in
the numerator of (26) will then cancel, and the remaining terms all look like

+ (2P eallvtal’y | (gBrealy+al®y (B gallutal®y,

where each ] is a multi-index and |81] 4 |85 4 ... + |B,41| = m + 1. The number of them is at
most m(4(m — 1)! — 2) +m = 4m! — m < 4m! — 2 when m > 2. We then conclude the proof of
Lemma B.3. ]

The following lemma describes the situation when ¢ > 0 is very large.

Lemma B.4. Let ¢:(y) be defined in (19), and let

[y
=
o
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Then, we have that for t > 0,

2d(1 — 41 \AJdD 24D
(27> / ‘Qt ‘d < % + )\t\/&D# .e 2042
O¢

In particular, there exists a universal constant C, > 0, such that

(28) / 90() — 9(y)|dy < Cue~'VaD,

O

which goes to 0 exponentially as t — +00.

Proof. Because one can write

( ) / 1 _Hy—MQIH2 J ( )
Qt y = —_ e 204 'u* T ,
Rd (\/27rat)d

and [pq dp(x) = 1, we see that

R RS S
. L tat) =gy = [ /RW W= Al
[/ T ldy dpua ().

We denote y = (y1,4') € R?, and we define the function

1 _ v =412 1 llyli?
fly,r) = |—— ¢ 20¢* - d e
(v2r0y) (v2m)

By the rotation symmetry, we see that the right hand side of (29) equals to

(30) L, 7w lelbay du (o).

Let’s first see what is |% f(y,r)| for r < +/dD. A direct computation shows that

d ¥ lyr — M| —l=xer i
df(yﬂ")‘ = d’ 7 ¢ 2
T (V2moy) T
31117 =23aD24 ')
<A+ AVdD 2l ‘

B (\/27T0‘t)d o
So, (30) is bounded by

1 2_,2.12 2
A MAdD 2l =ApdDT Y
o) [ s+ [ [ L D, AR )
R4 R4 JRd mUt O't

The second term in (31) is bounded by

1 2 2,52 2 2.2
(32) / MvdD |yl|+A2t\/aD R < )\thLH—)\t\[D oot
R4 (\/27mt)d I of

which goes to 0 exponentially as ¢t — 400 because \; = e~! and 07 =1 — A2,
The first term in (31) is

(33) /.

1 i

=

2
T2 |dy,
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because [pq dp(z) = 1. We define the function

h(y, ) ’ 1 p] 6_% — 1 y -67% ,
(V2ra) (v2m)
and then for a € [0, 1],
llyl|?
d 1 T w2 1 1wy e 2aZ
dh(%a)‘ B d 1€ 7 tge = | ! < d d+ [ly]”]
Q (,/271.) (0% o « ( /277) a

Because h(y,1) = 0, we see that (33) is bounded by

2
[yl

(1—o0y) e 2 2d(1 — oy)
(34) oy Jd+ o)y = 22— o0),
Ot Rd ( /27'(') Ot

which goes to 0 exponentially as ¢t — 400 because o = V1 —e~2!. The estimates (32) and (34)
together give (27). Next we show (28). There are two cases: if e *v/dD > 1, then (28) holds
trivially, since the lefthand side is at most 2. Otherwise e *+/dD < 1, we have

N A24p2 e—2t —t —t
2d(1 )Ath4+At\fDet L 2de 4 fD+( VdD)? 1,

20',52 2o't
003 o2 = g o2
2de”® | Se”'VdD 2de~2 N be~'VdD -
e3 = e
- Ut2d Ut2 (1 _ e—Qt)d 1 —e 2t
2v/de e WdD 2 L
< m : \/ge + 1—76721565 < CuG \/;ZD,
for a universal constant C,, > 0. In the last inequality, we assume that e~! < 7 < %. Otherwise,
if e7t > I \[, (28) also holds trivially. This finishes the proof of (28). O

When we prove our main theorem, Theorem 3.4, in the following Section C, we will assume that
s has a compact support K, and use Lemma B.3 to proceed the proof. On the other hand, as we
have mentioned in Remark 3.5, our methods work under other assumptions on the initial data g,
as long as under those assumptions, we can reasonably obtain the properties in Remark C.4. We
next assume that p, is a Gaussian mixture and obtain an estimate similar to Lemma B.3.

Lemma B.5. Assume that p, is a Gaussian mixture, i.e., we assume that

ch \/T) exp(—;(ac—bk)-A;l(ac—bk)>7
™) Qg

where Ay’s are positive definite matrices, a = /det Ay, by’s are constant vectors in R%, ¢, > 0
and 22/[:1 ck = 1. Then, for any { € Zy and any multi-indexr o with |a| < £, there is a constant
C(, j1y), depending on € and Ay, by, in the formula of ., such that for any x € R? and any t > 0,

|02 ()|
q ()

Proof. A standard computation, by (19), shows that the density function of ¢ (x) is

(35) < O ) - ||z + C(¢, ).

M

1 1
(x) = cp———exp | — =(xz — A x —
) =3 e g b (= 5o =00 Ao - 0)).
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where Ay (t) = A Ay + 021y, by(t) = A\tbx. Hence,
M

A0z — bi(1) 1 N
Vg(x) = c cexp| —=(x—b -A xr—b .
) = Ya b (= 5o =00 Ao - 0u(0) )

So,

Oran(@)] < max || - A @ = )] - ().

Notice that because when t = 0, Ay’s are positive definite, and when ¢ — 400, Ax(t) — Iy, there
is an upper bound C(¢, yi.), such that sup;c( o) | Ap(t)~Y| < C(¥, us). Hence, we can obtain (35)
for £ = 1. For general ¢ > 1, one can either use induction or compute them directly, exactly using
the same way as the case £ = 1 we have shown. For the purpose of proving Theorem 3.4, the

estimates for ¢ < 3 will be enough.
O

Next, we also point out that those ¢;’s also have exponential tails, as long as one of them has an
exponential tail at a given time. For example, if ¢ = ¢r.

Lemma B.6. If for a t' > 0, qv(z) has an exponential tail as ||z|| — +oo, then for any t > 0,
q:(z) also has an exponential tail as ||z| — +o0.

Proof. Notice that 8,g; = V - (U;g;). Hence, along the characteristic line %Tt(x) = —Uyp(Ty(z)),
one can solve that

G 110) =) e [V T (o) ).

Because Uy(z) = x + sp_s(z), by Assumption 3.3, we have that |(V - Uy)(z)| < d(1 4 Ly_¢) for any
t > 0. The remaining estimate is on the norm of 7;(z). We notice that, by Assumption 3.3 again,

[sr—t(2)[| < st (0)| + (=] - d - Lr—¢) < d - Ly—e(1 + [|]]).
Hence,
O T (@) = | o(Ty(2)) - Th(w)| < (1 + dLr—yp— )| Ty(@) | + dLp—p || Tu(2) |
< (24 dLy—p )| Ty ()] + d* L7y,

Denote £; = fJ(Z +d-Lp_y_s) ds. Hence, for t > 0,

t t
e (ol = [ e ndy, as) <GP < e (ol + [ et nh o, as)
0 0

Because we can compare the norms of T;(x) and x by a factor only depending on ¢, and T; is also
a diffeomorphism since Uy(z) is locally Lipschitz, then we know that ¢;(x) also has an exponential
tail as ||z|| = 400. One can obtain a similar result for ¢ < 0. O

APPENDIX C. SCORE ESTIMATION ERROR

In this section, we assume that u, has a compact support K, as in Assumption 3.1 to proceed the
proof first. At the end of this section, we will point out some possible ways to use other assumptions
on this initial data p, in Remark C.4. We first need the following Gagliardo-Nirenberg interpolation
inequality to estimate E(t) defined in Theorem A.1, and finally use [p4 ¢:(x)57(z) dz to control
E(t) when t € [r,T]. For the convenience of readers, let us also sketch the proof of this inequality
here.
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Lemma C.1 (Gagliardo-Nirenberg). There is a positive universal constant C.,, such that for any
d€Zy, anyw e LY, any i € [1,d], if 02w € L', then

(36) ( [ o) dx>2 < cu< | 1otu) dx) ( [ 1w dx>-

In general, if ﬁfw € LY with k > 2, then

(37) /\8w |dx<C2 (/ |0Fw( ]dx)i(/Rd|w(a:)|dm)kkl.

Proof. Without loss of generality, we assume that ¢ = 1. For any u € C%(R?), we fix its remaining
coordinates ' = (xg,...,24), then according to Lemma 3.4 of [15], there is a universal constant
Cy > 0, such that

2
(/ 01w (1, 2" dxl) < Cu(/ |8f1w(x1,x')] dxl) (/ lw(z1,2")| dm1>.
R R R
Hence,

(/ |Ojw(z)| dx> ( / |01w(x, 2| dxldx>

Rd Rd-1

/ </ |07 w (@, 2'))| dl’1> (/ lw(a1,2")] dxl) da’

Rd—1

1 > 3

Ci </ / 102 w (w1, 2")| day da:) (/ / |w(z1,2")| daq dm’) .
Rad-1 Rd-1 JR

In general, assume that we already know that for some k > 2,

/|6‘w ) dz < Cy? (/ 10 \dm)i(/w]w(x)\dx)kkl,

then we replace w(z) with d;w(z), and obtain that

/\ |da;<02 </ |08 oy ( ]dx) (/ |Osw (z |d:1:) -

Combine this inequality and the inequality (36), we can obtain (37) for k + 1. O

I/\ Il
ﬁm\u

| /\

Now, let’s estimate the integral of F(t) in t. By (36) in Lemma C.1 and Hoélder inequality,

(38

)
/TT</Rd|81(qt5t1)(m)|dx> dt<02/ </ 102, (q:61) |dx> (/ (g |dw> at
< j(/ / 182, (0] |dxdt> (/ / (g:S)) (2 |dxdt>,

where we use the notation 6; = (8},...,d¢). For the term

//|qt 2)| do dt,
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we use Holder inequality twice and the fact that fRd qi(z) dz = 1, and see that

// (g0 ]dxdt</T</ 0(2)(61(z)) d$>é(/qut(az)dx>édt
(//qt dfl)dt)é'(T—T)

Notice that our assumption is that fT Jra qt(x)(étl(a:)) dzdt can be made very small. Next, we are
going to show that the term

T
(39) / /R o)) do

is bounded by a positive constant depending on 7,T,L,D. For the terms in 0% (q:0})(z) =
(02,q1)0} + 201q:016} + q:(03,0}), we notice that, because & (z) = sy_¢(z) — Vlog g (z), by the
proof of Lemma B.3

K\J\)—'

1
1010} ()| < Lp_y + — (02 +2)\2D?),
t

24\,

|8%15t()|<LTt+ tD,

and we see that for any x = (21,22, ...,24) € R%, by the proof of Lemma B.3 again,
ha(z)| _ (Jor| + MD)
(40) 2 ’
() Oy
Ogi(@)| _ 2(jz1]* + AID?) + o}

qt(z) o} .

Hence,

M@l(x)%(iﬁ)

([ ota@atio) ar) = ([ [@ho) dx)
< ([, (Yo 0y an) ([ 6 o) ar).

where the first term is a bounded term by similarly analyzing ¢;(x). For example, let us show that
the x;-fourth moment of ¢, i.e., [pa |z1|*q;(2) da, is bounded. By (19), we know that

\y1 w z
yl q dy—/ / . 20¢ dxdy
/ " Re SR (/270,)" s
_ _ly==)?
o f [ ol ol i (5 )
(41) wiJet (Vara)! M) M

_ 41p4d _lly-=)?
<8// ly1 —aa* “ P T <””> dzdy
R4 JRE \/27‘(’0‘15 At )\

= Cu((ft + )‘§D4) < Cu(l+ D4)a

for a universal constant C, > 0 coming from the fourth moment of the standard Gaussian. We
can similarly estimate the remaining two terms in the expansion of 92, (¢;6})(z) and get an upper
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bound for (39). Also, we remark that after taking the time integral from 7 to 7', the main order of

oy involved in (39) is at most
T T 6t
1
[ Lo [
T Ot T (€2t - 1)

which blows up of order T" as T" — +o0o and blows up of order 7~
universal constant C', > 0, such that

2 as 7 — 01. Hence, there is a

T T D3
/ / 102, (qu0)) ()| dar dt < cu/ (LT_t + 6) At < Cy(L+T- 72 D).
7 JR4 T g

t
Then, by (38) and Assumption 3.2,

T
/ (/ yal(qta,})(a:)\dx> At < Cy-6% - TH-(L4+T-72. D%,
T R4

Remark C.2. We notice that one can also modify the inequality (38) by

/T T </R lad ) dx) < Ci ( / e /R 0% (@) () da:dt)é
x (/Twzt)/R (@) ()| da:dt)é’

with a suitably chosen positive function p(t) when we use the Hélder inequality. For example, we
can let p(t) — 0 of order t> as t — 0%, and let p(t) — 0 of order % as t — +oo. In this way, the
first term in the above inequality is uniformly bounded so that we can pass T — 0% and T — +oo.
So, we only need to control the second term so that it is small enough.

Remark C.3. In our settings, if we know that si(x) has higher order derivatives up to k for k > 2,
we can replace (36) with (37) when we estimate E(t) in (38). Then, in order to estimate the
derivatives of q; in the expansion of Of(qtét), a similar proof of Lemma B.3 should work because
qt(x) has an exponential tail as ||x| — +oo.

Remark C.4. As readers have seen these proofs under the assumption that u. has a compact
support K, the main reason we need this compact support assumption is to estimate the term

T
[ [ iottashn ar ar
T JR4

Notice that qi6¢ = qi(st — Viogq) = qs¢ — V. If we replace the assumption with . being a
Gaussian mizture, according to Lemma B.5, we can do a similar estimate on |0%(q:64)(z)|, and
hence we can similarly obtain an upper bound for fTT Jga |0 (0:6}) ()| dz dt. Such an upper bound
will then depend on those parameters in the initial Gaussian mizture p., but don’t blow up as
7 — 0%. See Lemma B.5. One can make other reasonable assumptions on i, as long as one can
reasonably estimate this second derivative integral.

APPENDIX D. DISCRETIZATION ERROR

As discussed in Section 2.2, we solve the ODE flow ('JMA/} = }Aft + st(f’t) = @(2) using the Runge-
Kutta method. Although the Runge-Kutta updating rule as in (7) is a discrete time process, we
can interpolate it as a continuous time process on ¢t; <t < t; 41 as

Y, = F.(Y,,), t=t;+r
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where
S
FT(QJ) =x+Tijkj, OST’StZ‘_H—ti,
Jj=1
and

k1 = Vigre (z),
ko = Vi, gres ( + 7(a21kr)),
ks = Viiqres (7 + 7(ag1ky + asaks)),

ks = ‘/ti—l—'rcs (I’ + 7”(aslkl + asoko + -+ - + as,s—lks—l))-

We denote the density of ?t as ot, then at times ¢;, gy, is the density of Y; as given by the i-th step
of the Runge-Kutta methods. If Vi(-) is differentiable in ¢ on [t;, ¢;11], one can see from the above
contruction Y; is differentiable in ¢, and

(42) 8,Y; = 8, F(Yy,).

The following proposition states that for ¢;11 — t; = h small enough, we can rewrite (42) as an
ODE flow

for t; <t < tiy1, and V;(-) is close to Vi(-) up to an error of size O(hP).

Proposition D.1. Adopt Assumption 3.7. There ezists a large constant C(p,s) (depending on the
stage and order of the Runge-Kutta methods), if C(p, s)hdL < 1, then the following holds. For any
0 <r <h, F, is a diffecomorphism from R to RY. We denote its functional inverse as ®,.(x), then

(44) ‘7;51-—&-7"(53) = O0p Fr(®r(2)).
Moreover, for t; <t < t;ji1, 0,Y, = 1~/t(§~/t), and
(45) IVi(z) = Vi(@)loos IV (Vi(x) = Vi(x))]loe < Clp, 5) - L((Vd + ||z[|))VdRL)?,

Proof of Theorem 3.9. Then we need to analyze the density evolution under (43). We let ¢; piece-
wisely solve the transport equation

oG =V - (Ugy) with U = Vip_y,

on each interval [t;,t;11] for ¢ > 1, where 0 = ¢y < ¢t; < .-+ < ty = T — 7. Then, we define
0e(x) = U(z) — U(z), &(x) = qe(x) — ¢(x). We remark that Uy is continuous on the t-direction
when t € [t;,t;11] but it may not be continuous crossing each t;.

N-1

<3| @l o= [ Fr @) da

Bl do— [ [Erla)| do
Rd 1=0
N-1 T—t;
<
n ; /’T—ti_»'_l /Rd

’Rd

(V- (tht))(ﬂﬂ)

dz dt,
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where we used Theorem A.1 on each interval [t;,t;+1]. We also notice that

T—t; T—t;
/ / dadt < /
T— tl+1 Rd T— t7.+1 Rd
/ —tit1 /Rd

where the summation of the first term on the righthand side from ¢ =0toi =N — 1 is fTT E(t)dt
and we have estimated this error term in Seciton C and also obtained Theorem 3.4,

(47) /T N /R d

where under Absumptlon 3.7, £ in Theorem 3.4 is bounded by T'L. This gives the score matching
error in Theorem 3.9.
The second term on the righthand side of (46) is

T—t;
/T tit1 /Rd
which can be further bounded as (the term corresponding to the derivative 0;)

/T ti /
T—t;11 JRE

dxdt

Qt5t C]t5t )

(46)

(g (8¢ — 6,))) ()| dadt,

1
Qtét ) d‘rdtSOudTi(TL+TT72D3)55%7

(q(Uy — Uy))) ()| dadt,

T—t;
dxdt </ ||Ut x) — t(x)Hoo 01qe(x)| daedt

T— t1+1

+/ VU (z) — VU(2)]|oo - qe(z) dadt,
T—tiy1 R4

31 Qt - )

where we use the notation Uy (z) = (U} (), U2(z), ..., U(z)). By (45), we obtain that
IVi(2) = Vi@) oo IV(Vi(w) = Vi(2))lloo < Clp, s) - LI(Vd + |[l|) VAR L)P,

and the definition that U, = 17T_t, ﬁt = VT_t, we know that the right hand side of (48) can be
bounded by

(49) O’ [ [ (el (o) + ade) asar
tit1
According to Lemma B.3, the integral can be bounded by
AeD
(50) / / (Va + 2] - <(|9“|+2t )+1>.qt(x) drdt.
tz+1 Ut
The above integral can be bounded by using the following two relations.
|(Vd + - wHQ z\ 1
[ syt a= [ [ IOCCIIE S (£ L sy
R JR4 \/27rat t) At
12
S// (1 =1l + ko DV -+ [y = ol + )P "M(x) L ey
Rd JRA (\/27rat) M) A
_ — P ly—=|®
// (|lyr — 21| + D )(f(1+At )+ lly —x]) '672("752'#*<x> 1 dedy
R4 JR4 (‘/2770'15) At )\t
22
< [ (alEXDIO D)+ AR -,
R4 (V2moy)

< CE)A (o0 + MD)((1+ MD + o)) < 4C(p)d?/>DPH,
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where we used that D > 1 > o, and A\ < 1; and similarly
(52) [ (Va+ llPata) do < wcm)aor
]Rd

where C(p) is constant depending only on p. Combine these above estimates (51) and (52), we see
that

T—t; p/2 NHp+1
(53) (50) < 4Pt / C(pM—ZDdt.

T—tit1 Ot

dt

Finally by pluggin (50) and (53) back into (49), we conclude
T
dzdt < C(p, s)LPTH(hd)? DT - d /

T—t;
(54) /T tii /Rd
< C(p, s)d(hd)?(LD)P* log(T /7).

This gives the discretization error in Theorem 3.9. Theorem 3.9 follows from combining (47) and
(54). O

(a:(Ts = 0))) (=)

1
2
O

Proof of Proposition D.1. For simplicity of notations, we will first prove the statement for p = 2
for the Heun’s method, which is a 2-stage second order Runge-Kutta method. For general s-stage
p-th Runge-Kutta method, the proof is similar, and we will point out the necessary changes at the
end of the proof.

For the Heun’s method, F,.(z) is given by

(55) Fy(w) = 2+ (Vi (@) + Virr (@ + 1V, (2))).
In the following, we prove Proposition D.1 for the Heun’s method, under the assumption that the
step size satisfies §dhL <1.
For the vector V;, (x), we first notice that, by Assumption 3.7 that
se(@)|| < L(Vd + |l]])-
It follows that
(56) Ve @)I]s 1Veir (@) < ]l + LV + [l])) < 2L(Vd + [|])),

and

Fof@) =l < 5 (IVa @l + Vit + Ve (@)]])

(57) < 2 (2L(VA+ o)) + 2L(VA+ [}z + T3, (@)]))

< (2rL+ (2rL))(Vd + ||2]]) < 4rL(Vd + [2]) < %(\/3 + [l=[)),
where we used that 8rL < 8hdL < 1. It follows that
(58) Vd+ | F(2)| > Vd+ || - || Fr(2) — 2| > (f+ [[]])-

Next we show the map F,.(z) from (55) is a local dlffeomorphlsm we check its Jacobian matrix
(59) DF.(z)=1;+ A, A:= §DV}/1. () + §D‘/}i+r($ + 1V, (2))(Ig + rDV;, (z)).

We notice that D‘A/ti () = I+ Dsy,(z), and each entry of Ds, (z) is bounded by L. The same

(3

bound holds for the entries of DVtiM(z + 7"‘7151» (z)). Thus the (7, j)-th entry of A is bounded by

r2d
(60) |A;] < (1 + L)+ 7( + L) <rL+2dr’L? <2rL, 1<i,j<d,
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where we used that L > 1 and provided 2rdL < 8hdL < 1. The spectral norm || A|| of the matrix
A is bounded by its Frobenius norm as

||A”norm < HAHF < ZAZZJ <2rdL < 1/2’
v ij

where again we used that 2rdL < 8hdL < 1.

It follows that DF,(x) = Iz + A is invertible, and F, is a local diffeomorphism, and then
Hadamard-Cacciopoli theorem implies that F, is also a bijection from R? to itself. Therefore,
F, is a diffeomorphism from R? to itself. Moreover, thanks to (60), we have the following entrywise
bound for the inverse matrix (DF,(z))~!

[(DF(2)) ™" = La)ij = [(Ta + A);;" = i < |(Tg— A+ A% — A%+ )5 — 644

(61) <N @Dkt <4rD, 1<ij<d,
k>1

where we used that 4rdL < 8hdL < 1.
We denote the functional inverse of F,. as ®,(z), then (44) follows from (42).
Next we show

Viisr (Fr(2)) = Vigsr (Fr(2))|oo < CuL((Vd + |Jal|)VdrL)?,
IV (Vi (Fr (2)) = Vigtr (Fr(@))lloo < CuL((Vd + |Jl[)Vr L),
and the claim (45) follows. In fact, if we denote y = F,.(z), then
Veitr (W) = VirrW)lloo < Cul(V + ||2])VAL)* < 4CLL((Vd + ||yll)VdrL)?,

where in the last inequality we used (58).
For the gradient, by the chain rule we have

(63) (Vi) ) = (VVhir)(9) = T (Vi ir (Fr(2)) — Vi (F(2))) Dy ()~
By plugging (61) into (63), we conclude that

I(VVeitr) (@) = (Vi) @)lloe < (14 drdL) |V (Vi (B (@) = Vigtr (Fr (2))) [
< 2C,L((Vd + ||z|)VdrL)* < 8C,L((Vd + [ly|)VdrL)?,

(62)

(64)

where we used that 4rdL < 8hdL < 1, and in the last inequality we used (58).
In the rest we prove (62). Explicitly Vi, 1, (F,(z)) is given by
~ 1 ~ ~ ~ r ~ ~
(65) Viiar (Fr(2)) = 0, Fp(2) = 5 (Vi (@) + Vi (@ + 1V (2))) + 50, (Viar (2 4 7Ve()))-
We can perform Taylor expansions for the two terms on the righthand side of (65)
1
2

Ry(ria) = [ 502 (Fhsala + 5T ().
0

- (Vis(@) + Voo (2 + 7V (2)) = Vi () + 50V () + 5VVi, (0) Vi (2) + Bi (1, 2),
66

For the second term on the righthand side of (65), we can rewrite it as

50 (Vever (@ 1V (2)) = 50,V (a) + VRV (@) + R (r, ),
(67)
Ri(ra) =5 [ (Tt 5T (o)),
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and
Vietr (@) = Vil + & (Vi) + Vi, (247702 )
(68) = V(@) + 10V, (2) + 1V, (2)V, (2) + Ro(r, ),
Rafraa) i = 5 [ 0Tl Po))is
Comparing (66), (67) and (68), all the leading terms cancel out, and we get
(69) Vietr (Fr(2)) = Vigyr(Fr(2)) = Ri(r, ) + R{(r,2) = Ry(r, ).

Next we show that under Assumption 3.7 with p = 2, the error terms satisfy
1R (r, )lloos | BY (7, )lloos | Ra(r ) |00 < CuL((Vd + |l])VdrL)?,
IV R (7, 2) oo, [V RY (1) [loo, [V Ra(r, 2) o0 < Cul((Vd + ||z[|)VdrL)?.

The claim (62) then follows (69) and its gradient given in (70).
The three error terms R}, R, Ro involves the two terms O2(Vivs(x + 5V, (), 02(Vy, 15 (Fs(x))).
We first exam the time derivatives of Vi, s(x + sV;,(z)). Its first derivative gives

0sVipvs(@ + Vi, (7)) + VVias(@ + sV, () [Vi, (@),
and its second derivative is
(71> 852‘7;514-5(1. + S‘/}ti (1’)) + 285v‘/}ti+5(‘r + S‘/}ti (m))[‘zz (m)] + vz‘/}tﬁ-S(x + S@z(x))[f/\;z (.%'), ‘7151 (.%')]

By Assumption 3.7, the entries of the vector (95217251,“, the matrices V‘Aftﬁs,asvviﬁs and the
tensor V2V, , are all bounded by 2L. From (56), and the relation ||y||; < v/d||y||, we have

V(@) < V||V, (2)]] < 2(Vd + |Jl|) VL.
Thus the entries of the vectors in (71) are bounded by C,L((v/d + ||z||)v/dL)>?:
102V2, 44l < L,
(72) 10V s Tiloe < 105 sl Pill < CuL(Vd+ [l2]) VL),
IV2Ve, 45V Villoe < V2V tsllool V2, I} < CLL((Vd + |l2]|)VdL)?,
where we used Assumption 3.7 and (56).

For 63(12i+s(F5(a:))), by the same argument as above we also have H@g(\zﬁs(Fs(x)))Hoo <
CuL((vd + ||z|)VdL)?. We conclude from (66), (67) and (68) that

171 (r, ) oo, (1Y (7, 2)[loo || Ra(r, 2)[loo < T/OT CuL((Vd + ||z])VdL)*dr

(70)

(73)
< CuL((Vd + ||z|)VdrL)2.

To get the C! bound, we need to estimate |V R} (7, 7)|loo, |[VRY (7, 2)||lcos | VR2(7, 7)||o. By the
explicit formulas in (66), (67) and (68) bound, it boils down to show that

(74) 102V (Vists(x + Vi, (2)))lloos 102V (Vi s(Fo(@) oo < CuL((V + [[2]|)VdL)2.
From the expression (71), we take one more gradient on x,
(75)

O3V (Vs + sV, () = 02V, ys(w + sV, (2))[La + sV, (2)]
+20,V2V s (@ + sV, (2)) Vi, (), Ta + sVVy, (2)] + 20,V Vi 4 (@ + sV, (2)[VV, (@)]
+ Vi@ + Vi (2)) [Vii (2), Vi, (2), L + sV Vi, (2)] + 2V Vi (@ + sV3, (2) Vi, (2), YV ().
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Similarly to the argument as for (72), we have
1029 Vegslla + sV Vi oo < 1029 Vit lloo (1 + rdl| VT [loc),
10:V2Vi sl Vi Ta + 5V Vi lloo < 105V Vil 1 Vissll1 (1 + 7l VW o),
105V Vi + sV, @)V (@)oo < 10V Vil oo Vi | so,
[V Vs + Vi, (2) Vi (2), Vi, (2), Lo + 5V Vi (@)oo < 1V Vet oo [ Virs [T + 7l YV lloc),
IV Vi (@ + Vi, () [Viy (2), VVi (@)oo < AV Vs ool Viits 1 1V Ve, oo
Thanks to Assumption 3.7 and (56), all of the above expressions are bounded by
Cu(L((VA + o] VL),

For OEV(‘ZHFS(FS(.%))), by the same argument as above we also have |]8§(17152+8(F5(x)))|]00 <
CuL((vVd + ||z|)V/dL)%. We conclude from (66), (67) and (68) that

(76) IVRL(r, 2) oo, VR (7, ) lloo, [V R2(r, 2)l|oo < CuL((Vd + ||z])VdrL)®.

The estimates (73) and (76) together give (70). This finishes the proof of Proposition D.1 for the
Heun’s method.

In general, for the p-th order Runge-Kutta methods, the proof is similar. We need to perform a
Taylor expansion as in (66), (67) and (68), up to the p-th order, and the error involves the p-th time
derivative. The main terms all cancel out thanks to the choice of Runge-Kutta matrix [a;i], weights
b; and nodes c¢;. For the error term, like the discussion above, each more time derivative gives an
extra factor of (v/d + ||z||)vV/dL. So p-th derivative leads to an error C(p,s)L((v/d + ||z||)hv/dL)P,
where the constant C(p,s) depends only on the order and stages of the Runge-Kutta methods.
This gives (45). O
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